Optimized Asymmetric Synthesis of Umuravumbolide

Marina Pérez-Palau, Eduard Balaguer-Garcia, Pedro Romea,* and Fèlix Urpí*

Cite This: ACS Omega 2022, 7, 30835-30840

Read Online
ACCESS | Lllll Metrics \& More | 国 Article Recommendations | © Supporting Information

Abstract

Herein, the asymmetric synthesis of umuravumbolide (1) is described. The new approach features highly stereoselective transformations ($\mathrm{dr} \geq 95: 5$) to install both stereocenters and the Z olefin, which involve a new radical alkylation, an Ando olefination, and a Krische allylation on a Z allylic alcohol, not reported before. The application of such successful reactions, together with the limited use of protecting groups and concession steps, makes it possible to complete the synthesis in 10 steps, resulting in a 39% overall yield from chiral N-acyl oxazolidinone 2.

1. INTRODUCTION

The remarkable biological activity of abundant natural products containing 5,6-dihydropyran-2-one structural motifs is usually attributed to the Michael acceptor character of the α, β-unsaturated lactone. ${ }^{1}$ Thus, it should come as no surprise that the construction of such cyclic structures has been largely explored, and a handful of useful approaches have already been reported. ${ }^{2}$ Instead, the asymmetric synthesis of the groups decorating the pyrone ring is still challenging and therefore a suitable arena to trial the efficiency of new synthetic methodologies. In this context, our interest in developing new stereoselective carbon-carbon bond-forming reactions led us to pay attention to the forge of the diallylic oxygenated motif embedded in the umuravumbolide ($\mathbf{1}$ in Figure 1).

Figure 1. Umuravumbolide 1.

Umuravumbolide was first isolated by Van Puyvelde from Tetradenia Riparia, a plant of the Lamiaceae family from Central and Southern Africa. ${ }^{3}$ Its structure was initially unclear, and it was not until 1995 that Davies-Coleman and Rivett established the Z geometry of the olefin and the configuration of both stereocenters, ${ }^{4}$ which were later confirmed by the first total synthesis by Ramachandran. ${ }^{5}$ Since then, other syntheses based on canonical methodologies have been reported. ${ }^{6}$

Looking for new synthetic avenues, we chose umuravumbolide as an appropriate benchmark for testing different carboncarbon bond-forming reactions (Scheme 1). Indeed, we envisaged that the stereocenter on the unsaturated chain might be installed through a highly stereoselective alkylation of
titanium(IV) enolates recently disclosed by our group, whereas the second stereocenter would arise from an allylation reaction. In turn, a classical olefination should yield the desired Z carbon-carbon double bond (Scheme 1).

2. RESULTS AND DISCUSSION

According to the retrosynthetic analysis outlined in Scheme 1, the synthesis began with the stereoselective alkylation of the chiral α-OTBS acyl oxazolidinone 2 (Scheme 2). ${ }^{7}$ Importantly, titanium(IV) enolates from N-acyl oxazolidinones show an unexpected biradical character, which grants them a unique reacting profile. ${ }^{8}$ Indeed, treatment of such chiral enolates with diacyl peroxides gives rise to highly diastereoselective $\mathrm{C} \alpha$ alkylations through a SET process, in which the enolate acts as a reducing agent that triggers the decarboxylation of the peroxide and the ensuing formation of an alkyl radical. ${ }^{7 a}$ Then, the carbon-carbon bond formation stems from coupling of such an alkyl radical and the resultant $\mathrm{C} \alpha$ radical. In our case, the titanium(IV) enolate from 2 reacted with dipentanoyl peroxide to afford the desired alkylated product 3 as a single diastereomer ($\mathrm{dr} \geq 97: 3$) with an 87% yield at 6 mmol scale (Scheme 2).

Having successfully installed the first stereocenter, the next step involved the removal of the chiral auxiliary (Scheme 3). We first attempted the reduction of 3 to directly produce aldehyde 4. However, treatment of 3 with DIBALH led to carbinol species 5, instead. ${ }^{9}$ Preliminary studies on further olefination from 5 were promising, but the unclean and poorly reproducible reduction of 3 with DIBALH made this route impracticable. Alternatively, a two-step process was followed.

[^0]

Scheme 1. Retrosynthetic Analysis of Umuravumbolide 1

Scheme 2. Diastereoselective Alkylation

Scheme 3. Removal of the Chiral Auxiliary and Olefination

After a short optimization, it was found that the chiral auxiliary could be removed smoothly with LiBH_{4} at $-10{ }^{\circ} \mathrm{C}$, provided that the reaction was performed with freshly opened, commercially available LiBH_{4} solution to avoid the undesired migration of the silyl group. Following this basic precaution, pure alcohol 6 was isolated in 79% yield at 4.5 mmol scale. Subsequent Swern oxidation ${ }^{10}$ of 6 led quantitatively to aldehyde 4, which was used in the next step without further chromatographic purification (Scheme 3). The forging of the crucial Z olefin was next tested (Scheme 3). Initially, we applied the Still-Gennari olefination ${ }^{11}$ conditions using potassium carbonate and 18 -crown- 6 ether in toluene at 0 ${ }^{\circ} \mathrm{C}$ to attain a modest control of the geometry of the alkene (dr $70: 30$) and a 60% of the pure Z ester 7 . A slight increase in selectivity was observed when the reaction was performed with KHMDS and 18 -crown-6 ether at $-78{ }^{\circ} \mathrm{C}(\mathrm{dr} 80: 20)$ or NaH at $-78{ }^{\circ} \mathrm{C}$ (dr 87:13). Despite such an improvement, the stereocontrol was still deemed inadequate, and other conditions were further explored. To our delight, Ando olefination ${ }^{12}$ proved much more efficient. Indeed, treatment of phenyl phosphonate with NaH in the presence of NaI at $-78{ }^{\circ} \mathrm{C}$ for 2 h afforded the desired α, β-unsaturated ethyl ester

