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Universitat de Barcelona,

Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain

EDUARDO SOTO

Departament de Matemàtiques i Informàtica
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Introduction

Let p be a rational prime and consider the degree p Fermat equation

xp + yp + zp = 0. (1)

The group Q× acts on the set of rational solutions of (1) by

λ(x, y, z) = (λx, λy, λz), λ ∈ Q×.

That allows us to consider solutions in the rational projective plane

P2(Q) = (Q3 \ 0)/Q×,

That is, equation (1) defines a projective plane curve Fp in P2.
By the genus-degree formula Fp has genus

gp = (p− 1)(p− 2)/2.

Faltings’ theorem [10] states that the set Fp(Q) of Q-rational points of Fp is finite if
gp ≥ 2. Genus 0 and genus 1 curves, corresponding to p = 2 and p = 3 respectively,
might have infinitely many rational points. The main goal in this paper is to prove
a finiteness statement hence, we will avoid the case p ≤ 3.
Fermat’s last Theorem predicted that

F :=
⋃

p≥5

Fp(Q) = {[1 : −1 : 0], [1 : 0 : −1], [0 : 1 : −1]}.

In this paper we are interested in the finiteness of F and we shall generalize it to
Fermat equations with coefficients. Let a, b, c be non-zero integers and let F a,b,c

p

denote the projective curve given by

axp + byp + czp = 0.

The Asymptotic Fermat Conjecture with coefficients a, b, c predicts that

Conjecture 1. The set

AFa,b,c :=
⋃

p≥5

F a,b,c
p (Q)

is finite.

It is straightforward to see that the set of trivial points in AFa,b,c, i.e. points
[x : y : z] satisfying xyz = 0, is finite.
The very first non-trivial evidence of Conjecture 1 was established by Andrew

Wiles when proving Taniyama-Shimura conjecture for the semistable case and hence
proving the case a = b = c = 1.
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Theorem (Wiles [32]).

AF1,1,1 = {[1 : 0 : −1], [1 : −1 : 0], [0 : 1 : −1]}.
Remark. Case p = 3 of Fermat’s last Theorem was proved by Leonhard Euler.

Jean-Pierre Serre, Barry Mazur and Gerhard Frey had previously established some
cases of the conjecture, conditionally on Serre’s conjecture or Taniyama-Shimura
conjecture; both proved now.

Theorem (Serre [26]). Let n be a non-negative integer and let q be a prime in

{3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}.
Then

AF1,1,qn ⊆ F 1,1,qn

5 (Q) ∪ F 1,1,qn

7 (Q) ∪ F 1,1qn

q (Q) ∪ {trivial points}.
Theorem (Frey-Mazur [12]). Let q be an odd prime which is neither a Mersenne
prime nor a Fermat prime, let n be a positive integer and m a non-negative integer.
Then

AF1,qn,2m is finite.

Kenneth Ribet, for the case 2 ≤ m < p, and Henri Darmon, Löıc Merel, for the
case m = 1 studied equation Xp + Y p + 2mZp = 0. In particular they proved that

Theorem (Ribet [24], Darmon-Merel [7]).

AF1,1,2m = {[1 : −1 : 0]} ∪ {[2r : 2r : −1] | m = rp+ 1 for p ≥ 5}.
For a non-zero integer N let rad(N) denote the greatest square-free divisor of

N . Let P denote the set of prime numbers. We can and will identify the image of
rad : Z \ {0} → N with the set of finite subsets of P. In particular the radical of
±1 corresponds to the empty set under that identification. Similarly rad′(N) will
denote the greatest odd divisor of rad(N).
Alain Kraus has given effective bounds related to the Asymptotic Fermat conjec-

ture and proved the following.

Theorem (Kraus [14, Corollaire 1]). Let (a, b, c) be non-zero pairwise coprime inte-
gers such that rad(abc) = 2q for an odd prime q which is neither a Mersenne prime
nor a Fermat prime. Then there is an explicit constant G = G(a, b, c) such that

AFa,b,c = {trivial points} ∪
⋃

5≤p<G

F a,b,c
p (Q).

Remark. Case (a, b, c) = (1, 1, 2αqβ) is not explicitly stated in Kraus’ paper. Nev-
ertheless, the same method as for the case (1, 2α, qβ) applies.

Related to this conjecture Nuno Freitas, Emmanuel Halberstadt and Alain Kraus,
have recently developed the so-called symplectic method to solve Fermat equations
for a positive density of exponents p, see [11] or [13]. Our approach follows similar
strategies as in [14] and relies strongly on modularity; see [4] chapter 15 for an
exposition of the modular method written by Samir Siksek and Theorem 15.5.3
therein for an improvement of Serre’s Theorem, .
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In this paper we exhibit non-trivial local obstructions1 to some S-unit equa-
tions and we deduce results as the following. Let (a, b, c) be a primitive tern, i.e.
gcd(a, b, c) = 1, of non-zero integers.

Theorem 2. Assume that rad(abc) is a product of primes all in 1+12Z then AFa,b,2rc

is finite for every r ≥ 0, r 6= 1.

Theorem 3. Assume that rad(abc) is a product of primes all in 1+3Z then AFa,b,16c

is finite.

We also consider some particular cases with rad(abc) = qℓ, for different odd primes
q, ℓ. For example

Theorem 4. Let q, ℓ ≥ 5 be primes such that q ≡ −ℓ ≡ 5 (mod 24). If rad(abc) =
qℓ then, AFa,b,c is finite.

See section 5 for the complete list of cases we consider.

Remark. We use Kraus method to deduce explicit bounds G(a, b, c) on p, see Section
6.

1. Fermat-type curves

Let a, b, c ∈ Z, p prime, abc 6= 0. By a Fermat-type curve we mean a projective
plane curve of the form

F a,b,c
p : axp + byp + czp = 0.

Notice that the Fermat-Type curve F a,b,c
p is a twist of the classical one xp+yp+zp = 0

thus, they share some geometric properties as the genus. Also, the condition abc 6= 0
is equivalent to F a,b,c

p being non-singular.

Theorem 1.1 (Faltings, [10]). Let C/Q be a projective curve of genus ≥ 2. Then
C(Q) is finite.

By the genus-degree formula one has that F a,b,c
p /Q has genus

(p− 1)(p− 2)/2.

This is a consequence of Hurwitz theorem, [27, II, 5.9].2 Thus F a,b,c
p (Q) is finite for

p ≥ 5. The sets F a,b,c
2 (Q), F a,b,c

3 (Q) might be infinite3.
Let a, b, c be non-zero integers and let us consider the set AFa,b,c defined in Con-

jecture 1. The following result is a direct consequence of [6, Proposition 1.1].

Proposition 1.2. Assume that there is a prime ℓ such that vℓ(a), vℓ(b), vℓ(c) are
pairwise different. Then AFa,b,c is finite.

1We use the terminology non-trivial local obstructions to distinguish from the ones introduced
in Proposition 1.2.

