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COLONOMICS - integrative omics 
data of one hundred paired normal-
tumoral samples from colon cancer 
patients
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Colonomics is a multi-omics dataset that includes 250 samples: 50 samples from healthy colon mucosa 
donors and 100 paired samples from colon cancer patients (tumor/adjacent). From these samples, 
Colonomics project includes data from genotyping, DNA methylation, gene expression, whole exome 
sequencing and micro-RNAs (miRNAs) expression. It also includes data from copy number variation 
(CNV) from tumoral samples. In addition, clinical data from all these samples is available. The aims of 
the project were to explore and integrate these datasets to describe colon cancer at molecular level 
and to compare normal and tumoral tissues. Also, to improve screening by finding biomarkers for 
the diagnosis and prognosis of colon cancer. This project has its own website including four browsers 
allowing users to explore Colonomics datasets. Since generated data could be reuse for the scientific 
community for exploratory or validation purposes, here we describe omics datasets included in the 
Colonomics project as well as results from multi-omics layers integration.
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Background & Summary
Colon cancer is a complex disease characterized by an accumulation of alterations at different molecular levels. 
Many studies focus on one molecular level, leading to a partial view of the carcinogenic process. Here we pres-
ent Colonomics (https://www.colonomics.org/), a multi-omics dataset that comprises 100 stage II colon cancer 
patients from which samples of tumoral tissue (T) and paired normal adjacent tissue (N) were obtained from 
the surgical specimen. Also, 50 samples from healthy colon mucosa obtained at colonoscopy from donors (M) 
without cancer were included and used as reference (Fig. 1).

Multiomics data analysis allows to integrate different levels of biological and molecular information to 
understand complex diseases as cancer and to move forward towards precision medicine1,2. The Colonomics 
project aims to study the molecular basis of colon cancer through the integrative and large-scale analysis of dif-
ferent molecular data and to identify useful biomarkers of diagnosis and prognosis in colon cancer.

From each sample, DNA and RNA were extracted to obtain molecular data. Thus, extracted DNA was used to 
acquire methylation data (using Illumina microarrays), single nucleotide polymorphism (SNP) genotypes and 
CNV (using Affymetrix microarrays) and somatic mutations (through whole exome sequencing) in a subset. 
RNA was used to obtain gene and miRNAs expression, using Affymetrix microarrays and SOLID sequencing, 
respectively. Finally, patient clinical data from all samples were obtained, including follow up.

The analysis of these datasets allowed us to make a descriptive and a comparative snapshot of the molecular 
state of cancer cells (T) and, also, to find differences between healthy normal tissue (M), normal tissue adjacent 
to tumor (N), and tumoral tissue (T).

The Colonomics project web page (https://www.colonomics.org/) links to the digital data repository of the 
University of Barcelona (UB-DD)3 and provides four user friendly web tools that allow an agile and direct vis-
ualization of data.

Methods
Patients and samples. Colon cancer patients were retrospectively selected during 2012 from those that 
had received radical surgery in the Bellvitge University Hospital (Barcelona, Spain) between January 1996 
and December 2000, and had fresh frozen tumor samples in the hospital biobank. One hundred patients were 
included, with the criteria of a confirmed adenocarcinoma of the colon, diagnosed in stage II and the tumor was 
microsatellite stable (tested with five markers). Patients should have not received adjuvant therapy and a mini-
mum follow up of three years was requested at the time of selection. A pathologist reviewed the tumor blocks, 
confirming diagnosis and that there were no signs of tumor cells when margins were examined. The paired adja-
cent normal mucosa (N) was obtained from the proximal margin, at least 10 cm distant from the tumor (T). 
As a control group, 50 healthy mucosa donors (M) were prospectively invited to participate in this study when 
they underwent a colonoscopy indicated for screening or symptoms with no evidence of lesions in the colon or 
rectum. Table 1 shows the basic clinical characteristics of the samples. The study protocol was approved by The 
Clinical Research Ethics Committee (CEIC) of the Bellvitge Hospital. All the recruited individuals provided a 
written informed consent to participate in the genetic study. The approval number is PR178/11.

