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Abstract

The purpose of this work is to prove the consistency of the negation of the
Continuum Hypothesis (CH) with the Zermelo − Fraenkel axiomatic system, in-
cluding the Axiom of Choice (ZFC). The Continuum Hypothesis states that there
is no set whose cardinality is strictly between the cardinality of the set of integers
and the cardinality of the set of real numbers. It is well-known that CH is inde-
pendent of ZFC: neither CH nor its negation can be proved from ZFC. In order
to show the consistency of ¬CH, we will use the method of f orcing that permits
us to construct a model that satisfies all the axioms of ZFC and where CH fails.

Resum

L’objectiu d’aquest treball és demostrar la consistència de la negació de la Hi-
pòtesi del Continu (CH) amb el sistema axiomàtic de Zermelo − Fraenkel amb
l’Axioma d’Elecció (ZFC). La Hipòtesi del Continu diu que no existeix cap con-
junt amb cardinal estrictament entre el cardinal del conjunt dels enters i el cardinal
del conjunt dels nombres reals. Com és ben conegut, CH és independent de ZFC:
no es pot demostrar a partir de ZFC ni que CH sigui certa ni que sigui falsa. Per
a demostrar que ¬CH és consistent, utilitzarem el mètode de f orcing amb el qual
construïrem un model que satisfa tots els axiomes de ZFC i on CH falla.
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Introduction

Georg Cantor proved in his article On a Property o f the Collection o f All Real
Algebraic Numbers published in 1874 that the set of real numbers is uncountable.
Four years later, in 1878, Cantor raised the famous Continuum Hypothesis (CH)
that states that there is no set whose cardinality is strictly between the cardinality
of the set of natural numbers and the cardinality of the set of real numbers. Es-
tablishing the truth or falsehood of CH was the first problem of David Hilbert’s
list of twenty-three problems published in 1900 and it was selected among the
ten problems he presented at the International Mathematics Congress in Paris in
the same year. Paul Cohen showed in 1963, complementing the work of Kurt
Gödel, that the Continuum Hypothesis is independent of the set theory axiomatic
system of Zermelo-Fraenkel with the Axiom of Choice (ZFC) by means of a new
technique called f orcing that he conceived specifically to produce independence
results and, in particular, this one. The independence of CH means that it is not
possible to prove CH nor its negation using ordinary mathematical methods be-
cause both statements are consistent with ZFC. The aim of this work is to prove
that the negation of the Continuum Hypothesis is consistent with ZFC by using
the method of forcing.

With respect to the structure of this work, we will mainly follow Kunen’s book
[5]. In Chapter 1, we will present the basic notions of set theory: its language,
the ZFC axioms and the ordinals and cardinals. In Chapter 2, we are going to
study models of ZFC. After talking about the important concepts of relativization,
well − f ounded sets and absoluteness, we are going to see how the Reflection The-
orems grant us the existence of a countable transitive model of any finite list of
axioms extending ZFC and we are going to present the constructible universe,
from which Gödel showed that CH is consistent with ZFC. In Chapter 3, we will
study the general method of forcing. Finally, in Chapter 4 we are going to use this
method in order to produce a model of ZFC where CH fails.



Chapter 1

Preliminary Notions of Set Theory

1.1 The language of set theory

Set Theory is based in the first-order predicate language, which is a formal lan-
guage that consists of basic symbols, rules that allow us to construct the formulas
and rules of inference that will grant us the theorems of the theory by means of
formal deduction. The point in formalizing the formation of formulas is the ne-
cessity of stating axioms precisely and obtaining the theorems from those axioms.
Indeed, as the majority of the ZFC axioms, as we will see later, are existential ones
(that establishes the existence of certain sets), we have to be sure that the formation
of new sets does not lead to any contradiction. And this is ensured by this formal-
ization. For instance, one of the axioms is the Comprehension Axiom, that certifies
the existence of sets made of elements that satisfy a certain property. Now, the no-
tion of property has to be formally defined with this first-order logic because,
letting any property be written without any rigour would set up unwanted con-
tradictions, as self-referential paradoxes. An example is Berry’s paradox: consider
the smallest positive integer not definable in under sixty letters.
We will be using those symbols: the logical connectors ¬, ∨, ∧, →, ↔, the uni-
versal and existential quantifiers ∀ and ∃ and the parenthesis (, ). The letters
of the latin alphabet in lower or upper case (x, y, ..., A, B, ...) will be used as
variables. We will also use the equality symbol =. The language of this theory
consists of one element, the binary predicate of membership L = {∈}. The atomic
formulas are of the form x ∈ y and x = y. Now, if φ and ψ are formulas, ¬(φ),
(φ) ∧ (ψ) and ∃x(φ) are also formulas. Then, (φ) ∨ (ψ) ≡ ¬((¬(φ)) ∧ (¬(ψ))),
(φ) → (ψ) ≡ (¬(φ)) ∨ (ψ), (φ) ↔ (ψ) ≡ ((φ) → (ψ)) ∧ ((ψ) → (φ)) and
∀x(φ) ≡ ¬(∃x(¬(φ))) are formulas as well. We won’t write parentheses if it does
not lead to any ambiguity.
A variable x of a formula φ is quanti f ied if it is bound to a quantifier. If x is not in
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1.2 The ZFC axioms 3

the range of any quantifier, then x is f ree. Formally, these notions are defined as
follows:

Definition 1.1. Given a formula φ,

1. If φ is an atomic formula, f ree(φ) is the set of all the variables that appear in φ and
quant(φ) = ∅.

2. f ree(¬φ) = f ree(φ), quant(¬φ) = quant(φ).

3. f ree(φ · ψ) = f ree(φ)∪ f ree(ψ) and quant(φ · ψ) = quant(φ)∪ quant(ψ), with
· = ∧,∨,→,↔.

4. f ree(Qxφ) = f ree(φ) \ {x} and quant(Qxφ) = quant(φ) ∪ {x} with Q ∈
{∃, ∀}.

If a formula has no free variables, it is called a sentence. We will write φ(x) if
x appears free in φ.
Now, given a formula φ, one may think that {x : φ(x)} is a set, the set of all
the elements that satisfy the formula, following the idea we discussed earlier.
However, this leads to the well-known Russell’s paradox. Consider A = {x : ¬x ∈
x}. Then A ∈ A ⇔ ¬A ∈ A, which is a contradiction. We need to use an axiomatic
system that allows us to construct sets avoiding these kind of contradictions. Many
systems have been studied during the XIXth century, but the most used one is ZFC.

1.2 The ZFC axioms

Axiom 0. Set existence: ∃x(x = x).

Axiom 1. Extensionality: ∀x ∀y(∀z(z ∈ x ↔ z ∈ y) → x = y).

Axiom 2. Foundation: ∀x(∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))).

Axiom 3. Comprehension Scheme:
Let φ be a formula with free variables x, z, v1, . . . , vn.
∀z ∀v1, . . . , vn ∃y ∀x(x ∈ y ↔ x ∈ z ∧ φ(x, z, v1, . . . , vn)).

Axiom 4. Pairing: ∀x ∀y ∃z(x ∈ z ∧ y ∈ z).

Axiom 5. Union: ∀F ∃A ∀Y ∀x(x ∈ Y ∧ Y ∈ F → x ∈ A).

Axiom 6. Replacement Scheme:



4 Preliminary Notions of Set Theory

Let φ be a formula with free variables x, y, A, v1, . . . , vn.
∀A∀v1, . . . , vn

(∀x ∈ A ∃!y φ(x, y, A, v1, . . . , vn) → ∃B ∀x ∈ A ∃y ∈ B φ(x, y, A, v1, . . . , vn)).

With these axioms, we can define the concepts of inclusion (⊂), empty − set
(∅), ordinal successor (S(x) = x ∪ {x}) and well − order. Recall that a relation R
on a set A well-orders A if and only if R totally orders A and for any non-empty
B ⊂ A there is an R-minimal element in B. The following axioms are defined with
these abbreviations.

Axiom 7. Infinity: ∃x(∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x)).

Axiom 8. Power Set: ∀x∃y∀z(z ⊂ x → z ∈ y).

Axiom 9. Choice: ∀A ∃R(R well − orders A).

So, those ones are all the axioms of ZFC. In fact, this axiomatic system is infi-
nite. Axioms 1, 2, 4, 5, 7, 8 and 9 are single axioms (each one consists of only
one axiom), but axioms 3 and 6 are "schemes": there is a Comprehension and a
Replacement axiom for each formula ϕ. So, axioms are used in order to deduce
from them all the theorems of a theory. According to Hilbert’s Thesis, every proof
of a mathematical proposition carried out by ordinary means can be formalized in
ZFC. Now, we will see how are defined the ordinals and cardinals in set theory.

1.3 Ordinals and Cardinals

Definition 1.2. We say that y is a transitive set if and only if ∀x ∈ y(x ⊂ y).

Definition 1.3. α is an ordinal if and only if α is a transitive set and is well-ordered by
∈. The class of all ordinals is called ON. Moreover, an ordinal β is called:
• a successor ordinal ⇔ β = S(α) for some ordinal α.
• a limit ordinal ⇔ β ̸= 0 and β is not a successor ordinal.
• a natural number ⇔ for all α ≤ β, α = 0 or α is a successor ordinal.

We will write Greek letters such as α, β... to denote ordinals. We will use <

and ≤ symbols as follows: α < β ⇔ α ∈ β and α ≤ β ⇔ α ∈ β ∨ α = β.
Recall that, if φ is a formula, we cannot assure that {x : φ(x)} is a set. We call it
a class. For example, ON = {α : α is an ordinal} is the class of all the ordinals,
which is not a set. We say that {x : φ(x)} exists and is a set if there is one, call it
A, such that ∀x(x ∈ A ↔ φ(x)). In this case, it is clear that A = {x : φ(x)} due to
the Comprehension and Extensionality Axioms.
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Theorem 1.1. All the elements of an ordinal are ordinals. If two ordinals are isomorphic
(there is a bijection between them that maintains the order), then they are equal.

Theorem 1.2. Let x, y and z be ordinals. Then,
a) Exactly one condition of these is true: x = y, x ∈ y, y ∈ x.
b) If x ∈ y and y ∈ z then x ∈ z.
c) Any non-empty set of ordinals has an ∈-least element.

Definition 1.4. ω = {α : α is a natural number}.

So ω is a set and it is a limit ordinal. In fact, it is the first one. Let’s see how
we can compare the "size" of sets by means of cardinals.

Definition 1.5. Let x and y be sets. If there is a bijective function from x into y, we write
x ≈ y. Moreover, ≈ is an equivalence relation.

Definition 1.6. For a set A, |A| is the least ordinal α such that A ≈ α. We say that A
has cardinality α.

The Axiom of Choice ensures the existence of |A|.

Definition 1.7. For any ordinal α, α is a cardinal ⇔ |α| = α.

So a cardinal λ is an ordinal such that, for all α < λ, we have that λ ̸≈ α. For
instance, natural numbers and ω are cardinals.

Definition 1.8. We say that a set x is finite if and only if |x| < ω. If it is not finite, we
call it infinite. We say that it is countable if and only if |x| ≤ ω. If it is not countable, we
call it uncountable.

To compare cardinals, we need to define the operations on them.

Definition 1.9. For κ, λ cardinals, κ + λ = |κ × λ ∪ λ × {1}| and κ · λ = |κ × λ|.

Theorem 1.3. If κ and λ are infinite cardinals, then κ + λ = κ · λ = max(κ, λ).

In order to formalize the Continuum Hypothesis, we we have to define the
cardinal exponentiation. Recall that, for a function f , dom( f ) = {x : ∃y( f (x) = y)}
and ran( f ) = {y : ∃x( f (x) = y)}.

Definition 1.10. Let A and B be sets. We define B A = { f : B → A : f is a f unction ∧
dom( f ) = B ∧ ran( f ) ⊂ A}. For κ and λ cardinals, κλ = |λκ|.

Lemma 1.1. Let κ, λ and σ be cardinals. Then, κλ+σ = κλ · κσ and (κλ)σ = κλ+σ.

Definition 1.11. For any ordinal β, β+ is the least cardinal κ such that κ > β.
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We can now construct cardinals from ω, as follows.

Definition 1.12. For every ordinal α, ℵα = ωα is defined by recursion as:
a) ℵ0 = ω.
b) ℵα+1 = ℵ+

α .
c) ℵγ = sup{ℵα : α < γ}, where γ is a limit ordinal.

Definition 1.13. Let α, β be ordinals. If f : α → β is a function, we say that f maps
α co f inally if and only if ran( f ) is unbounded in β.
The cofinality of β, c f (β), is the least α such that there is a cofinal map from α into β.

For any infinite cardinal κ, c f (κ) is an infinite cardinal less than or equal to κ.

Definition 1.14. A limit ordinal β is called regular if and only if c f (β) = β.

So, for example, every successor cardinal is regular and ℵω is not regular.

Proposition 1.1. a) For any ordinal β, there is a cofinal strictly increasing map f :
c f (β) → β.
b) If α is a limit ordinal and f : α → β is a strictly increasing cofinal map, then c f (α) =
c f (β).

Let’s see a last result before presenting formally the Continuum Hypothesis.
The symbol f ↾ A denotes the restriction of a function f on a set A.

Definition 1.15. Let A be a set. We say that a subset B ⊂ A is closed under a function
f on A if and only if ran( f ↾ B) ⊂ B.
Let F be a set of finitary functions on A (every function in F is an n-ary function on A
for some n ∈ ω). Let B ⊂ A. We define the closure of B under F as the least subset C of
A such that B ⊂ C and C is closed under every function in F .

Proposition 1.2. Let κ be an infinite cardinal. Let B ⊂ A be such that |B| ≤ κ. Let F be
a set of at most κ finitary functions on A. If C is the closure of B under F , then |C| ≤ κ.

To end this chapter, let’s define the Continuum Hypothesis, beginning with
König’s Theorem.

Theorem 1.4 (König). If κ ≥ ω then κc f (κ) > κ and c f (2κ) > κ.

It follows that c f (2ω) > ω = c f (ℵω), and then 2ω ̸= λ for any cardinal λ of
cofinality ω.
Now we can formally express the Continuum Hypothesis (CH) and the General-
ized Continuum Hypothesis (GCH).

Definition 1.16. The Continuum Hypothesis states that 2ω = ω1. The Generalized
Continuum Hypothesis states that ∀α(2ωα = ωα+1).

We recall that the purpose of this work is to prove the consistency of the nega-
tion of CH with the ZFC axiom system. We will obtain this result using models of
ZFC, that we present and study in the next chapter.



Chapter 2

Models of Set Theory

2.1 Relativization

We will now establish a way to restrict the study of formulas to a class. This
will be helpful to state some consistency results.

Definition 2.1. Let M be a class. We define for any formula ϕ the relativization of ϕ to
M, in symbols ϕM, by recursion as follows:

1. (x = y)M is x = y.

2. (x ∈ y)M is x ∈ y.

3. (ϕ ∧ ψ)M is ϕM ∧ ψM.

4. (¬ϕ)M is ¬(ϕM).

5. (∃x ϕ)M is ∃x(x ∈ M ∧ ϕM).

Lemma 2.1. For any class M and formulas ϕ and ψ:
a) (ϕ ∨ ψ)M is ϕM ∨ ψM.
b) (∀x ϕ)M is ∀x(x ∈ M → ϕM).

Proof. a) (ϕ ∨ ψ)M ≡ (¬(¬ϕ ∧ ¬ψ))M. By Definition 2.1, this is ¬(¬ϕ ∧ ¬ψ)M

which is ¬(¬(ϕM) ∧ ¬(ψM)) ≡ (ϕM ∨ ψM).
b) (∀x ϕ)M ≡ (¬∃x(¬ϕ)M). By Definition 2.1, this is ¬(∃x¬ϕ)M which is ¬∃x(x ∈
M ∧ ¬ϕM) ≡ ∀x(¬x ∈ M ∨ ϕM) ≡ ∀x(x ∈ M → ϕM).

Intuitively, we think of a model as a class where a list of sentences is satisfied.
We formally define this concept by means of the relativization of those formulas
to the class.