7 with a $Z / E 96: 4$ and 86% yield at 3 mmol scale (Scheme 3). ${ }^{13}$

With a practical and efficient sequence toward ester 7 at hand, we faced its conversion into an aldehyde from which we tried to install the second stereocenter through a canonical allylation reaction. Being aware that such a transformation might endanger the stereochemical integrity of the Z olefin, we first examined the Leighton method, which is broadly used in asymmetric allylations. ${ }^{14}$ Although it has never been tested on $Z \alpha, \beta$-unsaturated aldehydes, its mild conditions make it ideal for our purposes. Unfortunately, despite our efforts, we consistently obtained the desired allylic alcohol contaminated by compounds containing E olefins. ${ }^{15}$ Looking for alternatives, we focused our attention on Krische allylation. ${ }^{16}$ To the best of our knowledge, Krische allylation has never been performed on a Z allylic alcohol, but its catalytic character and the use of the more stable alcohol partner as a starting material were deemed ideal to overcome the abovementioned limitations. In accordance with such a schedule, ester 7 was quantitatively reduced to alcohol 8 with DIBALH at $-78{ }^{\circ} \mathrm{C}$. Then, application of the Krische allylation conditions described in the literature $\left(2.5 \mathrm{~mol} \%\right.$ of the catalyst in THF at $100^{\circ} \mathrm{C}$ for 20 h) gave a clean and highly stereoselective (dr 95:5) allylation but with moderate conversion. The increase of the catalyst loading to $5 \mathrm{~mol} \%$ improved the yield, and the desired alcohol 9 (dr 95:5) was finally isolated with a remarkable 91% yield when the reaction was performed at a 2.5 mmol scale (Scheme 4).

Scheme 4. Krische Allylation

Once both stereocenters and the Z olefin were installed, we addressed the construction of the pyrone ring. ${ }^{2}$ As shown in Scheme 5, treatment of alcohol 9 with acryloyl chloride in the presence of catalytic amounts of DMAP smoothly gave ester 10 in a 96% yield. Then, a ring-closing metathesis was attempted. Initial trials using the Hoveyda-Grubbs catalyst proved unclean. Better results were obtained with Grubbs II, which permitted the isolation of lactone 11 in an 87% yield. Eventually, removal of the TBS-protecting group with $\mathrm{Et}_{3} \mathrm{~N}$.

Scheme 5. Construction of the Pyrone Ring and Endgame

HF , as well as the final acetylation leading to umuravumbolide 1, were carried out as reported in the literature with an 86% two-step yield (Scheme 5). ${ }^{5}$

3. CONCLUSIONS

In summary, we have reported an optimized synthesis of umuravumbolide 1. Key steps involve a novel radical-like alkylation of a glycolate titanium(IV) enolate, an Ando olefination to build the Z olefin, and a non-reported Krische allylation starting from a sensitive Z allylic alcohol to install the second stereocenter in the pyrone ring. The use of such verystereoselective transformations ($\mathrm{dr} \geq 95: 5$) without the need for upgrading processes was crucial to accomplishing a straightforward synthesis that minimizes protection/deprotection and concession steps. As a result, the sequence comprises just 10 steps from 2 with a 39% overall yield, which entails the highest yield reported to date by any synthesis of umuravumbolide.