2Consider the degree p morphism φ : F a,b,c
p → P1, [x : y : z] 7→ [x : y]. It is ramified at p points

with constant ramification index p.
3The set F a,b,c

2
(Q) is infinite if and only if it is not empty. If O ∈ F a,b,c

3
(Q) then (F a,b,c

3
,O) is

an elliptic curve over Q and F a,b,c
3

(Q) is a finitely generated group.
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Proof. Let us see that
F a,b,c
p (Q) = ∅

for every p > k := max(vℓ(a), vℓ(b), vℓ(c)). Let [x : y : z] ∈ F a,b,c
p (Q) and

(A,B,C) = (axp, byp, czp) 6= (0, 0, 0).

Then vℓ(A) ≤ vℓ(B) ≤ vℓ(C) ≤ ∞ up to permutation of A,B,C and A+B+C = 0.
Notice that

vℓ(A) = vℓ(B) < ∞
since vℓ(A) = vℓ(B + C) ≥ vℓ(B) and (A,B,C) 6= (0, 0, 0). Hence

vℓ(a)
(mod p)≡ vℓ(A) = vℓ(B)

(mod p)≡ vℓ(b)

Thus vℓ(a) = vℓ(b) and

AFa,b,c =
⋃

5≤p≤k

F a,b,c
p (Q)

is finite. �

We say that a tern a, b, c has a trivial local obstruction if there is a prime q such
that vq(a), vq(b), vq(c) are pairwise different. Thus, we shall focus on terns with no
trivial obstruction. We make the following hypothesis.

(F ) : The tern (a, b, c) has no trivial local obstruction and gcd(a, b, c) = 1.

Notice that a, b, c satisfies (F ) if a, b, c are pairwise coprime.

Lemma 1.3. Let a, b, c be a tern satisfying (F ) and let p be a prime such that

p > max
q prime

max(vq(a), vq(b), vq(c)).

Then there are pairwise coprime integers α, β, γ such that rad(αβγ) = rad(abc)
and

F a,b,c
p ≃ F α,β,γ

p

as algebraic curves over Q.

Proof. Let a, b, c be non-zero integers satisfying (F ) and let

Ta = gcd(b, c),

Tb = gcd(a, c),

Tc = gcd(a, b).

Then there are integers a′, b′, c′ such that a′, b′, c′, Ta, Tb, Tc are pairwise coprime and

a = a′ Tb Tc,
b = b′ Ta Tc,
c = c′ Ta Tb.

The Lemma follows by an induction on the number of prime divisors of TaTbTc.
Assume that 1 ≤ e := vq(Ta) < p. The linear map [x : y : z] 7→ [qx : y : z] defines
an isomorphism F a1,b1,c1

p → F a,b,c
p , where qe(a1, b1, c1) = (qpa, b, c). Hence

Ta1 = Ta/q
e,

Tb1 = Tb,
Tc1 = Tc.



6

and rad(a1b1c1) = rad(abc).
�

Remark 1.4. With the notation above one has that vq(αβγ) = vq(abc) if q ∤ TaTbTc

and vq(αβγ) = p− vq(abc)/2 = p− vq(TaTbTc) otherwise.

2. S-unit equations

Let S be a finite set of primes. We identify S with its product in Z. Let a, b, c be
non-zero integers and consider the projective line L : aX + bY + cZ = 0 attached
to it. The set

L(Q) = {[x : y : z] ∈ P2(Q) : L(x, y, z) = 0}
of Q-rational points of L is infinite.

Definition 2.1. Let P ∈ L(Q) and let (x, y, z) ∈ Z3 be a primitive representative
of P , that is gcd(x, y, z) = 1. We say that P is an S-point of L if xyz 6= 0 and
rad(xyz) | S.
Theorem 2.2 (Siegel-Mahler). Let a, b, c be non-zero integers and let S be a finite
set of prime numbers. The set of S-points in the line

L : aX + bY + cZ = 0

is finite.

Proof (Lang [15, p. 28] ). The S-points of L correspond to the points of the affine
curve C : aX + bY + c = 0 with values in

Γ = Z[1/S]× < Q×.

The set S together with −1 generate the abelian group Γ, hence Γ/Γ5 is finite.
If C has infinitely many points with coefficients in Γ, then infinitely many points
{(xi, yi)}i≥1 coincide mod Γ5. Thus the curve ax1X

5 + by1Y
5 + c = 0 has infinitely

many rational points and it has genus 6 since ax1by1c 6= 0. This contradicts Faltings’
theorem. �

Let us focus on the projective line

L0 : X + Y + Z = 0.

Frey-Kraus-Mazur (FKM) method on the Asymptotic Fermat Conjecture with co-
efficients (a, b, c) considers the set of primes S = rad(2abc) and seeks for S-points of
L0. The 2-adic valuation of the S-points will play an important role.

Definition 2.3. Let S be a set of primes and let P ∈ L0(Q) be a S-point with
primitive representative (x, y, z) ∈ Z3. We say that P is a proper S-point if rad(P ) =
S. The height h2(P ) is defined by h2(P ) = v2(xyz).

One has that
1 ≤ h2(P ) < ∞

for every P ∈ L0(Q). In particular L0 has no S-points if 2 /∈ S.

Example 2.4. For S = 2 the S-point of L0 is [2 : −1 : −1] up to permutation of
coordinates.
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Proposition 2.5. Let q be an odd prime and let S = 2q. Then the set of proper
S-points of X + Y + Z = 0 is

• {[3 : −2 : −1], [3 : −4 : 1], [9 : −8 : −1]}, if q = 3,
• {[q : −2n : −1]} with height a power of 2, if q is a Fermat prime ≥ 5,
• {[q : −2n : +1]} with prime height, if q is a Mersenne prime ≥ 7,
• ∅, otherwise,

up to permutation of coordinates.

Proof. Let (x, y, z) be a primitive representative of a proper S-point. Then x, y, z
are non-zero pairwise coprime integers We may assume without loss of generality
that x = qm, y = −2n, z = ±1, m,n ≥ 1. By Theorem A.8 one has that either
q = n = 3 and m = 2 or m = 1. We deduce that case q = 3 has 3 points. Case
m = 1, q ≥ 5 implies that either q = 2n +1 is a Fermat prime and n is a power of 2
or q = 2n − 1 is a Mersenne prime and n is prime. Notice that 3 is the only prime
being Fermat and Mersenne. �

The FKM method to Conjecture 1 relies on finding pairs (S,H) such that

• S is a finite set of primes containing 2,
• H is a set of non-negative integers to be defined and
• there is no proper S-point of height h2 ∈ H in X + Y + Z = 0.

In the following subsections we exhibit infinite families of such pairs.

2.1. S = 2qℓ. Let q, ℓ be odd primes. In this subsection we deal with equations of
the form

2rqs = ℓt ± 1
2r = qsℓt ± 1
2r = qs ± ℓt

For a non-zero integer k let σ(k) denote the number of divisors of n and let ω(k)
denote the number of prime divisors of k. Let Φk denote the kth cyclotomic poly-
nomial. See Appendix A for further details on cyclotomic polynomials.