From these 250 samples (100 T, 100 N and 50 M), data on gene expression, DNA methylation, SNPs, CNV 
and miRNAs were obtained. Whole exome sequencing was analyzed in a subset of 42 tumors and their paired 
adjacent normal mucosa. Figure 1 shows the number of samples for each type of data.

Fig. 1 Scheme of Colonomics data. Number of samples that remained after quality control for each type of data. 
M are healthy colon mucosae, T is tumoral tissue and N is normal tissue adjacent to tumor.
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DNA extraction. DNA was extracted from colon tissue by the phenol-chloroform procedure, quantified 
using a NanoDrop ND 2000c spectrophotometer (NanoDrop Thermo Scientific, DE, USA) and stored at 4 °C. 
Bisulphite conversion of DNA (200–500 ng) was performed according to the manufacturer’s recommendations 
for the Illumina Infinium Assay (EZ DNA methylation kit. Zymo Research. Cat. No. D5004). The incubation 
profile was 16 cycles at 95 °C for 30 seconds, 50 °C for 60 minutes and a final holding step at 4 °C.

RNA isolation. Total RNA was isolated from tissue samples using Exiqon’s miRCURY™ RNA Isolation 
Kit (Exiqon, Denmark). For quantification, NanoDrop® ND-1000 Spectrophotometer (Nanodrop technolo-
gies, Wilmington, DE) was used. RNA quality was assessed by gel electrophoresis and RNA 6000 Nano Assay 
(Agilent Technologies, Santa Clara, CA). RNA purity was measured with the ratio of absorbance at 269/280 nm 
(mean = 1.96, sd = 0.04), no differences among tissue types were found. RNA integrity numbers showed good 
quality (mean = 8.1 for T, and 7.5 for N).

Gene expression data. Affymetrix Human Genome U219 Array Plate platform (Affymetrix, Santa Clara, 
CA, USA) was used to obtain gene expression data from isolated RNA. A block experimental design was per-
formed to the 96-array plates to avoid batch effects and sample ids were blinded to laboratory technicians. Robust 
Multiarray Average (RMA) algorithm in affy package (version 1.28) from R/Bioconductor4 was used to normalize 
data. After quality control and normalization 49,386 probesets in 20,070 genes and 246 samples remain for the 
analysis: 50 M, 98 N and 98 T (98 paired N/T). Since the array provides multiple probes per gene, a summary gene 
expression value for each gene was obtained through a principal components analysis (PCA). We extracted the 
first principal component, that captures the highest expression variability, and was rescaled to have the average 
expression of the different proves and maximum observed standard deviation. This rescaling was required to 
avoid negative expression values of the first PC. Therefore, in addition of the dataset with the measured probes, a 
final dataset with a single expression value for each one of the 20,070 genes was obtained.

Methylation data. The Illumina Infinium HumanMethylation 450k BeadChip assay was used to obtain the 
DNA methylation profile of the samples. The array interrogates the methylation levels of 485,512 CpG sites cover-
ing 99% of RefSeq genes and 96% of CpG islands5,6. To minimize batch effects, samples were randomly distributed 
but matching paired samples (N, T) in the same array row (M samples were randomly paired in array rows).

Sample quality and sex concordance was checked using the SNPs of the 450 K array with those of the Affymetrix 
Genome-Wide Human SNP 6.0 array (Affymetrix, Santa Clara, USA). A total of 10 samples had to be excluded due 
to quality problems and the final dataset contained 240 samples: 96 N, 96 T (92 complete pairs of N/T) and 48 M.

Background correction was performed filtering out probes with a detection p-value greater than 0.01 in more 
than 5% of the samples. We discarded probes that ambiguously mapped to multiple locations in the human 
genome with up to two mismatches7. We also excluded probes that contained SNPs within 10 bp of distance. 
Finally, a set of 430,086 probes was obtained.