7



8 Models of Set Theory

Definition 2.2. Let M be a class.
a) Let ϕ be a sentence. If ϕM holds, we say that ϕ is true in M.
b) Let S be a set of sentences. We say that M is a model of S if and only if each sentence of
S is true in M.

The next Theorem presents an important result about relative consistency based
on the notion of model that we will use for the proof of the consistency of ¬CH
with ZFC, which is the aim of this work. A set of sentences S is consistent, in
symbols Con(S), if and only if it does not lead to any contradiction.

Theorem 2.1. Let S and T be two sets of sentences. If for some class M we can prove
from T that M ̸= 0 and M is a model of S, then Con(T) → Con(S).

Proof. If S were not consistent, there would be a sentence ϕ for which we could
prove ϕ ∧ ¬ϕ from S. Since we can prove from T that any sentence of S is true in
M, then ϕM ∧¬ϕM which is a contradiction from T. Hence, T is not consistent.

We will use this Theorem with T = ZFC and S = ZFC +¬CH: we will assume
the consistency of ZFC and, from a model of these axioms whose existence will be
settled by the Re f lection Theorems as we will see later, we will construct another
model of ZFC and ¬CH by means of a technique called forcing.
For now, let’s continue talking about the relativization of formulas. Basic formulas
are easy to relativize to a class M, but, if we use abbreviations and defined notions,
we must first see how these notions are relativized to a class.
It is the case of the inclusion. Recall that x ⊂ y formally means that ∀z(z ∈ x →
z ∈ y). Then (x ⊂ y)M means that ∀z ∈ M(z ∈ x → z ∈ y), which is equivalent to
∀z(z ∈ M ∧ z ∈ y → z ∈ x), which is finally equivalent to y ∩ M ⊂ x.

Next, we are going to present a specific class, WF, and see that it is a model of
ZFC.

2.2 The Well-Founded Sets

As we know, the Universe V = {x : x is a set} is the class of all sets and is
not a set. Our goal is to describe V. To do so, we will define WF, the class of
all well-founded sets, which are those that are constructed from the empty set
following a recursive definition, and prove that V = WF by means of the Axiom
of Foundation. This will allow us to restrict our reasonings to WF, leaving apart
troublesome objects that could be considered as sets, as for example any x such
that x = {x}, that the axiom of Foundation does not let be a set as it is not well-
founded. We will then have a clearer picture of what V is.
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Definition 2.3. For all a ∈ ON, we define V(α) as follows:

1. V(0) = 0.

2. V(α + 1) = P(V(α)).

3. V(α) =
⋃

β<α

V(β) if α is a limit ordinal.

Lemma 2.2. a) If A is a transitive set, then P(A) is transitive.
b) The union of transitive sets is transitive.

Proof. a) Let a ∈ P(A). Then a ⊂ A. If b ∈ a, then b ∈ A and b ⊂ A by the
transitivity of A. Thus, b ∈ P(A). Hence, a ⊂ P(A).
b) Let {Ai}i∈I be a family of transitive sets. Let A =

⋃{Ai : i ∈ I}. If a ∈ A, then
a ∈ Ai0 for some i0 ∈ I. Thus a ⊂ Ai0 as Ai0 is transitive, and so a ⊂ A.

Proposition 2.1. For each ordinal α, V(α) is transitive and ∀β ≤ α(V(β) ⊂ V(α)).

Proof. For α = 0: V(0) = 0 clearly is transitive.
If α = β + 1 is a successor ordinal, and we suppose that the proposition holds
for all γ ≤ β, then, by Lemma 2.2 a), V(α) = P(V(β)) is transitive since V(β) is
transitive . Now, V(β) ⊂ V(α) = P(V(β)) so, for γ ≤ α, if γ = α or γ = β it is
clear that V(γ) ⊂ V(α), and if γ < β then V(γ) ⊂ V(β) ⊂ V(α).
If α is a limit ordinal and we suppose that the proposition holds for all β < α, by
Lemma 2.2 b) V(α) is transitive. The second part is obvious.

Now that we have defined those V(α) and showed their basic properties, let’s
see how WF is defined from them.

Definition 2.4. A set is well-founded if and only if it is in some V(α) for an ordinal α.
WF =

⋃
{V(α) : α ∈ ON} is the class of the well-founded sets.

Definition 2.5. For A ∈ WF, rank(A) = min{α ∈ ON : A ∈ V(α + 1)}.

We can redefine V(α) by means of rank(A).

Proposition 2.2. For any ordinal α, V(α) = {A ∈ WF : rank(A) < α}.

Proof. If A ∈ WF, then rank(A) < α if and only if rank(A) + 1 ≤ α if and only if
A ∈ V(rank(A) + 1) ⊂ V(α) by Proposition 2.1. Hence, we have just showed that
A ∈ V(α) if and only if rank(A) < α, and so we obtain the desired equality.

The next proposition says that WF is transitive with increasing rank.

Proposition 2.3. Let A ∈ WF. Then, for all B ∈ A we have that B ∈ WF and
rank(B) < rank(A).
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Proof. Note that A ∈ V(rank(A) + 1) = P(V(rank(A))) and so, if B ∈ A then
B ∈ V(rank(A)). Thus, B ∈ WF and rank(B) < rank(A) by Proposition 2.2.

This proposition shows that the objects considered at the beginning of this
section, like some x such that x = {x}, are not well-founded, since we would have
that rank(x) < rank(x).

Proposition 2.4. For any set A ∈ WF, A ⊂ V(rank(A)).

Proof. If A ∈ WF, then if B ∈ A, by Proposition 2.3, rank(B) < rank(A) and
so V(rank(B)) ⊂ V(rank(A)) by Proposition 2.1. Then, as B ∈ V(rank(B) + 1),
B ∈ V(rank(A)).

Now we will see a way to compute ranks more easily.

Lemma 2.3. If A ∈ WF, then rank(A) = sup{rank(B) + 1 : B ∈ A}.

Proof. Let α = sup{rank(B) + 1 : B ∈ A}. By Proposition 2.3, ∀B ∈ A(rank(B) <
rank(A)) and so α ≤ rank(A). But also if B ∈ A, then rank(B) < α. So B ∈ V(α)

and thus A ⊂ V(α), which means that A ∈ V(α + 1). Hence, rank(A) ≤ α by
Proposition 2.2.

Proposition 2.5. For any set A, A ∈ WF if and only if A ⊂ WF.

Proof. By Proposition 2.3, if A ∈ WF then for any B ∈ A we have that B ∈ WF,
and so A ⊂ WF. On the other hand, suppose that A ⊂ WF. Then, if B ∈ A,
we have that B ∈ WF. Thus, we can define α = sup{rank(B) + 1 : B ∈ A}. As
rank(B) < α, then, by Proposition 2.2, B ∈ V(α). Then A ⊂ V(α), so A ∈ V(α + 1)
by Proposition 2.2.

The two next propositions will show that ordinals are well-founded and WF
is closed under the standard set theory constructions (the power set of a well-
founded set is well-founded, the union of two well-founded sets is well-founded,
etc).

Proposition 2.6. If α is an ordinal, then α ∈ WF and rank(α) = α.

Proof. For α = 0: 0 = V(0) ∈ WF and rank(0) = 0 since 0 /∈ V(0) and 0 ∈ V(1) =
{0}.
If α is a successor or a limit and we assume the proposition holds for every β < α

then, if β ∈ α, by inductive hypothesis and by Propositions 2.2 and 2.1 we have
that β ∈ V(β + 1) ⊂ V(α) and so β ∈ V(α). This leads to α ⊂ V(α) and, thus,
α ∈ V(α + 1). Hence, α ∈ WF. Now, by Lemma 2.3, rank(α) = sup{rank(β) + 1 :
β ∈ α} = α.



2.3 Well-Founded Relations 11

Proposition 2.7. Let A, B ∈ WF. Then:
a) {A}, P(A) and

⋃
A ∈ WF.

b) {A, B}, (A, B), A ∪ B, A ∩ B, A × B and B A ∈ WF.

Proof. a) If A ∈ WF then {A} ⊂ WF and so {A} ∈ WF by Proposition 2.5.
Analogous for the other sets.
b) We assume that A, B ∈ WF. Let C ∈ A ∪ B. If C ∈ A then C ∈ WF by
Proposition 2.5. Similarly, if C ∈ B then C ∈ WF. Hence, A ∪ B ⊂ WF and so
A ∪ B ∈ WF by Proposition 2.5. We proceed in an analogous way for the other
sets.

2.3 Well-Founded Relations

In this section, we will prove that V = WF following the concept of well-
founded relation.

Definition 2.6. Let A be a set and R a relation on A. We say that R is well-founded on
A if and only if ∀B ⊂ A(B ̸= 0 → ∃b0 ∈ B(¬∃b ∈ B(b R b0))). Moreover, we say that
b0 is an R-minimal element in B.

Lemma 2.4. a) If A ∈ WF then ∈ is well-founded on A.
b) If A is a transitive set and ∈ is well-founded on A, then A ∈ WF.

Proof. a) Let 0 ̸= B ⊂ A. Let b ∈ B be an element of B with the least rank. Then b
is ∈-minimal in B. If it was not, there would be a b′ ∈ B such that b′ ∈ b and so
rank(b′) < rank(b), which is a contradiction with the minimality of the rank of b
in B.

b) Suppose that A /∈ WF. Then, by Proposition 2.5, A ̸⊂ WF which implies
that A0 = {a ∈ A : a /∈ WF} ⊂ A is non-empty. Obviously, A0 ∩ WF = ∅. As ∈
is well-founded on A, A0 has an ∈-minimal element, B. For any b ∈ B, b ∈ A be-
cause A is transitive, but b /∈ A0 because B is ∈-minimal in A0, and thus b ∈ WF.
Hence, B ⊂ WF and, by Proposition 2.5, B ∈ WF, which is a contradiction with
the fact that B ∈ A0.

The preceding proposition shows the necessity to work with transitive sets, as
the fact that ∈ is well-founded on A implies that A is well-founded needs A to be
transitive. For that reason, we will define the transitive closure of A.

Definition 2.7. For a set A , we define by recursion on n ∈ ω:
⋃0 A = A and

⋃n+1 A =⋃
(
⋃n A). We now define A+, the transitive closure of A, as the union of these unions:

A+ =
⋃{⋃n A : n ∈ ω}.
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From now on, A+ denotes the transitive closure of A (and not the next cardinal
as in Definition 1.11). The two following propositions describe A+ stating some of
its properties. In particular, the next one shows that A+ is the least transitive set
containing all the elements of A.

Proposition 2.8. For any set A:
a) A ⊂ A+.
b) A+ is transitive.
c) If T is a transitive set such that A ⊂ T, then A+ ⊂ T.

Proof. a) A =
⋃0 A ⊂ A+.

b) Let a ∈ A+. Then a ∈ ⋃n A for some n ∈ ω and a ⊂ ⋃
An+1 ⊂ A+.

c) We will prove it by induction. Obviously,
⋃0 A = A ⊂ T. We assume now that⋃k A ⊂ T for all k < n. Then

⋃n A =
⋃{⋃n−1 A} ⊂ ⋃

T. But for any a ∈ ⋃
T,

there is a Ta ∈ T such that a ∈ Ta. But, as T is transitive, Ta ⊂ T and so a ∈ T.
Hence,

⋃n A ⊂ T. We can now conclude that A+ ⊂ T.

Proposition 2.9. For any set A:
a) If A is transitive, then A+ = A.

b) If B ∈ A, then B+ ⊂ A+.
c) A+ = A ∪⋃{B+ : B ∈ A}.

Proof. a) Clearly, A ⊂ A+. As A is transitive, taking A as the T of the Proposition
2.8 c), A+ ⊂ A.
b) As A ⊂ A+, if B ∈ A then B ∈ A+ and so B ⊂ A+ because A+ is transitive.
Taking A+ as the T of Proposition 2.8 c), B+ ⊂ A+.
c) Let T = A ∪ ⋃{B+ : B ∈ A}. First, let’s show that T is transitive. Let a ∈ T. If
a ∈ A, then a+ ⊂ T and so a ⊂ T. If a ∈ B+ for some B ∈ A, then a ⊂ B+ ⊂ T
because B+ is transitive. Thus, T is transitive. By Proposition 2.8 c), A+ ⊂ T. On
the other hand, let a ∈ T. If a ∈ A, then, as A ⊂ A+, a ∈ A+. If a ∈ B+ for some
B ∈ A, then, by b) a ∈ A and so a ∈ A+. Hence, T ⊂ A+.

As A+ is transitive, by Lemma 2.4 we have that:

Corollary 2.1. For any set A, A+ ∈ WF if and only if ∈ is well-founded on A+. □

Theorem 2.2. For any set A, A ∈ WF if and only if A+ ∈ WF.

Proof. If A ∈ WF, then
⋃0 = A ∈ WF and, assuming

⋃n A ∈ WF for an n ∈ ω,
we also have that

⋃n+1 A =
⋃{⋃n A} ∈ WF by Proposition 2.7 and so A+ ∈ WF.

Conversely, if A+ ∈ WF, we have that A ⊂ A+ ⊂ WF and thus A ∈ WF by
Proposition 2.5.

Theorem 2.3. V = WF.
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Proof. Trivially, WF ⊂ V. Now, by the preceding proposition, if A ∈ V then ∈
is well-founded on A by the Axiom of Foundation, and so it is on A+. Thus,
A+ ∈ WF by Corollary 2.1 and it follows from Theorem 2.2 that A ∈ WF. Hence,
V ⊂ WF.

We just showed that the Universe, in fact the union of the V(α)’s, is constructed
iteratively from 0. Now that we have a clearer picture of it, let’s return to work
with general classes with the concept of an absolut f ormula as it is an important
notion on model theory that will help us to show that WF, and hence V, is a model
of ZFC.

2.4 Absoluteness

We say that a formula ϕ is absolute for two classes M and N where M ⊂ N if
ϕ is true in M whenever ϕ is true in N and vice-versa.

Definition 2.8. Let ϕ be a formula with all free variables among x1, . . . , xn. For any
classes M, N with M ⊂ N, we say that
a) ϕ is absolute for M, N if and only if

∀x1, . . . , xn ∈ M(ϕM(x1, . . . , xn) ↔ ϕN(x1, . . . , xn)).

b) ϕ is absolute for M if and only if ϕ is absolute for M, V, which means that

∀x1, . . . , xn ∈ M(ϕM(x1, . . . , xn) ↔ ϕ(x1, . . . , xn)).

If M and N are clear from context, we will simply say that a formula is ab-
solute. Next, we will prove that some general formulas and notions are absolute
for some sort of classes. To do this, after seeing preliminary results, we will in-
troduce the concept of ∆0 formulas, that, intuitively, are formulas for which their
quantifiers are all bounded existential ones, of the form ∃x ∈ y... .

Lemma 2.5. If ϕ has no quantifiers, then ϕ is absolute for any M, N with M ⊂ N.

Proof. First, (x = y)M ≡ x = y ≡ (x = y)N and (x ∈ y)M ≡ x ∈ y ≡ (x ∈ y)N, so
x = y and x ∈ y are absolute for M, N. Now, we assume that ϕ has no quantifiers
and is absolute for M, N. We know that (¬ϕ)M ≡ ¬ϕM and, by the inductive
hypothesis, ϕM ↔ ϕN. Thus, (¬ϕM ↔ ¬ϕN).
If we assume that ϕ and ψ have no quantifiers and are absolute for M, N, as (ϕ ∧
ψ)M ≡ ϕM ∧ ψM and since ϕM ↔ ϕN and ψM ↔ ψN by the inductive hypothesis,
then (ϕ ∧ ψ)M ↔ ϕM ∧ ψM ↔ ϕN ∧ ψN ↔ (ϕ ∧ ψ)N.
Since the logical operators ¬ and ∧ build any quantifier-free formula from the
atomic ones x = y and x ∈ y, any formula of this kind is absolute for M, N.
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It is also clear that if ϕ is the negation of an absolute formula or the conjunction
of two absolute formulas, then ϕ is also absolute. Next, we are going to see that
for transitive classes a formula of the form ∃x ∈ y ϕ with ϕ being an absolute
formula is also absolute. Note that ∃x ∈ y ϕ is equivalent to ∃x(x ∈ y ∧ ϕ).