Proposition 2.6. Let ℓ, q be odd primes and assume that

2rqs = ℓ2t − 1

for some positive integers r, s, t. The solutions are given by the following equalities

24 · 5 = 34 − 1

23 · 3 = 52 − 1,

24 · 3 = 72 − 1,

25 · 32 = 172 − 1.

Proof. Let r, s, t, q, ℓ be a solution. Notice that 3 | ℓq since either ℓ | 3 or 3 | ℓ2t − 1.
If ℓ = 3 then σ(2t) ≤ 3 by Corollary A.6. Hence t ∈ {1, 2} with solutions

32 − 1 = 23, 34 − 1 = 24 · 5. The case 32 − 1 = 23 is not allowed.
If q = 3 then t = 1 by Corollary A.6. The integers ℓ + 1, ℓ − 1 are consecutive

even numbers and gcd(ℓ + 1, ℓ − 1) = 2. Case ℓ ± 1 = 2r−1 · 3s, ℓ ∓ 1 = 2 is not
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possible since ℓ ≥ 5. So assume

ℓ+ ε = 2 · 3s

ℓ− ε = 2r−1

for some unit ε. Then 3s−2r−2 = ε with solutions 3−2 = 1, 3−22 = −1, 32−23 = 1
by Proposition 2.5. Hence ℓ ∈ {5, 7, 17}. �

Proposition 2.7. Let ℓ, q be odd primes and assume that

2rqs = ℓt − 1

for some positive integers r, s, t such that t is odd and ≥ 3. Then t is prime, Φ1(ℓ) =
ℓ− 1 = 2r and Φt(ℓ) = qs. Hence ℓ is a Fermat prime.

Proof. The odd integer t is prime since 2 ≤ σ(t) ≤ ω(ℓt − 1) = 2 by Corollary A.6.
Thus

2rqs = (ℓ− 1)Φt(ℓ)

by the polynomial factorization in (3). Notice that Φt(ℓ) is odd and has a prime
divisor coprime to 2t by Theorem A.4, then q | Φt(ℓ) and q 6= t. Notice that the
greatest common divisor of ℓ − 1 and Φt(ℓ) divides t. Hence ℓ − 1 and Φt(ℓ) are
coprime. �

Proposition 2.8. Let ℓ, q be odd primes and assume that

2rqs = ℓt + 1

for some positive integers r, s, t such that t is odd and ≥ 3. Then t is prime, ℓ+1 = 2r

and Φ2t(ℓ) = qs. Hence ℓ is a Mersenne prime.

Proof. The integer t is prime since 2 ≤ σ(t) ≤ ω(ℓt+1) = 2 by Corollary A.7. Thus

2rqs = (ℓ+ 1)Φ2t(ℓ)

by the factorization of (4) in Appendix A. One proves as in Proposition 2.7 that
Φ2t(ℓ) and ℓ+ 1 are coprime. Notice that Φ2t(ℓ) is odd. �

Proposition 2.9. Let ℓ, q be odd primes and assume that

2rqs = ℓ2t + 1

for some positive integers r, s, t. Then r = 1 and 2t = 2m for some m ≥ 1 and
2m+1 | q − 1.

Proof. Let t2 be the largest odd divisor of 2t. Then ℓ2t + 1 has ≥ σ(t2) odd prime
divisors by Corollary A.7. Thus t2 = 1. In particular ℓ has order 2m+1 in F×

q . Notice

that ℓ2
m

+ 1 ≡ 2 (mod 4) thus r = 1. �

Let n ≥ 2 be an integer. The equation 2Xn−1 = Z2 was studied by Carl Störmer
in [29, Section 3]. He proved that either n is a power of two or X = Z = 1 is the
only solution in Z. See also [22, A11.1].

Proposition 2.10. Assume that there are odd primes ℓ, q such that

2rqs = ℓ2t + 1

for some integers r, s, t ≥ 1. Then r = 1 and either
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• s = 1 and q =
ℓ2t + 1

2
, or

• (q, ℓ) = (13, 239), or
• s = 2, t = 1.

Proof. We have already seen in Proposition 2.9 that r is necessarily 1. Case s = 1
has many solutions. Assume s ≥ 2. Then s, 2t are powers of two due to Störmer’s
result and Proposition 2.9. The curve 2x4 = y2+1 has two positive integer solutions
(1, 1) and (13, 239) due to [16] or [28]. For the study of C : 2x2 = y4+1, we consider
the rational map ϕ : C 99K E

(x, y) 7→
(

4x

x− y
− 2,

4− 4x2

(x− y)2

)

where E denotes the elliptic curve given by y2 = x3 + 4x with Cremona Label
32a1. Notice that ϕ is well defined in the Zariski open U = C \ {x = y} and
that ϕ maps rational points of U to rational points of E. The Mordell-Weil group
of E consists in 4 points, they are (0, 0), (2, 4), (2,−4) and the point at infinity,
see [17]. The computation of ϕ−1E(Q) and C ∩ {x = y} provides the equality
C(Q) = {±(1,−1),±(1, 1)}.
Thus equation 2q2

n

= ℓ2
m

+ 1 has only solution (q, ℓ) = (13, 239) for mn ≥ 2. �

Remark 2.11. Let q, ℓ be odd primes and assume that ℓ is neither a Fermat
prime nor a Mersenne prime. One deduces from previous statements an algorithm
to determine the solutions to the equation 2rqs = ℓt + ε. Indeed, the cases s = 1
or t = 1 are easy to deal with. Let us assume that s, t ≥ 2. The case ε = −1 is
completely treated in Propositions 2.6 and 2.7. The case ε = 1 and t odd is solved
in Proposition 2.8. For the case ε = 1 and t even one has by Proposition 2.10 that
either (q, ℓ) = (13, 239) or s = t = 2 and r = 1.
One can use elementary algebraic number theory to attack the equation ℓ2 −

2q2 = −1. Notice that an integer point of x2 − 2y2 = −1 corresponds to the unit
x + y

√
2 ∈ Z[

√
2]×. Thus, all these points arise as powers of the fundamental unit

η = 1 +
√
2, i.e. Z[

√
2]× = {±1} · ηZ. Four such pairs (ℓ, q) arise as coefficients of

ηn, with 3 ≤ n ≤ 104.

There are indeed solutions to equation 2rqs = ℓt ± 1.

Examples 2.12. • 2 · 52 = 72 + 1 corresponding to η3,
• 2 · 292 = 412 + 1 corresponding to η5,
• η29,
• η59,
• 2 · 134 = 2392 + 1,
• Φ5(3) = 112 and 2Φ5(3) = 35 − 1,
• Φ7(5) is prime and 22 · Φ7(5) = 57 − 1,
• Φ34(7) is prime and 23 · Φ34(7) = 717 + 1.

We finish this subsection with a general statement about 2S-unit equations for
|S| = 2.