We used β-values, the Illumina’s standard, to measure methylation level at each locus. β-values are calcu-
lated using the average probe intensity and they range from 0 to 1, being β = 0 the absence of methylation and 
β = 1 a complete methylation. Subset-quantile within array normalization (SWAN) was used to reduce technical 
variation within and between arrays8 using the Bioconductor package minfi (version 3.0.1)9. A random forest 
approach was used for the imputation of missing values.

Genotyping data. Extracted DNA was hybridized to obtain the genotypes of the samples using Affymetrix 
Genome-Wide Human SNP 6.0 array (Affymetrix, Santa Clara, USA), which includes near 1 million of SNP 
markers. Genotype calling was performed with Corrected Robust Linear Model with Maximum Likelihood 
Classification (CRLMM) algorithm as implemented in R/Bioconductor package crlmm (version 1.8)10. A total 
of 4 samples were excluded due to quality or sex concordance problems (3 M and 1 N) so 146 samples (47 M and 
99 N) remained for the analysis.

Copy number variation data. The Affymetrix Genome-Wide Human SNP 6.0 genotyping array was used 
to infer the copy number aberrations in the tumors. The average inter-marker distance of this array was 700 bp. 
Copy number estimate (CNE) was calculated using Affymetrix Power Tools (Version 1.16.1) software11 with 
default parameters.

Adjacent locus with a similar CNE were grouped in regions using a segmentation pipeline that had three 
steps. First, a smoothing spline was applied to normalize data. Second, change points in CNE pattern were 
located using the Vega R package (version 1.35)12 and split into discrete segments. To avoid masking effects, the 
stromal content of the tumor samples was taken into account to calculate the thresholds to split the segments. 

n Female Male
Age 
min

Age 
1Q

Age 
median

Age 
mean

Age 
3Q

Age 
max

Colon Site 
Left

Colon Site 
Right

M 50 23 27 25 52 63 62.5 74 88 23 27

N 100 28 72 43 65 71.5 70.7 78 87 61 39

T 100 28 72 43 65 71.5 70.7 78 87 61 39

All 250 79 171 25 64 70 69.0 77 88 145 105

Table 1. Clinical characteristics of the 250 samples. M is healthy colon mucosae, T is tumoral tissue and N is 
normal tissue adjacent to tumor.
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Stromal content was estimated using the ESTIMATE R package (version 1.0.13)13 using gene expression data14. 
A hierarchical cluster analysis was performed to divide the samples in 4 clusters reflecting their different levels of 
stromal content. A different threshold to split the segments was used for each cluster: ±0.5 for low stroma, ±0.4 
for medium-low stroma, ±0.3 for medium-high stroma and ±0.2 for high stroma15. The third and final step of 
the segmentation process consisted in a t-test to compare the mean of consecutive segments and to merge them 
in case there are no statistical differences (p-value > 1e-04). For each segment, the mean of CNE was assigned 
as the representative value of the region. 26,423 segments of CNV were found in the 99 T samples (15,646 losses 
and 10,777 gains).

miRNA expression data. Isolated RNA was used to obtain the expression of miRNAs. Small RNA Assay 
of the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) was used to assess the quality control 
of the miRNA fraction following manufacturer’s recommendation. Small RNA-seq was performed through the 
SOLiD platform. The PureLink miRNA isolation kit was used to construct the libraries of compatible fragments 
with SOLiD from an enriched fraction of small RNA. Sequencing microspheres were obtained by applying an 
emulsion PCR into an equimolar mixture of 48 libraries followed by an enrichment process before charging in 
the reaction chamber. Finally, the reaction to obtain the sequences (of 35nt + 10nt barcode) from miRNA fraction 
was performed by blinded laboratory technicians through the Applied Biosystems SOLiD 4 System. The samples 
were randomly distributed among the different sequencing slides to minimize batch effects. The data quality was 
estimated using the SOLiD Experimental Tracking System (SETS) software. Parameters such as total number of 
reads, proportion of reads with miscalls or proportion of reads with low average quality value (QV) were evalu-
ated for quality control with HTS SOLiD Preprocessing software16, removing reads containing a miscall as well 
as reads containing negative quality scores. All 250 samples showed adequate quality. Quantification of specific 
miRNAs was performed mapping the reads to the reference of mature miRNA sequences annotated in miRBase 
release 22.1 (October 2018) that contained 2,654 human miRNA sequences17. The FASTX-toolkit18 was used to 
preprocess the miRNA data and to provide compatible sequences for mapping with the Bowtie 1.2.2 aligner19. 
Cutadapt20 software was used to trim read adapter and the final table of counts was generated with SAMtools 
mpileup v1.821. Finally, 2,641 miRNAs remained for the analysis.

