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Abstract

We determine the Hopf Galois structures on a Galois field extension of degree twice an

odd prime square and classify the corresponding skew left braces. Besides we determine

the separable field extensions of degree twice an odd prime square allowing a cyclic Hopf

Galois structure and the number of these structures.

1 Introduction

A Hopf Galois structure on a finite extension of fields L/K is a pair (H, µ), where H is a
finite cocommutative K-Hopf algebra and µ is a Hopf action of H on L, i.e. a K-linear map
µ : H → EndK(L) giving L a left H-module algebra structure and inducing a K-vector space
isomorphism L ⊗K H → EndK(L). Hopf Galois structures were introduced by Chase and
Sweedler in [9]. For separable field extensions, Greither and Pareigis [14] give the following
group-theoretic equivalent condition to the existence of a Hopf Galois structure.

Theorem 1. Let L/K be a separable field extension of degree g, L̃ its Galois closure, G =

Gal(L̃/K), G′ = Gal(L̃/L). Then there is a bijective correspondence between the set of iso-
morphism classes of Hopf Galois structures on L/K and the set of regular subgroups N of the
symmetric group Sg normalized by λG(G), where λG : G →֒ Sg is the monomorphism given by
the action of G on the left cosets G/G′.

For a given Hopf Galois structure on a separable field extension L/K of degree g, we will
refer to the isomorphism class of the corresponding group N as the type of the Hopf Galois
structure. The Hopf algebra H corresponding to a regular subgroup N of Sg normalized by

λG(G) is the K-Hopf subalgebra L̃[N ]G of the group algebra L̃[N ] fixed under the action of G,

where G acts on L̃ byK-automorphisms and onN by conjugation through λG. The Hopf action
is induced by n 7→ n−1(1), for n ∈ N , where we identify Sg with the group of permutations of
G/G′ and 1 denotes the class of 1G in G/G′.

Childs [10] gives an equivalent condition to the existence of a Hopf Galois structure in-
troducing the holomorph of the regular subgroup N of Sg. Let λN : N → Sym(N) be the
morphism given by the action of N on itself by left translation. The holomorph Hol(N) of N
is the normalizer of λN(N) in Sym(N). As abstract groups, we have Hol(N) = N ⋊ Aut(N).
We state the more precise formulation of Childs’ result due to Byott [6] (see also [11] Theorem
7.3).

Theorem 2. Let G be a finite group, G′ ⊂ G a subgroup and λG : G → Sym(G/G′) the
morphism given by the action of G on the left cosets G/G′. Let N be a group of order [G : G′]
with identity element eN . Then there is a bijection between

N = {α : N →֒ Sym(G/G′) such that α(N) is regular}
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and
G = {β : G →֒ Sym(N) such that β(G′) is the stabilizer of eN}

Under this bijection, if α, α′ ∈ N correspond to β, β ′ ∈ G, respectively, then α(N) = α′(N) if
and only if β(G) and β ′(G) are conjugate by an element of Aut(N); and α(N) is normalized
by λG(G) if and only if β(G) is contained in the holomorph Hol(N) of N .

As a corollary to the preceding theorem Byott [6], Proposition 1, obtains the following
formula to count Hopf Galois structures.

Corollary 3. Let L/K be a separable field extension of degree g, L̃ its Galois closure, G =

Gal(L̃/K), G′ = Gal(L̃/L). Let N be an abstract group of order g and let Hol(N) denote the
holomorph of N . The number a(N,L/K) of Hopf Galois structures of type N on L/K is given
by the following formula

a(N,L/K) =
|Aut(G,G′)|

|Aut(N)|
b(N,G,G′)

where Aut(G,G′) denotes the group of automorphisms of G taking G′ to G′, Aut(N) denotes the
group of automorphisms of N and b(N,G,G′) denotes the number of subgroups G∗ of Hol(N)
such that there is an isomorphism from G to G∗ taking G′ to the stabilizer in G∗ of 1N .

Recently a relationship has been found between Hopf Galois structures and an algebraic
structure called brace. Classical braces were introduced by W. Rump [18], as a generalisation
of radical rings, in order to study the non-degenerate involutive set-theoretic solutions of the
quantum Yang-Baxter equation. Recently, skew braces were introduced by Guarnieri and
Vendramin [15] in order to study the non-degenerate (not necessarily involutive) set-theoretic
solutions. This connection is further exploited in [19], where the relation of braces with other
algebraic structures is established.

Definition 4. A skew (left) brace is a set B endowed with two binary operations · and ◦ such
that (B, ·) and (B, ◦) are groups (not necessarily abelian) and the two operations are related
by the skew brace property

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c), for all a, b, c ∈ B,

where a−1 denotes the inverse of a in (B, ·). The groups (B, ·) and (B, ◦) are called respectively
the additive group and the multiplicative group of the skew brace B. If the additive group of
B is abelian, we call B a (classical) brace.

A map between skew braces is a skew brace morphism if it is a group morphism both
between the additive and the multiplicative groups.

The relation between braces and Hopf-Galois structures was first proved by Bachiller for
classical braces (see [5] Proposition 2.3) and generalized by Guarnieri and Vendramin to skew
braces.

Proposition 5 ([15] Proposition 4.3). Let (N, ·) be a group. There is a bijective correspondence
between isomorphism classes of left skew braces with additive group isomorphic to (N, ·) and
classes of regular subgroups of Hol(N) under conjugation by elements of Aut(N).
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We recall that, if G is a regular subgroup of Hol(N), then π : G → N, (x, ϕ) 7→ x is
bijective. Then N with the operation

x ◦ y = π(π−1(x)π−1(y)) = xϕ(y)

is a group isomorphic to G and (N, ·, ◦) is a skew left brace.
To a skew left brace one associates its socle, annihilator and its group of automorphisms.

Definition 6. Let (B, ·, ◦) be a skew left brace. We define its socle Soc(B) by

Soc(B) := {a ∈ B | a ◦ b = ab, b(b ◦ a) = (b ◦ a)b, ∀b ∈ B},

and its annihilator Ann(B) by

Ann(B) := Soc(B) ∩ Z(B, ◦),

where Z(B, ◦) is the centre of the group (B, ◦).

Proposition 7 ([19] Example 4.3). Let (B, ·, ◦) be a skew left brace. Then Soc(B) is contained
in the center Z(B, ·) of (B, ·). Moreover it is a normal subgroup of (B, ◦).

An automorphism of a skew brace B is a bijection from B to B which is a group morphism
with respect to both operations in B. If B is the skew brace associated to a regular subgroup
G of Hol(N), we have the following characterization of the group of automorphisms Aut(B) of
B (see [16], formula (3) below Proposition 2.5).

Aut(B) ≃ {ϕ ∈ Aut(N) : ϕGϕ−1 ⊂ G}.

Bachiller [4] classified braces of order p3, for a prime number p. Nejabati Zenouz [16, 17]
classified skew left braces of order p3, for a prime number p. Dietzel [13] classified skew left
braces of order p2q, for p and q prime numbers with p < q − 1. Catino, Colazzo and Stefanelli
[8] presented a method to determine skew left braces with non-trivial annihilator. In [12] we
determined exactly the possible sets of Hopf Galois structure types for separable field extensions
of degree 2p2. In this paper, we consider the groups N of order 2p2, for p an odd prime number.
For such a group, we determine all regular subgroups of the holomorph Hol(N). This result
leads on the one hand to the determination of the Hopf Galois structures on a Galois field
extension of degree 2p2. On the other hand it allows to classify the skew left braces of order
2p2. We note that we obtain in particular skew braces with trivial annihilator as for instance
all those with additive group the nonabelian group of order 2p2 with noncyclic p-Sylow group
and trivial center. Moreover we determine the separable field extensions of degree 2p2 having a
Hopf Galois structure of cyclic type and the number of these structures. In [1] and [2] Acri and
Bonatto enumerate the skew left braces of size p2q, for p, q primes. In [7] Campedel, Caranti
and Del Corso classify the Hopf-Galois structures on Galois extensions of degree p2q, such that
the Sylow p-subgroups of the Galois group are cyclic, and the corresponding skew braces. In
[3] Alabdali and Byott determine the number of skew left braces of square free size.
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2 Groups of order 2p2, for p an odd prime number

Let p denote an odd prime. As seen in [12], there are five groups of order 2p2, up to isomorphism.
These are C2p2, D2p2, Cp × C2p, Cp ×D2p and (Cp × Cp) ⋊ C2. The automorphism group for
each of them was determined in [12]. Let us recall them.

1) Aut(C2p2) ≃ (Z/2p2Z)∗ is cyclic of order p(p− 1).

2) For G = D2p2 = 〈r, s|rp
2

= s2 = 1, srs = r−1〉, an automorphism is given by r 7→ ri, s 7→ rjs,
with 0 ≤ i, j ≤ p2 − 1, p ∤ i. We have then |Aut(G)| = (p2 − p)p2 = p3(p− 1).

3) For G = Cp × Cp × C2 = 〈a〉 × 〈b〉 × 〈c〉, c is the unique element of order 2. An element in
Aut(G) is then given by a 7→ aibj , b 7→ akbl, c 7→ c, with 0 ≤ i, j, k, l ≤ p− 1, p ∤ il− jk. We
have then Aut(G) ≃ GL(2, p) and |Aut(G)| = (p2 − 1)(p2 − p) = p(p+ 1)(p− 1)2.

4) For G = Cp ×D2p, let Cp = 〈c〉 and D2p = 〈r, s|rp = s2 = 1, srs = r−1〉. An automorphism
of G is given by c 7→ ck, r 7→ ri, s 7→ rjs, with 1 ≤ i, k ≤ p− 1, 0 ≤ j ≤ p− 1. We have then
|Aut(G)| = p(p− 1)2.

5) For G = (Cp × Cp) ⋊ C2, we write Cp × Cp = 〈a〉 × 〈b〉 and C2 = 〈c〉. We have cac = a−1

and cbc = b−1. An automorphism of G is given by a 7→ aibj , b 7→ akbl, c 7→ ambnc, with
0 ≤ i, j, k, l,m, n ≤ p − 1, p ∤ il − jk. We have then |Aut(G)| = (p2 − 1)(p2 − p)p2 =
p3(p+ 1)(p− 1)2.

3 Galois extensions of degree 2p2

In this section we consider a Galois field extension L/K of degree 2p2 and determine the
number of Hopf Galois structures on L/K for each possible type. We shall prove the following
theorem throughout this section.

Theorem 8. Let L/K be a Galois field extension of degree 2p2, with p an odd prime number.
Let G = Gal(L/K) and let N be a group of order 2p2. Then the number of Hopf Galois
structures on L/K of type N is as given in the following table.

Galois group G � type N C2p2 D2p2 Cp × C2p Cp ×D2p (Cp × Cp)⋊ C2

C2p2 p 2p 0 0 0

D2p2 p2 2 0 0 0

Cp × C2p 0 0 p2 2p(p+ 1) p(3p+ 1)

Cp ×D2p 0 0 p2 2p(p+ 1) p(3p+ 1)

(Cp × Cp)⋊ C2 0 0 p2 2p2(p+ 1) 2p3 + p2 − p+ 2

Lemma 9. The statement in Theorem 8 is equivalent to the number of transitive subgroups of
Hol(N) isomorphic to G being as given in the following table.
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G � N C2p2 D2p2 Cp × C2p Cp ×D2p (Cp × Cp)⋊ C2

C2p2 p 2p3 0 0 0

D2p2 1 2 0 0 0

Cp × C2p 0 0 p2 2p p3(3p+ 1)

Cp ×D2p 0 0 p2(p+ 1) 2p(p+ 1) p3(p+ 1)(3p+ 1)

(Cp × Cp)⋊ C2 0 0 1 2 2p3 + p2 − p+ 2

Proof. The result follows by applying Corollary 3 and the determination of the automorphism
groups of the groups of order 2p2 given in Section 2.