Lemma 2.13. Let q, ℓ ≥ 5 be primes. Assume one of the following:

(1) (q, ℓ) ≡ (−5, 5) or (11,−11) (mod 24).
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(2) q ≡ 11 (mod 24), ℓ ≡ 5 (mod 24) and
(

q
ℓ

)

= −1.
(3) q ≡ ±3 (mod 8), ℓ ≡ −1 (mod 24), ℓ 6≡ −1 (mod q).

Then the 2ℓq-unit equation

X + Y + Z = 0

has no proper points of height ≥ 3.

Proof. This is a mod 24 exercise. See Appendix C. �

2.2. Large |S|.

Lemma 2.14 (h2 = 4). Let S be a finite set of primes in 1 + 3Z. Then L0 has no
2S-points of height 4.

Proof. Let (A,B,C) be a (primitive representative of a) 2S-point of height 4 and
let εA, εB, εC the sign of A,B,C, respectively. Then

0 = A +B + C ≡ εA + εB + εC (mod 3).

Hence (εA, εB, εC) = ±(1, 1, 1) and A + B + C is either strictly positive or strictly
negative. �

Notice that the same proof applies to every even height case. In particular, L0

has no 2S-point of even height with the notation of Lemma 2.14.

Lemma 2.15 (h2 = 4). Let n be a positive integer not dividing 14, 16 nor 18 and
let S be a finite set of primes in ±1 + nZ. Then L0 has no 2S-points of height 4.

Proof. Let (A,B,C) be a 2S-point of height 4. Say A = 24A′, then A′, B, C ≡ ±1
(mod n). Thus

0 = A+B + C ≡ ±16± 1± 1 (mod n).

Hence n | 14, 16 or 18. �

Lemma 2.16 (h2 ≥ 2). Let p be an odd prime. Let S be a finite set of primes in
1 + 4pZ. Then L0 has no 2S-points of height ≥ 2.

Proof. Let (A,B,C) be a proper point. Say

A = εA A′ 2r

B = εB B′

C = εC C ′

for r ≥ 2 and εx = sign x. Then A′ ≡ B′ ≡ C ′ ≡ 1 (mod 4p) and

0 = A +B + C ≡ 2rεA + εB + εC (mod 4p).

Thus εB ≡ −εC (mod 4) and 2rεA + εB + εC ≡ 0 (mod p). Then εB = −εC and
p | 2r. �
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3. Frey-Kraus-Mazur method

In this section we recall the FKM method. The standard references are Frey’s
[12] and Kraus’ [14] papers. Let a, b, c be non-zero pairwise coprime integers and let

p > max

(

4, max
q prime

vq(abc)

)

(2)

be a prime. Assume that F a,b,c
p (Q) has a non-trivial point P and let (x, y, z) be a

primitive tern of non-zero integers such that [x : y : z] = P . That is, xyz 6= 0,
gcd(x, y, z) = 1 and

axp + byp + czp = 0.

Notice that (A,B,C) = (axp, byp, czp) are pairwise coprime integers.4

3.1. The Frey curve. Following the notation above consider the elliptic curve

E = EA,B,C : Y 2 = X(X − A)(X +B)

over Q. The definition of EA,B,C is sensible to the order of (A,B,C). More precisely,
the curve EA,B,C is a twist of EB,A,C by the quadratic twist of Q(i)/Q while even
permutations of (A,B,C) define Q-isomorphic elliptic curves. Hence EA,B,C, EB,A,C

have common prime-to-2 conductor. Let us reorder (A,B,C) so that E has minimal
conductor exponent over Q2.

5

Proposition 3.1. E has conductor 2r rad′(abcxyz) where

r =















1 if xyz is even or v2(abc) ≥ 5,
0 if xyz is odd and v2(abc) = 4,
3 if xyz is odd and v2(abc) ∈ {2, 3},
5 if xyz is odd and v2(abc) = 1.

Proof. The elliptic curve E has semi-stable reduction at every odd prime since
A,B,C are pairwise coprime. Let ℓ be an odd prime, then E has bad reduction
over Qℓ if and only if ℓ | ABC. Thus, E has prime-to-2 conductor rad′(ABC) =
rad′(xyzabc) by Neron-Ogg-Shafarevich. The conductor exponent of E over Q2 has
been computed in [8, Lemma 2]. If xyz is even then v2(ABC) ≥ pv2(xyz) ≥ p > 4
by hypothesis, thus r = 1. Notice that v2(abc) = 0 implies xyz even. �

Lemma 3.2. The Galois representation

ρ̄E,p : Gal(Q̄/Q) −→ Aut(E[p]) ≃ GL2(Fp)

is irreducible.

Proof. Recall that p ≥ 5 by assumption (2). The irreducibility condition is proved
in Serre’s paper [26, Proposition 6] for the semi-stable case, i.e. r ≤ 1. Serre’s proof
relies on Mazur’s theorem [19, Theorem 2].
Let us prove irreducibility for r ∈ {3, 5}. Consider the local Galois representation

ρE,p|G2
: Gal(Q̄2/Q2) → Aut(Tp(E))

4Indeed, if q | x, y then qp | c and p ≤ vq(c) ≤ vq(abc).
5For example one can take B even and A ≡ −1 (mod 4).
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and the residual representation

ρ̄E,p|G2
: Gal(Q̄2/Q2) → Aut(E[p]),

where Tp(E) denotes the p-adic Tate module of E and G2 denotes a decomposition
subgroup of GQ over 2. The conductor of ρE,p|G2

is larger than or equal to the
conductor of ρ̄E,p|G2

. Henri Carayol computed in [3] the cases where the inequality
is strict. See the discussion in page 789 and Proposition 2 therein. Since ρE,p|G2

has
unramified determinant and r ≥ 3 one deduces that ρE,p|G2

, ρ̄E,p|G2
have common

conductor 2r. Assume that ρ̄E,p is reducible then

ρ̄E,p|G2
≃
(

χ1 ∗
χ2

)

with χ1χ2 being the (unramified) mod p cyclotomic character. Thus χ1, χ2 have com-
mon conductor. The Swan conductor is invariant under semisimplification. Thus,
the Swan conductor of ρ̄E,p|G2

coincides with the Swan conductor of χ1 ⊕ χ2. That
is, either χ1, χ2 are unramified and ρ̄E,p|G2

has conductor ≤ 1 or χ1, χ2 are ramified
with common Swan conductor m. In the last case one has that ρ̄E,p|G2

has even
conductor exponent r = dimFp

E[p]− dimFp
E[p]I2 + 2m = 2 + 2m.

�

3.2. Lowering the level. We shall lower the level of E via E[p]. The standard
reference here is Ribet’s level lowering theorem, [23]. Let us recall some notation
therein. Let ρ̄ := E[p] be the mod p irreducible representation attached to E. Then
ρ̄ is modular of level N = 2r rad′(abcxyz) by Wiles [32], see also [8]. Let ℓ be a prime
divisor of N with ℓ ‖ N , that is ℓ | N and ℓ2 ∤ N . The representation ρ̄ is finite
at ℓ if by definition some geometric condition is satisfied.6 For the case of modular
elliptic curves that condition has a pleasant equivalence.