Whole exome sequencing. Genomic DNA from a subset of 42 N and T paired samples was sequenced in 
the National Center of Genomic Analysis (Barcelona, Spain; CNAG) using the Illumina HiSeq- 2000 platform. 
Samples selection was required due to budgetary constraints. Samples included were those from all patients that 
had experienced tumor progression (n = 21), and a matched sample from a patient with more than 5 years of 
follow-up without progression.

Exome capture was performed with the commercial Agilent kit Sure Select XT Human All Exon 50MB. 
Exomes from T were sequenced at 60x coverage (2 × 75 bp reads), and exomes from N were sequenced at 40x 
(2 × 75 bp reads). The sequences were quality controlled using FastQC software22 and aligned over the human 
genome hg19 version, with Bowtie 2.023. Unmapped reads, reads with unmapped mate, nonprimary alignments, 
and reads that were PCR or optical duplicates were discarded with Picard24. A local realignment around indels 
found in our samples and defined in dbSNP 135.b37 version25 and 1000 genomes project26 was applied. Variant 
calling was performed with GATK software27, and low-quality variants (mapping quality below 30, read depth 
below 10 or frequency <10%) were filtered out. Germline variants from our study that are the variants found in 
normal adjacent paired tissue but not in tumor were removed. Other germline variants found in normal tissue 
from 1000 genomes project were also filtered out. Only single-nucleotide variants (SNV) were included in this 
study. Finally, variants were annotated using the SeattleSeq Variant Annotation web tool28. No correlation was 
observed between the number of mutations per sample and the control quality parameters (number of reads, 
number of no matched reads, percentage of unique aligned reads, number of duplicate reads and coverage). 
Finally, 13,015 somatic variants (11,126 SNVs) were found.

Data Records
All the Colonomics data is publicly available, though it has been deposited in diverse repositories. Table 2 sum-
marizes the accession for the different types of data. To facilitate performing multiomics analysis, downloading 
and merging the different sets, all samples have the same identifiers in all the upload datasets. We provide the 
processed data in the Colonomics website (https://www.colonomics.org/), and in the digital data repository of 
the University of Barcelona (UB-DD)3, to ensure permanent availability.

Gene expression includes 246 samples: 50 M, 98 N and 98 T. Gene expression raw and normalized data are 
available in the Gene Expression Omnibus database (GEO) through BioProject PRJNA188510 and accession 
number GSE4407629. Raw data was upload as 246 CEL files and the normalized data is included within sample 
table as text file. The normalized data as log2 RMA signals include 49,386 probesets and can also be downloaded 
from UB-DD3. Finally, the gene expression summarized at gene level is available at the UB-DD3 and includes 
20,070 genes.

DNA methylation data, both, raw and normalized are also available in GEO through BioProject 
PRJNA542323 and accession number GSE13101330. Methylation data includes 240 samples: 48 M, 96 N and 
96 T. We provide 240 IDAT files that correspond to raw data and a text file with the normalized beta values of the 
240 samples and 430,086 CpG probes. The normalized methylation data is also available at the UB-DD3 together 
with the annotation of the 430,086 CpG methylation probes. Both gene expression and DNA methylation data 
are part of the GEO super series GSE16642731.

https://doi.org/10.1038/s41597-022-01697-5
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Raw genotyped SNP data can be obtained, under controlled access, at the European Genome-phenome 
Archive (EGA) through accession number EGAD0001000125332. It includes 146 CEL files that corresponds to 
47 M and 99 patients of colon cancer.