Applying Theorem 3 in [12] and the fact that the only groups of order p2 are Cp2 and
Cp × Cp, we obtain that, for a given group N , with p-Sylow subgroup Sylp(N), the transitive
subgroups G of Hol(N) of order 2p2 have a p-Sylow subgroup Sylp(G) isomorphic to Sylp(N).
This gives all zeros in the table in Lemma 9. Moreover Sylp(G) is a semiregular subgroup of
Hol(N). In each case, given N , we shall determine first the semiregular subgroups of Hol(N)
isomorphic to Sylp(N) and afterwards the elements of order 2 normalizing those subgroups and
generating together a regular subgroup of Hol(N). We will then obtain explicitly all regular
subgroups of Hol(N). This will prove the validity of the data in the table in Lemma 9, column
by column.

3.1 Regular subgroups of Hol(C2p2)

Lemma 10. Hol(C2p2) has exactly p subgroups of order p2, all of them acting on C2p2 without
fixed points.

Proof. If an element (x, ϕ) ∈ Hol(C2p2) = C2p2 ⋊ Aut(C2p2) has order p
2, then ϕp = Id, since

Aut(C2p2) ≃ (Z/2p2Z)∗ is cyclic of order p(p − 1). Now, if ϕ has order p, ϕ(x) = xi, for i of
order p modulo p2. We have then

(x, ϕ)p = (xϕ(x) . . . ϕp−1(x), ϕp) = (x1+i+···+ip−1

, Id).

Now 1 + i + · · · + ip−1 =
1− ip

1− i
is divisible by p but not by p2. Indeed, we have i ≡ λp + 1

(mod p2), for some λ with 1 ≤ λ ≤ p− 1 and ip − 1 ≡ λp2 (mod p3). Hence (x, ϕ) has order
p2. We have then that (x, ϕ) has order p2 if and only if ϕp = Id and x has order p2. Since
C2p2 has p(p− 1) elements of order p2 and Aut(C2p2) has p− 1 elements of order p, we obtain
p2(p− 1) elements of order p2 in Hol(C2p2). Since a group of order p2 has p(p− 1) generators,
we obtain that Hol(C2p2) has exactly p subgroups of order p2, generated by (x, ϕ), with x of
order p2 and ϕp = Id. Clearly, all of them act on C2p2 without fixed points.

Proposition 11. The regular subgroups of Hol(C2p2) are precisely p regular subgroups isomor-
phic to C2p2 and 1 regular subgroup isomorphic to D2p2.

Proof. We look for elements of order 2 in Hol(C2p2) which normalize the semiregular subgroups
found in Lemma 10. If an element (z, χ) ∈ Hol(C2p2) has order 2, then χ

2 = Id. The only ele-
ment χ of order 2 in Aut(C2p2) satisfies χ(x) = x−1. Now (z, χ)(x, ϕ)(z, χ) = (zχ(x)(χϕ)(z), ϕ).
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We have 〈(x, ϕ), (z, χ)〉 ≃ C2p2 if and only if zχ(x)(χϕ)(z) = x. This implies χ = Id and z
of order 2. We obtain then p subgroups of Hol(C2p2) isomorphic to C2p2 of the form 〈(x, ϕ)〉,
with ϕp = Id and x a generator of C2p2 , which are clearly regular.

In order to have 〈(x, ϕ), (z, χ)〉 ≃ D2p2, we need ϕ = Id and zχ(x)χ(z) = x−1. We have
then χ(x) = x−1 and we obtain a unique regular subgroup of Hol(C2p2) isomorphic to D2p2,
namely 〈(a2, Id), (a, χ)〉, for a a generator of C2p2, χ the element of order 2 in Aut(C2p2).

3.2 Regular subgroups of Hol(D2p2)

Let us write D2p2 = 〈r, s|rp
2

= s2 = 1, srs = r−1〉.

Lemma 12. Let us consider the automorphisms ϕ1 and ϕ2 of D2p2 defined by

ϕ1 : r 7→ r

s 7→ rs
,

ϕ2 : r 7→ rp+1

s 7→ s
.

The elements r, ϕ1, ϕ2 generate the only p-Sylow subgroup of Hol(D2p2).

Proof. We check that ϕ1 has order p2, ϕ2 has order p and ϕ2ϕ1 = ϕp+1
1 ϕ2, hence 〈ϕ1, ϕ2〉 is

a p-Sylow subgroup of Aut(D2p2) isomorphic to Gp, the non-abelian group of order p3 having
exponent p2. Moreover, since |Aut(D2p2)| = p3(p− 1) this p-Sylow subgroup is unique. Now
〈r〉⋊ 〈ϕ1, ϕ2〉 is the only p-Sylow subgroup of Hol(D2p2).

Lemma 13. Hol(D2p2) has p
3 − p2 semiregular cyclic subgroups of order p2, namely

〈(r, ϕj
1ϕ

k
2)〉, 0 ≤ j < p2, j 6≡ −1 (mod p), 0 ≤ k < p.

Proof. An element (ri, ϕj
1ϕ

k
2) of Hol(D2p2) has order p2 if and only if p ∤ i or p ∤ j. We have

then p5 − p3 elements of order p2 in Hol(D2p2) and hence p3 + p2 subgroups of order p2. If

p | i, then the subgroup 〈(ri, ϕj
1ϕ

k
2)〉 is not semiregular since the orbit of r under its action

has at most p elements. We are then left with the p3 subgroups of the form 〈(r, ϕj
1ϕ

k
2)〉,

0 ≤ j < p2, 0 ≤ k < p. Under the action of one of them, the orbit of 1 contains all powers of r
and the orbit of s contains p2 elements if and only if p ∤ j + 1.

Proposition 14. The regular subgroups of Hol(D2p2) are precisely 2p3 regular subgroups iso-
morphic to C2p2 and 2 regular subgroups isomorphic to D2p2.

Proof. We look first for elements (z, χ) of order 2. If χ = Id, we may take z = rks, 0 ≤ k ≤
p2 − 1. If χ has order 2, then χ = χl defined by χl(r) = r−1, χl(s) = rls, for some l with
0 ≤ l ≤ p2 − 1. For z = rks, we have zχ(z) = rksr−krls = r2k−l. Hence (rks, χl) has order 2 if
l = 2k.

We now determine when (z, χ) of order 2 normalizes 〈(r, ϕ)〉. Let us write ϕ = ϕi
1ϕ

j
2. We

have

(rks, Id)(r, ϕ)(rks, Id) = (rksrϕ(rks), ϕ) = (r−kjp−i−1, ϕ).

If ϕ = Id, we obtain 〈(rks, Id), (r, Id)〉 = 〈r, s〉 ≃ D2p2 . If ϕ has order p, then p | i and
−kjp− i− 1 6≡ 1 (mod p), hence (rks, Id) does not normalize 〈(r, ϕ)〉. If ϕ has order p2, then
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(rks, Id) normalizes 〈(r, ϕ)〉 for i = −2 − kjp and 〈(rks, Id), (r, ϕ)〉 ≃ C2p2 . We obtain then p3

transitive subgroups of Hol(D2p2) isomorphic to C2p2.
If χ has order 2, then χ = χ2k defined by χ2k(r) = r−1, χ2k(s) = r2ks and z = rks. We have

(rks, χ2k)(r, ϕ)(r
ks, χ2k) = (rksr−1χ2k(ϕ(r

ks)), χ2kϕχ2k).

Now χ2kϕχ2k(r) = rjp+1 = ϕ(r) and χ2kϕχ2k(s) = r−2kjp−is. If ϕ = Id, then we get
rksr−1χ2k(ϕ(r

ks)) = r. We obtain then p2 transitive subgroups of Hol(D2p2) isomorphic to
C2p2, namely 〈(r, Id), (rks, χ2k)〉, 0 ≤ k ≤ p2 − 1.

If ϕ has order p, then p | i. In this case, χ2kϕχ2k = ϕ when i = −kjp and then
rksr−1χ2k(ϕ(r

ks)) = r. We obtain then p3 − p2 transitive subgroups of Hol(D2p2) isomor-

phic to C2p2 , namely 〈(rks, χ2k), (r, ϕ)〉, with ϕ = ϕ−kjp
1 ϕj

2, 0 ≤ k ≤ p2 − 1, 1 ≤ j ≤ p− 1.
Finally, if ϕ has order p2, then p ∤ i and j must be zero. We have then χ2kϕχ2k = ϕ−1

and rksr−1χ2k(ϕ(r
ks)) = r1+i. Hence (rks, χ2k) normalizes (r, ϕ) for i = −2 and we have

〈(r, ϕ−2
1 ), (rks, χ2k)〉 ≃ D2p2 . Now (r, ϕ−2

1 )(rks, χ2k) = (rk−1s, χ2(k−1)), hence these groups
coincide for all k and we obtain 1 transitive subgroup of Hol(D2p2) isomorphic to D2p2 .

3.3 Regular subgroups of Hol(Cp × C2p)

Let us write Cp × Cp × C2 = 〈a〉 × 〈b〉 × 〈c〉.

Lemma 15. Hol(Cp × C2p) has p
2 semiregular subgroups isomorphic to Cp × Cp.

Proof. We consider the element ϕ in Aut(Cp×C2p) given by a 7→ ab, b 7→ b, c 7→ c. Then ϕ has
order p and, in Hol(Cp × C2p), we have the relation (1, ϕ)(a, Id) = (b, Id)(a, Id)(1, ϕ) whereas
(1, ϕ) and (b, Id) commute with each other. Hence a, b, ϕ generate a p-Sylow subgroup Sylp of
Hol(Cp×C2p) isomorphic to the Heisenberg group Hp. The normalizer of Sylp in Hol(Cp×C2p)
consists in the elements (z, ψ) such that ψ normalizes 〈ϕ〉 in Aut(Cp ×C2p) ≃ GL(2, p), hence
has index p+1 in Hol(Cp×C2p). Now Sylp has p+1 subgroups isomorphic to Cp×Cp, namely

A := 〈a, b〉 and Bi := 〈(ai, ϕ), b〉, 0 ≤ i ≤ p− 1, (1)

which are semiregular, except for 〈(1, ϕ), b〉. Since 〈a, b〉 is normal in Hol(Cp ×C2p), we obtain
(p− 1)(p+ 1) + 1 = p2 semiregular subgroups of Hol(Cp × C2p) isomorphic to Cp × Cp.

Proposition 16. The regular subgroups of Hol(Cp × C2p) are precisely p2 regular subgroups
isomorphic to Cp×C2p, p

3+p2 regular subgroups isomorphic to Cp×D2p and 1 regular subgroup
isomorphic to (Cp × Cp)⋊ C2.

Proof. We look for elements of order 2 normalizing A or Bi in (1). If an element (z, χ) ∈
Hol(C2p2) has order 2, then χ2 = Id. If χ = Id, then z = c, the only element of order 2
in Cp × C2p, and (c, Id) centralizes both A and Bi. We obtain then p2 regular subgroups of
Hol(Cp × C2p) isomorphic to Cp × C2p.

If χ has order 2, then zχ(z) = 1. We have

(z, χ)(a, Id)(z, χ) = (zχ(a)χ(z), Id) = (χ(a), Id)

(z, χ)(b, Id)(z, χ) = (zχ(b)χ(z), Id) = (χ(b), Id).

Hence (z, χ) normalizes A. We obtain the regular subgroup 〈a, b, (c, χ)〉 of Hol(Cp × C2p)
isomorphic to (Cp × Cp) ⋊ C2, when χ(a) = a−1, χ(b) = b−1, and p(p + 1) = p2 + p regular
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subgroups of Hol(Cp × C2p) isomorphic to Cp ×D2p, conjugated to the subgroup 〈a, b, (c, χ)〉,
where χ is defined by χ(a) = a−1, χ(b) = b.