4. EXPERIMENTAL SECTION

4.1. General Information. Reactions were carried out under a nitrogen atmosphere and with anhydrous solvents, which were dried and purified following standard procedures. The glass material was previously dried in a glassware oven. The commercial reagents were used without purification. Hot plates with aluminum blocks or sand baths were used to carry out reactions that required heating. Analytical thin-layer chromatographies (TLCs) were performed on silica gel 60 F_{254} plates. TLCs were analyzed by UV (254 nm) and stained with potassium permanganate or phosphomolybdic acid. The given R_{f} values are approximate. Purification of the products was conducted by low-pressure column chromatography using SDS silica gel $60(35-70 \mu \mathrm{~m})$. The measurement of melting points (Mp) was performed with a Stuart Scientific SMP10 apparatus; mp is uncorrected. Specific rotations ($[\alpha]$) were measured on a Perkin-Elmer 241 MC polarimeter at $20^{\circ} \mathrm{C}$ using a sodium lamp (D-line, $\lambda 589 \mathrm{~nm}$). IR spectra were registered on a Nicolet 6700 FT-IR Thermo Scientific spectrometer (attenuated total reflectance, ATR), just the more indicative frequencies (ν) above $1000 \mathrm{~cm}^{-1}$ are given. NMR spectra (400 and 500 MHz for ${ }^{1} \mathrm{H}$ NMR and 100.6 and 125.8 MHz for ${ }^{13} \mathrm{C}$ NMR) were registered on a Bruker 400 Avance III or a Bruker 500 Avance NEO spectrometer. Chemical shifts (δ) were reported in ppm and referenced to
internal TMS for ${ }^{1} \mathrm{H}$ NMR ($\delta 0.00$) or CDCl_{3} for ${ }^{13} \mathrm{C}$ NMR (δ 77.0). Multiplicity is described using the following initials: br, broad; s, singlet; d, doublet; t , triplet; \mathfrak{q}, quartet; m , multiplet; and their combinations; the coupling constants are given in Hz. For complex molecules, COSY and/or HSQC were recorded to facilitate the assignment. High-resolution mass spectra (HRMS) were recorded on an Agilent 1100 spectrometer by the Unitat d'Espectrometria de Masses de la Universitat de Barcelona (CCiTUB).
4.2. (R)-4-Benzyl-N-[(S)-2-tert-butyldimethylsilyloxy-hexanoyl]-5,5-dimethyl-1,3-oxazolidin-2-one (3). Neat $\mathrm{TiCl}_{4}(720 \mathrm{~mL}, 6.6 \mathrm{mmol})$ was added dropwise to a solution of (R)-4-benzyl- N-tert-butyldimethylsilyloxyacetyl-5,5-dimeth-yl-1,3-oxazolidin-2-one ($2,2.27 \mathrm{~g}, 6.0 \mathrm{mmol}$) in DCE (36 mL) at $0{ }^{\circ} \mathrm{C}$. After $5 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{~mL}, 18 \mathrm{mmol})$ was added dropwise, and the resultant deep purple mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min . A solution of dipentanoyl peroxide (SI1, 1.82 $\mathrm{g}, 9.0 \mathrm{mmol}$) in DCE (5 mL) was added via cannula. The reaction was allowed to warm to rt and stirred for 50 min . Then, it was quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4}, and the solvent was evaporated. Purification of the residue by flash column chromatography (from 99.5:0.5 to 95:5 hexanes/EtOAc) afforded 3 (2.26 g , 5.2 mmol, 87% yield) as a white solid. $\mathrm{mp} 66-68{ }^{\circ} \mathrm{C} ; R_{f}(90: 10$ hexanes/EtOAc) 0.3; $[\alpha]_{\mathrm{D}}{ }^{20}-4.6$ (c 1.0, CHCl_{3}); IR (ATR) $\nu: 2953,2928,2856,1770,1715,1353,1248,1146,1097$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.17(5 \mathrm{H}, \mathrm{m})$, $5.34(1 \mathrm{H}, \mathrm{dd}, J=8.2,3.3 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dd}, J=9.7,3.9 \mathrm{~Hz})$, $3.09(1 \mathrm{H}, \mathrm{dd}, J=14.4,3.9 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{dd}, J=14.4,9.7$ $\mathrm{Hz}), 1.73-1.65(1 \mathrm{H}, \mathrm{m}), 1.59-1.48(1 \mathrm{H}, \mathrm{m}), 1.47-1.23(4 \mathrm{H}$, m), $1.38(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 0.92-0.88(12 \mathrm{H}, \mathrm{m}), 0.08(3 \mathrm{H}$, s), $0.06(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7(\mathrm{C})$, 152.2 (C), $136.5(\mathrm{C}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 126.8(\mathrm{CH})$, 82.7 (C), $71.2(\mathrm{CH}), 63.2(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right), 35.0\left(\mathrm{CH}_{2}\right)$, $28.5\left(\mathrm{CH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right)$, $22.4\left(\mathrm{CH}_{2}\right), 22.4$ $\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 13.9\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, 434.2721; found, 434.2719.