Lemma 2.6. Let M, N be transitive classes with M ⊂ N and ϕ an absolute formula for
M, N. Then, ∃x(x ∈ y ∧ ϕ) is absolute for M, N.

Proof. Without loss of generality, we consider ϕ = ϕ(x, y, w1, . . . , wn) with all its
free variables listed. Then, for any y, w1, . . . , wn ∈ M,

(∃x(x ∈ y ∧ ϕ(y, w1, . . . , wn))M ↔ ∃x ∈ M(x ∈ y ∧ ϕM(y, w1, . . . , wn)) ↔
∃x ∈ N(x ∈ y ∧ ϕN(y, w1, . . . , wn)) ↔ (∃x(x ∈ y ∧ ϕ(y, w1, . . . , wn))N.

The first and the last equivalences come from the transitivity of M and N (for the
second formula we should have written ∃x(x ∈ M ∧ x ∈ y ...), but, as y ∈ M, if
x ∈ y then directly x ∈ M; the same holds for N). The middle one follows from
the absoluteness of ϕ and the fact that M ⊂ N.

Definition 2.9. We define the ∆0 formulas as follows:
a) x ∈ y and x = y are ∆0.
b) If ϕ, ψ are ∆0, then ¬ϕ, ϕ ∧ ψ and ∃x(x ∈ y ∧ ϕ) are also ∆0.

Proposition 2.10. If M, N are transitive classes with M ⊂ N and ϕ is ∆0, then ϕ is
absolute for M, N.

Proof. If ϕ is quantifier-free, by Lemma 2.5 ϕ is absolute for M, N. It is also clear
that if ϕ and ψ are absolute then ¬ϕ and ϕ ∧ ψ is absolute. If ϕ = ∃x(x ∈ y ∧ ψ),
then by Lemma 2.6 ϕ is absolute for M, N.

Observe that Proposition 2.10 is true if ϕ is equivalent to a ∆0 formula. In
particular, if the quantifiers appearing in ϕ are all bounded, then Qx ∈ y for Q ∈
{∃, ∀}, ϕ is equivalent to a ∆0 formula and is absolute for any transitives M, N
with M ⊂ N. Note that, if S is any set of sentences and ϕ is a formula, S ⊢ ϕ

means that we can deduce, prove, ϕ from S.

Proposition 2.11. Let M, N with M ⊂ N be models of a set of sentences S such that
S ⊢ ∀x1, . . . , xn(ϕ(x1, . . . , xn) ↔ ψ(x1, . . . , xn)). Then ϕ is absolute for M, N if and
only if ψ is.

Proof. For any x1, . . . , xn, if we suppose that ψ is absolute for M, N, then

ϕM(x1, . . . , xn) ↔ ψM(x1, . . . , xn) ↔ ψN(x1, . . . , xn) ↔ ϕN(x1, . . . , xn).

The first and the last equivalences follow from the hypothesis. The middle one
follows from the absoluteness of ψ for M, N. We proceed in an analogous way for
the other implication.
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So if a formula is absolute, any equivalent formula is also absolute. We will
use this result to see a criterion to discuss the absoluteness of defined notions.

Definition 2.10. Let M, N be classes with M ⊂ N. Let F(x1, . . . , xn) be a defined
function. Then F is absolute for M, N if and only if the formula F(x1, . . . , xn) = y is.

Proposition 2.12. Let F be defined as F(x1, . . . , xn) = y ↔ ϕ(x1, . . . , xn, y). Then F is
absolute for M, N if and only if ϕ is.

Proof. Taking F(x1, . . . , xn) = y as ψ and ϕ as ϕ in Proposition 2.11, the result is
direct.

We have stated some ways to verify that a formula is absolute for some classes
M. We will use these results to prove that basic set notions are absolute for transi-
tive models of ZF− − P − In f , that is ZF without the Foundation, Power Set and
Infinity Axioms. Note that these absoluteness results are true if M is transitive
and satisfy more axioms than those ones.

Theorem 2.4. The following relations and functions are absolute for any transitive class
M such that M is a model of ZF− − P − In f .

1. x ∈ y,

2. x = y,

3. x ⊂ y,

4. {x},

5. {x, y},

6. (x, y),

7. 0,

8. x ∪ y,

9. x ∩ y,

10. x ∖ y,

11. S(x) (= x ∪ {x}),

12. x is transitive,

13.
⋃

x,

14.
⋂

x (
⋂

0 = 0).

Proof. 1. and 2. were proved in Lemma 2.5. For 3., as discussed above (x ⊂ y)M

is x ∩ M ⊂ y. But, as M is transitive, x ∩ M = x and so (x ⊂ y)M ↔ x ⊂ y. For
the other defined functions and relations, we will use Proposition 2.12 with the
definition of each function, showing that the formulas that define them have all
their quantifiers bounded and are thus equivalent to some ∆0 formulas.

For example, for 4., {x} is defined as y = {x} ↔ (x ∈ y ∧ ∀z(z ∈ y → z = x)).
The formula on the right of the double implication connector is equivalent to a ∆0

formula since it is made of the conjunction of an atomic formula with a formula
for which the only quantifier is bounded. Thus, by Proposition 2.10, it is absolute
for M..

For 12., x is transitive ↔ (∀y ∈ x ∀z ∈ y(z ∈ x)).



16 Models of Set Theory

The formula at the right of the equivalence connector is equivalent to a ∆0 formula
since all its connectors are bounded and so, by Proposition 2.10.

For 13., y =
⋃

x ↔ (∀z ∈ x(z ⊂ y) ∧ ∀u ∈ y ∃z ∈ x(u ∈ z)). Since, by
clause 3., y ⊂ z is absolute and ∀z ∈ x(z ⊂ y) is equivalent to a ∆0 formula
because the quantifier appearing in it is bounded, by Proposition 2.10 this for-
mula is absolute for M. Moreover, as all the quantifiers appearing in the formula
∀u ∈ y ∃z ∈ x(u ∈ z)) are bounded, this formula is equivalent to a ∆0 one and
thus is absolute for M. We can conclude that the formula that defines

⋃
x is abso-

lute for M because it is the conjunction of two absolute formulas, and hence
⋃

x
is absolute for M.

We proceed on an analogous way for the rest of conditions.

We will now show that absolute notions are closed under composition. We can
use this result to produce new absoluteness results about functions and relations.

Proposition 2.13. Let M ⊂ N. If ϕ(x1, . . . , xn), F(x1, . . . , xn),
G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm) are all absolute for M, N, then
ϕ(G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)) and
F(G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)) are also absolute for M, N.

Proof. If x1, . . . , xn are in M, then

(ϕ(G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)))M ↔
ϕM(GM

1 (x1, . . . , xm), . . . , GM
n (x1, . . . , xm)) ↔

ϕN(GN
1 (x1, . . . , xm), . . . , GN

n (x1, . . . , xm)) ↔
(ϕ(G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)))N.

The first and last equivalences are by definition. The one in the middle follows
from the hypothesis that ϕ and Gi for i = 1, . . . , n are absolute.
Taking ϕ as y = F(G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)), the second part of the
proposition follows from the first one.

Theorem 2.5. The following relations and functions are absolute for any transitive M
such that M is a model of ZF− − P − In f .

1. z is an ordered pair

2. A × B

3. R is a relation

4. dom(R)

5. ran(R)

6. F is a f unction

7. F(x)

8. F is an injective f unction.
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Proof. The procedure will always be the same: write the definition using formulas
of each notion and see that the formula is a composition of absolute functions
and/or absolute relations.
For 1., z is an ordered pair ↔ (∃x ∈ ⋃

z ∃y ∈ ⋃
z(z = (x, y))). By Theorem 2.4,⋃

z and (x, y) are absolute for M. Now, the formula at the right of the double im-
plication is ϕ(

⋃
z,
⋃

z, z) with ϕ(x1, x2, x3) = ∃x ∈ x1 ∃y ∈ x2(x3 = (x, y)), which
is a ∆0 formula since the only quantifiers that appear in it are existential bounded
ones, and is thus absolute by Proposition 2.10, and the formula x3 = (x, y) is ab-
solute. Then, ϕ(

⋃
z,
⋃

z, z) is absolute by Proposition 2.13..

For 3., let ϕ(z) be the formula z is an ordered pair. Then ϕ(z) is absolute by 1.
Moreover, R is a relation ↔ ∀z ∈ R ϕ(z), which is equivalent to a ∆0 formula since
its quantifier is bounded and thus, by Proposition 2.10, is absolute.
We proceed in an analogous way for the rest of conditions.

Now we will see some absoluteness results with the condition of M being a
model of ZF − P. Note that M can be a model of a larger set of axioms, as for
example ZFC.

Lemma 2.7. In ZF − P, α is an ordinal if and only if α is transitive and totally ordered
by ∈.

Proof. Assume that α is transitive and totally ordered by ∈. We have to show that
∈ well-orders α. Let X be a non-empty subset of α. By the axiom of Foundation,
there is an ∈-minimal element of X and so, as ∈ totally orders α, ∈ well-orders
α.

Theorem 2.6. The following relations and functions are absolute for any transitive model
M of ZF − P.

1. α is an ordinal,

2. α is a successor ordinal,

3. α is a limit ordinal,

4. α is a finite ordinal,

5. ω,

6. Any natural number.

Proof. The formula that defines any of these relations and formulas is equivalent
to a ∆0 formula. For the first one, by Lemma 2.7, we have to see that α is transitive
and ∈ totally orders α are absolute for M. But, by Theorem 2.4, α is transitive is ab-
solute for M as M is transitive and a model in particular of ZF− − P − In f . Now,
∈ totally orders α ↔ ∀β ∈ α ∀γ ∈ α(β ∈ γ ∨ γ ∈ β ∨ β = γ). As the formula at the
right of the double implication connector is a ∆0 formula since its quantifiers are
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all bounded, by Proposition 2.10 it is absolute for M. Hence, by Proposition 2.11,
∈ totally orders α is absolute for M.

For 3., x is a limit ordinal ↔ x is an ordinal ∧ x ̸= 0 ∧ ∀y ∈ x ∃z ∈ x(y ∈ z).
The formula at the right of the equivalence operator is a conjunction of two
absolute formulas, and is then absolute. Indeed, x is ordinal is absolute and
∀y ∈ x ∃z ∈ x(y ∈ z) is equivalent to a ∆0 formula and so, by Proposition 2.10, is
absolute.

For 5., x = ω ↔ x is a limit ordinal ∧ ∀y ∈ x(y is not a limit ordinal). The
formula at the right of the equivalence operator is a conjunction of two absolute
formulas, and is then absolute. Indeed, as the formula x is a limit ordinal is abso-
lute, and so it is its negation, and ∀y ∈ x(y is not a limit ordinal) is equivalent to a
∆0 formula (since its only quantifier is bounded), by Proposition 2.10, this formula
is absolute.
We proceed in an analogous way for the rest of conditions.

Proposition 2.14. If M is a transitive model of ZF − P, then every finite subset of M is
an element of M.

Proof. Formally, we have to prove that ∀x ⊂ M(|x| = n → x ∈ M). We will prove
it by induction on n.
If n = 0, x = 0 and x ∈ M since M ∈ WF.
Now, we assume that the proposition holds for n. Let x ⊂ M have cardinality
n + 1. Since x is non-empty, let y ∈ x. As M is transitive, y ∈ M and x ∖ {y} ⊂ M
with cardinality n. By the inductive hypothesis, x ∖ {y} ∈ M and {y} ∈ M. By
Theorem 2.4, ∪, {y} and ∖ are absolute for M and hence x = {y} ∪ (x ∖ y) ∈
M.

Theorem 2.7. The following are absolute for any transitive model M of ZF − P and
A, R ∈ M.

1. x is finite,

2. An,

3. A<ω (=
⋃{An : n ∈ ω}),

4. R well-orders A,

5. type(A, R).

Proof. For 1., x is finite ↔ ∃ f ϕ(x, f ) where ϕ(x, f ) = f is a f unction ∧ dom( f ) =
x ∧ ran( f ) ⊊ ω ∧ f is injective. By Theorem 2.4 and Theorem 2.5, ϕ(x, f ) is
absolute and so (∃ f ϕ(x, f ))M ↔ ∃ f ∈ M ϕ(x, f ). We then have to see that
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∃ f ∈ M ϕ(x, f ) ↔ ∃ f ϕ(x, f ). The left to right implication is obvious. For the re-
ciprocal one, note that, for any x ∈ M, f = {(a, b) : a ∈ x ∧ b ∈ ω} because ϕ(x, f )
holds. But since M is transitive and x, ω ∈ M, then a, b ∈ M and so f is a finite set
of ordered pairs of elements of M. Since, by Theorem 2.5 being an ordered pair is
absolute, then by Proposition 2.14 f ∈ M.

For 2., for each n, An = F(A, n) = { f : ϕ(A, n, f )} with F(A, x) = 0 if x /∈ ω

and ϕ(A, n, f ) = f is a f unction ∧ dom( f ) = n ∧ ran( f ) ⊂ A. Let x ∈ M. If
x /∈ ω, then FM(A, x) = 0 = F(A, x). If x = n ∈ ω, then FM(A, n) = { f ∈
M : ϕM(A, n, f )}. By Theorem 2.4 and Theorem 2.5, ϕ(A, n, f ) is absolute and so
FM(A, n, f ) = { f ∈ M : ϕ(A, n, f )}. But, for A ∈ M and n ∈ ω, as ϕ(A, n, f ) holds
and M is transitive, then f ⊂ M and so by Proposition 2.14 F(A, n) = FM(A, n).

We proceed in an analogous way for 3.

For 4., we have to see that (R well − orders A)M ↔ R well − orders A.
For the right to left implication, we write R well − orders A as R totally orders A ∧
∀X ϕ(X, A, R), where ϕ(X, A, R) = X ⊂ A ∧ X ̸= 0 → ∃y ∈ X ∀z ∈ X((z, y) /∈ R).
In proof of the absoluteness of x is an ordinal (see Theorem 2.6), we have seen that
∈ totally orders A is absolute. Then, as R is a relation is absolute, R totally orders A
is also absolute and so (R totally orders A)M. Additionally, as ϕ(X, A, R) is a com-
position of absolute formulas, by Proposition 2.13 ϕ(X, A, R) is absolute for M and
so
(∀X ϕ(X, A, R))M ↔ ∀X ∈ M ϕ(X, A, R) ↔ ∀X ϕ(X, A, R) since R well − orders A.
On the other hand, to show the left to right implication, we use the fact that a well-
ordering is isomorphic to an ordinal.
Supposing that (R well − orders A)M, there are f , α ∈ M such that
(α is an ordinal ∧ f is an isomorphism f rom ⟨A, R⟩ to α)M. By Theorem 2.6,
α is an ordinal is absolute and
f is an isomorphism ↔ f is injective ∧ f is surjective. But f being surjective means
that ran( f ) = α, which is clearly absolute. Since, from Theorem 2.5, f is injective is
absolute, then f is an isomorphism is also absolute and thus α is in fact an ordinal
and f an isomorphism.

We can prove 5. by means of an argument similar to the one given in 4.

Proposition 2.15. Let α and β be ordinals. The ordinal operations α + β and α · β are
absolute for any transitive model M of ZF − P.

Proof. Both are defined from type and are then absolute by Theorem 2.7.
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If we consider a relation R as the set of the pairs that satisfy a formula R(x, y),
R = {(x, y) : R(x, y)}, then for any class M the relativization of R to M is RM =

{(x, y) ∈ M × M : R(x, y)M} and so R is absolute for M if and only if RM =

R ∩ (M × M). If F : V → V is a function, the same holds (we can consider G to be
{(x, y) : F(x, y)}, with F(x, y) some function). Nonetheless, FM being a function
needs that (∀x ∃!y(F(x) = y))M or, with our notation, (∀x ∃!y F(x, y))M. If this
holds, then FM : M → M is absolute for M if and only if FM = F ↾ M.

Definition 2.11. Let R be a relation on a class A. We say that R is a set-like relation on
A if and only if, for all x ∈ A, {y ∈ A : yRx} is a set.

The following proposition states how to define a function by trans f inite recursion.
It is a generalization of the natural recursion. We put pred(A, x, R) = {y ∈ A :
yRx}.