Lemma 3.3. Let p be a prime, let E ′ be an elliptic curve over Q of conductor N ′

and let ℓ ‖ N ′ be a prime. Then E ′[p] is finite at ℓ if and only if p | vℓ(jE′). If p 6= ℓ
then E ′[p] is finite at ℓ if and only if E ′[p] is unramified at ℓ.

Proof. The lemma is a consequence of Tate’s uniformization for multiplicative re-
duction elliptic curves over Qℓ. See [5, 2.12] and [9, 8.2]. �

Let s be the conductor exponent of E[p] at 2, s ≤ r. If r ∈ {0, 3, 5} then s = r.
If r = 1 then s is ruled by Tate’s uniformization. That is, s = 0 if and only if
v2(abc) = 4.

Theorem 3.4. Following the notation above, let

ρ̄ : Gal(Q̄/Q) → GL2(Fp)

be the Galois representation attached to the p-torsion of E = EA,B,C. There is a
newform f ∈ S2(2

s rad′(abc)) whose mod p Galois representation is isomorphic to ρ̄.

6More precisely, ρ̄ is finite at ℓ if there is a finite flat Fp-vector space scheme H over Zℓ such
that H(Q̄ℓ) is isomorphic to ρ̄|Gℓ

as Fp[Gℓ]-modules.
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Proof. Let ℓ be an odd prime divisor of rad′(abcxyz). Then E[p] is finite at ℓ if and
only if ℓ ∤ abc. Indeed,

jE =
28(C2 −AB)3

A2B2C2

and vℓ(jE) = −2vℓ(abc)− 2pvℓ(xyz). Thus p | vℓ(jE) if and only if

p | vℓ(abc).

Recall that p > vℓ(abc) by assumption (2). Thus E[p] is finite at an odd prime ℓ if
and only if ℓ ∤ abc.
Ribet’s level lowering Theorem states that ρ̄ is modular of level 2s rad′(abc). I.e.,

there is a newform in S2(M), for some M | 2s rad′(abc), and a prime p ∋ p such that
ρ̄f,p and ρ̄ are isomorphic. See B for a proof of the equality M = 2s rad′(abc). �

The final step is to connect f with S-unit equations. Kraus method allows us to
impose the following conditions.

• [Qf : Q] = 1 so that f corresponds to an elliptic curve E ′/Q.
• E ′ has full rational 2-torsion.

Theorem 3.5. There is a constant H = H(rad(abc), s) such that if p > H then the
newform described in Theorem 3.4 corresponds to an elliptic curve over Q with full
rational 2-torsion (up to isogeny).

Proof. See Théorème 3 and Théorème 4 in [14]. �

Notice that H depends on [x : y : z] since r and s may vary from point to point.
Nevertheless, one can still give a uniform bound depending only on a, b, c by taking
maxs(H(rad(abc), s)).

Proposition 3.6. Let N be a square-free odd integer and let r ∈ {0, 1, 3, 5}. The
existence of a Frey Curve of conductor 2rN is equivalent to the existence of a proper
2N-point of height

≥ 5 if r = 1,
4 if r = 0,

2 or 3 if r = 3,
1 if r = 5.

Proof. The existence of a Frey curve attached to a 2N -point follows as in Proposi-
tion 3.1. For the other implication let

E : Y 2 = X(X −A)(X +B)

be a Frey curve of conductor 2rN , A,B ∈ Z. There is a Frey curve

E ′ : Y 2 = X(X − a)(X + b)

twist of E such that a, b are coprime, a ≡ −1 mod 4 and b is even. Mainly, the tern
(a, b,−a−b) ∈ Z3 is a primitive representative of [A : B : −A−B] up to permutation
of coordinates. Let us see that (a, b, c) is a proper 2N point with the corresponding
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constrains on the height. The curve E ′ has conductor 2r
′

rad′(ab(a + b)) where

r′ =















0 if v2(b) = 4,
1 if v2(b) ≥ 5,
3 if v2(b) = 2, 3,
5 if v2(b) = 1

as described in [8]. Thus, it is enough to prove that r′ = r and N = rad′(ab(a+ b)).
Let g ∈ Z square-free such that E is a twist of E ′ by the quadratic character χ
attached to Q(

√
g). Equivalently,

E ≃ E ′′ : Y 2 = X(X − ag)(X + bg).

This model of E ′′ is minimal over Zp for every odd prime p. Thus E has additive
reduction at every odd prime divisor of g. Since N is square-free one deduces that
g ∈ {±1,±2} and N = rad′(ab(a + b)). The conductor of E ′ over Q2 needs special
consideration. Assume g 6= 1, otherwise E and E ′ have common conductor. The
character χ has conductor 2|g|+1. We check r = r′ via modularity. Let f be the
weight 2, level 2r

′

N , trivial character newform attached to E ′, by Wiles. Then f⊗χ
is the newform attached to E and has level 2rN . If r′ 6= 5 or g 6= −1, then the level
of f ⊗ χ is 22|g|+2N by [1, Theorem 3.1]. This contradicts that r ∈ {0, 1, 3, 5}. If
r′ = 5 and g = −1 then f ⊗ χ has level 25N . Indeed, if g = f ⊗ χ has level 2sN
with s ≤ 3 then g ⊗ χ = f has level 24N , loc. cit. This contradicts r′ ∈ {0, 1, 3, 5}.
Hence, either g = 1 or g = −1 and r = r′ = 5.
One can also use Tate’s algorithm [30] to compute those conductors. See also [31,

Proposition 1] for the case where Q(
√
g) is more deeply ramified than ρE′,ℓ, i. e.

r′ ≤ 1 and g 6= 1. �

4. Kraus Theorem

The following is a slight generalization of Kraus’ Theorem [14, Théorème 1]. That
is, the assumption a, b, c being pairwise coprime has been relaxed to (F ).
Let a, b, c be non-zero integers satisfying condition (F ) defined in Section 1. We

assume without loss of generality that a is odd.

Theorem 4.1 (2-good). Assume that b is odd and v2(c) = 4. Let S = rad(abc) and
assume that there are no proper S-points of L0 of height 4. Then there is a constant
G(a, b, c) such that

AFa,b,c ⊆
⋃

5≤p≤G(a,b,c)

F a,b,c
p ∪ {trivial points}.

Theorem 4.2 (2-node). Assume one of the following

(1) bc is odd,
(2) b is odd and v2(c) ≥ 5, or
(3) v2(b) = v2(c) ≥ 1.