4.3. (S)-2-tert-Butyldimethylsilyloxyhexanol (6). A fresh 2.0 M solution of LiBH_{4} in THF ($14 \mathrm{~mL}, 28 \mathrm{mmol}$) was added dropwise to a solution of $3(2.00 \mathrm{~g}, 4.6 \mathrm{mmol})$ in THF (35 mL) and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 80 min at $-10^{\circ} \mathrm{C}$ and quenched with MeOH (20 mL). The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (from 95:5 to 50:50 hexanes/EtOAc) to give recovered chiral auxiliary ($869 \mathrm{mg}, 4.2 \mathrm{mmol}, 92 \%$ yield) as a white solid and alcohol $6(844 \mathrm{mg}, 3.6 \mathrm{mmol}, 79 \%$ yield) as a colorless oil. $R_{f}\left(90: 10\right.$ hexanes/EtOAc) 0.3; $[\alpha]_{\mathrm{D}}{ }^{20}+10.2(c$ 1.0, CHCl_{3}); IR (ATR) $\nu: \operatorname{br} 3386,2954,2928,2857,1463$, 1253, 1097, $1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.73$ $(1 \mathrm{H}, \mathrm{tdd}, J=6.4,5.4,3.6 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=11.0,3.6 \mathrm{~Hz})$, $3.44(1 \mathrm{H}, \mathrm{dd}, J=11.0,5.4 \mathrm{~Hz}), 1.94(1 \mathrm{H}, \mathrm{br}$ s), $1.52-1.45$ $(2 \mathrm{H}, \mathrm{m}), 1.36-1.21(4 \mathrm{H}, \mathrm{m}), 0.92-0.88(12 \mathrm{H}, \mathrm{m}), 0.09(6 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 72.9(\mathrm{CH}), 66.3\left(\mathrm{CH}_{2}\right)$, $33.7\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 18.1(\mathrm{C})$, $14.0\left(\mathrm{CH}_{3}\right),-4.5\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right)$; HRMS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{12} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, 233.1931; found, 233.1930.
4.4. (S)-2-tert-Butyldimethylsilyloxyhexanal (4). DMSO ($656 \mu \mathrm{~L}, 9.2 \mathrm{mmol}$) was added dropwise to a solution of $(\mathrm{COCl})_{2}(423 \mu \mathrm{~L}, 4.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. The resultant mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$, and alcohol $6(716 \mathrm{mg}, 3.1 \mathrm{mmol})$ was added via cannula and stirred for 10 min at $-60^{\circ} \mathrm{C}$. Then, neat $\mathrm{Et}_{3} \mathrm{~N}(2.6 \mathrm{~mL}, 18.5$ mmol) was added to the reaction mixture at $-78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to rt. The mixture was stirred for 2.5 h , and then, it was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with hexanes $(2 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and 10% acetic acid aqueous solution (50 mL) and dried with MgSO_{4}. The solvent was removed under reduced pressure $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ trap!) to quantitatively afford the crude aldehyde $4(729 \mathrm{mg})$ as a yellowish oil, which was used in the next step without further purification. R_{f} ($90: 10$ hexanes/EtOAc) $0.7 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.59(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{ddd}, J=7.1,5.7,1.8 \mathrm{~Hz})$, $1.65-1.59(2 \mathrm{H}, \mathrm{m}), 1.41-1.18(4 \mathrm{H}, \mathrm{m}), 0.93-0.88(12 \mathrm{H}, \mathrm{m})$, $0.08(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s})$.
4.5. Ethyl (S, Z)-4-tert-Butyldimethylsilyloxy-2-octenoate (7). $\mathrm{NaI}(465 \mathrm{mg}, 3.1 \mathrm{mmol})$ was added to a solution of ethyl diphenoxyphosphorylacetate (SI2) ($1.28 \mathrm{~g}, 4.0 \mathrm{mmol}$) in THF (30 mL) at $0^{\circ} \mathrm{C}$. After $5 \mathrm{~min}, \mathrm{NaH} 60 \%$ dispersion in mineral oil ($160 \mathrm{mg}, 4.0 \mathrm{mmol}$) was added (CAUTION: slow addition, release of gas), and the resulting mixture was stirred for 15 min and cooled to $-78{ }^{\circ} \mathrm{C}$. Then, a solution of crude aldehyde $4(729 \mathrm{mg}, 3.1 \mathrm{mmol})$ in THF (8 mL) was added dropwise via cannula, and the resultant mixture was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}(20$ $\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography ($80: 20$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 7 ($797 \mathrm{mg}, 2.65 \mathrm{mmol}, 86 \%$ yield from 6) as a colorless oil. R_{f} (70:30 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) 0.5; $[\alpha]_{\mathrm{D}}{ }^{20}+7.