Proposition 2.16. Let R be a well-founded and set-like relation on A and let F : V → V
be a function. Then, there is a unique function G : A → V such that
∀x ∈ A(G(x) = F(x, G ↾ pred(A, x, R)). □

Proposition 2.17. Let R be a well-founded and set-like relation on V and F : V×V → V
be a function. We take pred(x) = pred(V, x, R). Let G : V → V be a function defined
by transfinite recursion as ∀x(G(x) = F(x, G ↾ pred(x))). Let M be a transitive model
of ZF − P. If F is absolute for M, then G is also absolute for M.

Proof. First, R is absolute means that RM = R ∩ (M × M), and so (R is well −
f ounded)M is ∀X ∈ M(X ̸= 0 → ∃y ∈ X ∩ M(¬∃z ∈ X ∩ M((z, y) /∈ R ∩ (M ×
M)))). But, since M is transitive, X ∩ M = X, and so (R is well − f ounded)M is
∀X ∈ M(X ̸= 0 → ∃y ∈ X ∩ M(¬∃z ∈ X ∩ M((z, y) /∈ R ∩ (M × M)))), which
holds since R is well-founded. Thus, we can define the relativization of G to M
by transfinite induction as (∀x(G(x) = F(x, G ↾ pred(x))))M ↔ ∀x ∈ M(GM(x) =
FM(x, GM ↾ predM(x))).
But predM(x) = pred(x) because M is transitive and, by the absoluteness of F,
FM(x, GM ↾ predM(x)) = F(x, GM ↾ pred(x)). Suppose that GM ↾ pred(x) ̸=
G ↾ pred(x). Then {x ∈ M : GM(x) ̸= G(x)} has a minimal element by the
Axiom of Foundation. Suppose y is one of these minimal elements. Then if z ∈ y,
GM(z) = G(z) and so GM ↾ pred(y) = G ↾ pred(y). By this last equality and by
the absoluteness of F, FM(y, GM ↾ predM(y)) = F(y, G ↾ pred(y)) and so GM(y) =
G(y), which is a contradiction with y ∈ {x ∈ M : GM(x) ̸= G(x)}. Hence, G is
absolute for M.

In fact, Proposition 2.17 says that notions defined by transfinite recursion from
absolute functions are also absolute for transitive models of ZF − P.
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Proposition 2.18. Let M be a transitive model of ZF− P. Then the following are absolute
for M:

1. αβ for α, β ordinals,

2. x+ (the transitive closure of x).

Proof. The ordinal exponentiation is defined by transfinite recursion, and so αβ is
absolute for M by Proposition 2.17.
rank(x) is defined by transfinite recursion, and so it is absolute for M by Proposi-
tion 2.17.
x+ is defined from the

⋃n x’s, which are defined by recursion on n as

n⋃
x =


0, if n /∈ ω,

x, if n = 0,⋃
(
⋃n−1 x) if 0 ∈ n ∈ ω.

By Proposition 2.17,
⋃n x is absolute for M, and so is x+ =

⋃{⋃n x : n ∈ ω}.

Let R+ be the relation on V defined by (x, y) ∈ R+ if and only if x ∈ y+. Then,
it is easy to check that R+ is well-founded and set-like, and so the following result
is a direct corollary of Proposition 2.17.

Corollary 2.2. Let F : V × V → V be a function. We take pred(x) = pred(V, x, R+).
Let G : V → V be a function defined by transfinite induction:
∀x(G(x) = F(x, G ↾ pred(x))).
Let M be a transitive model of ZF − P. If F is absolute for M, then so is G.

Note that, if M is a transitive model of ZFC, then we can use all the absolute
notions and concepts freely within M. This will be helpful while studying the
forcing method.

2.5 Relativization of the ZFC Axioms

Now, we are going to state the axioms of ZFC relativized to any class M and
see some properties that M may have to satisfy these axioms. These criteria will
be useful to prove that the model of ZFC + ¬CH we want to produce by forcing
is indeed a model of ZFC.

Set Existence Axiom
Relativized to M, this axiom states that M is non-empty. It is an obvious axiom.
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Axiom of Extensionality
Relativized to M, it is ∀x, y ∈ M(∀z ∈ M(z ∈ x ↔ z ∈ y) → x = y).

Proposition 2.19. If M is transitive, then the Axiom of Extensionality is true in M.

Proof. M being transitive means that if x ∈ M then ∀z ∈ x(z ∈ M). So the
condition ∀z ∈ M(z ∈ x ↔ z ∈ y) is equivalent to ∀z(z ∈ x ↔ z ∈ y) since
all the elements of x and y are in M. Then, by the Axiom of Extensionality (not
relativized), x = y.

Axiom of Comprehension
The relativization of this axiom to M for each formula ϕ(x, z, w1, . . . , wn) with all
its free variables listed is
∀z, w1, . . . , wn ∈ M ∃y ∈ M ∀x ∈ M(x ∈ y ↔ x ∈ z ∧ ϕM(x, z, w1, . . . , wn)).

Lemma 2.8. Let ϕ(x, z, w1, . . . , wn) be a formula with no free variables except the already
listed ones.
If ∀z, w1, . . . , wn ∈ M({x ∈ z : ϕM(x, z, w1, . . . , wn)} ∈ M) then the Axiom of Com-
prehension is true in M for ϕ(x, z, w1, . . . , wn).

Proof. For any z, w1, . . . , wn ∈ M, we take y = {x ∈ z : ϕM(x, z, w1, . . . , wn)}. As
y ∈ M, then we have that ∀x(x ∈ y ↔ ϕM(x, z, w1, . . . , wn)) and, in particular,
∀x ∈ M(x ∈ y ↔ ϕM(x, z, w1, . . . , wn)). As y ⊂ z, it is equivalent to ∀x ∈ M(x ∈
y ↔ x ∈ z ∧ ϕM(x, z, w1, . . . , wn)). Finally, as this is true for any z, w1, . . . , wn, we
have just shown that ∀z, w1, . . . , wn ∈ M(x ∈ y ↔ x ∈ z ∧ ϕM(x, z, w1, . . . , wn)). As
y ∈ M, the Comprehension Axiom is true in M.

Proposition 2.20. If ∀z ∈ M(P(z) ⊂ M), then the Comprehension Axiom Scheme is
true in M.

Proof. Let z, w1, . . . , wn ∈ M and ϕ(x, z, w1, . . . , wn) be a formula with no free vari-
ables except the already listed ones. Let y = {x ∈ z : ϕM(x, z, w1, . . . , wn)}. Ob-
viously, y ⊂ z, and so y ∈ P(z) ⊂ M. Then, y ∈ M and, by Lemma 2.8, the
Comprehension Axiom is true in M for ϕ.

Power Set Axiom
The Power Set Axiom relativized to M states that ∀x ∈ M ∃y ∈ M ∀z ∈ M(z ∩
M ⊂ x → z ∈ y).

Proposition 2.21. If M is transitive, the Power Set Axiom is true in M if and only if
∀x ∈ M ∃y ∈ M(P(x) ∩ M ⊂ y).
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Proof. If M is transitive, then for any x ∈ M x ∩ M = x. And, clearly, for x, y ∈ M,
(x ⊂ y)M is equivalent to x ⊂ y. This means that the relativization of the Power Set
Axiom for any transitive class M is ∀x ∈ M ∃y ∈ M ∀z ∈ M(z ⊂ x → z ∈ y). We
can re-write the condition ∀z ∈ M(z ⊂ x → z ∈ y) as ∀z ∈ M(z ∈ P(x) → z ∈ y),
which is equivalent to ∀z(z ∈ M ∧ z ∈ P(x) → z ∈ y) which is P(x) ∩ M ⊂ y.

Pairing Axiom
The relativization of this axiom to M is ∀z ∈ M ∀y ∈ M ∃z ∈ M(x ∈ z ∧ y ∈ z).

Union Axiom
The relativization of this axiom to M is ∀F ∈ M ∃A ∈ M ∀Y ∈ M ∀x ∈ M(x ∈
Y ∧ Y ∈ F → x ∈ A).
The formula ∀x ∈ M(x ∈ Y ∧Y ∈ F → x ∈ A) is quivalent in M to

⋃F ⊂ A, and
so the following holds.

Proposition 2.22. The Union Axiom is true in M if ∀F ∈ M ∃A ∈ M(
⋃F ⊂ A). □

Replacement Axiom
For each formula ϕ(x, y, A, w1, . . . , wn) without free variables except the ones al-
ready listed, the Replacement Axiom relativized to M is
∀A ∈ M ∀w1, . . . , wn ∈ M(∀x ∈ M ∩ A ∃!y ∈ MϕM(x, y, A, w1, . . . , wn) → ∃Y ∈
M ∀x ∈ M ∩ A ∃y ∈ M ∩ YϕM(x, y, A, w1, . . . , wn)).

Proposition 2.23. Let ϕ(x, y, A, w1, . . . , wn) be a formula without free variables except
the ones already listed. If (∀x ∈ A ∃!y ∈ M ϕM(x, y, A, w1, . . . , wn)) → (∃Y ∈ M({y :
∃x ∈ A ϕM(x, y, A, w1, . . . , wn)} ⊂ Y)), then the Replacement Axiom Scheme is true in
M.

Proof. {y : ∃x ∈ A ϕM(x, y, A, w1, . . . , wn)} ⊂ Y) implies that ∀x ∈ M ∩ A ∃y ∈
M ∩ YϕM(x, y, A, w1, . . . , wn)).

Axiom of Foundation
The relativization of this axiom to M is ∀x ∈ M(∃y ∈ M(y ∈ x) → ∃y ∈ M(y ∈
x ∧ ¬∃z ∈ M(z ∈ x ∧ z ∈ y))).

Proposition 2.24. The Axiom of Foundation holds relativized to any class M ⊂ WF.

Proof. If x ∈ M, then we take y ∈ x such that ∀z ∈ M(rank(y) ≤ rank(z)) and the
relativization of the Axiom of Foundation is true.
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Axiom of Infinity
The relativization of this axiom to M is ∃x ∈ M(0M ∈ x ∧ ∀y ∈ M(y ∈ x →
S(y)M ∈ x)).
Since ω satisfies this formula, the following holds.

Proposition 2.25. Let M be a transitive model of at least ZF− − P − In f . If ω ∈ M,
then the Axiom of Infinity is true in M. □

Axiom of Choice
The relativization of this axiom to M is ∀A ∈ M∃R ∈ M(R well − orders A).

Proposition 2.26. Let A ∈ WF. Then A can be well − ordered ↔ (A can be well −
ordered)WF.

Proof. For the left to right implication, fix a relation R ⊂ A × A on A ∈ WF such
that R well-orders A. By Proposition 2.7, A × A ∈ WF and so A × A ⊂ WF by
Proposition 2.5. Then, R ⊂ WF and, again by Proposition 2.5, R ∈ WF. We can
conclude that, by Theorem 2.7, (R well − orders A)WF.
For the left to right implication, fix R ∈ WF such that (R well − orders A)WF. Then,
by Theorem 2.7, R well − orders A, and so A can be well − ordered.

Theorem 2.8. V is a model of ZFC.

Proof. By Theorem 2.3, V = WF, and so we have to prove that WF is a model of
ZFC.
By Proposition 2.3, WF is transitive, and so, by Proposition 2.19, the Axiom of
Extensionality is true in WF.
Also because WF is transitive, if A ∈ WF then P(A) ∈ WF by Proposition 2.7 and,
by Proposition 2.20, the Comprehension Axiom is true in WF.
By Proposition 2.7, the pairing operation is closed in WF, and so it is clear that the
Pairing Axiom is true in WF.
To see that the Union Axiom is true in WF, note that if A ∈ WF, then, by Propo-
sition 2.7,

⋃
A ∈ WF and so there is an ordinal α for which

⋃
A ∈ V(α) and then⋃

A ⊂ V(α + 1). By Proposition 2.22, the Union Axiom is true in WF.
As WF is transitive, by Proposition 2.21 to show that the Power Set Axiom is true
in WF we have to see that ∀x ∈ WF ∃y ∈ WF(P(x) ∩ WF ⊂ y). But, if we fix
x ∈ WF, then, by Proposition 2.7, P(x) ∈ WF and so P(x) ⊂ WF by Proposition
2.5. Thus, P(x) ∩ WF = P(x). As P(x) ∈ WF, P(x) ⊂ V(α) ∈ WF for some
ordinal α.
In order to prove that the Replacement Axiom is true for WF, let Y = {y ∈ WF :
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∃x ∈ A ϕM(x, y, A, w1, . . . , wn)}. It is obvious that Y ⊂ WF. By Proposition 2.5,
Y ∈ WF. Then, there is an ordinal α for which Y ∈ V(α), which implies that
Y ⊂ V(α + 1). Hence, by Proposition 2.23, the Replacement Axiom is true for WF.
As ω ∈ WF, by Proposition 2.25 the Axiom of Infinity is true in WF.
The Axiom of Foundation is true in WF by Proposition 2.24.
By Proposition 2.26, the Axiom of Choice is true in WF.

2.6 The Reflection Theorems

We are going to state the Reflection Theorem and some related corollaries,
which will be useful later. To do so, we first show the Mostowski Collapse theo-
rem. For this, we need some preparation.

Definition 2.12. R is an extensional relation on a class A if and only if
∀x ∈ A ∀y ∈ A(∀z ∈ A(zRx ↔ zRy) → x = y).

We now define the Mostowski collapsing f unction and the Mostowski collapse
of a class and a relation and give some of its basic properties.

Definition 2.13. Let R be a well-founded and set-like relation on a class A. We define G,
the Mostowski collapsing function of A, R, by G(x) = {G(y) : y ∈ A ∧ yRx}.
M = ran(G) is the Mostowski collapse of A, R.

Lemma 2.9. If G is the Mostowski collapsing function and M the Mostowski collapse of
A, R, then:
a) ∀x, y ∈ A(xRy → G(x) ∈ G(y)),
b) M is transitive,
c) M ⊂ WF.

Proof. a) is obvious by the definition of G.
b) If M is empty, it is obvious. Let w ∈ M. So ∃x ∈ A(G(x) = w). If z ∈ w, then
z ∈ G(x) and so, by the definition of G, ∃y ∈ A(yRx ∧ z = G(y)). Thus, z ∈ M.
c) We will prove by induction on rank(x) that ∀x ∈ A(G(x) ∈ WF). It will follow
that, if w ∈ M, then ∃x ∈ A(G(x) = w) and so w ∈ WF.
If x ∈ A is such that ∀y ∈ A(¬ yRx), then G(x) = 0 ∈ WF. Now, suppose that, for
x ∈ A, ∀y ∈ A(yRx → G(y) ∈ WF). Then, ∀w ∈ G(x) ∃y ∈ A(yRx ∧ w = G(y)),
and so, by inductive hypothesis, w ∈ WF. Thus, G(x) ⊂ WF and, by Proposition
2.5, G(x) ∈ WF.

Proposition 2.27. Let G be the Mostowski collapsing function of A, R. If R is exten-
sional on A, then G is an isomorphism from (A, R) onto (M, ∈).
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Proof. By the definition of G, it is enough to show that G is injective. Suppose
that it is not. Then X = {x ∈ A : ∃y ∈ A(x ̸= y ∧ G(x) = G(y)} is non-empty.
As R is well-founded on A, we can take x ∈ A as an R−minimal element of X.
Let y ∈ A be such that y ̸= x and G(y) = G(x). Since R is extensional on A,
∃z ∈ A((zRx ∧ ¬ zRy) ∨ (¬ zRx ∧ zRy)) (if this did not hold, we would have that
x = y). So let z ∈ A. If zRx ∧ ¬ zRy, then by Lemma 2.9 we have that G(z) ∈
G(x) = G(y), and so ∃w ∈ A(wRy ∧ G(z) = G(w)). But w ̸= z, which contradicts
the minimality of x in X. On the other hand, if ¬ zRx ∧ zRy, then by Lemma 2.9
we have that G(z) ∈ G(y) = G(x) and so ∃w ∈ A(wRx ∧ G(w) = G(x)), but
w ̸= x, which contradicts the minimality of x in X.

Theorem 2.9 (Mostowski Collapsing Theorem). Let R be a well-founded, set-like and
extensional relation on A. Then there is a transitive class M and an isomorphism G from
(A, R) onto (M, ∈). Moreover, M and G are unique.