The processed CNV data of 99 T samples is accessible in the UB-DD3. It includes 54,002 segments: 15,646 
losses, 10,777 gains and 27,579 segments that are not gains nor losses.

Raw small RNA sequencing data is also available under request in EGA through accession number 
EGAD0000100482733. We provide 250 fastq files, one for each sample (50 M, 100 N and 100 T). Count data of 
the 2,641 miRNAs and the 250 samples are accessible at UB-DD3.

Raw whole exome sequencing data of 84 samples (42 N and 42 T) with 2 fastq files per sample are accessible 
in EGA under request through accession number EGAD0000100482634. The tumors mutations identified are 
available at UB-DD3.

SNPs, miRNAs and whole exome data are in the EGA repository under the Data Access Committee through 
accession number GAC0000100066235.

Finally, somatic mutations of the 42 samples can be downloaded from UB-DD3. 13,015 somatic variants were 
included.

In addition to raw and preprocess multiomics data, clinical information of the samples is also upload at 
UB-DD3. This file is txt formatted and contains a row for each sample and a column for each variable. The 
variables included are: id_clx: the identifier of the Colonomics sample; type: tissue type (Mucosa, Normal or 
Tumor); id_clx_individual: the individual identifier; stage: the stage of the tumor (IIA or IIB); sex: (Female or 
Male); age; site: the site of the colon (Left/Right); event_free: a binary variable that indicates if the patient has a 
recurrence of colon cancer (1) or not (0); time_free: a continuous variable that indicates the time from surgery 
to recurrence of colon cancer; event_global: a binary variable that indicates if the patient is still alive (1) or not 
(0); time_global: a continuous variable that indicates the time from surgery to death; metastasis_site: the organ 
where a metastasis has appear; BRAF_mutated: a binary variable that indicates if the tumor is BRAF mutated 
(Yes) or not (No); KRAS_mutated: a binary variable that indicates if the tumor is KRAS mutated (Yes) or not 
(No); stromal_score: stromal score to predict the level of infiltrating stromal cells in tumor samples obtained 

Data Format Elements N samples Accession Accession 2

Expression

raw data CEL files 49,534 probes 246 GEO https://identifiers.org/
geo:GSE44076 —

normalized data (log2 
RMA) txt files 49,386 probes 246 GEO/UB-DD https://identifiers.org/

geo:GSE44076
https://doi.
org/10.34810/
DATA169

summary by gene (PC1) txt file 20,070 genes 246 UB-DD https://doi.org/10.34810/
DATA169

Methylation

raw data idat files 485,512 CpGs 240 GEO https://identifiers.org/
geo:GSE131013 —

probes annotations txt file 430,086 CpGs — UB-DD https://doi.org/10.34810/
DATA169 —

normalized data (betas) txt file 430,086 CpGs 240 GEO/UB-DD https://identifiers.org/
geo:GSE131013

https://doi.
org/10.34810/
DATA169

SNPs raw data CEL files 1 M SNPs 146 EGA https://ega-archive.org/datasets/
EGAD00010001253 —

CNV segment data txt file 54,002 segments 99 UB-DD https://doi.org/10.34810/
DATA169 —

miRNAs
raw data fastq file probes 250 EGA https://ega-archive.org/datasets/

EGAD00001004827 —

count data txt file 2,641 miRNAs 250 UB-DD https://doi.org/10.34810/
DATA169 —

Whole Exome raw data fastq files  
(2 x sample) reads 84 EGA https://ega-archive.org/datasets/

EGAD00001004826 —

Somatic Mutations mutation data txt file 13,015 mutations 42 UB-DD https://doi.org/10.34810/
DATA169 —

Clinical data clinical data txt file covariates 250 UB-DD https://doi.org/10.34810/
DATA169 —