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (ATR) L: 2956, 2929, 2857, 1720, 1252, 1183, 1116, 1080, 1049, $1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.14(1 \mathrm{H}$, dd, $J=11.7,8.2 \mathrm{~Hz}), 5.68(1 \mathrm{H}, \mathrm{dd}, J=11.7,1.3 \mathrm{~Hz}), 5.33-$ $5.25(1 \mathrm{H}, \mathrm{m}), 4.17(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 1.62-1.25(6 \mathrm{H}, \mathrm{m})$, $1.29(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.93-0.88(12 \mathrm{H}, \mathrm{m}), 0.05(3 \mathrm{H}, \mathrm{s})$, $0.01(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.9(\mathrm{C})$, $153.8(\mathrm{CH}), 117.5(\mathrm{CH}), 68.8(\mathrm{CH}), 60.1\left(\mathrm{CH}_{2}\right), 37.0$ $\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 18.1(\mathrm{C}), 14.2$ $\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right)$; HRMS $(+\mathrm{ESI})$ m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$, 301.2193; found, 301.2191 .
4.6. (S,Z)-4-tert-Butyldimethylsilyloxy2-octen-1-ol (8). A 1.0 M solution of DIBALH in toluene $(7.5 \mathrm{~mL}, 7.5 \mathrm{mmol})$ was added dropwise to a solution of ester $7(864 \mathrm{mg}, 3.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and quenched with sat aqueous solution of Rochelle salt (20 mL). The mixture was stirred for 1 h at rt . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4} and concentrated under reduced pressure to quantitatively afford alcohol $8(776 \mathrm{mg})$ as a colorless oil, which was used in the next step without further purification. $R_{f}\left(90: 10\right.$ hexanes $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.2 ;[\alpha]_{\mathrm{D}}{ }^{20}+6.1(c$ $1.0, \mathrm{CHCl}_{3}$); IR (ATR) $\nu:$ br 3309, 2955, 2928, 2857, 1463, 1252, 1073, 1048, $1018 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.63-5.43(2 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{dt}, J=$ $13.4,5.2 \mathrm{~Hz}), 4.17-4.09(1 \mathrm{H}, \mathrm{m}), 1.66(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.7 \mathrm{~Hz})$,
$1.61-1.50(1 \mathrm{H}, \mathrm{m}), 1.45-1.35(1 \mathrm{H}, \mathrm{m}), 1.34-1.20(4 \mathrm{H}, \mathrm{m})$, $0.93-0.88(12 \mathrm{H}, \mathrm{m}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.0(\mathrm{CH}), 127.6(\mathrm{CH}), 69.1(\mathrm{CH})$, $59.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 18.2(\mathrm{C}), 14.1\left(\mathrm{CH}_{3}\right),-4.4\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$, 281.1907; found, 281.1904.
4.7. (4R,7S,Z)-7-tert-Butyldimethylsilyloxy-1,5-unde-cadien-4-ol (9). Allyl acetate ($2.6 \mathrm{~mL}, 24.0 \mathrm{mmol}$) was added to a mixture of $8(631 \mathrm{mg}, \approx 2.4 \mathrm{mmol}),[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$ ($81 \mathrm{mg}, 0.12 \mathrm{mmol}, 5 \mathrm{~mol} \%$), (R)-Cl,MeO-BIPHEP (158 mg , $0.24 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(313 \mathrm{mg}, 0.96 \mathrm{mmol})$, and 3nitrobenzoic acid ($80 \mathrm{mg}, 0.48 \mathrm{mmol}$) in THF (12 mL) in an oven-dried microwave vial $(20 \mathrm{ml})$. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 20 h . The resulting mixture was evaporated in vacuo and purified by flash column chromatography (from 97.5:2.5 to 90:10 hexanes/EtOAc) to give allylic alcohol 9 ($660 \mathrm{mg}, 2.2 \mathrm{mmol}, 91 \%$ yield from 7) as a colorless oil. $R_{f}(90: 10$ hexanes $/ E t O A c) 0.4 ;[\alpha]_{\mathrm{D}}{ }^{20}+13.6$ (c 1.0, CHCl_{3}); IR (ATR) $\nu: 3369$ (br), 2955, 2928, 2856, 1463, 1252, 1049, $1005 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.87-5.74(1 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{ddd}, J=11.4,8.3,1.0 \mathrm{~Hz}), 5.36$ $(1 \mathrm{H}$, ddd, $J=11.4,8.3,0.9 \mathrm{~Hz}), 5.18-5.10(2 \mathrm{H}, \mathrm{m}), 4.50-$ $4.35(2 \mathrm{H}, \mathrm{m}), 2.34-2.18(2 \mathrm{H}, \mathrm{m}), 1.93(1 \mathrm{H}, \mathrm{br}$ s), $1.59-1.48$ $(1 \mathrm{H}, \mathrm{m}), 1.44-1.19(5 \mathrm{H}, \mathrm{m}), 0.91-0.87(12 \mathrm{H}, \mathrm{m}), 0.07(3 \mathrm{H}$, s), $0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.6$ $(\mathrm{CH}), 134.1(\mathrm{CH}), 130.5(\mathrm{CH}), 118.2\left(\mathrm{CH}_{2}\right), 69.0(\mathrm{CH})$, $67.1(\mathrm{CH}), 42.2\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 18.2(\mathrm{C}), 14.0\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$; HRMS (+ESI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$, 321.2220; found, 321.2217.