Proof. By Proposition 2.27, if G and M are the Mostowski collapsing function and
Mostowski collapse of A, R, then they satisfy the Theorem. If suppose that M′

and G′ also satisfy the Theorem, it is easy to prove by induction on rank(x) that if
x ∈ A then G′(x) = G(x) and so M = M′.

Taking R =∈ in Theorem 2.9, we obtain the following corollary.

Corollary 2.3. If ∈ is extensional on A, then there is a transitive class M and an
isomorphism G from A onto M. □.

Before stating the Reflection Theorem, we introduce the following notion.

Definition 2.14. Let ϕ1, . . . , ϕn be a list of formulas. We say that this list is subformula
closed if and only if all the subformulas of any ϕi on the list are also on the list.

Lemma 2.10. Let M and N be classes with M ⊂ N and ϕ1, . . . , ϕn be a subformula
closed list of formulas. Then these two statements are equivalent:
a) ϕ1, . . . , ϕn are absolute for M, N.
b) For any ϕi on the list, if ϕi is of the form ∃x ϕj(x, y1, . . . , yl), with all the free variables
of ϕj listed, then
∀y1, . . . , yn ∈ M(∃x ∈ N ϕN

j (x, y1, . . . , yl) → ∃x ∈ M ϕN
j (x, y1, . . . , yl)).

Proof. For a) → b), assume that ϕ1, . . . , ϕn are absolute for M, N. Let y1, . . . , yl ∈ M
and ϕi = ∃x ϕj(x, y1 . . . , yl). Assume that ϕN

i holds. By the absoluteness of ϕi, we
have that ϕM

i also holds, and so ∃x ∈ M ϕM
j (x, y1, . . . , yl). By the absoluteness of

ϕj, we finally have that ∃x ∈ M ϕN
j (x, y1, . . . , yl).

For b) → a), we prove by induction on the length of ϕi that ϕi is absolute for M, N.
If ϕi is an atomic formula, then ϕi is absolute for M, N by Lemma 2.5.
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If ϕi is ¬ϕj for some absolute ϕj for M, N or ϕi is ϕj ∧ ϕk for some absolute ϕj and
ϕk for M, N, then ϕi is obviously also absolute for M, N.
If ϕi is ∃x ϕj(x, y1, . . . , yl) with ϕj absolute for M, N, we fix y1, . . . , yl ∈ M and
then ϕM

i (y1, . . . , yl) ↔ ∃x ∈ M ϕM
j (x, y1, . . . , yl) ↔ ∃x ∈ M ϕN

j (x, y1, . . . , yl) ↔
∃x ∈ N ϕN

j (x, y1, . . . , yl) ↔ ϕN
i (y1, . . . , yn). The first and the last equivalence are

by definition. The second one follows from the absoluteness of ϕj. The third one
follows from the hypothesis b).

The next theorem is the general case of the Reflection Theorem.

Theorem 2.10 (Reflection Theorem). Let Z be a class and for each ordinal α let Z(α)
be a set such that:
a) For any β ∈ α, Z(β) ⊂ Z(α),
b) Z(α) =

⋃
β<α Z(β) if α is a limit ordinal,

c) Z =
⋃

α∈ON Z(α).
Then, for any formulas ϕ1, . . . , ϕn,
∀α∃β > α(ϕ1, . . . , ϕn are absolute f or Z(β), Z).

Proof. We assume that ϕ1, . . . , ϕn is a subformula closed list (if not, we expand the
list by adding the required subformulas). We define a function Fi : ON → ON for
each i = 1, . . . , n as follows.
If ϕi is not of the form ∃x ϕj(x, y1, . . . , yn), then we put Fi(ξ) = 0 for any ordinal ξ.
If ϕi is ∃x ϕj(x, y1, . . . , yn), we define the function Gi(y1, . . . , yl) to be the least η

such that ∃x ∈ Z(η) ϕZ
j (x, y1, . . . , yl). If ¬∃x ∈ Z ϕZ(x, y1, . . . , yl), then Gi(y1, . . . , yl) =

0. We set Fi(ξ) = sup{Gi(y1, . . . , yl) : y1, . . . , yl ∈ Z(ξ)}. This supreme exists due
to the Replacement Axiom.
If β is a limit ordinal and, for each i, ∀ξ < β(Fi(ξ) < β, then ϕ1, . . . , ϕn will be
absolute by Lemma 2.10. Indeed, if ∃x ∈ Z ϕZ

j (x, y1, . . . , yl), then this x will also
be in β and thus in Z(β) since, for any ordinal ξ, Fi(ξ) < β. We fix an ordinal α.
Let’s construct this limit ordinal β.
We define by recursion {βk}k∈ω as follows. β0 = α and, for each k ∈ ω, βk+1 =

max{βk + 1, F1(βk), . . . , Fn(βk)}. Let β = sup{βk : k ∈ ω}. We have that βk+1 ≥
βk + 1 > βk and so α = β0 < β1 < β2 · · · . Thus, β is a limit ordinal with β > α.
Moreover, ∀ξ1 ∈ ON ∀ξ2 ∈ ON(ξ1 < ξ2 → Fi(ξ1) ≤ Fi(ξ2)). So, if ξ < β, then
ξ < βk for some ordinal k, and then Fi(ξ) ≤ Fi(βk) ≤ βk+1 < β, giving the desired
inequality.

The following result is a direct corollary of Theorem 2.10, taking Z = V and
Z(α) = V(α).

Theorem 2.11 (Reflection Theorem). For any list of formulas ϕ1, . . . , ϕn,
ZF ⊢ ∀α ∃β > α(ϕ1, . . . , ϕn are absolute f or V(β)). □
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Corollary 2.4. Let S be any set of axioms extending ZF and ϕ1, . . . , ϕn any axioms of S.
Then, S ⊢ ∀α ∃β > α ∀i ≤ n(ϕV(β)

i ).

Proof. By Theorem 2.11, ZF ⊢ ∀α ∃β > α ∀i ≤ n(ϕi ↔ ϕ
V(β)
i ). Since S extends ZF,

we also have that S ⊢ ∀α ∃β > α ∀i ≤ n(ϕi ↔ ϕ
V(β)
i ). As, for each i, S ⊢ ϕi since ϕi

is an axiom of S, then S ⊢ ∀α ∃β > α ∀i ≤ n(ϕV(β)
i ).

A consequence of Corollary 2.4 is that, if S is a collection of axioms extending
ZFC, then there is no finite sublist of axioms of S from which it is possible to prove
all the axioms of S. It follows that no finite list of axioms is equivalent to ZFC.
To end this section, we are going to see an important result for the forcing theory.
It will grant us the existence of a countable transitive model of any finite list of
axioms of ZFC from which we will construct the desired model of ZFC + ¬CH.
But first, let’s see some preliminary lemmas.

Lemma 2.11. Let Z be a class and ϕ1, . . . , ϕn be a list of formulas. Then,
∀X ⊂ Z ∃A(X ⊂ A ⊂ Z ∧ (ϕ1, . . . , ϕn are absolute f or A, Z) ∧ |A| ≤ max(ω, |X|)).

Proof. We can assume that the list of formulas is subformula closed. If not, we
add the needed formulas to the list. We define Z(α) = V(α) ∩ Z for any ordinal
α. Z and Z(α) satisfy the hypothesis of Theorem 2.10. Indeed, if α < β, then
V(α) ⊂ V(β) and so Z(α) = V(α) ∩ Z ⊂ V(β) ∩ Z = Z(β); if α is a limit ordinal,
then
Z(α) = V(α)∩Z = (

⋃
β<α V(β))∩Z =

⋃
β<α(V(β)∩Z) =

⋃
β<α Z(β);

⋃
α∈ON Z(α) =⋃

α∈ON(V(α) ∩ Z) = (
⋃

α∈ON V(α)) ∩ Z = V ∩ Z = Z.
Let α be an ordinal such that X ⊂ Z(α). By Theorem 2.10, we can pick an ordinal
β > α such that ϕ1, . . . , ϕn are absolute for Z(β), Z. By the Axiom of Choice, there
is a well-order of Z(β), that we call ≺. Let β0 be the ≺-first element of Z(β).
For each i = 1, . . . , n, assuming that ϕi has li free variables, we define a func-
tion Hi : Z(β)li → Z(β) as follows. If li = 0, then we fix a b ∈ Z(β) and
Hi(0) = b. If ϕi is ∃x(ϕj(x, y1, . . . , yli) and ∃x ∈ Z(β)ϕ

Z(β)
j (x, y1, . . . , yli , then

let x0 be the first such x and let Hi(y1, . . . , yli) = x0. If ¬∃x(ϕj(x, y1, . . . , yli)

or ϕi is not an existential quantification, then Hi(y1, . . . , yli) = β0. Let A be
the closure of X under H1, . . . , Hi, that is the least Y such that X ⊂ Y and
ran(Hj ↾ Ylj) ⊂ B (if lj = 0, Hj ∈ Y). Then, by Proposition 1.2, as A is closed
under each Hi, we have that |A| ≤ max(ω, |X|) which certifies that ∀y1, . . . , yli ∈
A(∃x ∈ Z(β) ϕ

Z(β)
j (x, y1, . . . , yli) ↔ ∃x ∈ A ϕ

Z(β)
j (x, y1, . . . , yli)). By Lemma 2.10,

ϕ1, . . . , ϕn are absolute for A, Z(β) and thus for A, Z.

The following Lemma is easy to prove by induction on the lenght of ϕ.
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Lemma 2.12. Let G : A → M be an isomorphism. Then for each formula ϕ(x1, . . . , xn)

with all its variables listed, we have that
∀x1, . . . , xn ∈ A(ϕ(x1, . . . , xn)A ↔ ϕ(G(x1), . . . , G(xn))M). □

Lemma 2.13. Let Z be a transitive class and ϕ1, . . . , ϕn be a list of sentences. Then
∀X ⊂ Z(X is transitive → ∃M(X ⊂ M ∧ ∀i ≤ n(ϕM

i ↔ ϕZ
i )) ∧ M is transitive ∧

|M| ≤ max(ω, |X|))).

Proof. We assume that the Axiom of Extensionality is on the list. If not, add it.
Fix X ⊂ Z. By Lemma 2.11, we can take an A such that X ⊂ A ⊂ Z, ϕA

i ↔ ϕZ
i

for each i ≤ n and |A| ≤ max{w, |X|}. As Z is transitive, by Proposition 2.19
the Axiom of Extensionality holds in Z and so it does on A. By Corollary 2.3,
there is a transitive set M and an isomorphism G : A → M. By Lemma 2.12,
ϕA

i ↔ ϕM
i , and so ϕZ

i ↔ ϕM
i . Finally, let’s show that X ⊂ M. If x ∈ X, then

G(x) = {G(y) : y ∈ A ∧ y ∈ x} = {G(y) : y ∈ x} since X is transitive (and
so the condition y ∈ x is equivalent to y ∈ A ∧ y ∈ x when x ∈ A). So, by
induction on rank(x), G(x) = x for all x ∈ X. Indeed, if x = 0, it is obvious. If
∀y ∈ x(G(y) = y), then G(x) = {y : y ∈ x} = x. Hence, X = ran(G ↾ X) ⊂ M.

Finally, taking Z = V and X = ω, we obtain the following immediate conse-
quence of Lemma 2.13.

Proposition 2.28. Let S be a set of axioms extending ZFC and ϕ1, . . . , ϕn be axioms of
S. Then
S ⊢ ∃M(|M| = ω ∧ M is transitive ∧ ∀i ≤ n(ϕM

i )). □

So, Proposition 2.28 states that, assuming that ZFC is consistent, there is a
countable transitive model of any finite set of axioms extending ZFC. As we
will discuss later, it is from this model that we will be able to find a model of
ZFC + ¬CH that will confirm the consistency of the negation of the Continuum
Hypothesis with ZFC. To end this chapter, we briefly present the model of ZFC +

CH that shows the relative consistency of the Continuum Hypothesis with ZFC.
In addition with our work, we will conclude that CH is independent of ZFC.

2.7 The Constructible Universe

In this section we are going to define the class of constructible sets, L. This
class is defined from the concept of de f inable set. Given a set A, we wish to
define the set D f (A, n) of the subsets of An that contain all the ordered n-tuples
that satisfy some formula with n free variables relativized to A. These subsets
would be defined from A by a formula. Nonetheless, formalizing this idea is not
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immediate since there are infinite formulas. The approach will be to consider sets
constructed from basic relations (as x ∈ y or x = y, that would give, for example,
due to the Axiom of Comprehension, the sets {(x, y) ∈ A2 : xRy}, for R ∈ {∈
,=}) and sets obtained by operating with already defined sets recursively, using
complementation, intersection and projection. Each of these set operations will
have a correspondence with the logical connectors and the existential quantifier ¬,
∧ and ∃ respectively. Thereby, D f (A, n) will be the least union of those sets closed
under the aforementioned operations.

Definition 2.15. If n ∈ ω and i, j < n, we define:
a) Proj(A, R, n) = {s ∈ An : ∃t ∈ R(t ↾ n = s)},
b) Diag∈(A, n, i, j) = {s ∈ An : s(i) ∈ s(j)},
c) Diag=(A, n, i, j) = {s ∈ An : s(i) = s(j)},
d) D f ′(0, A, n) = {Diag∈(A, n, i, j) : i, j < n} ∪ {Diag=(A, n, i, j) : i, j < n} and
D f ′(k + 1, A, n) = D f ′(k, A, n) ∪ {An ∖ R : R ∈ D f ′(k, A, n)} ∪ {R ∩ S : R, S ∈
D f ′(k, A, n)} ∪ {Proj(A, R, n) : R ∈ D f ′(k, A, n + 1)} for k ∈ ω.

Definition 2.16. We define D f (A, n) =
⋃{D f ′(k, A, n) : k ∈ ω} and D(A) = {X ⊂

A : ∃n ∈ ω ∃s ∈ An ∃R ∈ D f (A, n + 1)(X = {x ∈ A : s⌢⟨x⟩ ∈ R})}.

The following Lemma is easy to show by induction on the length of ϕ.

Lemma 2.14. Let ϕ(v0, . . . , vn−1, x) be any formula with all its free variables listed. Then,
∀A ∀v0, . . . , vn−1 ∈ A({x ∈ A : ϕA(v0, . . . , vn−1, x)} ∈ D(A)). □

We will use the definable sets to define the constructible universe L.

Definition 2.17. We define L(α) for any ordinal α as follows:
a) L(0) = 0,
b) L(α + 1) = D(L(α)),
c) L(α) =

⋃
β<α L(β) if α is a limit ordinal.

Definition 2.18. L =
⋃{L(α) : α ∈ ON}.

Now, we can state the fundamental result for L.

Theorem 2.12. L is a model of ZFC + GCH. □

Since L is a model of ZFC + GCH, and so in particular of ZFC + CH, con-
structed from ZFC, then, by Proposition 2.1, we have that Con(ZFC) → Con(ZFC+

GCH) and so Con(ZFC) → Con(ZFC + CH).
This result, proved by Kurt Gödel in 1939, states that the Continuum Hypothesis
is consistent with the ZFC axioms. Along with the proof of the consistency of the
negation of the Continuum Hypothesis, which is the aim of this work, we will
conclude that CH is independent of ZFC. In the next chapter we will study the
Forcing technique that is used to find a model of ZFC + ¬CH.