Let S = rad(2abc) and assume that there are no proper S-points of height ≥ 5. Then
there is a constant G(a, b, c) such that

AFa,b,c ⊆
⋃

5≤p≤G(a,b,c)

F a,b,c
p ∪ {trivial points}.
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Theorem 4.3. Assume that b is odd and v2(c) ∈ {2, 3}. Assume that there are no
proper S-points of height 2, 3 or ≥ 5 for S = rad(abc). Then there is a constant
G(a, b, c) such that

AFa,b,c ⊆
⋃

5≤p≤G(a,b,c)

F a,b,c
p ∪ {trivial points}.

Theorem 4.4. Assume that b odd, v2(c) = 1 and let S = rad(abc). Assume that
there are no proper S-points of height 1 or ≥ 5. Then there is a constant G(a, b, c)
such that

AFa,b,c ⊆
⋃

5≤p≤G(a,b,c)

F a,b,c
p ∪ {trivial points}.

See 6 for a description of G(a, b, c).

Proof. Assume that there is a prime p > G(a, b, c) such that F a,b,c
p (Q) has non-

trivial points. Let α, β, γ be pairwise coprime integers such that F a,b,c
p ≃ F α,β,γ

p and
rad(abc) = rad(αβγ) by Lemma 1.3 and let (x, y, z) be a primitive representative
of a non trivial point P in F α,β,γ

p (Q). Let (A,B,C) = (αxp, βyp, γzp) and reorder
(A,B,C) so that E = EA,B,C has minimal conductor. If b, c are both even then the
choice of G(a, b, c) ensures that v2(α) ≥ 5, see Remark 1.4. Otherwise, v2(αβγ) =
v2(abc). The level lowering trick combined with the fact that p is large, see Theorem
3.5, implies that there is an elliptic curve E ′ over Q with full rational 2-torsion such
that E[p] = E ′[p]. Moreover E ′ has conductor 2s rad′(abc) where

s =



























0 if b is odd and v2(c) = 4,

1 if b, c have same parity,

1 if b is odd, v2(c) ∈ {1, 2, 3} and xyz is even,

3 if b is odd, v2(c) ∈ {2, 3} and xyz is odd,

5 if b is odd, v2(c) = 1 and xyz is odd.

Thus E ′ = ER,S,T is a Frey curve, with rad(RST ) = rad(2abc). That is, there is a
proper rad(2abc)-point of height



















1 if s = 5,

2 or 3 if s = 3,

4 if s = 0,

≥ 5 if s = 1,

by Proposition 3.6. �

5. Statements

In this section we translate Lemmas 2.13, 2.14, 2.15 and 2.16 to new cases of
Asymptotic Fermat Conjecture with coefficients. Let (a, b, c) be a tern of non-zero
integers satisfying (F ), a odd.

Theorem 5.1. Let S be a set of primes all in 1+3Z. and assume that rad(abc) = S.
Then the Fermat equation

axp + byp + 16czp = 0
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has no solutions other than xyz = 0 for p larger than G(a, b, 16c).

Proof. There are no proper 2S-points of height 4 by Lemma 2.14. The theorem
follows due to Theorem 4.1. �

Theorem 5.2. Let n be a positive integer not dividing 14, 16, 18 and let S be a finite
set of primes all in (1 + nZ) ∪ (−1 + nZ). Assume rad(abc) = S. Then the Fermat
equation

axp + byp + 16czp = 0

has no solutions other than xyz = 0 for p larger than G(a, b, 16c).

Proof. There are no proper 2S-points of height 4 by Lemma 2.15. The theorem
follows due to Theorem 4.1. �

Theorem 5.3. Let q be an odd prime and let S be a finite set of primes all in
1 + 4qZ. Assume that either rad(abc) = S or rad(abc) = 2S and v2(bc) ≥ 2. Then
the Fermat equation

axp + byp + czp = 0

has no solutions other than xyz = 0 for p larger than G(a, b, c).

Proof. Case rad(abc) = S follows from Theorem 4.2 and Lemma 2.16. If v2(bc) ≥ 2
then either b and c are even or b is odd and m = v2(c) ≥ 2. The first case follows by
Theorem 4.2 and Lemma 2.16. The second case follows by Theorem 4.2 for m ≥ 5,
by Theorem 4.1 for m = 4 and by Theorem 4.3 for 2 ≤ m ≤ 3. �

Theorem 5.4. Let q, ℓ ≥ 5 be primes. Assume one of the following:

(1) (q, ℓ) ≡ (−5, 5) or (11,−11) (mod 24).
(2) q ≡ 11 (mod 24), ℓ ≡ 5 (mod 24) and

(

q
ℓ

)

= −1.
(3) q ≡ ±3 (mod 8), ℓ ≡ −1 (mod 24), ℓ 6≡ −1 (mod q).

Assume that rad(abc) = ℓq.
Let n = 0 or ≥ 4 then the Fermat equation

axp + byp + 2nczp = 0,

has no solutions other than xyz = 0 for p larger than G(a, b, 2nc).
Let r ≥ 1 then the Fermat equation

axp + 2rbyp + 2rczp = 0,

has no solutions other than xyz = 0 for p larger than G(a, 2rb, 2rc).

Proof. If either n = 0 or n ≥ 5 or r ≥ 1 then this is Theorem 4.2 with Lemma 2.13.
If n = 4 then this is Theorem 4.1 with Lemma 2.13. �

6. Bounds

Let us recall the explicit bound G(a, b, c) as in Kraus’ paper. In the following pre-
sentation we relax the bound so that statements are shorter. For example, G(a, b, c)
is taken so that a, b, c are pth-power-free for every p > G(a, b, c).
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Let us describe the bound G(a, b, c). Let N be a positive integer and let

µ(N) = [SL2(Z) : Γ0(N)] = N ·
∏

ℓ | N prime

(

1 +
1

ℓ

)

,

g(N) = dimC S
new
2 (N),

F (N) =

(
√

µ(N)

6
+ 1

)2g(N)

.

where Snew
2 (N) denotes the space of weight 2 newforms of level N . Let a, b, c be

non-zero integers satisfying (F ), 0 = v2(a) ≤ v2(b) ≤ v2(c). Let

N =



















rad′(abc) if b is odd and v2(c) = 4,

23 rad′(abc) if b is odd and v2(c) = 2, 3,

25 rad′(abc) if b is odd and v2(c) = 1,

2 rad′(abc) otherwise.

If b is odd then G is defined by

G(a, b, c) := max(F (N), max
q prime

vq(a), max
q prime

vq(b), max
q prime

vq(c)).

If b is even, that is v2(b) = v2(c) ≥ 1 then G is defined by

G(a, b, c) := max(F (N), max
q prime

vq(a), max
q prime

vq(b), max
q prime

vq(c), v2(c) + 4).

Example 6.1. Let S 6= ∅ be a finite set of primes in 1 + 12Z and let a, b, c be
non-zero, square-free, pairwise coprime integers such that rad(abc) = S. Then

N = 2 rad(abc) = 2S,

g(N) =
ϕ(S)

12
+ (−1)ω(2S),

µ(N) = 3
∏

ℓ∈S

(ℓ+ 1).

Here ϕ denotes the Euler’s totient function and ω(2S) the number of prime divisors
of 2S. The dimension g(N) of Snew

2 (N) has been computed in [18].