Now

(z, χ)(ai, ϕ)(z, χ) = (zχ(a)iχϕ(z), χϕχ).

So that (z, χ) normalizes Bi, we must have χ(b) ∈ 〈b〉 and χϕχ ∈ 〈ϕ〉.
We have three possibilities for χ, namely χ1 defined by χ1(a) = a−1 and χ1(b) = b−1; χ2,j

defined by χ2,j(a) = a−1bj and χ2,j(b) = b; χ3,j defined by χ3,j(a) = abj and χ3,j(b) = b−1.
Then χϕχ = ϕ in the first case and χϕχ = ϕ−1 in the other two. In order to obtain a regular
subgroup, we take z = akc. Now zχ2,j(z) = 1 implies jk = 0 and zχ3,j(z) = 1 implies k = 0.
We further impose (z, χ)(ai, ϕ)(z, χ) = (zχ(a)iχϕ(z), χϕχ) to lie in Bi. We obtain the regular
subgroups Bi ⋊ 〈(akc, χ2,j)〉 isomorphic to Cp ×D2p. Taking into account ϕχ2,j = χ2,j−1, these
groups may be written as Bi ⋊ 〈(akc, χ2,0)〉, 0 < i ≤ p − 1, 0 ≤ k ≤ p − 1. Together with
their conjugates, these are (p− 1)p(p+ 1) = p3 − p subgroups, so we get in all p3 + p2 regular
subgroups of Hol(Cp × C2p) isomorphic to Cp ×D2p, as wanted.

3.4 Regular subgroups of Hol(Cp ×D2p)

We write Cp ×D2p = 〈r, s, c〉 as in Section 2.

Lemma 17. Let ϕ denote the automorphism of Cp ×D2p given by r 7→ r, s 7→ rs, c 7→ c. The
p2 − p subgroups

Ak,l := 〈(r, ϕk), (c, ϕl)〉, 0 ≤ k ≤ p− 2, 0 ≤ l ≤ p− 1, (2)

isomorphic to Cp × Cp, are precisely the semiregular subgroups of Hol(Cp ×D2p) of order p
2.

Proof. The automorphism ϕ has order p and commutes with r and c in Hol(Cp ×D2p). Hence
r, c and ϕ generate a p-Sylow subgroup Sylp of Hol(Cp × D2p) isomorphic to Cp × Cp × Cp.
Moreover Sylp is normal in Hol(Cp×D2p), hence it is the unique p-Sylow subgroup. We obtain
that Hol(Cp ×D2p) has p

2 + p+1 subgroups isomorphic to Cp ×Cp. Now, for x, y ∈ 〈r, c〉, the
orbit of 1 under the action of the subgroup 〈(x, ϕk), (y, ϕl)〉 has p2 elements when 〈x, y〉 = 〈r, c〉
and the subgroup may be written as Ak,l := 〈(r, ϕk), (c, ϕl)〉. The orbit of s has p2 elements
if and only if p ∤ k + 1. We obtain then that Hol(Cp ×D2p) has p

2 − p subgroups isomorphic
to Cp × Cp and semiregular, which may be written as Ak,l := 〈(r, ϕk), (c, ϕl)〉, with 0 ≤ k ≤
p− 2, 0 ≤ l ≤ p− 1.

Proposition 18. The regular subgroups of Hol(Cp × D2p) are precisely 2p regular subgroups
isomorphic to Cp × C2p, 2p2 + 2p regular subgroups isomorphic to Cp × D2p and 2 regular
subgroups isomorphic to (Cp × Cp)⋊ C2.

Proof. We look for elements (z, χ) of order 2 normalizing Ak,l in (2) and generating together
a transitive group. If χ = Id, then z = ris and (ris, Id) normalizes Ap−2,0 and A0,l. We obtain
then the p subgroups Ap−2,0 × 〈(ris, Id)〉, 0 ≤ i ≤ p − 1, isomorphic to Cp × C2p and the p
subgroups A0,l ⋊ 〈(s, Id)〉, 0 ≤ l ≤ p− 1, isomorphic to Cp ×D2p.

If χ has order 2, we must have zχ(z) = 1. We have three possibilities, namely (ris, χ1,i), with
χ1,i(r) = r−1, χ1,i(c) = c, χ1,i(s) = r2is, 1 ≤ i ≤ p− 1; (ricjs, χ2,i), with χ2,i(r) = r−1, χ2,i(c) =
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c−1, χ2,i(s) = r2is, 0 ≤ i, j ≤ p − 1; (ricjs, χ3), with χ3(r) = r, χ3(c) = c−1, χ3(s) = s,
0 ≤ i, j ≤ p− 1. We obtain

(ris, χ1,i)(r, ϕ
k)(ris, χ1,i) = (rk+1, ϕ−k), (ris, χ1,i)(c, ϕ

l)(ris, χ1,i) = (crl, ϕ−l).

Then (ris, χ1,i) normalizes Ap−2,l and Ap−2,l ⋊ 〈(ris, χ1,i)〉 is isomorphic to Cp ×D2p, 0 ≤ i, l ≤
p − 1. Since (r, ϕ−2)(ris, χ1,i) = (ri−1s, χ1,i−1), each of these groups contains p elements of
the form (ris, χ1,i) and we have then p regular subgroups isomorphic to Cp ×D2p, which may
be written as 〈(r, ϕ−2), (c, ϕl), (s, χ1,0)〉, 0 ≤ l ≤ p − 1. Also (ris, χ1,i) normalizes A0,0 and
A0,0 × 〈(ris, χ1,i)〉 is isomorphic to Cp × C2p, 0 ≤ i ≤ p− 1. Now

(ricjs, χ2,i)(r, ϕ
k)(ricjs, χ2,i) = (rk+1, ϕ−k), (ricjs, χ2,i)(c, ϕ

l)(ricjs, χ2,i) = (c−1rl, ϕ−l).

The element (rk+1, ϕ−k) belongs to Ak,l for k = 0 and k = p− 2. In the first case, (c−1rl, ϕ−l)
belongs to A0,l for any l and in the second case it belongs to Ap−2,l only for l = 0. Then
(ricjs, χ2,i) normalizes A0,l and A0,l ⋊ 〈(cjs, χ2,i)〉 is isomorphic to Cp ×D2p. This amounts to
p2 regular subgroups isomorphic to Cp ×D2p since each of these groups contains p elements of
the form (cjs, χ2,i). We write them 〈r, (c, ϕl), (s, χ2,i)〉, 0 ≤ i, l ≤ p − 1. Moreover (ricjs, χ2,i)
normalizes Ap−2,0 and Ap−2,0⋊〈(ris, χ2,i)〉 is isomorphic to (Cp×Cp)⋊C2, 0 ≤ i ≤ p−1. In fact
these groups are equal for all values of i, since (r, ϕ−2) = (ri−1, ϕ−2χ2,i) and ϕ

−2χ2,i = χ2,i−1.
We obtain then one transitive subgroup of Hol(Cp×D2p) isomorphic to (Cp×Cp)⋊C2. Finally

(ricjs, χ3)(r, ϕ
k)(ricjs, χ3) = (r−k−1, ϕk), (ricjs, χ3)(c, ϕ

l)(ricjs, χ3) = (c−1r−l, ϕl).

Then (ricjs, χ3) normalizes Ap−2,l and Ap−2,l ⋊ 〈(ricjs, χ3)〉 is isomorphic to Cp × D2p. Now
Ap−2,l = 〈(crl/2, Id), (r, ϕ−2)〉, so we have p2 different subgroups, namely,

〈(crl/2, Id), (r, ϕ−2), (ris, χ3)〉, 0 ≤ i, l ≤ p− 1.

Moreover (ricjs, χ3) normalizes A0,0 and 〈r, c〉⋊ 〈(s, χ3)〉 is isomorphic to (Cp ×Cp)⋊C2.

3.5 Regular subgroups of Hol((Cp × Cp)⋊ C2)

Let us write (Cp × Cp)⋊ C2 = (〈a〉 × 〈b〉)⋊ 〈c〉 as in Section 2.

Lemma 19. Let us consider the automorphisms ϕ1, ϕ2, ϕ3 of (Cp × Cp)⋊ C2 given by

ϕ1 : a 7→ a

b 7→ ab

c 7→ c

,

ϕ2 : a 7→ a

b 7→ b

c 7→ ac

,

ϕ3 : a 7→ a

b 7→ b

c 7→ bc

.

We have

1) Sylp := 〈a, b〉⋊ 〈ϕ1, ϕ3〉 is a p-Sylow subgroup of Hol((Cp × Cp)⋊ C2).

2) The number of p-Sylow subgroups of Hol((Cp × Cp)⋊ C2) is p+ 1.
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3) The subgroup F := 〈a, b, ϕ2, ϕ3〉 is isomorphic to C4
p and is normal in Hol((Cp ×Cp)⋊C2),

hence contained in all p-Sylow subgroups of Hol((Cp × Cp)⋊ C2).

Proof. 1) The automorphisms ϕ1, ϕ2, ϕ3 have order p and satisfy ϕ1ϕ3 = ϕ2ϕ3ϕ1 whereas
ϕ2 commutes with both ϕ1 and ϕ3. Hence 〈ϕ1, ϕ2, ϕ3〉 = 〈ϕ1, ϕ3〉 is a p-Sylow subgroup of
Aut((Cp×Cp)⋊C2) isomorphic to the Heisenberg group Hp. Therefore Sylp = 〈a, b〉⋊ 〈ϕ1, ϕ3〉
is a p-Sylow subgroup of Hol((Cp × Cp)⋊ C2).
2) We shall determine the normalizer of Sylp in Hol((Cp × Cp)⋊C2). Since 〈a, b〉 is normal in
〈a, b, c〉, so that (x, ϕ) normalizes Sylp, it is enough that ϕ normalizes 〈ϕ1, ϕ3〉. We consider ϕ
defined by

ϕ(a) = aibj , ϕ(b) = akbl, ϕ(c) = ambnc, 0 ≤ i, j, k, l,m, n ≤ p− 1, p ∤ il − jk. (3)

Then ϕ−1 is given by a 7→ ai
′

bj
′

, b 7→ ak
′

bl
′

, c 7→ a−(mi′+nk′)b−(mj′+nl′)c, where
(

i′ j′

k′ l′

)
=

(
i j
k l

)
−1

in GL(2, p). We have (ϕϕ1ϕ
−1)(a) = a1+ij′bjj

′

, (ϕϕ1ϕ
−1)(b) = ail

′

b1+jl′ , hence ϕϕ1ϕ
−1 ∈

〈ϕ1, ϕ2, ϕ3〉 if and only if j = j′ = 0. Now clearly ϕϕ3ϕ
−1 ∈ 〈ϕ2, ϕ3〉, for any ϕ. We obtain then

that the normalizer of Sylp in Hol((Cp×Cp)⋊C2) has order p
3(p−1)2, hence Hol((Cp×Cp)⋊C2)

has p+ 1 p-Sylow subgroups.
3) Taking into account that ϕ2 commutes with ϕ3 and the action of ϕ2 and ϕ3 on a and b, we
obtain that the subgroup F = 〈a, b, ϕ2, ϕ3〉 is isomorphic to C4

p . Moreover, for any ϕ as in (3),
we have ϕϕ2ϕ

−1, ϕϕ3ϕ
−1 ∈ 〈ϕ2, ϕ3〉, hence F is normal in Hol((Cp × Cp)⋊ C2).

Lemma 20. With F and Sylp as in Lemma 19, we have

1) The p(p− 1)2(p+ 1) subgroups

〈(a, ϕi
2ϕ

j
3), (b, ϕ

k
2ϕ

l
3)〉, 0 ≤ i, j, k, l ≤ p− 1, p ∤ (i+ 1)(l + 1)− jk

are precisely the semiregular subgroups of F isomorphic to Cp × Cp.