Chapter 3

The Forcing Method

In this chapter, we are going to present the general method of forcing to obtain,
from a model of ZFC, M, called a ground model, another model of ZFC extending
the ground one and satisfying, additionally, some other statement, ϕ. Thus, it will
follow that the consistency of ZFC implies the consistency of ZFC + ϕ.
Formally, we could not be able to suppose that a countable transitive model M
of ZFC exists because ZFC is infinite. By Proposition 2.28, we can only prove
from ZFC that there is a countable transitive model of any finite list of axioms of
ZFC. The proof of the relative consistency Con(ZFC) → Con(ZFC + ¬CH) will
be made by contraposition: if we assume the inconsistency of ZFC +¬CH we will
deduce the inconsistency of ZFC.
So, suppose that ZFC + ¬CH is not consistent. Let ϕ1, . . . , ϕn be a finite list of ax-
ioms of ZFC + ¬CH such that they lead to a contradiction, i.e., for some formula
ψ, ϕ1 · · · ϕn ⊢ ψ ∧ ¬ψ. As we will see in the next chapter, ZFC implies that there
is a model N such that ϕ1, . . . , ϕn are true in N, and so ψ ∧ ¬ψ holds in N. Hence
ZFC is inconsistent.
Instead of doing all this reasoning, we can just assume that there is a count-
able transitive model of ZFC to produce another countable transitive model of
ZFC + ¬CH (for all the arguments that we will see involved in forcing, we need
a countable transitive model of some axioms, and so, instead of considering a
model of enough axioms to follow each argument, we simply suppose that there
is a countable transitive model of all ZFC). To force the desired model, we will
work with partial orders in M. The features of those partial orders will give the
extending model some properties that will allow us to prove that some other state-
ment is true in it. In our case, as we will see in Chapter 5, we can use this technique
with a suitable partial order to find a model of ZFC + ¬CH.

31
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3.1 Partial Orders

Definition 3.1. Let ≤ be a relation on a non-empty set A. We say that ≤ partially orders
A if and only if ≤ is reflexive ( ∀a ∈ A(a ≤ a) ) and transitive ( ∀a, b, c ∈ A((a ≤
b ∧ b ≤ c) → a ≤ c) ) on A.
A partial order is an ordered triplet P = (P,≤, 1) where P ̸= 0, ≤ partially orders P and
1 is the largest element of P ( ∀p ∈ P(p ≤ 1) ).

The elements of P are called conditions, and, for two conditions p, q, we say
that p extends q (or p is an extension of q) if and only if p ≤ q. Note that saying
that P ∈ M means that P ∈ M, ≤ ∈ M and 1 ∈ M.

Definition 3.2. Let p, q ∈ P. We say that p and q are compatible if and only if ∃r ∈
P(r ≤ p ∧ r ≤ q). We say that p and q are incompatible, in symbols p⊥q, if and only if
there is no such r ∈ P.

Definition 3.3. Let P be a partial order and D, G ⊂ P. We say that

1. D is dense in P if and only if ∀p ∈ P ∃q ∈ D(q ≤ p).

2. G is a filter in P if and only if

(a) ∀p, q ∈ G (¬p⊥q) and

(b) ∀p ∈ G ∀q ∈ P(p ≤ q → q ∈ G).

For the rest of this section, we will consider M to be a countable transitive
model of ZFC and P a partial order such that P ∈ M.

Proposition 3.1. The following notions are absolute:
a) P is a partial order,
b) D is dense.
c) G is a filter.

Proof. It is clear that the formulas that defines these notions are equivalent to some
∆0 formulas since all the quantifiers that appear in those formulas are bounded.
Then, they are absolute.

Later, we will also need the following concept.

Definition 3.4. If E ⊂ P and p ∈ P, then we say that E is dense below p is and only if
∀q ≤ p ∃r ∈ E(r ≤ q).

Since, if q ≤ p, then ∀r ≤ q(r ≤ p), it is clear that if E is dense below p and
q ≤ p, then E is dense below q.
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Lemma 3.1. If {q : E is dense below q} is dense below p, then E is dense below p.

Proof. If {q : E is dense below q} is dense below p, then ∀q ≤ p ∃r ≤ q(E is dense below r)
and so, if we fix q ≤ p, we can take r ≤ q such that ∀x ≤ r ∃y ≤ x(y ∈ E). In
particular, taking x = r, we can fix y ≤ r such that (y ∈ E). So, we have that
y ≤ r ≤ q and y ∈ E and hence E is dense below p.

3.2 Generic Extensions

In this section, we will see how to construct a generic extension, M[G], of our
ground model M relative to a special kind of filter G called P-generic. Let’s first
see the definition of this notion and two immediate results.

Definition 3.5. Let G ⊂ P be a filter in P. G is P-generic over M if and only if for all
dense D ⊂ P, D ∈ M → G ∩ D ̸= 0.

Henceforth, we assume that the filters that we consider are non-empty. The
next proposition says that any condition of P is in some P-generic filter over M.

Proposition 3.2. Let p ∈ P. Then, there is a G ⊂ P such that p ∈ G and G is P-generic
over M.

Proof. We fix a p ∈ P. Since M is countable, the number of dense subsets of P in
M must also be countable. So, let Dn for n ∈ ω be all the dense subsets of P in
M. For each n ∈ ω, as Dn is dense, we can pick a qn such that qn+1 ∈ Dn and
qn+1 ≤ qn, with q0 = p. Let G = {q ∈ P : ∃n ∈ ω(qn ≤ q)}. Then, it is easy to
check that G is a filter in P with p ∈ G. Since, for any n ∈ ω, qn+2 ≤ qn+1, then
qn ∈ G and thus G ∩ Dn ̸= 0 for all the dense subsets of P in M. Hence, G is
P-generic over M.

Proposition 3.3. If P is such that ∀p ∈ P ∃q, r ∈ P(q ≤ p ∧ r ≤ p ∧ q⊥r) and G is a
P-generic filter over M, then G /∈ M.

Proof. Suppose G ∈ M. Then, as P ∈ M and the set difference operation is
absolute, D = P ∖ G ∈ M. Moreover, if p ∈ P and q, r ∈ P are such that q ≤
p ∧ r ≤ p ∧ q⊥r, then, since G is filter, q and r cannot both be in G (if they were,
they would be compatible, which contradicts our assumption). Without loss of
generality, we can suppose that q /∈ G, and so q ∈ D with q ≤ p, which means
that D is dense. But, by how we defined D, we have that D ∩ G = 0, which is a
contradiction with G being P-generic.

Once we already saw the preliminary notions and results, we can finally show
how to construct a model extending M by means of a P-generic filter. Given G
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P-generic over M, Proposition 3.3 says that in general G /∈ M. So, we will make
up M[G] to be the least transitive model of ZFC such that M ⊂ M[G], G ∈ M and
the ordinals in M[G] are just the ordinals in M. In fact, M[G] will be the set that
contains all the sets constructed from G following certain procedures definable
in M. The elements of M[G] are constructed from their names in M, defined as
follows.

Definition 3.6. Let τ ∈ M. We say that τ is a P-name if and only if τ is a relation such
that ∀(σ, p) ∈ τ(σ is a P − name ∧ p ∈ P). Furthermore, if τ is a P-name, we define
the domain of τ as dom(τ) = {σ : ∃p((σ, p) ∈ τ)}.
If M is a countable transitive model of ZFC and P ∈ M, VP is the class of P-names and
MP = VP ∩ M.

Given a filter G on P, each name in VP will have a value associated with G.
We will define the elements of M[G] as the values of the names in MP.

Definition 3.7. Let G be a filter on P. For τ ∈ VP, we define the value of τ with respect
to G, in symbols τ[G], by transfinite recursion: τ[G] = {σ[G] : ∃p ∈ G((σ, p) ∈ τ)}.

Definition 3.8. If M is a countable transitive model of ZFC, P ∈ M and G ⊂ P is a
filter, we define M[G] = {τ[G] : τ ∈ MP}. M[G] is called a generic extension of M.

The following definition and lemma show that the elements of M are in fact
the values of their own names in MP and so are in M[G].

Definition 3.9. For x ∈ M, we define x̌ recursively: x̌ = {(y̌, 1) : y ∈ x}.

The following Lemma is easy to show by induction on rank(x).

Lemma 3.2. If G is a filter on P then ∀x ∈ M(x̌ ∈ MP ∧ x̌[G] = x). □

We now show that M[G] is the least transitive extension of M containing G.

Definition 3.10. Let M be a countable transitive model of ZFC. Let P ∈ M be a partial
order. We define Γ = {(p, p̌) : p ∈ P}.

Proposition 3.4. If M is a countable transitive model of ZFC, P ∈ M and G is a filter
on P, then:
a) M ⊂ M[G],
b) G ∈ M[G],
c) M[G] is transitive,
d) If N is a transitive model of ZFC with M ⊂ N and G ∈ N, then M[G] ⊂ N.
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Proof. a) If x ∈ M, then, by Lemma 3.2, x = x̌[G] ∈ M[G].

b) If p ∈ G, then p ∈ M and so, by Lemma 3.2, p = p̌[G]. With that in mind,
let’s find the P-name for G.
G = {p : p ∈ G} = { p̌[G] : p ∈ G} = {σ[G] : ∃p ∈ G(σ = p̌)} = {σ[G] : ∃p ∈
G((σ, p) ∈ {( p̌, p) : p ∈ P})} = {( p̌, p) : p ∈ P}[G] = Γ[G] ∈ M[G].

c) Let x ∈ M[G]. Then x = τ[G] for some τ ∈ MP. If σ[G] ∈ τ[G], then σ ∈ MP

and so σ[G] ∈ M[G].

d) Let τ[G] ∈ M[G]. Then τ ∈ MP and, since MP ⊂ M ⊂ N, we have that
τ ∈ N. As G ∈ N and N is transitive, then G ⊂ N and so G ∩ N = N. Thus,
(τ[G])N = {σ[G] : ∃p ∈ G ∩ N((σ, p) ∈ τ)} = {σ[G] : ∃p ∈ G((σ, p) ∈ τ)} =

τ[G] ∈ N.

Moreover, the ordinals in M are just the ordinals in M[G].

Definition 3.11. o(M) = M ∩ ON.

Proposition 3.5. If G is a filter on P, then:
a) ∀τ ∈ MP(rank(τ[G]) ≤ rank(τ)).
b) o(M) = o(M[G]).

Proof. a) Let’s prove it by induction on τ. If ∀σ ∈ dom(τ)(rank(σ[G]) ≤ rank(σ)),
then rank(τ[G]) = sup{rank(σ[G]) + 1 : (σ, p) ∈ τ} ≤ sup{rank(σ) + 1 : (σ, p) ∈
τ} = rank(τ) by the inductive hypothesis.

b) Since M ⊂ M[G], we trivially have that o(M) ⊂ o(M[G]). On the other hand, let
α ∈ o(M[G]). Then α = τ[G] for some τ ∈ MP, and so, as τ[G] is an ordinal and
by clause a), τ[G] = rank(τ[G]) ≤ rank(τ) ∈ M ∩ ON = o(M) by the absoluteness
of the notion of rank.

Proposition 3.6. The following notions are absolute for M:
a) τ is a P-name,
b) τ[G],
c) x̌.

Proof. a) We define the function F(P, τ) = 1 if and only if τ is a relation and
∀(σ, p) ∈ τ(F(P, τ) = 1 ∧ p ∈ P) and F(P, τ) = 0 otherwise.
It is clear that τ is a P-name if and only if F(P, τ) = 1.
Since F(P, τ) is defined by absolute concepts for M (which is a transitive model of,
in particular, ZFC − P) from all the F(P, σ) with (σ, p) ∈ τ and p ∈ P, and F(P, σ)
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is defined from all the F(P, π) with (π, q) ∈ σ and q ∈ P, it follows recursively
that F(P, τ) is defined from F ↾ τ+. By Proposition 3.29, F is absolute, and so is "τ

is a P-name".

b)/c) τ[G] and x̌ are defined from absolute notions and are then absolute for
M.

Since these notions are absolute, we can use them within M freely.

3.3 Forcing formulas in the generic extension

We now wish to establish some relationship between the truth of a formula in
M[G] and some property in M. This relationship will come from the notion of
f orcing a formula.
Let ϕ(x1, . . . , xn) be a formula with all its free variables listed, M be a countable
transitive model of ZFC, P ∈ M a partial order, τ1, . . . , τn ∈ MP.

Definition 3.12. Let p ∈ P. We say that p forces ϕ(τ1, . . . , τn), in symbols p ⊩P,M

ϕ(τ1, . . . , τn), if and only if

∀G((G is P − generic over M ∧ p ∈ G) → ϕM[G](τ1[G], . . . , τn[G])).

We will use ⊩ instead of ⊩P,M if no confusion can occur. This definition says
that a condition forces a formula if this formula is true in any generic extension
of M that is relative to a P-generic filter over M that contains this condition.
After seeing two obvious properties about ⊩, we will show that this notion can be
represented by a formula in M and is so definable within M.

Lemma 3.3. Let p, q ∈ P. Then:
a) (p ⊩ ϕ(τ1, . . . , τn) ∧ q ≤ p) → q ⊩ ϕ(τ1, . . . , τn).
b) (p ⊩ ϕ(τ1, . . . , τn)) ∧ (p ⊩ ψ(τ1, . . . , τn)) if and only if p ⊩ (ϕ(τ1, . . . , τn) ∧
ψ(τ1, . . . , τn)). □

Now, we will define ⊩∗, a concept related to ⊩. This ⊩∗ relativized to M is
equivalent to ⊩, and it will allow us to decide in M whether a condition forces a
formula or not.

Definition 3.13. Let P be a partial order. Let ϕ(x1, . . . , xn) be a formula with all its
free variables listed. Let τ1, . . . , τn ∈ VP and p ∈ P. We define p ⊩∗ ϕ(τ1, . . . , τn) by
recursion as follows.
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1. p ⊩∗ τ1 = τ2 if and only if
a) ∀(π1, s1) ∈ τ1

{q ≤ p : q ≤ s1 → ∃(π2, s2) ∈ τ2(q ≤ s2 ∧ q ⊩∗ π1 = π2)}
is dense below p, and

b) ∀(π2, s2) ∈ τ2

{q ≤ p : q ≤ s2 → ∃(π1, s1) ∈ τ1 (q ≤ s1 ∧ q ⊩∗ π1 = π2)}
is dense below p.

2. p ⊩∗ τ1 ∈ τ2 if and only if
{q : ∃(π, s) ∈ τ2 (q ≤ s ∧ q ⊩∗ π = τ1)} is dense below p.

3. p ⊩∗ (ϕ (τ1, . . . , τn) ∧ ψ (τ1, . . . , τn)) if and only if
p ⊩∗ ϕ (τ1, . . . , τn) and p ⊩∗ ψ (τ1, . . . , τn).

4. p ⊩∗ ¬ϕ (τ1, . . . , τn) if and only if there is no q ≤ p such that
q ⊩∗ ϕ (τ1, . . . , τn).

5. p ⊩∗ ∃x ϕ (x, τ1, . . . , τn) if and only if{
q : ∃τ ∈ VP (q ⊩∗ ϕ (τ, τ1, . . . , τn))

}
is dense below p.

Lemma 3.4. Let P be a partial order. Let ϕ(x1, . . . , xn) be a formula with all its free
variables listed. Let τ1, . . . , τn ∈ VP and p ∈ P. Then the following are equivalent:
a) p ⊩∗ ϕ(τ1, . . . , τn),
b) ∀q ≤ p(q ⊩∗ ϕ(τ1, . . . , τn)),
c) {q : q ⊩∗ ϕ(τ1, . . . , τn)} is dense below p.

Proof. For a) → b), we proceed by induction on the length of ϕ. If it is an atomic
formula, then if q ≤ p and the sets in clause 1. and 2. of Definition 3.13 are dense
below p then they are dense below q. The same argument holds if ϕ is of the form
∃x ψ using clause 5. of this same Definition. The rest of the cases are easy to show
using induction on the length of ϕ.
The implication b) → c) is obvious.
For c) → a), we proceed by induction on the length of ϕ. Suppose that it is τ1 = τ2.
If {q : q ⊩∗ τ1 = τ2} is dense below p, then
{q : clause a) f rom De f inition 3.13 holds f or q} is dense below p. But these is a
set of conditions for which some sets (the ones of the Definition) are dense below.
By Lemma 3.1, these sets are also dense below p, and so p ⊩∗ τ1 = τ2. The same
argument holds if ϕ is τ1 ∈ τ2 or if ϕ is ∃x ψ(τ1, . . . , τn). The rest of the cases are
easy to show using the inductive hypothesis.
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Proceeding by induction on the length of ϕ, we can prove the following theo-
rem. It shows the relation between ⊩∗ in M and the truth of a formula in M[G].
After this result, we will be able to state the equivalence between ⊩ and ⊩∗ in M.