Appendix A. Prime divisors of cyclotomic polynomials

In this appendix we give some lower bounds for the number of prime divisors of
ℓn ± 1 for integers ℓ ≥ 3 and n ≥ 1.
Let Φn be the nth cyclotomic polynomial. A usual description of Φn is given by

the formula
Φn(X) =

∏

k

(X − ζkn)

where ζn = e2πi/n is a primitive nth root of unity and k ranges over the units of
Z/nZ. Gauss proved that Φn is irreducible in Z[X ], hence Z[X ]/Φn ≃ Z[ζn] ⊆ C is
a domain. In particular

Xn − 1 =
∏

d|n

Φd(X) (3)
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is the factorization of Xn − 1 in irreducible factors over Z[X ]. Similarly, write
n = 2mn2 where n2 is the largest odd divisor of n. Then

Xn + 1 =
∏

d|n2

Φ2m+1d(X) (4)

since X2m+1n2 − 1 = (Xn − 1)(Xn + 1).
Let k be a positive integer. The map Z[X ] → Z/kZ, X 7→ ℓ factors through

Z[ζn] → Z/kZ, ζn 7→ ℓ if, and only if, k | Φn(ℓ).

Lemma A.1. Let p ∤ n be a prime and assume that there is a ring homomorphism
θ : Z[ζn] → Fp. Then θ(ζn) has order n in F×

p and n | p− 1.

Proof. Let α = θ(ζn). Then αn−1 =
∏

dΦd(α) = 0. Notice that Xn−1 is separable
over Fp since nXn−1 6= 0 in Fp[X ]. Hence α has order n in F×

p and the lemma
follows. �

Lemma A.2. Let p be an odd prime. There is no ring homomorphism Z[ζp] →
Z/p2Z. There is no ring homomorphism Z[ζ4] → Z/4Z.

Proof. It is enough to prove that Φp(X) =
∑p−1

i=0 X
i has no roots in Z/p2Z. The

following proof is standard. Assume that there is a root a of Φp in Z/p2Z. Then

a = 1 mod p, since Φp = (X−1)p−1 in Fp. Notice that Φp(1+pb) =
∑p−1

i=0 1+ipb = p
in Z/p2Z for every b. Hence Φp(a) = p for every a ≡ 1 (mod p).
Notice that Φ4(X) = X2 + 1 has no roots in Z/4Z. �

Lemma A.3. Let ℓ ≥ 3, n ≥ 2 be integers and let p be the largest prime divisor of
n, then |Φn(ℓ)| > p.

Proof. The Euler’s totient function ϕ, satisfies that

p− 1 | ϕ(n).
Hence

|Φn(ℓ)| =
∏

k

|ℓ− ζkn| ≥
∏

k

2 ≥ 2p−1

and case p ≥ 3 follows.
If p = 2 then n is a power of 2, n = 2m, and

Φn(ℓ) = ℓ2
m−1

+ 1 > 2.

�

The polynomial Φn has no real roots for n ≥ 3, hence |Φn(ℓ)| = Φn(ℓ).

Theorem A.4. Let ℓ ≥ 3, n ≥ 3 be integers. There is a prime divisor p of Φn(ℓ)
not dividing 2n. Hence, ℓ has order n in F×

p .

Proof. Case n = 2m ≥ 4.
One has that Φ2m(X) = X2m−1

+1 and Φn(ℓ) ≥ 10. If 4 | Φn(ℓ) then Z[ζn] → Z/4Z,
ζn 7→ ℓ defines a ring homomorphism that restricts to Z[ζ4] ⊆ Z[ζn]. This contradicts
Lemma A.2. Hence either Φn(ℓ) is odd or Φn(ℓ)/2 ≥ 5 is odd.
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Case p | n, p odd.
Notice that Φn(ℓ) is odd. Indeed, if 2 | Φn(ℓ) then there exists a ring homomorphism

Z[ζn] → F2

which induces by restriction a map

Z[ζp] → F2

hence p | 2− 1 by Lemma A.1.
Let us see that either Φn(ℓ) and n are coprime or there is a prime p such that

Φn(ℓ)/p, n are coprime. Assume that p < q are prime divisors of Φn(ℓ) and n. Then
there is a ring homomorphism

Z[ζq] ⊆ Z[ζn] → Fp

and q | p − 1 by Lemma A.1 which contradicts p < q. Hence the greatest common
divisor of Φn(ℓ) and n is a possibly trivial power of an odd prime p. If p | n then
p2 ∤ Φn(ℓ) by Lemma A.2. Hence either Φn(ℓ), 2n are coprime or there is an odd
prime divisor p of Φn(ℓ) such that Φn(ℓ)/p and 2n are coprime. In the second case
Φn(ℓ)/p is an odd integer > 1 by Lemma A.3 and the first part of the theorem
follows. The order of ℓ is computed in Lemma A.1. �

Corollary A.5. Let ℓ ≥ 3. Assume that n1, . . . , nr are pairwise different integers
≥ 3. Then

∏

i

Φni
(ℓ)

has at least r odd prime divisors.

Proof. Let pi be a prime divisor of Φni
(ℓ) coprime to 2ni as in Theorem A.4. Then

ℓ has order ni in F×
pi
, thus pi 6= pj for different i, j. �

For an integer k let ω(k) denote the number of prime divisors of k and let σ(k)
denote the number of divisors of k.

Corollary A.6. Let ℓ ≥ 3, n ≥ 1 be integers. If (ℓ, n) 6= (3, even) then

ω(ℓn − 1) ≥ σ(n).

Otherwise
ω(32t − 1) ≥ σ(2t)− 1.

Proof. Let i ∈ {1, 2} such that n ≡ i (mod 2). Then

A :=
∏

d | n
d ≥ 3

Φd(ℓ) =
ℓn − 1

ℓi − 1

has at least σ(n)− i odd prime divisors S = {pd}d|n,d≥3 as in Theorem A.4. Notice
that pd ∤ ℓ

i − 1 for every pd ∈ S. Indeed, if an odd prime p divides ℓi − 1 then ℓ has
order ≤ i in F×

p by Lemma A.1. Thus

ω(ℓn − 1) ≥ σ(n)− i+ ω(ℓi − 1).

It is enough to prove that ω(ℓi − 1) ≥ i if and only if (ℓ, i) 6= (3, 2). If i = 1 then
ℓ−1 ≥ 2 and ω(ℓ−1) ≥ 1. If i = 2 then gcd(ℓ−1, ℓ+1) ≤ 2. Assume ω(ℓ2−1) < 2
then ℓ− 1, ℓ+ 1 are powers of two. Hence ℓ = 3. �
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Corollary A.7. Let ℓ ≥ 3, n ≥ 1 be integers and let n2 be the largest odd divisor
of n. Then

ω(ℓn + 1) ≥ σ(n2).