Expression Predictive 
Models predictive model txt/db files gene/SNP info — ZENODO https://doi.org/10.5281/

zenodo.6334768 —

Methylation Predictive 
Models predictive model txt/db files CpG/SNP info — ZENODO https://doi.org/10.5281/

zenodo.6334768 —

miRNAs Predictive 
Models predictive model txt/db files miRNA/SNP info — ZENODO https://doi.org/10.5281/

zenodo.6334768 —

MultiAssayCLX.Rdata MultiAssayExperiment 
R object Rdata

49,534 expression 
probes/430,086 
methylation CpGs/2,641 
miRNAs/38,905 CNV 
segments/Clinical data

— UB-DD https://doi.org/10.34810/
DATA169 —

Table 2. Data accession summary table.
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using ESTIMATE package (version 1.0.13)13 from R and CMS: consensus molecular subtype classification of the 
tumoral samples in 4 groups (CMS1, CMS2, CMS3 or CMS4) obtained using CMScaller package (version 0.1)36 
from R and based on the paper of Guinney et al.37.

To facilitate working with all these data and to avoid downloading each dataset individually, a 
MultiAssayExperiment object from R (version 1.22)38 has also been created. This object includes clinical data, 
data from gene expression, methylation, miRNAs and copy number variation and it is accessible in UB-DD3.

In addition to clinical and multiomics data, gene expression prediction models from SNP data, useful for 
Transcriptome-Wide Association Studies (TWAS), can be download from Zenodo through accession number 
633476839. These models were built for normal colon tissue (samples N + M) using elastic net regression, follow-
ing the PredictDB pipeline40,41. They include significant prediction for 1,758 genes, 17,281 CpG probes and 39 
miRNAs. See the usage notes section for more details.

technical Validation
We performed technical validations and results replication in other datasets for some of the Colonomics 
assays. For gene expression, a selected group of genes were assessed with multiplexed RT-qPCR using BioMark 
Dynamic Array 96 × 96 Plates (Fluidigm Corporation, San Francisco, CA). ACTB, TPT1, and UBC were used 
as control genes in the assay, see Solé et al.42 for details. Also, differentially expressed genes were validated using 
45 N/T paired samples from The Cancer Genome Atlas (TCGA) data43, obtaining that the 97.86% of our differ-
entially expressed genes were also differentially expressed in TCGA data44. Differentially expressed genes were 
found using limma R package (version 3.42)45. Genes with an absolute log fold change >1 and a Bonferroni 
adjusted P-value < 0.05 were defined as differentially expressed.

Regarding DNA methylation data, the list of the differentially methylated CpGs obtained using Colonomics 
data was compared with the one obtained using the 45 N/T paired samples from TCGA data obtaining that the 
99.96% of the common CpGs were also differentially methylated in TCGA data44. Also, CNV was validated 
using TCGA data. In this case, 222 colon cancer samples were used to compare the obtained 13,279 minimal 
recurrent regions and 66% of these regions were also found in TCGA data15.

In the analysis of whole exome sequencing data, 13 SNPs in the 84 samples were genotyped using KASPar 
genotyping assays (KASP-By-Design; LGC Group) on the Fluidigm genotyping platform (48.48 Dynamic 
Array IFG, Fluidigm). These data were used to assess concordance between samples. All 42 N samples correctly 
matched with their corresponding T sample46. Also, to validate recurrent mutations found in AMER1 gene, 
sanger sequencing was used. All mutations were validated.

As a validation of the discovery pipeline of SNVs, 6 mutations in KRAS (Q61H, A146T, G12V, G12D, G12S, 
G13D) and 7 in TP53 (G245D, R248Q, R237H, R273C, R175H, R282W, R213_, G245S) were tested using 
KASPar genotyping assays in the Fluidigm Biomark platform (dynamic arrays). A 65% of concordance were 
achieved. It is noteworthy that 10 out of 11 no concordant mutations were only found by exome sequencing thus 
confirming the higher sensitivity of this technique.