Theorem 3.1. Let M be a countable transitive model of ZFC and let P ∈ M be a partial
order. Let G ⊂ P be P-generic over M. Let ϕ(x1, . . . , xn) be a formula with all its free
variables listed. Let τ1, . . . , τn ∈ MP. Then,
a) If p ∈ G and (p ⊩∗ ϕ(τ1, . . . , τn))M, then (ϕ(τ1[G], . . . , τn[G]))M[G] and
b) if ϕ(τ1[G], . . . , τn[G])M[G], then ∃p ∈ G((p ⊩∗ ϕ(τ1 . . . , τn))M). □

Theorem 3.2. Let M be a countable transitive model of ZFC and let P ∈ M be a partial
order. Let ϕ(x1, . . . , xn) be a formula with all its free variables listed. Let τ1, . . . , τn ∈ MP.
Then,
a) ∀p ∈ P

(p ⊩ ϕ(τ1, . . . , τn) ↔ (p ⊩∗ ϕ(τ1, . . . , τn))
M.

b) If G is P-generic over M, then

ϕ(τ1[G], . . . , τn[G])M[G] ↔ ∃p ∈ G(p ⊩ ϕ(τ1, . . . , τn)).

Proof. a) For the implication from right to left, fix p ∈ P and let G be P-generic
over M such that p ∈ G. Assume that (p ⊩∗ ϕ(τ1, . . . , τn))M. Then, by Theo-
rem 3.1 a), we have that (ϕ(τ1[G], . . . , τn[G]))M[G]. Hence, by the definition of ⊩,
p ⊩ ϕ(τ1, . . . , τn).
For the left to right implication, assume that p ⊩ ϕ(τ1, . . . , τn). Let D = {q :
(q ⊩∗ ϕ(τ1, . . . , τn))M}. By Lemma 3.4, if we manage to show that D is dense
below p, then (p ⊩∗ ϕ(τ1, . . . , τn))M. Suppose D is not dense below p. Then,
let q ≤ p such that ¬∃r ∈ D(r ≤ q). By Definition 3.13 5., this means that
(q ⊩∗ ¬ϕ(τ1, . . . , τn))M and so, by the right to left implication of the clause a) of
this Theorem, q ⊩ ¬ϕ(τ1, . . . , τn). Now, fix G P-generic over M with q ∈ G. Since
G is a filter and q ≤ p, we also have that p ∈ G. By the definition of ⊩, the hy-
pothesis that p ⊩ ϕ(τ1, . . . , τn) implies that (ϕ(τ1[G], . . . , τn[G]))M[G] holds, while
q ⊩ ¬ϕ(τ1, . . . , τn) implies that (¬ϕ(τ1[G], . . . , τn[G]))M[G], which is a contradic-
tion.

b) For the left to right implication, the following holds.

ϕ(τ1[G], . . . , τn[G])M[G] → ∃p ∈ G((p ⊩∗ ϕ(τ1, . . . , τn))M) →
∃p ∈ G((p ⊩ ϕ(τ1, . . . , τn))M).

The first implication is Theorem 3.1 b). The second one follows from the clause
a) that we just showed.
The other implication is immediate from the definition of ⊩.
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Clause a) of Theorem 3.2 says that forcing is definable within M since the
fact that a condition may force a formula is equivalent to something (p ⊩∗ ϕ)
happening in M. Clause b) states the equivalence between the truth of a formula
in a generic extension of M and the existence of a condition in the P-generic filter
over M relative to this generic extension that forces this formula. Mixing up the
two clauses, we finally see that the truth of a formula ϕ in M[G] is equivalent to
the existence of some p for whom a formula in M, (p ⊩∗ ϕ)M, is true. To close this
section, let’s see some final results about ⊩.

Proposition 3.7. Let M be a countable transitive model of ZFC and P ∈ M be a partial
order. Let σ, τ1, . . . , τn ∈ MP. Then,
a) {p ∈ P : (p ⊩ ϕ(τ1, . . . , τn)) ∨ (p ⊩ ¬ϕ(τ1, . . . , τn))} is dense,
b) p ⊩ ¬ϕ(τ1, . . . , τn) if and only if ¬∃q ≤ p(q ⊩ ϕ(τ1, . . . , τn)),
c) p ⊩ ∃xϕ(x, τ1, . . . , τn) if and only if {q ≤ p : ∃τ ∈ MP(r ⊩ ϕ(τ, τ1, . . . , τn))} is
dense below p,
d) if p ⊩ ∃x(x ∈ σ∧ϕ(x, τ1, . . . , τn)), then ∃q ≤ p ∃π ∈ dom(σ)(q ⊩ ϕ(π, τ1, . . . , τn)).

Proof. Note that clauses a), b) and c) are true for ⊩∗ instead of ⊩ and the formulas
relativized to M. Hence, by Theorem 3.2, a), b) and c) hold.

d) Fix G P-generic such that p ∈ G. p ⊩ ∃x(x ∈ σ ∧ ϕ(x, τ1, . . . , τn)) implies
that (∃x(x ∈ σ[G] ∧ ϕ(x, τ1[G], . . . , τn[G])))M[G] holds, and so there is an x ∈ σ[G]

such that (ϕ(x, τ1[G], . . . , τn[G]))M[G] (σ[G] ∈ M[G] and so σ[G] ∩ M[G] = σ[G].
Moreover, as x must be a value of a name such that this name is in the domain of
σ, we have that, for some π ∈ dom(σ), x = π[G]. Now, due to Theorem 3.2 b),
we can fix r ∈ G such that r ⊩ ϕ(π, τ1, . . . , τn). Since G is a filter, p and r share a
common extension, q. Then, q ⊩ ϕ(π, τ1, . . . , τn) by Lemma 3.3, and q ≤ p.

3.4 Every generic extension satisfies ZFC

In this section, we are going to show that, given a countable transitive model M
for ZFC, a partial order P ∈ M and a P-generic filter over M, G, then the generic
extension M[G] is indeed a model of ZFC. By Proposition 3.4, we will conclude
that M[G] is the least transitive model of ZFC extending M with G ∈ M[G].
First, note that, since M[G] is transitive by Proposition 3.4, then M[G] satisfies the
Axiom of Extensionality by Proposition 2.19. Also, by Proposition 2.24, the Axiom
of Foundation is true in M[G] since M[G] ⊂ WF. The following lemma holds.

Lemma 3.5. The Axioms of Extensionality and Foundation are true in M[G]. □

Lemma 3.6. The Axiom of Comprehension is true in M[G].
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Proof. By Lemma 2.8, we have to show that, for any formula ϕ(x, v, y1, . . . , yn) with
all its free variables listed and for any σ, τ1, . . . , τn ∈ MP we have that A = {a ∈
σ[G] : (ϕ(a, σ[G], τ1[G], . . . , τn[G]))M[G]} is in M[G]. We are going to see that A is
indeed an element of M[G], whose associated name is

ρ = {(π, p) ∈ dom(σ)× P : p ⊩ (π ∈ σ ∧ ϕ(π, σ, τ1, . . . , τn))}.

But, by Theorem 3.2 a), ρ is definable in M , and so ρ ∈ MP. Now, we prove that
ρ[G] = A. In order to simplify the exposition, we will not mention τ1[G], . . . , τn[G].
To see the left to right inclusion, fix π[G] ∈ ρ[G] such that (π, p) ∈ ρ for some
p ∈ G. We have that p ⊩ (π ∈ σ ∧ ϕ(π)). Thus, π[G] ∈ ρ[G] and ϕ(π[G])M[G]

holds by the definition of ⊩. Hence, π[G] ∈ A.
For the right to left inclusion, let a ∈ A. Then, a ∈ σ[G] and ϕ(a)M[G]. Also, a =

π[G] with (π, q) ∈ σ for some q ∈ G. So we have that (π[G] ∈ σ[G]∧ϕ(π[G]))M[G].
By Theorem 3.2 b), there is a p ∈ P such that p ⊩ (π ∈ σ ∧ ϕ(π). This means that
(π, p) ∈ ρ and so π[G] = a ∈ ρ[G].

Lemma 3.7. The Union Axiom is true in M[G].

Proof. Let a ∈ M[G]. By Proposition 2.22, we have to show that ∃b ∈ M[G](
⋃

a ⊂
b). Since a ∈ M[G], a = τ[G] for some τ ∈ MP. Let π =

⋃
τ. Since, if σ ⊂ τ

then σ ∈ MP, we have that π ∈P, and so π[G] ∈ M[G]. Now, let c ∈ a = τ[G].
Then c = ρ[G] for some ρ ∈ dom(τ). So ρ ⊂ dom(τ) = π which implies that
c = ρ[G] ⊂ π[G]. Hence,

⋃
a ⊂ π[G].

To show that the Pairing Axiom holds in M[G], we are going to define, given
two names τ and σ in MP, a further name whose value is {τ[G], σ[G]}.

Definition 3.14. Let τ, σ ∈ MP. We define a) up(τ, σ) = {(τ, 1), (σ, 1)},
b) op(τ, σ) = up(up(τ, τ), up(τ, σ)).

Proposition 3.8. Let τ, σ ∈ MP. Then, up(τ, σ) ∈ MP and up(τ, σ)[G] = {τ[G], σ[G]}.
Also, op(τ, σ) ∈ MP and op(τ, σ)[G] = (τ[G], σ[G]). □

The next Lemma is immediate from the preceding Proposition.

Lemma 3.8. The Axiom of Pairing is true in M[G]. □

Lemma 3.9. The Axiom of Replacement is true in M[G].

Proof. Fix a formula ϕ(x, u, v, z1, . . . , zn) with all its free variables listed and let
τ[G], τ1[G], . . . , τn[G] ∈ M[G] such that

(∀x ∈ τ[G] ∃!y ϕ(x, y, τ[G], τ1[G], . . . , τn[G]))M[G].
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If we show that there is a ρ[G] ∈ M[G] such that

∀x ∈ τ[G] ∃y ∈ ρ[G](ϕ(x, y, τ[G], τ1[G], . . . , τn[G]))M[G],

then it will follow that the Replacement Axiom is true in M[G] by Proposition
2.23. In order to simplify the exposition, we will not mention τ1, . . . , τn.
We consider ψ(σ, A) to be the formula with free variables σ and A:

∀π ∈ dom(σ) ∀p ∈ P (∃µ ∈ MP(p ⊩ ϕ(π, µ)) → ∃µ ∈ A(p ⊩ ϕ(π, µ))).

Since, by Theorem 3.2a), p ⊩ ϕ(π, τ) is equivalent to a formula relativized to M,
so is ψ(σ, A). The Reflection Theorem 2.11 ensures the existence of an ordinal α

for which ψ(σ, A) is absolute for V(α). So, taking B = V(α) ∩ MP, ψ(τ, B) holds.
Let ρ = B × {1}. By definition, ρ[G] = {σ[G] : ∃p ∈ G((σ, p) ∈ B × {1})} =

{σ[G] : σ ∈ B} because 1 ∈ G. We assert that ρ[G] satisfies the desired property.
Indeed, let x ∈ τ[G]. Then, x = π[G] for some π ∈ dom(τ). We have that
(∃y ϕ(π[G], y))M[G] holds, so, for some µ ∈ MP, ϕ(π[G], µ[G])M[G] holds. By
Theorem 3.2b), there exists a p ∈ G such that p ⊩ ϕ(π, µ) and, since, as discussed
above, ψ(τ, B) is true, there exists a σ ∈ B such that p ⊩ ϕ(π, σ). By the definition
of ⊩, ϕ(π[G], σ[G])M[G] is true with σ[G] ∈ ρ[G].

Note that ω = ω̌ ∈ M[G] (by Proposition 3.4 and because ω ∈ M), and so,
as we have already proved that M[G] is a model of ZF− − P − In f the following
Lemma is immediate by Proposition 2.25.

Lemma 3.10. The Axiom of Infinity is true in M[G]. □

Lemma 3.11. The Power Set Axiom is true in M[G].

Proof. Let τ[G] ∈ M[G]. We have to show that there is a σ[G] ∈ M[G] such that
∀π[G] ∈ M[G](π[G] ⊂ τ[G] → π[G] ∈ σ[G]). Let A = {ρ ∈ MP : dom(ρ) ⊂
dom(τ)} and σ = A × {1}. We fix π[G] ∈ M[G] such that π[G] ⊂ τ[G] and we
will show that π[G] ∈ σ[G].
For this, let

µ = {(ν, p) : ν ∈ dom(τ) ∧ p ⊩ ν ∈ π}.

Clearly dom(µ) ⊂ dom(τ), so µ ∈ A, which implies that µ[G] ∈ σ[G]. If we show
that µ[G] = π[G], the proof will be done.
First, let’s see that π[G] ⊂ µ[G]. Let x ∈ π[G]. Since π[G] ⊂ τ[G], x ∈ τ[G]

and so x = ν[G] for some ν ∈ dom(τ). But ν[G] ∈ π[G], which means that
(ν[G] ∈ π[G])M[G]. By Theorem 3.2 b), there is a p ∈ G such that p ⊩ ν ∈ π.
Hence, by the definition of µ, (ν, p) ∈ µ and so ν[G] = x ∈ µ[G].
Now, let’s see that µ[G] ⊂ π[G]. Let x ∈ µ[G]. Then, x = ν[G] for some ν ∈
dom(µ). In particular, (ν, p) ∈ µ for some p ∈ G. By the definition of µ, p ⊩ ν ∈ π

and so ν[G] = x ∈ π[G].
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Regarding this proof note that, τ[G] ∈ M[G] being fixed, {σ ∈ MP : σ[G] ⊂
τ[G]} is in general not contained in any subset of M. Nonetheless, for any σ[G] ⊂
τ[G] there is a subset of names of M where all the names of σ[G] are contained.
Now, let’s see an equivalent condition of the Axiom of Choice.

Proposition 3.9. The following condition is equivalent to the Axiom of Choice.

∀x ∃α ∈ ON( f is a f unction ∧ dom( f ) = α ∧ x ⊂ ran( f )). (3.1)

Proof. In order to see that this condition implies the Axiom of Chocie, fix x and α

as in (3.1). Let g : x → α be the function defined as g(y) = min( f−1{y}) for y ∈ x.
Note that, if y, z ∈ x, then g(y) = g(z) implies that min( f−1{y}) = min( f−1{z})
and so y = z. Thus, g is injective. Let R be the relation on x defined by yRz ↔
g(y) < g(z). Then, R well-orders x and so the Axiom of Choice is true.
The other implication is clear.

Lemma 3.12. The Axiom of Choice is true in M[G].

Proof. Let x ∈ M[G]. Then x = τ[G] for some τ ∈ MP. In particular, τ ∈ M, and
so, since the Axiom of Choice is true in M, by Proposition 3.9, there is a α ∈ o(M)

and there is a function f ∈ M such that dom( f ) = α and dom(τ) ⊂ ran( f ). Since
the Axiom of Choice holds in M, dom(τ) can be enumerated. Then, there is a
β < ω such that dom(τ) = { f (γ) : γ < β}.
Now let σ = {op(γ̌, f (γ)) : γ < β} × {1}. By Proposition 3.8, for γ < β we
have that op(γ̌, f (γ)) ∈ MP and op(γ̌, f (γ))[G] = (γ, f (γ))[G]. Thus, σ ∈ M and
σ[G] = {(γ, f (γ)[G] : γ < β)}. We can conclude that σ[G] is a function in M[G],
dom(σ[G]) = β and τ[G] ⊂ ran(σ[G]). By Proposition 3.9, the Axiom of Choice is
true in M[G].

So we have proved the following theorem.

Theorem 3.3. Let M be a countable transitive model of ZFC. Let P ∈ M be a partial
order. Let G be a P-generic filter over M. Then, the generic extension M[G] is a transitive
model of ZFC. □

Now, let’s find a generic extension that satisfies, additionally, ¬CH.



Chapter 4

Forcing ZFC+¬CH

In the previous chapter, we have shown that any generic extension relative to a
P-generic filter over a countable transitive model M of ZFC is also a model of ZFC
(and is in fact the minimum one containing G). We wish to find a generic extension
M[G] that also satisfies ¬CH in order to show the consistency of ZFC + ¬CH. To
do this, we will use a particular partial order, as we will see now.

4.1 Forcing with finite partial functions

We are now going to construct a generic extension satisfying ¬CH. In fact, we
will find a generic extension M[G] where (2ω ≥ ω2)M[G]. The partial order that
will allow us to do this is the following one.