4.8. (4R,7S,Z)-7-tert-Butyldimethylsilyloxy-1,5-unde-cadien-4-yl Acrylate (10). DMAP ($13 \mathrm{mg}, 0.10 \mathrm{mmol}$), acryloyl chloride ($170 \mu \mathrm{~L}, 2.1 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(430 \mu \mathrm{~L}, 3.1$ $\mathrm{mmol})$ were added to a solution of $9(305 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to rt , stirred for 2 h , and quenched with sat $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4} and concentrated under reduced pressure. Purification of the residue through a short pad of silica afforded 10 ($344 \mathrm{mg}, 0.98 \mathrm{mmol}, 96 \%$ yield) as a colorless oil. $R_{f}\left(95: 5\right.$ hexanes/EtOAc) 0.7 ; $[\alpha]_{D}{ }^{20}-9.7(c$ 1.0, CHCl_{3}); IR (ATR) $\nu: 2955,2929,2856,1724,1404$, 1255, 1186, 1045, $1005 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.38(1 \mathrm{H}, \mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{dd}, J=17.3,10.4$ $\mathrm{Hz}), 5.81(1 \mathrm{H}, \mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}), 5.78-5.62(2 \mathrm{H}, \mathrm{m}), 5.55$ $(1 \mathrm{H}$, ddd, $J=11.2,8.5,0.9 \mathrm{~Hz}), 5.34(1 \mathrm{H}$, ddd, $J=11.2,9.6$, $1.1 \mathrm{~Hz}), 5.13-5.05(2 \mathrm{H}, \mathrm{m}), 4.58-4.48(1 \mathrm{H}, \mathrm{m}), 2.47-2.30$ $(2 \mathrm{H}, \mathrm{m}), 1.56-1.45(1 \mathrm{H}, \mathrm{m}), 1.39-1.24(5 \mathrm{H}, \mathrm{m}), 0.92-0.87$ $(3 \mathrm{H}, \mathrm{m}), 0.85(9 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}),-0.01(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 165.1(\mathrm{C}), 138.5(\mathrm{CH}), 132.9(\mathrm{CH})$, $130.6\left(\mathrm{CH}_{2}\right), 128.6(\mathrm{CH}), 125.4(\mathrm{CH}), 118.3\left(\mathrm{CH}_{2}\right), 69.2$ $(\mathrm{CH}), 68.7(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 25.8$ $\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 18.1(\mathrm{C}), 14.1\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-5.0$ $\left(\mathrm{CH}_{3}\right)$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+$ $\mathrm{Na}]^{+}, 375.2326$; found, 375.2330.
4.9. (R)-6-[(S,Z)-3-tert-Butyldimethylsilyloxy1-hepten-1-yl]-5,6-dihydro-2H-pyran-2-one (11). A solution of Grubbs II ($20 \mathrm{mg}, 2.5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise (for 40 min approx) to a refluxing solution of $10(332 \mathrm{mg}, 0.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(95 \mathrm{~mL})$. The mixture was stirred for 1 h , and the solvent evaporated. The residue was
purified by flash column chromatography (90:10 hexanes/ $\mathrm{EtOAc})$ to afford $11(267 \mathrm{mg}, 0.82 \mathrm{mmol}, 87 \%$ yield) as a yellowish oil. $R_{f}\left(90: 10\right.$ hexanes/EtOAc) $0.1 ;[\alpha]_{\mathrm{D}}{ }^{20}+5.1(c$ $1.0, \mathrm{CHCl}_{3}$); IR (ATR) $\nu: 2955,2929,2857,1725,1380$, 1247, 1050, $1023 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88$ $(1 \mathrm{H}$, ddd, $J=9.8,5.8,2.6 \mathrm{~Hz}), 6.06(1 \mathrm{H}$, ddd, $J=9.8,2.6,1.0$ $\mathrm{Hz}), 5.62(1 \mathrm{H}, \mathrm{ddd}, J=11.3,8.3,0.7 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{ddd}, J=$ $11.3,8.7,0.8 \mathrm{~Hz}), 5.28-5.21(1 \mathrm{H}, \mathrm{m}), 4.39-4.34(1 \mathrm{H}, \mathrm{m})$, $2.42(1 \mathrm{H}, \mathrm{ddt}, J=18.4,11.2,2.6 \mathrm{~Hz}), 2.28(1 \mathrm{H}, \mathrm{dddd}, J=$ $18.4,5.8,4.2,1.0 \mathrm{~Hz}$), 1.60-1.49 ($1 \mathrm{H}, \mathrm{m}$), $1.42-1.22$ (5 H , $\mathrm{m}), 0.91-0.87(12 \mathrm{H}, \mathrm{m}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.7(\mathrm{C}), 144.4(\mathrm{CH}), 138.5(\mathrm{CH})$, $125.2(\mathrm{CH}), 121.6(\mathrm{CH}), 73.8(\mathrm{CH}), 68.7(\mathrm{CH}), 38.3\left(\mathrm{CH}_{2}\right)$, $30.1\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 18.1(\mathrm{C})$, $14.0\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right)$; HRMS $(+\mathrm{ESI}) \mathrm{m} / \mathrm{z}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$, 347.2013; found, 347.2011 .