2) The p(p− 1)3 subgroups

〈(a, ϕi2
2 ), (b, ϕ

j1
1 ϕ

j2
2 ϕ

j3
3 )〉, 0 ≤ j2 ≤ p− 1, 0 ≤ i2, j3 ≤ p− 2, 1 ≤ j1 ≤ p− 1

are precisely the semiregular subgroups of Sylp isomorphic to Cp × Cp, not contained in F .

3) The number of semiregular subgroups of Hol((Cp×Cp)⋊C2) isomorphic to Cp×Cp is equal
to p2(p− 1)2(p+ 1).

Proof. 1) A subgroup of F isomorphic to Cp × Cp is generated by two nontrivial elements
(x, ϕ), (y, ψ) such that (y, ψ) 6∈ 〈(x, ϕ)〉. If 〈x, y〉 = 〈a, b〉, then the orbit of 1 is the whole
group 〈a, b〉. The subgroups satisfying this condition may be written as

〈(a, ϕi
2ϕ

j
3), (b, ϕ

k
2ϕ

l
3)〉, 0 ≤ i, j, k, l ≤ p− 1.

Now the orbit of c contains p2 elements if and only if p ∤ (i + 1)(l + 1) − jk. We obtain then
(p2 − 1)(p2 − p) = p(p− 1)2(p+ 1) semiregular subgroups of F isomorphic to Cp × Cp.
2) We look now for semiregular subgroups of Sylp isomorphic to Cp × Cp and not contained

in F . Such a subgroup is generated by two mutually commuting elements (a, ϕi1
1 ϕ

i2
2 ϕ

i3
3 ) and
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(b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 ), with i1 and j1 not both zero. Now, since ϕi3

3 ϕ
j1
1 = ϕ−j1i3

2 ϕj1
1 ϕ

i3
3 , we have that

ϕi1
1 ϕ

i2
2 ϕ

i3
3 commutes with ϕj1

1 ϕ
j2
2 ϕ

j3
3 exactly when i1j3 ≡ i3j1 (mod p). Under this condition

(a, ϕi1
1 ϕ

i2
2 ϕ

i3
3 ) and (b, ϕj1

1 ϕ
j2
2 ϕ

j3
3 ) commute if and only if a(ϕi1

1 ϕ
i2
2 ϕ

i3
3 )(b) = b(ϕj1

1 ϕ
j2
2 ϕ

j3
3 )(a), which

gives ai1+1b = ab, that is i1 = 0. We obtain then the subgroups

〈(a, ϕi2
2 ), (b, ϕ

j1
1 ϕ

j2
2 ϕ

j3
3 )〉, 0 ≤ i2, j2, j3 ≤ p− 1, 1 ≤ j1 ≤ p− 1,

under whose action the orbit of 1 is the whole group 〈a, b〉. Now the orbit of c contains p2

elements if and only if i2 6= p − 1 and j3 6= p − 1. We obtain then p(p − 1)3 semiregular
subgroups of Sylp isomorphic to Cp × Cp and not contained in F .
3) Since the number of p-Sylow subgroups of Hol((Cp ×Cp)⋊C2) is p+ 1, we obtain that the
number of semiregular subgroups isomorphic to Cp × Cp is equal to p(p − 1)3(p + 1) + p(p −
1)2(p+ 1) = p2(p− 1)2(p+ 1).

We look now for elements of order 2 normalizing the subgroups above and generating
together a regular subgroup of Hol((Cp × Cp) ⋊ C2). If (z, χ) has order 2, then χ2 = Id. If
χ = Id, then (z, χ) = (ambnc, Id), 0 ≤ m,n ≤ p− 1. If χ has order 2, then either χ = χ1 given
by

χ1(a) = arbs, χ1(b) = atb−r, χ1(c) = aubvc, with r2+st = 1, (r+1)u+tv = 0, su+(1−r)v = 0,
(4)

or χ = χ2 given by

χ2(a) = a−1, χ2(b) = b−1, χ2(c) = aubvc, (5)

with any u, v. Now, (z, χ1) has order 2 for z = ambnc, with (1−r)m−tn = u and (1+r)n−sm =
v; (z, χ2) has order 2 for z = au/2bv/2c.

Lemma 21. The regular subgroups of Hol((Cp×Cp)⋊C2), having an element of order 2 of the
form (ambnc, Id), are precisely p4 regular subgroups isomorphic to Cp × C2p, p

3(p + 1) regular
subgroups isomorphic to Cp ×D2p and 1 regular subgroup isomorphic to (Cp × Cp)⋊ C2.

Proof. We look first for regular subgroups with p-Sylow subgroup equal to F . We have

(ambnc, Id)(a, ϕi
2ϕ

j
3)(a

mbnc, Id) = (a−i−1b−j , ϕi
2ϕ

j
3),

(ambnc, Id)(b, ϕk
2ϕ

l
3)(a

mbnc, Id) = (a−kb−l−1, ϕk
2ϕ

l
3).

The elements (a−i−1b−j , ϕi
2ϕ

j
3) and (a−kb−l−1, ϕk

2ϕ
l
3) belong to 〈(a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

l
3)〉 if and only

if i, j, k, l satisfy the system






−i2 − i− jk = i

−ij − j − jl = j ⇔ j(−i− l − 2) = 0

−ik − kl − k = k ⇔ k(−i− l − 2) = 0

−jk − l2 − l = l

If j = k = 0, then (i, l) = (0, 0), (0, p−2), (p−2, 0) or (p−2, p−2). We obtain the p2 subgroups
〈(a, ϕ−2

2 ), (b, ϕ−2
3 ), (ambnc, Id)〉 isomorphic to Cp×C2p; the p subgroups 〈(a, ϕ

−2
2 ), (b, Id), (amc, Id)〉
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and the p subgroups 〈(a, Id), (b, ϕ−2
3 ), (bnc, Id)〉 isomorphic to Cp × D2p; and the subgroup

〈a, b, c〉 isomorphic to (Cp × Cp) ⋊ C2. If i + l = −2, then kj = −i2 − 2i and with i, j, k, l
satisfying these relations we further obtain p(p+ 2)(p− 1) subgroups isomorphic to Cp ×D2p.
Here we take into account that for i = 0 or i = −2, we have j = 0 or k = 0 and that each
subgroup isomorphic to Cp ×D2p contains p elements of order 2.

We look now for regular subgroups with p-subgroup contained in Sylp and different from
F . We have

(ambnc, Id)(a, ϕi2
2 )(a

mbnc, Id) = (a−i2−1, ϕi2
2 )),

(ambnc, Id)(b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )(a

mbnc, Id) = (a−j2−nj1−j1j3b−j3−1, ϕj1
1 ϕ

j2
2 ϕ

j3
3 ).

The elements (a−i2−1, ϕi2
2 ) and (a−j2−nj1−j1j3b−j3−1, ϕj1

1 ϕ
j2
2 ϕ

j3
3 ) belong to 〈(a, ϕi2

2 ), (b, ϕ
j1
1 ϕ

j2
2 ϕ

j3
3 )〉

if and only if either i2 = −2, j3 = −2 and j2 = (2− n)j1 or i2 = 0 and j3 = −2.

We obtain the p2(p− 1) subgroups 〈(a, ϕ−2
2 ), (b, ϕj1

1 ϕ
(2−n)j1
2 ϕ−2

3 ), (ambnc, Id)〉 isomorphic to
Cp×C2p, the p

2(p− 1) subgroups 〈(a, Id), (b, ϕj1
1 ϕ

j2
2 ϕ

−2
3 ), (bnc, Id)〉 isomorphic to Cp×D2p and

no subgroup isomorphic to (Cp × Cp)⋊ C2.
Summing up, taking into account that the number of p-Sylow subgroups of Hol((Cp ×

Cp)⋊ C2) is p + 1, we obtain p2 + p2(p2 − 1) = p4 regular subgroups isomorphic to Cp × C2p,
2p+ p(p+ 2)(p− 1) + p2(p2 − 1) = p3(p+ 1) regular subgroups isomorphic to Cp ×D2p and 1
regular subgroup isomorphic to (Cp × Cp)⋊ C2.

Lemma 22. The regular subgroups of Hol((Cp × Cp) ⋊ C2), having an element of order 2 of
the form (z, χ1) and with p-Sylow subgroup equal to F , are precisely p3(p+1) regular subgroups
isomorphic to Cp × C2p, p

3(p + 1)2 regular subgroups isomorphic to Cp × D2p and p(p + 1)
regular subgroups isomorphic to (Cp × Cp)⋊ C2.

Proof. We have χ1ϕ2χ1 = ϕr
2ϕ

s
3, χ1ϕ3χ1 = ϕt

2ϕ
−r
3 and

(ambnc, χ1)(a, ϕ
i
2ϕ

j
3)(a

mbnc, χ1) = (a−r−ir−tjb−s−is+rj, ϕri+tj
2 ϕsi−rj

3 ),

(ambnc, χ1)(b, ϕ
k
2ϕ

l
3)(a

mbnc, χ1) = (a−t−kr−tlbr−ks+rl, ϕrk+tl
2 ϕsk−rl

3 ).

By imposing the elements on the right to be equal to (a, ϕi
2ϕ

j
3) and (b, ϕk

2ϕ
l
3), respectively,

we obtain the p3 subgroups 〈(a, Id), (b, ϕk
2ϕ

−2
3 ), (ambnc, χ1)〉, with r = −1, s = 0, t = −k, u =

2m+ kn, v = 0, the p3 subgroups 〈(a, ϕ−2
2 ), (b, ϕk

2), (a
mbnc, χ1)〉, with r = 1, s = 0, t = −k, u =

kn, v = 2n and the p3(p − 1) subgroups 〈(a, ϕi
2ϕ

j
3), (b, ϕ

k
2ϕ

l
3), (a

mbnc, χ1)〉, with j 6= 0, jk =
−i2 − 2i, l = −i − 2, r = −i − 1, s = −j, t = −k, ju = (2 + i)v, jm = v + in, all of them
isomorphic to Cp × C2p.

By imposing the elements on the right to be equal to (a, ϕi
2ϕ

j
3)

−1 = (a−1, ϕ−i
2 ϕ

−j
3 ) and

(b, ϕk
2ϕ

l
3), respectively, we obtain the p2 subgroups 〈(a, Id), (b, ϕk

2), (b
nc, χ1)〉, with r = 1, s =

0, t = −k, u = kv/2, n = v/2, isomorphic to Cp × D2p. We further obtain the p2 subgroups
〈(a, ϕ−2

2 ), (b, ϕk
2ϕ

−2
3 ), (ambnc, χ1)〉, with r = −1, s = 0, t = −k, v = 0, m = (u− kn)/2, and the

p2(p − 1) subgroups 〈(a, ϕi
2ϕ

j
3), (b, ϕ

k
2ϕ

i
3), (a

mbnc, χ1)〉, with j 6= 0, jk = i2 + 2i, r = i + 1, s =
j, t = −k, ju = iv, jm = (i + 2)n − v, all of them isomorphic to Cp × D2p, where we are
taking into account that each of these subgroups contains p elements of order 2 of the form
(ambnc, χ1). Each of these subgroups isomorphic to Cp ×D2p has p(p+ 1) different conjugates
generated by elements of the form (a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

l
3) and (z, χ1).
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Finally by imposing the elements on the right to be equal to (a, ϕi
2ϕ

j
3)

−1 = (a−1, ϕ−i
2 ϕ

−j
3 ) and

(b, ϕk
2ϕ

l
3)

−1 = (b−1, ϕ−k
2 ϕ−l

3 ), respectively, we obtain the p(p + 1) subgroups
〈(a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

−i−2
3 ), (c, χ1)〉, with jk = −i2 − 2i, r = i + 1, s = j, t = k, u = v = 0, all

of them isomorphic to (Cp × Cp) ⋊ C2. In order to determine the number of subgroups, we
take into account that (Cp × Cp)⋊ C2 contains p2 elements of order 2.