Definition 4.1. Let I and J be sets. We define the set of f inite partial f unctions from I
into J as Fn(I, J) = {p : |p| < ω ∧ p is a f unction ∧ dom(p) ⊂ I ∧ ran(p) ⊂ J}.

Let M be a countable transitive model of ZFC. For any sets I and J, define
Fn(I, J) = (Fn(I, J),≤, 0), with p ≤ q if and only if q ⊂ p. It is easy to show that
Fn(I, J) is a partial order. Moreover, all the notions involved in the definition of
Fn(I, J) are absolute, and so is Fn(I, J). It follows that, if I, J ∈ M, Fn(I, J) =

Fn(I, J)M ∈ M.

Lemma 4.1. Let I, J ∈ M. Let G ∈ Fn(I, J) be a filter. Then
⋃

G is a function with
dom(

⋃
G) ⊂ I and ran(

⋃
G) ⊂ J.

Furthermore, if I is infinite, J ̸= 0 and G is Fn(I, J)-generic over M, then
⋃

G is a
surjective function from I onto J.

Proof. Since G is a filter, ∀p, q ∈ G ∃r ∈ G(p ⊂ r ∧ q ⊂ r) and so it is clear that⋃
G is a function with dom(

⋃
G) ⊂ I and ran(

⋃
G) ⊂ J.

Now, suppose that J ̸= 0. For any i ∈ I, let Di = {p ∈ Fn(I, J) : i ∈ dom(p)}.

43
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Then, by absoluteness, Di ∈ M for any i ∈ I. Moreover, Di is dense for any i ∈ I
since any condition can be extended to another containing i in its domain. So, if
G is Fn(I, J)-generic, ∀i ∈ I(G ∩ Di ̸= 0). Hence, dom(

⋃
G) = I.

As I is infinite, Ej = {p ∈ Fn(I, J) : j ∈ ran(p)} is dense and in M by the same
arguments and so ran(

⋃
G) = J.

Recall that the cardinal κλ corresponds to the cardinality of the set of functions
f with dom( f ) = λ and ran( f ) ⊂ κ. Let κ be an uncountable cardinal in M.
We consider Fn(κ × ω, 2). Let G be Fn(κ × ω, 2)-generic over M. By Lemma
4.1,

⋃
G is a function from κ × ω onto 2. For any α < κ, we define the function

fα(n) =
⋃

G(α, n) from ω into 2 and we consider the family of functions { fα}α<κ.
By absoluteness, this family is in M[G]. The next proposition says that fα ̸= fβ for
α ̸= β and so there are at least |κ| many functions from ω into 2 in M[G].

Proposition 4.1. If κ ∈ M is an uncountable cardinal and G is a Fn(κ × ω, 2)-generic
filter over M, then the fα described above are all distinct in M[G] and so we have that
(2ω ≥ |κ|)M[G].

Proof. Let α ̸= β. To see that fα ̸= fβ, let

Dαβ = {p ∈ Fn(κ × ω, 2) : ∃n ∈ ω((α, n) ∈ dom(p) ∧ (β, n) ∈ dom(p) ∧
p(α, n) ̸= p(β, n))}.

Clearly Dαβ is in M since it is defined from concepts defined in M. Also, Dαβ is
dense. Indeed, if p ∈ P such that p /∈ Dαβ, then ∀n ∈ ω((α, n), (β, n) ∈ dom(p) →
p(α, n) = p(β, n)). Since |p| < ω, there is some N ∈ ω such that (α, N) /∈ dom(p)
and we can extend p to another condition q with (α, N) ∈ dom(q) and q(α, N) ̸=
q(β, N), which implies that q ∈ Dαβ.
Thus, G ∩ Dαβ ̸= 0. This implies that there is a p ∈ G and a n ∈ ω such that
p(α, n) ̸= p(β, n) and, since p ⊂ ⋃

G, we have that fα ̸= fβ.
Hence, there are at least |κ| many functions from ω into 2 in M[G], which means
that (2ω ≥ |κ|)M[G].

Unfortunately, we do not have control over this κ. We wish to have κ = ω2 in
M[G] to obtain that (2ω ≥ ω2)M[G] but, whereas the ordinals in M[G] are just the
ordinals in M, we do not know whether a cardinal in M remains the same in M[G]

because the notion of cardinal is not absolute: an uncountable cardinal in M can
collapse to a countable ordinal in M[G]. Thereby, κ = ω2 in M generally does not
imply that κ = ω2 in M[G]. So, we need the following notion.

Definition 4.2. If P ∈ M is a partial order, we say that P preserves cardinals if and only
if, for all P-generic G over M,

∀κ ∈ o(M)((κ is a cardinal)M ↔ (κ is a cardinal)M[G]).
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To assure Fn(ω2 × ω, 2) preserves cardinals, we will need to use the concept
of countable chain condition. We need some preparation.

4.2 The basic ∆-system lemma

In this section, we are going to see a combinatoric result called the ∆-system
Lemma that we will use later to show that Fn(ω2 × ω, 2) preserves cardinals.

Definition 4.3. A family F of sets is called a ∆-system if and only if there is a set x∗ such
that, ∀x, y ∈ F, if x ̸= y then x ∩ y = x∗. We say that x∗ is the root of F.

Now, let’s see a preliminary result.

Lemma 4.2. Let n > 1. Let F be an uncountable family of finite sets such that ∀x ∈
F(|x| = n). Then, F has an uncountable subfamily that is a ∆-system.

Proof. We proceed by induction on n.
If n = 1, then F forms a ∆-system with root ∅.
Suppose that n > 1. Let F′ be a maximal disjoint subfamily of F.
If F′ is uncountable, then F′ is itself a ∆-system with root ∅.
So, suppose that F′ is countable. Then, since |x| = n for all x ∈ F′, we have that⋃

F′ is also countable, and, by the Axiom of Choice, we can enumerate it. So, we
put

⋃
F′ = { fn : n ∈ ω}. Let, for all n ∈ ω, Fn = {X ∈ F : fn ∈ X}.

Now, we will show that there is an f ∈ ⋃
F′ such that f belongs to ω1 many

elements of F. Suppose that this f does not exist. Then, ∀n ∈ ω(|Fn| ≤ ω). Since F
is uncountable and

⋃{Fn : n ∈ ω} is countable, there is an Y ∈ F ∖
⋃{Fn : n ∈ ω}.

Then, Y ∩ { fn : n ∈ ω} = ∅. Thus, F′ ∪ {Y} is disjoint, which contradicts the fact
that F′ is a maximal disjoint subfamily in F.
So there is an f ∈ ⋃

F′ and there is a subfamily F′′ ⊂ F such that |F′′| = ω1 and
∀X ∈ F′′( f ∈ X).
Let Z = {X ∖ { f } : X ∈ F′′}. By the inductive hypothesis, there is an uncountable
subfamily G ⊂ Z such that G is a ∆-system. Hence, {Y ∪ { f } : Y ∈ G} is an
uncountable subfamily of F and forms a ∆-system.

Lemma 4.3 (∆-system Lemma). Let F be an uncountable family of finite sets. Then
there is an uncountable subfamily of F that is a ∆-system.

Proof. Let F be an uncountable family of finite sets. Let Fn = {X ∈ F : |X| = n}.
Then F =

⋃{Fn : n ∈ ω}. Since F is uncountable, there must be a Fn that is
uncountable for some n ∈ ω. By Lemma 4.2, Fn has an uncountable subfamily
that is a ∆-system.
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4.3 Preservation of cardinals in Fn(ω2 × ω, 2)

In this section, we are going to prove that cardinals are preserved in Fn(ω2 ×
ω, 2). It will follow that, if M is a countable transitive model of ZFC with Fn(ω2 ×
ω, 2) ∈ M and (κ = ω2)M then we also have that (κ = ω2)M[G]. For this, we need
the following combinatoric concept.

Definition 4.4. A ⊂ P is an antichain in P if and only if ∀p, q ∈ A(p ̸= q → p⊥q).
We say that P satisfies the countable chain condition if and only if every antichain in P is
countable.

Now, our aim is to prove that Fn(κ × ω, 2) satisfies the countable chain condi-
tion for any uncountable cardinal κ. For this, we show the following more general
result.

Proposition 4.2. Let I, J be sets with J countable. Then Fn(I, J) satisfies the countable
chain condition.

Proof. For each α < ω1, let pα ∈ Fn(I, J) with Pαβ if α ̸= β and let aα = dom(pα).
We will show that {pα : α < ω1} is not an antichain. By the ∆-system Lemma 4.3,
let X ⊂ ω1 such that X is uncountable and {aα : α ∈ X} forms a ∆-system. Let r be
its root. Then, Jr is countable (because J is countable) and so {pα ↾ r : α < ω1} is
countable since each pα is finite. This implies that there is an uncountable subset
Y of X such that the pα ↾ r are all the same for all α ∈ Y (if there was not, there
would be uncountably many pα ↾ r). But this implies that, if α, β ∈ Y, then pα and
pβ are compatible.

So, in particular, Fn(κ × ω, 2) satisfies the countable chain condition for any
uncountable cardinal κ. Now, we will show that if P is a partial order with the
countable chain condition, then P preserves cardinals. We will use the following
notion.

Definition 4.5. If P ∈ M, we say that P preserves cofinalities if and only if, for any
P-generic G over M and for any limit ordinal γ in M, c f (γ)M = c f (γ)M[G].

Proposition 4.3. If P preserves cofinalities, then P preserves cardinals.

Proof. We suppose that P preserve cofinalities. The fact that finite cardinals are
preserved is obvious by absoluteness. We will show that regular cardinals in M
are regular cardinals in M[G] and limit cardinals in M are limit cardinals in M[G].
Since any infinite cardinal is either regular or a limit cardinal, this will imply that
cardinals are preserved.
Let κ ∈ M be an infinite cardinal. If κ is a regular cardinal in M, then c f (κ)M = κ
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and so c f (κ)M[G] = c f (κ)M = κ; it follows that κ is also a regular cardinal in M[G].
If κ is an uncountable limit cardinal in M, then the set of successor cardinals in M
smaller than κ is unbounded in κ. As these successor cardinals are regular, they
are also regular in M[G], which implies that the set of successor cardinals smaller
than κ in M[G] are unbounded in κ, and so κ is an uncountable limit cardinal in
M[G].

The following two lemmas are essential to show that any partial order with the
countable chain condition preserves cardinals.

Lemma 4.4. Let P ∈ M such that (P satis f ies the countable chain condition)M. Let
G be P-generic over M. Let A, B ∈ M and f : A → B such that f ∈ M[G]. Then, there
is an F : A → B such that F ∈ M and, for all a ∈ A, f (a) ∈ F(a) and the cardinality of
F(a) is countable.

Proof. Since f ∈ M[G], f = τ[G] for some τ ∈ MP.
We have that (τ[G] is a f unction f rom A into B)M[G] holds and so, by Theorem
3.2 a), there is a p ∈ G such that p ⊩ τ is a f unction f rom Ǎ into B̌. We define the
function F from A into B such that

F(a) = {b ∈ B : ∃q ≤ p(q ⊩ τ(ǎ) = b̌)}.

Since ⊩ can be defined within M by Theorem 3.2 a), we have that F ∈ M. We now
show that this function satisfies the desired properties: let a ∈ A and let’s prove
that f (a) ∈ F(a) and (|F(a)| ≤ ω)M.
Put b = f (a). So, there is a q ∈ G such that q ⊩ τ(ǎ) = b. Since p and q share a
common extension, r, because G is a filter, then q ⊩ τ(ǎ) = b̌ and so f (a) ∈ F(a).
Now, for any b ∈ F(a), let Xb = {q ∈ P : q ≤ p ∧ q ⊩ τ(ǎ) = b̌}. Since b ∈ F(a),
Xb is non-empty. By the Axiom of Choice in M, let Rb be a well-ordering of Xb.
Then, we define the function Q : F(a) → P such that, for any b ∈ F(a), Q(b) is the
Rb-least element of Xb. By the definition of Xb, Q(b) ≤ p and Q(b) ⊩ τ(ǎ) = b̌.
Moreover, all the Q(b)’s are incompatible. Indeed, if there were b, c ∈ F(a) such
that Q(b) and Q(c) were compatible, as they both extend p there would be a P-
generic filter H over M containing both of them and so, in the generic extension
M[H], τ[H] : A → B would be a function such that τ[H](a) = b and τ[H](a) = c,
which is a impossible. Also, Q ∈ M by absoluteness.
So the set Y = {Q(b) : b ∈ F(a)} is an antichain in P and so, as P satisfies the
countable chain condition in M, Y must be countable in M, which clearly implies
that F(a) is countable in M.

Lemma 4.5. Let P ∈ M. If, for any regular uncountable cardinal κ in M and any
P-generic G over M we have that (κ is regular)M[G], then P preserves cofinalities.
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Proof. Let γ be a limit ordinal in M such that (κ = c f (γ))M. By Proposition 1.1a),
let f be a strictly increasing function mapping κ into γ cofinally. Also, we have that
(κ is a regular cardinal)M. If (κ = ω)M, then, by absoluteness of ω, (κ = ω)M[G],
and if (κ > ω)M then (κ is regular)M[G]. Now, as f ∈ M[G], (κ = c f (γ))M[G] by
Proposition 1.1b).

Proposition 4.4. If P ∈ M and (P satis f ies the countable chain condition)M, then P

preserves cofinalities and hence cardinals.

Proof. Suppose that P does not preserve cofinalities. By Lemma 4.5, there must be
an uncountable cardinal κ ∈ M such that (κ is regular)M but (κ is not regular)M[G].
It follows that for some α < κ there is a function f ∈ M[G] such that f maps α

cofinally into κ. Now, by Lemma 4.4, there is a function F ∈ M, F : α → P(κ),
such that, for any β < α, f (β) ∈ F(β) and the cardinality of F(β) is countable
in M. Let A =

⋃
β<α F(β). By absoluteness of the union, we have that A ∈ M

and clearly A is an unbounded subset of κ. Moreover, |A| = |α| since each F(β)

has countable cardinality and there are as many as |α|. Thus, (|A| < κ)M, which
contradicts the fact that (κ is regular)M.

We now have all the elements to find a generic extension where CH is false.

Theorem 4.1. Let M be a countable transitive model of ZFC such that Fn(ωM
2 ×ω, 2) ∈

M. Let G be a Fn(ωM
2 × ω, 2)-generic filter over M. Then, (2ω ≥ ω2)M[G] and hence

the Continuum Hypothesis fails in M[G].

Proof. By Proposition 4.2, Fn(ωM
2 × ω, 2) satisfies the countable chain condition in

M. Then, by Proposition 4.4, it preserves cofinalities and so it preserves cardinals.
Thus, ω

M[G]
2 = ωM

2 , and so (2ω ≥ ω2)M[G] by Proposition 4.1. Hence, (2ω ≥
ω1)

M[G], and so the Continuum Hypothesis fails in M[G].

Also, by using a class of special names, the so-called nice names, we can prove
that if κ is an uncountable cardinal of M such that (κω = κ)M, P = Fn(κ × ω, 2) ∈
M and G is P-generic over M, then (2ω = κ)M[G]. It follows that it is consistent
that 2ω is any cardinal whose cofinality is uncountable.



Conclusions

In this work we have seen the main properties of the forcing method intro-
duced by Cohen in 1966 and we have proved one of the main applications of
forcing: the consistency of the negation of CH with ZFC. Previously, the consis-
tency of CH with ZFC was shown by Gödel. So, CH is independent of ZFC, and
this means that neither CH nor ¬CH can be proved by ordinary mathematical
means.
In order to introduce the method of forcing, we have studied the central notions
of relativization and absoluteness and we have proved the Reflection Theorems,
which permit us to construct countable transitive models of any set of axioms that
extends ZFC and, so, allow us to consider a ground countable transitive model M
of ZFC as a starting point. Then, by using the method of forcing, we can construct
from M, a partial order P in M and a P-generic filter G over M, a generic exten-
sion M[G] of the model M satisfying additional properties. In particular, by using
the partial order of the set of finite partial functions from ω2 × ω into 2, we have
proved that the generic extension M[G] contains ω2 many functions from ω into
2, and so the Continuum Hypothesis fails in M[G].
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