4.10. Deacetylumuravumbolide (12). $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ (930 $\mu \mathrm{L}, 5.7 \mathrm{mmol})$ was added to a solution of $11(236 \mathrm{mg}, 0.71$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ at rt and stirred for 16 h . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ and $\mathrm{EtOAc}(7 \mathrm{~mL})$, and the aqueous layer was extracted with further EtOAc $(2 \times 7 \mathrm{~mL})$. The combined organic extracts were dried with MgSO_{4}, and the solvent evaporated. The residue was purified by flash column chromatography (from 70:30 to $60: 40$ hexanes/EtOAc) to afford $12(128 \mathrm{mg}, 0.61$ $\mathrm{mmol}, 86 \%$ yield) as a white solid. $\mathrm{mp} 45-46{ }^{\circ} \mathrm{C}$; $R_{f}(70: 30$ hexanes/EtOAc) 0.2; $[\alpha]_{\mathrm{D}}{ }^{20}-6.8$ (c 1.0, CHCl_{3}) $\left[\mathrm{lit} .{ }^{4,5}\right.$ $\left.[\alpha]_{\mathrm{D}}{ }^{20}-5.3\left(c 1.3, \mathrm{CHCl}_{3}\right)\right]$; IR (ATR) $\nu: 3421(\mathrm{br}), 2958$, 2857, 1682, 1417, 1250, 1157, 1052, $1018 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.90(1 \mathrm{H}$, ddd, $J=9.8,5.6,2.8 \mathrm{~Hz})$, $6.08-6.00(1 \mathrm{H}, \mathrm{m}), 5.75-5.58(2 \mathrm{H}, \mathrm{m}), 5.34(1 \mathrm{H}, \mathrm{ddd}, J=$ $11.6,7.3,4.6 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 2.50-2.32(2 \mathrm{H}$, m), $2.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.72-1.55(1 \mathrm{H}, \mathrm{m}), 1.48-1.39(1 \mathrm{H}, \mathrm{m})$, $1.39-1.13(4 \mathrm{H}, \mathrm{m}), 0.91(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(100.6$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7(\mathrm{C}), 144.7(\mathrm{CH}), 137.8(\mathrm{CH}), 127.5$ $(\mathrm{CH}), 121.5(\mathrm{CH}), 73.7(\mathrm{CH}), 67.8(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 29.9$ $\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$; HRMS $(+\mathrm{ESI})$ m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 228.1594$; found, 228.1593.
4.11. Umuravumbolide (1). $\mathrm{Ac}_{2} \mathrm{O}(110 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ and pyridine ($95 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) were added to a solution of 12 $(123 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at rt. The reaction mixture was stirred at rt for 16 h and evaporated under reduced pressure. The residue was purified by flash column chromatography (80:20 hexanes/EtOAc) to afford 1 (146 mg , 0.58 mmol , quantitative yield) as a colorless oil. R_{f} (80:20 hexanes/EtOAc) 0.2; $[\alpha]_{\mathrm{D}}{ }^{25}+31.4\left(c 1.0, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $^{4}[\alpha]_{\mathrm{D}}{ }^{25}$ $+30\left(c 2.1, \mathrm{CDCl}_{3}\right)$, lit. ${ }^{\text {.b }}[\alpha]_{\mathrm{D}}{ }^{25}+33.4\left(c 1, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{6 c}$ $[\alpha]_{\mathrm{D}}{ }^{25}+28.6\left(c 0.9, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{6 \mathrm{e}}[\alpha]_{\mathrm{D}}{ }^{25}+29(c 2.2$, CHCl_{3})]; IR (ATR) $\nu: 2956,2932,2862,1717,1371,1230$, $1149,1019 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88(1 \mathrm{H}$, ddd, $J=9.8,6.0,2.5 \mathrm{~Hz}), 6.09-6.03(1 \mathrm{H}, \mathrm{m}), 5.73(1 \mathrm{H}, \mathrm{ddd}, J$ $=11.1,8.2,0.9), 5.55(1 \mathrm{H}$, ddd, $J=11.1,9.4,1.1 \mathrm{~Hz}), 5.45-$ $5.39(2 \mathrm{H}, \mathrm{m}), 2.47(1 \mathrm{H}, \mathrm{ddt}, J=18.3,11.7,2.6 \mathrm{~Hz}), 2.29(1 \mathrm{H}$, dddd, $J=18.3,5.9,4.1,1.0 \mathrm{~Hz}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.74-1.66(1 \mathrm{H}$, $\mathrm{m}), 1.57-1.48(1 \mathrm{H}, \mathrm{m}), 1.37-1.20(4 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1$ (C), 163.5 (C), 144.2 (CH), $131.7(\mathrm{CH}), 130.1(\mathrm{CH}), 121.7(\mathrm{CH}), 74.0$ $(\mathrm{CH}), 69.4(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 22.4$ $\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$, $13.9\left(\mathrm{CH}_{3}\right)$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 275.1254; found, 275.1253.