Summing up, we obtain p3(p + 1) regular subgroups isomorphic to Cp × C2p, p
3(p + 1)2

regular subgroups isomorphic to Cp ×D2p and p(p+1) regular subgroups isomorphic to (Cp ×
Cp)⋊ C2.

Lemma 23. The regular subgroups of Hol((Cp × Cp) ⋊ C2), having an element of order 2 of
the form (z, χ1) and with p-Sylow subgroup different from F are precisely 2p3(p2 − 1) regular
subgroups isomorphic to Cp×D2p and 2p(p2−1) regular subgroups isomorphic to (Cp×Cp)⋊C2.

Proof. We have χ1ϕ1χ1(a) = a1+rsbs
2

, χ1ϕ1χ1(b) = a−r2b1−rs, χ1ϕ1χ1(c) = arvbsvc. Hence

χ1ϕ1χ1 ∈ 〈ϕ1, ϕ2, ϕ3〉 implies s = 0 and then χ1ϕ1χ1 = ϕ−r2

1 ϕrv
2 . Moreover s = 0 implies

r = ±1, by (4). Now, with s = 0, we have

(ambnc, χ1)(b, ϕ
j1
1 ϕ

j2
2 ϕ

j3
3 )(a

mbnc, χ1) = (a−t−rj2−rn−rj3−tj3br+rj3, ϕ−r2j1
1 ϕrvj1+rj2+tj3

2 ϕ−rj3
3 )

and

(ambnc, χ1)(a, ϕ
i2
2 )(a

mbnc, χ1) = (a−r−ri2, ϕri2
2 ).

This last element belongs to the subgroup 〈(a, ϕi2
2 ), (b, ϕ

j1
1 ϕ

j2
2 ϕ

j3
3 )〉 if and only if i2 = 0 or

i2 = −2. Let us note that (b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )

−1 = (aj1b−1, ϕ−j1
1 ϕ−j2−j1j3

2 ϕ−j3
3 ). We distinguish now

the two cases r = 1 and r = −1.
If r = 1,

(ambnc, χ1)(b, ϕ
j1
1 ϕ

j2
2 ϕ

j3
3 )(a

mbnc, χ1) = (a−t−j2−n−j3−tj3b1+j3 , ϕ−j1
1 ϕvj1+j2+tj3

2 ϕ−j3
3 ) (6)

Now, if i2 = 0, then (ambnc, χ1)(a, Id)(a
mbnc, χ1) = (a−1, Id). Hence (ambnc, χ1) normalizes

〈(a, Id), (b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )〉 if and only if j3 = −2, (v−2)j1+2j2−2t = 0. We obtain then the p(p−1)

subgroups 〈(a, Id), (b, ϕj1
1 ϕ

j2
2 ϕ

−2
3 ), (bnc, χ1)〉, with j1 6= 0, j1n = j1 − j2, r = 1, s = t = 0, u =

0, v = 2n, isomorphic to (Cp×Cp)⋊C2. Now if i2 = −2, then (ambnc, χ1)(a, ϕ
−2
2 )(ambnc, χ1) =

(a, ϕ−2
2 ). The element in the righthand side of (6) belongs to the subgroup 〈(a, ϕ−2

2 ), (b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )〉

if and only if j3 = −2 and 4j1 + 2n− 4− vj1 = 0. Taking into account the relation v = 2n, we
obtain (j1 − 1)(2− n) = 0. We have the further relation u = −tn. This gives the p3 transitive
subgroups 〈(a, ϕ−2

2 ), (b, ϕ1ϕ
j2
2 ϕ

−2
3 ), (ambnc, χ1)〉, with u = −tn, v = 2n and the (p− 2)p3 tran-

sitive subgroups 〈(a, ϕ−2
2 ), (b, ϕj1

1 ϕ
j2
2 ϕ

−2
3 ), (amb2c, χ1)〉, with j1 6= 1, u = −2t, v = 4, all of them

isomorphic to D2p × Cp.
If r = −1,

(ambnc, χ1)(b, ϕ
j1
1 ϕ

j2
2 ϕ

j3
3 )(a

mbnc, χ1) = (a−t+j2+n+j3−tj3b−1−j3 , ϕ−j1
1 ϕ−vj1−j2+tj3

2 ϕj3
3 ). (7)

Now, if i2 = 0, then (ambnc, χ1)(a, Id)(a
mbnc, χ1) = (a, Id). The element in the righthand side

of (7) belongs to the subgroup 〈(a, Id), (b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )〉 if and only if j3 = 0 and v = 0. We obtain
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the (p− 1)p3 transitive groups 〈(a, Id), (b, ϕj1
1 ϕ

j2
2 ), (c, χ1)〉, with v = 0, isomorphic to Cp×D2p.

Now if i2 = −2, then (ambnc, χ1)(a, ϕ
−2
2 )(ambnc, χ1) = (a−1, ϕ2

2). Hence (ambnc, χ1) normalizes
〈(a, ϕ−2

2 ), (b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )〉 if and only if j3 = 0, v = 0 and n = t− j2. We obtain then the p(p−1)

transitive subgroups 〈(a, ϕ−2
2 ), (b, ϕj1

1 ϕ
j2
2 ), (c, χ1)〉, with r = −1, s = 0, t = j2, u = v = 0,

isomorphic to (Cp × Cp)⋊ C2.
Summing up, we obtain the following numbers of regular subgroups with p-Sylow subgroup

contained in Sylp and different from F : 2p3(p − 1) isomorphic to Cp × D2p and 2p(p − 1)
isomorphic to (Cp×Cp)⋊C2. The corresponding number of regular subgroups of Hol((Cp×Cp)⋊
C2) is obtained taking into account that the number of p-Sylow subgroups of Hol((Cp×Cp)⋊C2)
is p+ 1.

Lemma 24. The regular subgroups of Hol((Cp × Cp) ⋊ C2), having an element of order 2 of
the form (z, χ2) are precisely p4 regular subgroups isomorphic to Cp × C2p, p

3(p + 1) regular
subgroups isomorphic to Cp ×D2p and 1 regular subgroup isomorphic to (Cp × Cp)⋊ C2.

Proof. We have χ2ϕ2χ2 = ϕ−1
2 , χ2ϕ3χ2 = ϕ−1

3 and

(au/2bv/2c, χ2)(a, ϕ
i
2ϕ

j
3)(a

u/2bv/2c, χ2) = (ai+1bj , ϕ−i
2 ϕ

−j
3 ),

(au/2bv/2c, χ2)(b, ϕ
k
2ϕ

l
3)(a

u/2bv/2c, χ2) = (akbl+1, ϕ−k
2 ϕ−l

3 ).

By imposing the elements on the right to be equal to (a, ϕi
2ϕ

j
3) and (b, ϕk

2ϕ
l
3) respectively,

we obtain the p2 subgroups 〈(a, Id), (b, Id), (au/2bv/2c, χ2)〉 isomorphic to Cp × C2p. By im-
posing the elements on the right to be equal to (a, ϕi

2ϕ
j
3)

−1 = (a−1, ϕ−i
2 ϕ

−j
3 ) and (b, ϕk

2ϕ
l
3)

respectively, we obtain the p subgroups 〈(a, ϕ−2
2 ), (b, Id), (bv/2c, χ2)〉 isomorphic to Cp × D2p.

Each of these groups has p(p + 1) conjugates. By imposing the elements on the right to be
equal to (a, ϕi

2ϕ
j
3)

−1 = (a−1, ϕ−i
2 ϕ

−j
3 ) and (b, ϕk

2ϕ
l
3)

−1 = (b−1, ϕ−k
2 ϕ−l

3 ), we obtain the subgroup
〈(a, ϕ−2

2 ), (b, ϕ−2
3 ), (c, χ2)〉, with u = v = 0, isomorphic to (Cp × Cp)⋊ C2.

Now we have χ2ϕ1χ2 = ϕ−v
2 ϕ1 and

(au/2bv/2c, χ2)(a, ϕ
i2
2 )(a

u/2bv/2c, χ2) = (ai2+1, ϕ−i2
2 ),

(au/2bv/2c, χ2)(b, ϕ
j1
1 ϕ

j2
2 ϕ

j3
3 )(a

u/2bv/2c, χ2) = (avj1/2+j2+j1j3bj3+1, ϕj1
1 ϕ

−vj1−j2
2 ϕ−j3

3 ).

Taking into account the equality

(b, ϕj1
1 ϕ

j2
2 ϕ

j3
3 )

k = (aj1k(k−1)/2bk, ϕkj1
1 ϕ

kj2−j1j3k(k−1)/2
2 ϕkj3

3 ),

we obtain that the elements on the right belong to 〈(a, ϕi2
2 ), (b, ϕ

j1
1 ϕ

j2
2 ϕ

j3
3 )〉 only if i22 + 2i2 = 0

and j3 = 0. If i2 = j3 = 0, we have the further condition vj1 + 2j2 = 0. We obtain
the p2(p − 1) subgroups 〈(a, Id), (b, ϕj1

1 ϕ
−vj1/2
2 ), (au/2bv/2c, χ2)〉 isomorphic to Cp × C2p. If

i2 = −2 and j3 = 0, there is no extra condition and we obtain the p2(p − 1) subgroups
〈(a, ϕ−2

2 ), (b, ϕj1
1 ϕ

j2
2 ), (b

v/2c, χ2)〉 isomorphic to Cp ×D2p.
Summing up, taking into account that the number of p-Sylow subgroups of Hol((Cp ×

Cp) ⋊ C2 is p + 1, we obtain p2 + p2(p2 − 1) = p4 regular subgroups isomorphic to Cp × C2p,
p2(p + 1) + p2(p2 − 1) = p3(p + 1) regular subgroups isomorphic to Cp × D2p and 1 regular
subgroup isomorphic to (Cp × Cp)⋊ C2.

Summing up the results in lemmas 21 to 24, we obtain
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Proposition 25. The regular subgroups of Hol((Cp×Cp)⋊C2) are precisely p3(3p+1) regular
subgroups isomorphic to Cp ×C2p, p

3(p+ 1)(3p+ 1) regular subgroups isomorphic to Cp ×D2p

and 2p3 + p2 − p+ 2 regular subgroups isomorphic to (Cp × Cp)⋊ C2.

End of proof of Theorem 8. Propositions 11, 14, 16, 18 and 25 prove column by column the
correctness of the table in Lemma 9, hence using this Lemma, the Theorem is proved. ✷

4 Hopf Galois structures of cyclic type

In this section we determine the separable extensions of degree 2p2 having a Hopf Galois
structure of cyclic type and the number of these structures. The Galois case has been already
studied in Section 3.

Theorem 26. Let L/K be a separable non Galois field extension of degree 2p2, for p an odd

prime number. Let L̃ be a normal closure of L/K, G = Gal(L̃/K). Then L/K has a Hopf
Galois structure of cyclic type if and only if G is isomorphic to one of the following groups:

1) the semidirect product C2p2 ⋊ C(p−1)/d of a cyclic group of order 2p2 and a cyclic group of
order (p− 1)/d for d a proper divisor of p− 1;

2) the semidirect product Cp2 ⋊ C(p−1)/d of a cyclic group of order p2 and a cyclic group of
order (p− 1)/d for d a proper divisor of (p− 1)/2;

3) the semidirect product C2p2 ⋊ Cp(p−1)/d of a cyclic group of order 2p2 and a cyclic group of
order p(p− 1)/d for d a divisor of p− 1;

4) the semidirect product Cp2 ⋊ Cp(p−1)/d of a cyclic group of order p2 and a cyclic group of
order p(p− 1)/d for d a divisor of (p− 1)/2.