Usage Notes
Re-use of the data and study limitations. All the data in the Colonomics project has been analyzed 
and used in published papers except for miRNAs data. The first paper involving Colonomics data was published 
eight years ago in 2014. The data were analyzed with the best algorithms and programs at that time, but nowadays 
there may exist improved analysis pipelines. That’s why we have shared raw data for each omic layer in addition 
to preprocessed data. Specifically, for the case of whole exome sequencing data that was processed 8 years ago, we 
are aware that the calling algorithms may have produced some false positive mutations.

When re-using Colonomics data we also need to consider that all samples were confirmed adenocarcinoma 
of the colon, diagnosed in stage II and the tumor was microsatellite stable. Colonomics data is a very homogene-
ous cohort, but the absence of rectal tumors, colon tumors in other stages rather than stage II and microsatellite 
instable samples may limit building generalizable hypothesis of colorectal cancer. Patients were selected to have 
received only radical surgery, without adjuvant chemotherapy, which also reduces potential analysis to prognosis 
but not prediction.

Web browsers. In order to visualize the different types of data, we developed different intuitive and user 
friendly shiny47 web applications that are freely accessible at https://www.colonomics.org/data-browser. There are 
four different web applications: the expression browser, the methylation browser, the expression quantitative trait 
loci (eQTL) browser and the regulatory networks browser. In these browsers, expression, methylation, and geno-
typing data have been exploited developing different types of analysis. A web browser integrating all the types of 
omics datasets available would be an interesting future application.

Genetic prediction models for normal mucosal biopsies. The genetic prediction models represent 
reference imputation panels for normal colon tissue methylation and gene and miRNA expression, which are of 
high interest for performing TWAS studies for colon-related diseases.

We provided significant prediction models for 1,758 genes, 17,281 CpG probes and 39 miRNAs obtained 
from normal biopsy samples. These features can be predicted from SNPs located within ± 1 Mb, which we 
assumed they act through cis mechanisms. We included the model’s summary statistics and corresponding SNP 
weights in SQLite objects39. Models were trained using the elastic net procedure employed in the PredictDB 
pipeline40,41, according to which only models with a predictive performance p-value < 0.05 and R2 >0.1 are 
considered significant. We adjusted the models by basic covariates, i.e., sex, age, tissue type and colon anatomic 
location where biopsies were collected (left and right colon). Genome coordinates refer to GRCh37/hg19.

https://doi.org/10.1038/s41597-022-01697-5
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Prediction models for gene expression were trained using 144 normal mucosal biopsy samples (97 N and 
47 M), the common samples between gene expression and SNPs. We trained models for 13,939 genes (including 
protein coding, long non-coding and pseudogenes), which had more than 3 sequencing reads in more than 10% 
of the samples. In cases where multiple probes mapped to a single gene, the first principal component from PCA 
was used to capture the largest common variability. Trimmed Mean of M-values (TMM) normalization was 
applied. TMMs were transformed with inverse normal transformation.

Prediction models for CpG probes were trained using 132 normal mucosal biopsies (95 N and 37 M). Only 
CpG annotated in islands, shores and shelves were taken into account as CpGs in open-sea are not functionally 
interesting. We also filter in CpGs which had more than 3 sequencing reads in more than 5% of the samples. 
After these filters, 257,809 CpG remained for the analysis. Inverse normal transformation on Beta MIxture 
Quantile (BMIQ)-normalized values was applied. In addition to the basic covariates for adjustment, we adjusted 
the models by 10 probabilistic estimation of expression residuals (PEER) factors48 to capture additional technical 
variability.

Prediction models for miRNAs were trained using 146 normal mucosal biopsies (99 N and 47 M), the com-
mon samples between miRNAs and SNPs. From the 2,641 miRNAs, we included 739 miRNAs, which had more 
than 3 sequencing counts in more than 10% of the samples. TMM normalization was applied and transformed 
with inverse normal transformation. As SNP data is in hg19 genome built, annotations of miRNAs refer to the 
miRBase release 2017,49.

Code availability
Code used to process and analyze the data is available upon request. Some R scripts can be downloaded from 
https://github.com/odap-ico/colonomics.
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