ASSOCIATED CONTENT

(si) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c02304.

Summary of the synthesis; additional experimental procedures involving the preparation of starting materials; and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of reagents and products (PDF)

AUTHOR INFORMATION

Corresponding Authors

Pedro Romea - Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; © orcid.org/0000-0002-0259-9155; Email: pedro.romea@ub.edu
Fèlix Urpí - Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; © orcid.org/ 0000-0003-4289-6506; Email: felix.urpi@ub.edu

Authors

Marina Pérez-Palau - Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain; © orcid.org/0000-0001-9905-3513
Eduard Balaguer-Garcia - Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c02304

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the Spanish Ministerio de Ciencia e Innovación (MICIN)/Agencia Estatal de Investigación (AEI)/ Fondo Europeo de Desarrollo Regional (FEDER, UE) (grant no. PGC2018-094311-B-I00) and the Generalitat de Catalunya (2017SGR271) as well as doctorate studentship to M.P.-P. (FPU, Ministerio de Educación) are acknowledged.

- DEDICATION

Dedicated to Professor Joan Bosch on the occasion of his 75th birthday.

- REFERENCES

(1) (a) Kalesse, K.; Christmann, M.; Bhatt, U.; Quitschalle, M.; Claus, E.; Saeed, A.; Burzlaff, A.; Kasper, C.; Haustedt, L. O.; Hofer, E.; Scheper, T.; Beil, W. The Chemistry and Biology of Ratjadone. ChemBioChem 2001, 2, 709-714. (b) Buck, S. B.; Hardouin, C.; Ichikawa, S.; Soenen, D. R.; Gauss, C.-M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D. L. Fundamental Role of the Fostriecin Unsaturated Lactone and Implications for Selective Protein Phosphatase Inhibition. J. Am. Chem. Soc. 2003, 125, 1569415695. (c) Jackson, P. A.; Widen, J. C.; Harki, D. A.; Brummond, K.
M. Covalent Modifiers: A Chemical Perspective on the Reactivity of α, β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J. Med. Chem. 2017, 60, 839-885.
(2) (a) Marco, J. A.; Carda, M.; Murga, J.; Falomir, E. Stereoselective Syntheses of Naturally Occurring 5,6-Dihydropyran-2-ones. Tetrahedron 2007, 63, 2929-2958. (b) Boucard, V.; Broustal,
G.; Campagne, J. M. Synthetic Approaches to α, β-Unsaturated δ Lactones and Lactols. Eur. J. Org. Chem. 2007, 225-236.
(3) Van Puyvelde, L.; Dube, S.; Uwimana, E.; Uwera, C.; Dommisse, R. A.; Esmans, E. L.; Van Schoor, O.; Vlietinck, A. J. New α-pyrones from Iboza riparia. Phytochemistry 1979, 18, 1215-1218.
(4) Davies-Coleman, M. T.; Rivett, D. E. A. Structure of the 5,6-dihydro- α-pyrone, umuravumbolide. Phytochemistry 1995, 38, 791792.
(5) Ram Reddy, M. V.; Rearick, J. P.; Hoch, N.; Ramachandran, P. V. Asymmetric Synthesis of Umuravumbolide1. Org. Lett. 2001, 3, 19-20.
(6) (a) Shekhar, V.; Reddy, D. K.; Reddy, S. P.; Prabhakar, P.; Venkateswarlu, Y. Stereoselective Total Synthesis of Umuravumbolide. Eur. J. Org. Chem. 2011, 4460-4464. (b) Shekhar, V.; Reddy, D. K.; Venkateswarlu, Y. Total Synthesis of Umuravumbolide. Helv. Chim. Acta 2012, 95, 1593-1599. (c) Sabitha, G.; Reddy, D. V.; Reddy, S. S. S.; Yadav, J. S.; Kumar, C. G.; Sujitha, P. Total Synthesis of Desacetylumuravumbolide, Umuravumbolide and Their Biological Evaluation. RSC Adv. 2012, 2, 7241-7247. (d) Chowdhury, P. S.; Kumar, P. Total Synthesis of Umuravumbolide and Hyptolide Through Silicon-Tethered Ring-Closing Metathesis. Eur. J. Org. Chem. 2013, 4586-4593. (e) Kumar, T. V.; Reddy, G. V.; Babu, K. S.; Rao, J. M. Stereoselective Synthesis of Umuravumbolide. Tetrahedron: Asymmetry 2013, 24, 594-598.
(7) (a) Gómez-Palomino, A.; Pérez-Palau, M.; Romea, P.; Urpí, F.; Del Olmo, M.; Hesse, T.; Fleckenstein, S.; Gómez-Bengoa, E.; Sotorríos, L.; Font-Bardia, M. Stereoselective Decarboxylative Alkylation of Titanium(IV) Enolates with Diacyl Peroxides. Org. Lett. 2020, 22, 199-203. (b) Pérez-Palau, M.; Sanosa, N.; Romea, P.; Urpí, F.; López, R.; Gómez-Bengoa, E.; Font-Bardia, M. Stereoselective Alkylation of Chiral Titanium(IV) Enolates with tert-Butyl Peresters. Org. Lett. 2021, 23, 8852-8856.
(8) (a) Moreira, I. de P. R.; Bofill, J. M.; Anglada, J. M.; Solsona, J. G.; Nebot, J.; Romea, P.; Urpí, F. Unconventional Biradical Character of Titanium Enolates. J. Am. Chem. Soc. 2008, 130, 3242-3243. (b) Heras, C.; Gómez-Palomino, A.; Romea, P.; Urpí, F.; Bofill, J. M.; Moreira, I. P. R. Experimental and Computational Evidence of the Biradical Structure and Reactivity of Titanium(IV) Enolates. J. Org. Chem. 2017, 82, 8909-8916.
(9) Bach, J.; Blachère, C.; Bull, S. D.; Davies, S. G.; Nicholson, R. L.; Price, P. D.; Sanganee, H. J.; Smith, A. D. N-Acyl-5,5-dimethylox-azolidin-2-ones as Latent Aldehyde Equivalents. Org. Biomol. Chem. 2003, 1, 2001-2010.
(10) Omura, K.; Swern, D. Oxidation of Alcohols by "Activated" Dimethyl Sulfoxide. A Preparative, Steric and Mechanistic Study. Tetrahedron 1978, 34, 1651-1660.
(11) (a) Still, W. C.; Gennari, C. Direct Synthesis of Z-Unsaturated Esters. A Useful Modification of the Horner-Emmons Olefination. Tetrahedron Lett. 1983, 24, 4405-4408. (b) Janicki, I.; Kiełbasiński, P. Still-Gennari Olefination and its Applications in Organic Synthesis. Adv. Synth. Catal. 2020, 362, 2552-2596.
(12) Ando, K. Practical Synthesis of Z-Unsaturated Esters by Using a New Horner-Emmons Reagent, Ethyl Diphenylphosphonoacetate. Tetrahedron Lett. 1995, 36, 4105-4108.
(13) Pihko, P. M.; Salo, T. M. Excess sodium ions improve Z selectivity in Horner-Wadsworth-Emmons olefinations with the Ando phosphonate. Tetrahedron Lett. 2003, 44, 4361-4364.
(14) (a) Kubota, K.; Leighton, J. L. A Highly Practical and Enantioselective Reagent for the Allylation of Aldehydes. Angew. Chem., Int. Ed. 2003, 42, 946-948. (b) Kim, H.; Ho, S.; Leighton, J. L. A More Comprehensive and Highly Practical Solution to Enantioselective Aldehyde Crotylation. J. Am. Chem. Soc. 2011, 133, 6517-6520. (c) Suen, L. M.; Steigerwald, M. L.; Leighton, J. L. A. A
new and more powerfully activating diamine for practical and scalable enantioselective aldehyde crotylsilylation reactions. Chem. Sci. 2013, 4, 2413-2417.
(15) ${ }^{1} \mathrm{H}$ NMR analyses of different attempts revealed complex mixtures including compounds with E geometry of the olefin (coupled alkene signals with $J=15.5 \mathrm{~Hz}$). Allylic alcohol 9 was obtained in 49% yield in the best-case scenario.
(16) (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. Enantioselective Iridium-Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition. J. Am. Chem. Soc. 2008, 130, 14891-14899. (b) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Gao, X.; Itoh, T.; Krische, M. J. Polyketide construction via hydrohydroxyalkylation and related alcohol C-H functionalizations: reinventing the chemistry of carbonyl addition. Nat. Prod. Rep. 2014, 31, 504-513.

[^0]: Received: April 13, 2022
 Accepted: August 4, 2022
 Published: August 25, 2022