The number of structures is p when |G| = 2p3 and 1 in all other cases.

Proof. By Theorem 2, L/K has a Hopf Galois structure of cyclic type if and only if G =

Gal(L̃/K) embeds in Hol(C2p2) as a transitive subgroup. If G∗ ⊂ Hol(C2p2) acts transitively
on C2p2, then 2p2 divides the order of G∗. Since the p-Sylow subgroup of Hol(C2p2) has order
p3, we have two possibilities for the p-Sylow subgroup Sylp(G

∗) of G∗, either | Sylp(G
∗)| = p2

or Sylp(G
∗) = Sylp(Hol(C2p2)). Let us denote by a a generator of C2p2 and by ϕ a generator of

Aut(C2p2). Then ϕ(a) = ai, with i an integer prime with 2p and having multiplicative order
p(p − 1) modulo 2p2. We have Sylp(Hol(C2p2)) = 〈a2, ϕp−1〉. By Theorem 3 and the proof of
Theorem 5 in [12], we have that a transitive subgroup of Hol(C2p2) has an element of order
p2. We have seen in Section 3.1 that Hol(C2p2) has precisely p cyclic subgroups of order p2.
These may be written as 〈(a2, ϕk(p−1))〉, 0 ≤ k ≤ p − 1. Then either Sylp(G

∗) = 〈a2, ϕp−1〉 or

Sylp(G
∗) = 〈(a2, ϕk(p−1))〉, for some k. In both cases, since [Hol(C2p2) : Sylp(Hol(C2p2))] = p−1,

Sylp(G
∗) is a normal subgroup of G∗. We examine now the two cases.

I) We assume that Sylp(G
∗) has order p2. If k 6= 0, then the normalizer of 〈(a2, ϕk(p−1))〉 in

Hol(C2p2) consists of the elements of the form (aj, ϕl(p−1)), which have order a multiple
of p if p ∤ l. We have then two subcases.
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1) If a ∈ G∗, then G∗ is transitive and we have G∗ = 〈a, ϕpd〉 = 〈a〉 ⋊ 〈ϕpd〉 ≃ C2p2 ⋊
C(p−1)/d, for some divisor d of p− 1.

2) If a 6∈ G∗ and |G∗| > 2p2, then a2 ∈ G∗. In order to be transitive, G∗ must contain
an element of the form (a, ϕk), for some k. Such an element has order prime with p if
and only if p | k. We have then G∗ = 〈a2, (a, ϕpd)〉 = 〈a2〉⋊〈(a, ϕpd)〉 ≃ Cp2 ⋊C(p−1)/d,
for some divisor d of (p− 1)/2.

II) We assume that Sylp(G
∗) has order p3. We have then Sylp(G

∗) = 〈a2, ϕp−1〉. We have
two subcases.

3) If a ∈ G∗, then G∗ is transitive and we have G∗ = 〈a, ϕp−1, ϕpd〉 = 〈a, ϕd〉 ≃
C2p2 ⋊ Cp(p−1)/d, for d a divisor of p− 1.

4) If a 6∈ G∗, in order to be transitive, G∗ must contain an element of the form (a, ϕpd) of
even order. We have then G∗ = 〈a2, ϕp−1, (a, ϕpd)〉, for some divisor d of (p− 1)/2.
Now G∗ = 〈a2, ϕp−1, (ap, ϕpd)〉 and the two elements ϕp−1 and (ap, ϕpd) commute
with each other, hence generate a cyclic subgroup of order p(p−1)/d. We have then
G∗ = 〈a2, (ap, ϕd)〉 ≃ Cp2 ⋊ Cp(p−1)/d.

We apply now Corollary 3 in order to determine the number of Hopf Galois structures. In
the sequel, we identify G with G∗ and G′ with Stab(G∗, 1). We consider the different cases.

1) If G = 〈a, ϕpd〉, then G′ = 〈ϕpd〉 and, since ϕpd(a) = ai
pd

, an automorphism of G sending G′

to itself must send the element ϕpd to itself, hence |Aut(G,G′)| = |Aut(C2p2)| and there is
one structure.

2) If G = 〈a2, (a, ϕpd)〉, then G′ = 〈ϕ2pd〉 and again an automorphism of G sending G′ to itself
must send the element ϕ2pd to itself. We consider the subgroup of Aut(G,G′) consisting of
the automorphisms g such that g(a2) = a2j , with p ∤ j and g(a, ϕpd) = (a, ϕpd). It has order
p(p− 1) = |Aut(C2p2)|. Now, an element h in Aut(G,G′) such that h(a2) = a2 must satisfy
h(a, ϕpd) = (a, ϕpdl), with l = 1 or l = 1 + (p − 1)/(2d) in order to satisfy h(ϕ2pd) = ϕ2pd.
Now, since ϕpd(a) = ai

pd

and ϕpdl(a) = a−ipd , for l = 1 + (p− 1)/(2d), the only possibility
is l = 1. Hence |Aut(G,G′)| = |Aut(C2p2)| and there is one structure.

3) If G = 〈a, ϕd〉, then G′ = 〈ϕd〉 and, as in the other cases, an automorphism of G sending
G′ to itself must send the element ϕd to itself. We consider the subgroup of Aut(G,G′)
consisting of the automorphisms g such that g(a) = aj , with p ∤ j and g(ϕd) = ϕd. It
has order p(p − 1) = |Aut(C2p2)|. A coset of this subgroup in Aut(G,G′) has a represen-
tative h such that h(a) = (a, ϕk(p−1)), for some integer k, 0 ≤ k ≤ p − 1. Now we have
(1, ϕd)(a, ϕk(p−1))(1, ϕ−d) = (ai

d

, ϕk(p−1)). This last element is equal to (a, ϕk(p−1))i
d

, for
k 6= 0, if and only if id ≡ 1 (mod p) if and only if d = p − 1. We have then that for
|G| = 2p3, |Aut(G,G′)| = p|Aut(C2p2)| and, in other cases |Aut(G,G′)| = |Aut(C2p2)|.
The number of structures is then p when |G| = 2p3 and 1 otherwise.

4) If G = 〈a2, (ap, ϕd)〉, taking into account the action of (ap, ϕd) on a2, we obtain that an
automorphism g of G satisfies g(a2) = a2j , for some j with p ∤ j, and g(ap, ϕd) = (ak, ϕd),
for some odd k. Now G′ = 〈ϕ2d〉 and, as in the other cases, an automorphism of G
sending G′ to itself must send the element ϕ2d to itself. Since ϕ2d = a−p(1+id)(ap, ϕd)2, the
condition g(ϕ2d) = ϕ2d implies p2 | (−jp + k)(1 + id). We have p | 1 + id if and only if
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d = (p−1)/2. We obtain then that, if d 6= (p−1)/2, an automorphism in Aut(G,G′) satisfies
g(ap, ϕd) = (ajp, ϕd), and then |Aut(G,G′)| = |Aut(C2p2)| and the number of structures is
1. If d = (p−1)/2, an automorphism in Aut(G,G′) satisfies g(ap, ϕd) = (ak, ϕd), with p | k,
and then |Aut(G,G′)| = p|Aut(C2p2)| and the number of structures is p.

5 Skew braces of order 2p2

In this section, we will classify skew braces of order 2p2 by applying Proposition 5 to the
regular subgroups of Hol(N) obtained in Section 3. For each skew brace B corresponding to
a pair (N,G), where N is a group of order 2p2 and G a regular subgroup of Hol(N), modulo
conjugation by Aut(N), we shall determine the socle Soc(B), the annihilator Ann(B) and the
group of automorphisms Aut(B).

5.1 Cyclic additive group

Let N be the cyclic group of order 2p2. We consider the regular subgroups of Hol(N) obtained
in Section 3.1. Let ϕ be a fixed element of order p in Aut(N) and x be a generator of
N . Then the subgroup 〈(x, ϕ)〉 of Hol(N) contains exactly p elements of the form (∗, ϕ),
namely (x, ϕ)kp+1, 0 ≤ k ≤ p − 1. On the other hand, all elements of the form (∗, ϕ) are
conjugated by Aut(N). We obtain then that all subgroups 〈(x, ϕ)〉, with x a generator of N
are conjugated by Aut(N). We obtain then two braces with multiplicative group isomorphic
to C2p2, corresponding to G = 〈(x, Id)〉 = N and G = 〈(x, ϕ)〉, with ϕ of order p. In the first
case Soc(B) = Ann(B) = B and Aut(B) = Aut(N). In the second case Soc(B) = Ann(B) is
the subgroup of order 2p of N and Aut(B) = Aut(N).

The unique regular subgroup of Hol(N) isomorphic to D2p2 provides a skew brace B with
Soc(B) equal to the subgroup of order p2 of N , Ann(B) = {1} and Aut(B) = Aut(N).

We summarize the obtained results in the following table.

Braces of order 2p2 with cyclic additive group

number of braces (B, ◦) | Soc(B)| |Ann(B)| |Aut(B)|

1 C2p2 2p2 2p2 p(p− 1)

1 C2p2 2p 2p p(p− 1)

1 D2p2 p2 1 p(p− 1)

5.2 Dihedral additive group

LetN be the dihedral group of order 2p2. We consider the regular subgroups of Hol(N) obtained
in Section 3.2 and use the notations introduced there. We have two regular subgroups of
Hol(N) isomorphic to D2p2 , namely N and its centralizer N∗ in Hol(N). Since they are normal
in Hol(N) they give two different skew braces with dihedral multiplicative group. In both cases
we have Soc(B) = Ann(B) = {1} and Aut(B) = Aut(N).

We consider now the cyclic regular subgroups of Hol(N). For the p3 subgroups Gk,j :=
〈(rks, Id), (r, ϕ)〉, where ϕ = ϕi

1ϕ
j
2, with i = −2 − kjp, we obtain ϕ1Gk,jϕ

−1
1 = Gk+1,j. For
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ψ ∈ Aut(N), defined by ψ(r) = rm, ψ(s) = s, we have ψ−1G0,jψ = G0,mj . Hence the subgroups
Gk,j are distributed in two classes under conjugation by Aut(N), corresponding to j = 0 and
j 6= 0. We obtain then 2 different skew braces. We have Soc(B) = Ann(B) = {1} and
Aut(B) = {ϕ ∈ Aut(N) : ϕ(s) = s}, when j = 0, hence |Aut(B)| = p2 − p; Aut(B) = {ϕ ∈
Aut(N) : ϕ(s) = s, ϕ(r) = rm, m ≡ 1 (mod p)}, when j 6= 0, hence |Aut(B)| = p.

For the p2 subgroups Gk := 〈(r, Id), (rks, χ2k)〉, where χ2k(r) = r−1, χ2k(s) = r2ks, we obtain
ϕ1Gkϕ

−1
1 = Gk+1. Hence they provide one skew brace. We have Soc(B) = Ann(B) = {1} and

Aut(B) = {ϕ ∈ Aut(N) : ϕ(s) = s}, hence |Aut(B)| = p2 − p.
For the p3 − p2 subgroups Gk,j := 〈(rks, χ2k), (r, ϕ)〉, where ϕ = ϕ−kjp

1 ϕj
2, with p ∤ j, we

obtain ϕ1Gk,jϕ
−1
1 = Gk+1,j. For ψ ∈ Aut(N), defined by ψ(r) = rm, ψ(s) = s, we have

ψ−1G0,jψ = G0,mj . Hence the subgroups Gk,j lie in one class under conjugation by Aut(N),
and we obtain 1 skew brace. We have Soc(B) = Ann(B) = {1} and Aut(B) = {ϕ ∈ Aut(N) :
ϕ(s) = s, ϕ(r) = rm, m ≡ 1 (mod p)}, hence |Aut(B)| = p.

We summarize the obtained results in the following table.