Proof. Let n = 2mn2 then ℓn + 1 =
∏

d|n2
Φ2m+1d(ℓ) by the polynomial factorization

of (4). For every d such that 2m+1d 6= 2 consider a prime pd | Φ2m+1d(ℓ) as in
Theorem A.4. If m = 0 let p1 be an arbitrary prime divisor of Φ2(ℓ) = ℓ + 1. Then
∏

d|n2
pd is a squarefree divisor of ℓn + 1. �

A.1. Catalan Conjecture. One deduces a case of Catalan’s Conjecture.

Theorem A.8 (Partial Catalan’s Conjecture). Let ℓ ≥ 3 be an integer and assume
that

2m − ℓn ∈ {±1}
for some integers m,n ≥ 2. Then m = ℓ = 3, n = 2.

Proof. Assume that 2m = ℓn + 1, n ≥ 2 and let n2 be the largest odd divisor of n.
Then ℓ is odd and ℓn+1 ≥ 4. By Corollary A.7 we have that 1 = ω(ℓn+1) ≥ σ(n2),
hence n2 = 1 and n = 2r for some positive r. Since 2m = ℓ2

r

+ 1 ≡ 2 (mod 4) one
has that m = 1 and 2 = ℓ2

r

+ 1.
Assume that 2m = ℓn − 1, n ≥ 2. If (ℓ, n) = (3, 2t) with t an integer then

1 = ω(32t − 1) ≥ σ(2t)− 1 by Corollary A.6. Hence t = 1.
If (ℓ, n) 6= (3, even), by Corollary A.6 one has that 1 = ω(ℓn − 1) ≥ σ(n). Hence

n = 1. �

This partial result is well known to experts, see [22, B3.3]. See ibid for a complete
treatment of Catalan’s conjecture written before Preda Mihăilescu’s proof [20]. See
also Bilu - Bugeaud - Mignotte’s book [2] for a minimalistic approach of the proof
or Schoof’s book [25] based on two sets of lecture notes by Yuri Bilu.

Appendix B. The conductor of E[p]

The j-invariant of a Frey curve is given by the formula

jE =
28(C2 − AB)3

A2B2C2
.

Thus one has for the case (A,B,C) = (axp, byp, czp) being pairwise coprime that
C2 − AB and ABC are coprime. Let ℓ be a prime divisor of ABC. Then

vℓ(jE) = 8vℓ(2)− 2vℓ(ABC) ≡ 8vℓ(2)− 2vℓ(abc) (mod p).

Thus p | vℓ(jE) if and only if

• ℓ is odd and p | vℓ(abc), or
• ℓ = 2 and v2(abc) ≡ 4 (mod p).

Proposition B.1. Let E = EA,B,C be the Frey curve as in Theorem 3.4. Let f be
a newform in S2(M) for some divisor M of 2s rad′(abc) and let p be a prime ideal
such that

E[p] ≃ ρ̄f,p

as Fp[GQ]-modules. Then M = 2s rad′(abc).
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Proof. Let R be the largest (square-free) divisor of 2s rad′(abc) coprime to 2p. By
Tate’s uniformization E[p] is ramified at every prime divisor ℓ of R and so is ρ̄f,p.
Thus, R | M .
Let ℓ = 2. If s ∈ {3, 5} then Carayol [3] predicts that the lifting ρf,p of ρ̄f,p has

conductor exponent s. Thus 2s | M . If s = 0 then M is odd and so is R. If s = 1
then E[p] is ramified at 2 and so is ρ̄f,p. Hence 2 | M .
One could just avoid case p | M since we will consider big primes p with respect

to rad(abc). Still, if p | rad′(abc) then E[p] is not finite at p. That is, E[p]|Gp
is

reducible and not peu ramifié by [9, Proposition 8.2]. If p ∤ M then ρ̄f,p|Gp
is either

irreducible or reducible and peu ramifié. Thus E[p]|Gp
6≃ ρ̄f,p|Gp

. This completes the
proof. �

Appendix C. Mod 24 exercises

Proof of Lemma 2.13: Let (A,B,C) be a primitive S-unit point of height ≥ 3. As-
sume A = 2r, r ≥ 3. Then B + C ≡ 0 (mod 8) and B + C 6≡ 0 (mod 3). Hence,

BC ≡ −1 (mod 8)

since C−1 ≡ C (mod 8) and

BC ≡ 1 (mod 3)

since B,C ∈ {±1} mod 3. Thus

±qsℓt = BC ≡ 7 (mod 24).

(1) By hypothesis (q, ℓ) ≡ (−5, 5) or (11,−11) (mod 24). Notice that

qsℓt ≡ ±qs+t 6≡ ±7 (mod 24),

hence A is not a power of two.
Assume that

0 ≡ 2rqs = ℓt + ε ≡ (−3)t + ε (mod 8)

for some ε ∈ {±1}. Then ε = −1 and t is even. Proposition 2.6 implies

(q, ℓ) ∈ {(3, 5), (5, 3), (3, 7), (3, 17)}.
Condition q ≡ −ℓ (mod 24) leads to a contradiction. Similarly, 2rℓt = qr+ε
has no solution.

(2) Assume that (2r,−qsℓt, ε) is an S-point for some unit ε. Then −εqsℓt ≡ 7
(mod 24). Thus s, t are odd and ε = −1. That is

2r = qsℓt + 1 ≡ −1 (mod 3),

hence r is odd, r = 2f + 1. Thus, 2 is a square in Fq, i.e. q ≡ ±1 (mod 8).
Indeed

(

1

q

)

=

(

2

q

)r

=

(

2

q

)

.

Assume that 2r + (−1)aqs + (−1)bℓt = 0. Then

(−1)a+bqsℓt ≡ 7 (mod 24).

Hence a, b have same parity and s, t are odd. Thus

2r = qs + ℓt ≡ 1 (mod 3)
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and r is even. Thus q is a square in Fℓ.
Assume that (2rqs,−ℓt, ε) is an S-point. Then ℓt ≡ ε (mod 8) and hence

t is even and ε = 1.
Assume that (2rℓt,−qs, ε) is an S-point. Then ε = 1 and s is even. By

Proposition 2.6 q ∈ {3, 5, 7, 17}, hence
q 6≡ 11 (mod 24).

(3) By hypothesis
ℓ ≡ −1 (mod 24)

and q ≡ ±5 or ±11 (mod 24) since q ≥ 5. Thus qsℓt 6≡ ±7 (mod 24) and
A is not a power of two.

Assume that 2rqs = ℓt + 1. Then t is either 1 or an odd prime by
Lemma 2.8. Case t = 1 implies ℓ ≡ −1 (mod q). Case t odd prime im-
plies ℓ Mersenne hence

ℓ ≡ 0, 1 (mod 3).

Assume that 2rqs = ℓt − 1. Hence t is even and Proposition 2.6 implies
ℓ ∈ {3, 5, 7, 17}, then ℓ 6≡ −1 (mod 24). Similarly, case 2rℓs = qt ± 1 is not
allowed by Lemma 2.6.

�
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