Skew braces of order 2p2 with dihedral additive group

number of braces (B, ◦) | Soc(B)| |Ann(B)| |Aut(B)|

2 C2p2 1 1 p(p− 1)

2 C2p2 1 1 p

2 D2p2 1 1 p3(p− 1)

5.3 Additive group isomorphic to Cp × C2p

Let N be the group Cp × C2p. We consider the regular subgroups of Hol(N) obtained in
Section 3.3 and use the notations introduced there. We observe first that by conjugation by
Aut(N), we obtain the p + 1 conjugates of Sylp in Hol(N). Since N is normal in Hol(N), it
gives one skew brace with Soc(B) = Ann(B) = B and Aut(B) = Aut(N). For the subgroups
Gi := 〈(ai, ϕ), b, c〉, with 0 < i ≤ p − 1, we obtain ψG1ψ

−1 = Gi, for ψ defined by ψ(a) =
ai, ψ(b) = bi, hence they give one skew brace with Soc(B) = Ann(B) = 〈b, c〉 ≃ C2p and
Aut(B) = {ψ ∈ Aut(N) : ψ(a) = aibj , ψ(b) = bi

2

, p ∤ i}, hence |Aut(B)| = p(p− 1).
We consider now the regular subgroups of Hol(N) isomorphic to Cp×D2p. The conjugates

of 〈a, b, (c, χ)〉 are conjugated by Aut(N), hence they give one skew brace B with Soc(B) =
〈a, b〉 ≃ Cp×Cp,Ann(B) = 〈b〉 ≃ Cp,Aut(B) = {ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bl, p ∤ i, p ∤ l},
hence |Aut(B)| = (p− 1)2.

For the second family of regular subgroups of Hol(N) isomorphic to Cp × D2p, we may
consider the automorphisms ψ1 defined by ψ1(a) = ab, ψ1(b) = b and ψ2 defined by ψ2(a) =
am, ψ2(b) = m, for m of order p − 1 modulo p, to obtain that they all belong to the same
conjugation class under Aut(N). Hence they give one skew brace B with Soc(B) = Ann(B) =
〈b〉 and Aut(B) = {ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bi

2

}, 0 < i ≤ p− 1, and then |Aut(B)| =
p− 1.

Finally, there is one regular subgroup of Hol(N) isomorphic to (Cp ×Cp)⋊C2, 〈a, b, (c, χ)〉
and the corresponding skew brace B satisfies Soc(B) = 〈a, b〉 ≃ Cp × Cp,Ann(B) = {1} and
Aut(B) = Aut(N).

We summarize the obtained results in the following table.
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Braces with additive group isomorphic to Cp × C2p

number of braces (B, ◦) | Soc(B)| |Ann(B)| |Aut(B)|

1 Cp × C2p 2p2 2p2 p(p+ 1)(p− 1)2

1 Cp × C2p 2p 2p p(p− 1)

1 Cp ×D2p p2 p (p− 1)2

1 Cp ×D2p p p p− 1

1 (Cp × Cp)⋊ C2 p2 1 p(p+ 1)(p− 1)2

5.4 Additive group isomorphic to Cp ×D2p

Let N be the group Cp×D2p = 〈r, s, c〉. We consider the regular subgroups of Hol(N) obtained
in Section 3.4 and use the notations introduced there.

By conjugating by ϕ, defined by ϕ(r) = r, ϕ(s) = rs, ϕ(c) = c, we obtain that all reg-
ular subgroups Ap−2,0 × 〈ris〉 are conjugate by Aut(N) and give one skew brace B with
Soc(B) = Ann(B) = 〈c〉 and Aut(B) = {ψ ∈ Aut(N) : ψ(r) = ri, ψ(s) = s, ψ(c) = ck},
hence |Aut(B)| = (p− 1)2. For the second family of regular subgroups of Hol(N) isomorphic
to Cp ×C2p, namely 〈r, c, (s, χ1,i)〉 we obtain as well that they are all conjugate under Aut(N)
and give one skew brace with Soc(B) = Ann(B) = 〈c〉 and Aut(B) = {ψ ∈ Aut(N) : ψ(r) =
ri, ψ(s) = s, ψ(c) = ck}, hence |Aut(B)| = (p− 1)2.

We consider now the regular subgroups of Hol(N) isomorphic to Cp ×D2p. For the family
〈r, s, (c, ϕl)〉, we have that 〈r, s, c〉 is normal in Hol(N), whereas the subgroups with l 6= 0 are all
conjugate under Aut(N). We obtain then two skew braces. For the first one, we have Soc(B) =
Ann(B) = 〈c〉 and Aut(B) = Aut(N). For the second one, we have Soc(B) = {1}, Ann(B) =
{1} and Aut(B) = {ψ ∈ Aut(N) : ψ(c) = ck, ψ(r) = rk, ψ(s) = rjs}, 0 < k ≤ p − 1, 0 ≤
j ≤ p− 1, hence |Aut(B)| = p(p− 1). We consider now the family 〈(r, ϕ−2), (c, ϕl), (s, χ1,0)〉.
By conjugating by the automorphism ψ1 defined by ψ1(c) = c, ψ1(r) = rm, ψ1(s) = s, with m
of order p − 1 modulo p, we obtain that the subgroups with l 6= 0 are conjugated with each
other. We obtain then two skew braces. For the one corresponding to l = 0, we have Soc(B) =
Ann(B) = 〈c〉,Aut(B) = Aut(N). For the one corresponding to l 6= 0, we have Soc(B) =
Ann(B) = {1},Aut(B) = {ψ ∈ Aut(N) : ψ(c) = ck, ψ(r) = rk, ψ(s) = rjs, 0 < k ≤ p − 1, 0 ≤
j ≤ p − 1}, hence |Aut(B)| = p(p − 1). We consider now the family 〈r, (c, ϕl), (s, χ2,i)〉, 0 ≤
i, l ≤ p − 1. By conjugating by ϕ, we obtain that all subgroups with l = 0 are in the
same conjugation class. For l 6= 0, by conjugating by ϕ and by ψ1 as above, we obtain a
second conjugation class. We obtain then 2 skew braces. If B is the skew brace corresponding
to l = 0, we have Soc(B) = 〈c〉,Ann(B) = {1},Aut(B) = Aut(N). For l 6= 0, we have
Soc(B) = Ann(B) = {1},Aut(B) = {ψ ∈ Aut(N) : ψ(c) = ck, ψ(r) = r, ψ(s) = rjs}, hence
|Aut(B)| = p(p−1). We consider now the family 〈(crl/2, Id), (r, ϕ−2), (ris, χ3)〉. By conjugating
by ψ1, as above, and by ψ2, defined by ψ2(r) = r, ψ2(c) = c, ψ2(s) = rs, we obtain that there
are two conjugation classes under Aut(N). For the skew brace B corresponding to l = 0, we
have Soc(B) = 〈c〉,Ann(B) = {1},Aut(B) = {ψ ∈ Aut(N) : ψ(c) = ck, ψ(r) = rm, ψ(s) =
s, 1 ≤ k,m ≤ p− 1}, hence |Aut(B)| = (p− 1)2. For the skew brace B corresponding to l 6= 0,
we have Soc(B) = 〈c〉,Ann(B) = {1},Aut(B) = {ψ ∈ Aut(N) : ψ(c) = ck, ψ(r) = rk, ψ(s) =
rms, 1 ≤ k ≤ p− 1, 0 ≤ m ≤ p− 1}, hence |Aut(B)| = p(p− 1).

We consider now the regular subgroups of Hol(N) isomorphic to (Cp ×Cp)⋊ C2. For G =
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〈(r, ϕ−2), c, (s, χ2,0〉, we obtain one skew brace B with Soc(B) = 〈c〉,Ann(B) = {1},Aut(B) =
Aut(N). For G = 〈r, c, (s, χ3)〉, we obtain one skew brace B with Soc(B) = 〈c〉,Ann(B) =
{1},Aut(B) = Aut(N).

We summarize the obtained results in the following table.

Skew braces with additive group isomorphic to Cp ×D2p

number of braces (B, ◦) | Soc(B)| |Ann(B)| |Aut(B)|

2 Cp × C2p p p (p− 1)2

2 Cp ×D2p p p p(p− 1)2

3 Cp ×D2p 1 1 p(p− 1)

1 Cp ×D2p p 1 p(p− 1)2

1 Cp ×D2p p 1 (p− 1)2

1 Cp ×D2p p 1 p(p− 1)

2 (Cp × Cp)⋊ C2 p 1 p(p− 1)2

5.5 Additive group isomorphic to (Cp × Cp)⋊ C2

Let N be the group (Cp ×Cp)⋊ C2. For any skew brace B with additive group isomorphic to
N , we have Soc(B) = Ann(B) = {1}, by Proposition 7, since Z(N) is trivial. We consider the
regular subgroups of Hol(N) obtained in Section 3.5 and use the notations introduced there.

5.5.1 Multiplicative group isomorphic to Cp × C2p

We consider the regular subgroups of Hol(N) isomorphic to Cp × C2p. We examine first those
having an element of order 2 of the form (z, Id). By conjugating with ψ1 defined by ψ1(a) =
a, ψ1(b) = b, ψ1(c) = ambnc, we obtain that all subgroups 〈(a, ϕ−2

2 ), (b, ϕ−2
3 ), (ambnc, Id)〉 are

conjugate. For the corresponding skew brace B, we obtain Aut(B) = {ψ ∈ Aut(N) :
ψ(a) = aibj , ψ(b) = akbl}, hence |Aut(B)| = (p2 − 1)(p2 − p). We consider the family

〈(a, ϕ−2
2 ), (b, ϕj1

1 ϕ
(2−n)j1
2 ϕ−2

3 ), (ambnc, Id)〉. By conjugating with ψ1 and ψ2 defined by ψ2(a) =
a, ψ2(b) = bl, ψ2(c) = c, with l of order p − 1 modulo p, we obtain that all subgroups in this
family are conjugate. For the corresponding skew brace B, we have Aut(B) = {ψ ∈ Aut(N) :
ψ(a) = al

2

, ψ(b) = akbl, ψ(c) = c}, hence |Aut(B)| = p(p− 1).
We examine next the regular subgroups with an element of order 2 of the form (z, χ1), with

χ1 defined in (4). We consider the family 〈(a, Id), (b, ϕk
2ϕ

−2
3 ), (ambnc, χ1)〉, with χ1 defined by

χ1(a) = a−1, χ1(b) = a−kb, χ1(c) = a2m+knc. By conjugating with ψ1 and ϕ1, we obtain that all
subgroups in this family are conjugate. For the corresponding skew brace B, we have Aut(B) =
{ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bl, ψ(c) = c}, hence |Aut(B)| = (p − 1)2. Now the family
〈(a, ϕ−2

2 ), (b, ϕk
2), (a

mbnc, χ1)〉, with χ1 defined by χ1(a) = a, χ1(b) = a−kb−1, χ1(c) = aknb2nc,
is the conjugate of the preceding one by ψ defined by ψ(a) = akb2, ψ(b) = a1+(k2/2)bk, ψ(c) = c.
We consider the family 〈(a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

l
3), (a

mbnc, χ1)〉. By conjugating with ψ1, ϕ1 and the
automorphism ψ defined by ψ(a) = a, ψ(b) = bα, ψ(c) = c, we obtain that all subgroups in this
family are conjugate. Moreover, with ψ defined by ψ(a) = a2b, ψ(b) = b, ψ(c) = c, we have
ψ〈(a, Id), (b, ϕ−2

3 ), (cχ1)〉ψ
−1 = 〈(a, ϕ3), (b, ϕ

−2
3 ), (cχ′

1)〉, where χ1(a) = a−1, χ1(b) = b, χ1(c) =
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c and χ′

1(a) = a−1b−1, χ′

1(b) = b, χ′

1(c) = c. Hence the groups in this family are conjugated to
the subgroups in the preceding ones.

We examine next the regular subgroups with an element of order 2 of the form (z, χ2), with
χ2 defined in (5). We consider the family 〈(a, Id), (b, Id), (au/2bv/2c, χ2)〉. By conjugating with
ψ3 defined by ψ3(a) = a, ψ3(b) = b, ψ3(c) = au/2bv/2c, we obtain that this family is contained
in one conjugation class. For the corresponding skew brace B, we obtain Aut(B) = {ψ ∈
Aut(N) : ψ(a) = aibj , ψ(b) = akbl, ψ(c) = c}, hence Aut(B) = (p2 − 1)(p2 − p). Finally

for the family 〈(a, Id), (b, ϕj1
1 ϕ

−vj1/2
2 ), (au/2bv/2c, χ2)〉, by conjugating with ψ3 and by ψ defined

by ψ(a) = aα, ψ(b) = b, ψ(c) = c, with α of order p − 1 modulo p, we obtain that this
family is contained in one conjugation class. For the corresponding skew brace B, we have
Aut(B) = {ψ ∈ Aut(N) : ψ(a) = al

2

, ψ(b) = akbl, ψ(c) = c}, hence Aut(B) = p(p− 1).

5.5.2 Multiplicative group isomorphic to Cp ×D2p

We consider the regular subgroups of Hol(N) isomorphic to Cp × D2p. We examine first
those having an element of order 2 of the form (z, Id). By conjugating with ϕ1, ϕ2, ϕ3 and
ψ defined by ψ(a) = ab, ψ(b) = b, ψ(c) = c, we obtain that all subgroups in the family
〈(a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

l
3), (a

mbnc, Id)〉, with i + l = −2, jk = il are in the same conjugation class.
For the corresponding skew brace, with j = k = m = n = 0, i = −2, we obtain Aut(B) =
{ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bl, ψ(c) = bnc}, hence |Aut(B) = p(p − 1)2. We consider
now the family 〈(a, Id), (b, ϕj1

1 ϕ
j2
2 ϕ

−2
3 ), (bnc, Id)〉. By conjugating with ϕ3, ϕ1 and ψ defined by

ψ(a) = aα, ψ(b) = b, ψ(c) = c, with α of order p − 1 modulo p, we obtain that all subgroups
in this family are conjugated with each other. For the corresponding skew brace B, with
j1 = 1, j2 = n = 0, we obtain Aut(B) = {ψ ∈ Aut(N) : ψ(a) = al

2

, ψ(b) = bl, ψ(c) = amc},
hence |Aut(B)| = p(p− 1).

We examine next the regular subgroups with an element of order 2 of the form (z, χ1),
with χ1 defined in (4). We consider the family 〈(a, Id), (b, ϕk

2), (b
nc, χ1)〉, with χ1 defined by

χ1(a) = a, χ1(b) = a−kb−1, χ1(c) = aknb2nc. Conjugating with ϕ3 and ψ as above, we obtain
that the subgroups in this family are grouped in two conjugation classes depending on whether
k = 0 or k 6= 0. For the skew brace B corresponding to k = n = 0, we obtain Aut(B) = {ψ ∈
Aut(N) : ψ(a) = ai, ψ(b) = bl, ψ(c) = amc}, hence |Aut(B)| = p(p−1)2. For the skew brace B
corresponding to k = 1, n = 0, we obtain Aut(B) = {ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bi, ψ(c) =
amc}, hence |Aut(B)| = p(p−1). We consider now the family 〈(a, ϕ−2

2 ), (b, ϕk
2ϕ

−2
3 ), (ambnc, χ1)〉,

with χ1 defined by χ1(a) = a−1, χ1(b) = a−kb, χ1(c) = a2m+knc. Conjugating with ϕ2, ϕ3 and
ψ as above, we obtain that the subgroups in this family are grouped in two conjugation
classes depending on whether k = 0 or k 6= 0. For the skew brace B corresponding to
k = m = n = 0, we obtain Aut(B) = {ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bl, ψ(c) = amc}, hence
|Aut(B)| = p(p − 1)2. For the skew brace B corresponding to k = 1, m = n = 0, we obtain
Aut(B) = {ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bl, ψ(c) = amc}, hence |Aut(B)| = p(p − 1).
We consider the family 〈(a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

i
3), (a

mbnc, χ1)〉, with j 6= 0, jk = i(i + 2) and χ1

defined by χ1(a) = ai+1bj , χ1(b) = a−kb−i−1, χ1(c) = aubvc, with ju = iv, jm = (i + 2)n −
v. By conjugation with ϕ1, ϕ2, ϕ3, we obtain that the subgroups with the same value of i
are conjugated. For the corresponding skew brace B with j = 1, m = n = 0, we obtain
Aut(B) = {ψ ∈ Aut(N) : ψ(a) = aα, ψ(b) = bα, ψ(c) = aγc}, hence |Aut(B)| = p(p − 1).
We may check that skew braces corresponding to different values of i are non-isomorphic. We
consider the family 〈(a, ϕ−2

2 ), (b, ϕj1
1 ϕ

j2
2 ϕ

−2
3 ), (ambnc, χ1)〉, with j1 = 1 or n = 2 and with χ1
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defined by χ1(a) = a, χ1(b) = atb−1, χ1(c) = a−tnb2nc. By conjugating with ϕ1, ϕ2, ϕ3 and
ψ defined by ψ(a) = a−1, ψ(b) = b, ψ(c) = c, we obtain that all subgroups in this family
lie in one conjugation class. We compute the automorphism group for j1 = 1, j2 = m =
n = t = 0 and obtain Aut(B) = {ψ ∈ Aut(N) : ψ(a) = al

2

, ψ(b) = bl, ψ(c) = c}, hence
|Aut(B)| = p− 1. We consider the family 〈(a, Id), (b, ϕj1

1 ϕ
j2
2 ), (c, χ1)〉, with j1 6= 0, χ1 defined

by χ1(a) = a−1, χ1(b) = atb, χ1(c) = auc. By conjugating with ϕ1, ϕ2, ϕ3 and ψ defined by
ψ(a) = aα, ψ(b) = b, ψ(c) = c, we obtain that all subgroups in this family lie in one conjugation
class. We consider the corresponding skew brace B for j1 = 1, j2 = t = u = 0. We obtain
Aut(B) = {ψ ∈ Aut(N) : ψ(a) = ai, ψ(b) = bl, ψ(c) = bnc}, hence |Aut(B)| = p(p− 1)2.

We examine next the regular subgroups with an element of order 2 of the form (z, χ2),
with χ2 defined in (5). By conjugating with ϕ3, we obtain that the subgroups in the family
〈(a, ϕ−2

2 ), (b, Id), (bv/2c, χ2)〉, with χ2 defined by χ2(a) = a−1, χ2(b) = b−1, χ2(c) = bvc are
all conjugated with each other. For v = 0, we obtain Aut(B) = {ψ ∈ Aut(N) : ψ(a) =
ai, ψ(b) = bl, ψ(c) = amc}, hence |Aut(B)| = p(p − 1)2. Finally we consider the family
〈(a, ϕ−2

2 ), (b, ϕj1
1 ϕ

j2
2 ), (b

v/2c, χ2)〉, with j1 6= 0, χ2 as in the preceding case. By conjugating with
ϕ1, ϕ3 and ψ defined by ψ(a) = aα, ψ(b) = b, ψ(c) = c, we obtain that all subgroups in this
family lie in one conjugation class. For v = j2 = 0, j1 = 1, we obtain Aut(B) = {ψ ∈ Aut(N) :
ψ(a) = ai, ψ(b) = bl, ψ(c) = amc}, hence |Aut(B)| = p(p− 1)2.

5.5.3 Multiplicative group isomorphic to (Cp × Cp)⋊ C2

We consider the regular subgroups of Hol(N) isomorphic to N . The subgroup N provides a
skew brace B with multiplicative group equal to the additive group, hence Aut(B) = Aut(N).

We examine next the regular subgroups with an element of order 2 of the form (z, χ1),
with χ1 defined in (4). We consider the family 〈(a, ϕi

2ϕ
j
3), (b, ϕ

k
2ϕ

−i−2
3 ), (c, χ1)〉, with jk =

−i(i + 2) and χ1 defined by χ1(a) = ai+1bj , χ1(b) = akb−i−1, χ1(c) = c. By conjugation
with ϕ1, ψ defined by ψ(a) = ab, ψ(b) = b, ψ(c) = c and ψβ defined by ψ(a) = a, ψ(b) =
bβ, ψ(c) = c, we obtain that all subgroups in this family lie in one conjugation class. We
consider the corresponding skew brace B for i = j = k = 0 and obtain Aut(B) = {ψ ∈
Aut(N) : ψ(a) = aαbβ, ψ(b) = bδ, ψ(c) = aαc}, hence |Aut(B)| = p(p − 1)2. We consider
the family 〈(a, Id), (b, ϕj1

1 ϕ
j2
2 ϕ

−2
3 ), (bnc, χ1)〉, with j1 6= 0, j1n = j1 − j2 and χ1 defined by

χ1(a) = a, χ1(b) = b−1, χ1(c) = b2nc. By conjugation with ϕ3 and ψα defined by ψ(a) =
aα, ψ(b) = b, ψ(c) = c, we obtain that all subgroups in this family lie in one conjugation class.
We consider the corresponding skew brace B for j1 = j2 = 1, n = 0 and obtain Aut(B) = {ψ ∈
Aut(N) : ψ(a) = aδ

2

, ψ(b) = a−δν/2bδ, ψ(c) = aµbνc}, hence |Aut(B)| = p2(p− 1). We consider
the family 〈(a, ϕ−2

2 ), (b, ϕj1
1 ϕ

j2
2 ), (c, χ1)〉, with j1 6= 0 and χ1 defined by χ1(a) = a−1, χ1(b) =

aj2b, χ1(c) = c. By conjugation with ψα and ϕ1 we obtain that all subgroups in this family lie
in one conjugation class. For the corresponding skew brace B, with j1=1, j2 = 0, we obtain
Aut(B) = {ψ ∈ Aut(N) : ψ(a) = a, ψ(b) = aγb, ψ(c) = aµb2γc}, hence |Aut(B)| = p2.

Finally for the skew brace B corresponding to the subgroup 〈(a, ϕ−2
2 ), (b, ϕ−2

3 ), (c, χ2), with
χ2 defined by χ2(a) = a−1, χ2(b) = b−1, χ2(c) = c, we obtain Aut(B) = Aut(N).

We summarize the obtained results in the following table.
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Skew braces with additive group isomorphic to (Cp × Cp)⋊ C2

number of braces (B, ◦) |Aut(B)|

2 Cp × C2p p(p+ 1)(p− 1)2

2 Cp × C2p p(p− 1)

1 Cp × C2p (p− 1)2

6 Cp ×D2p p(p− 1)2

p+ 3 Cp ×D2p p(p− 1)

1 Cp ×D2p p− 1

2 (Cp × Cp)⋊ C2 p3(p+ 1)(p− 1)2

1 (Cp × Cp)⋊ C2 p(p− 1)2

1 (Cp × Cp)⋊ C2 p2(p− 1)

1 (Cp × Cp)⋊ C2 p2

5.6 Summary

Let p be an odd prime number. As a summary of the preceding results, we give in the following
table the number of isomorphism classes of skew braces (B, ·, ◦) of order 2p2 with additive group
(B, ·) and multiplicative group (B, ◦).

Number of skew braces (B, ·, ◦)

(B, ◦) � (B, ·) C2p2 D2p2 Cp × C2p Cp ×D2p (Cp × Cp)⋊ C2

C2p2 2 4 0 0 0

D2p2 1 2 0 0 0

Cp × C2p 0 0 2 2 5

Cp ×D2p 0 0 2 8 p+ 10

(Cp × Cp)⋊ C2 0 0 1 2 5
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