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ON THE ARITHMETIC COHEN-MACAULAYNESS OF VARIETIES
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ABSTRACT. Given any diagonal cyclic subgroup A C GL(n+ 1,k) of order d, let Iq C k[zo, ..., Zn]

be the ideal generated by all monomials {m1,...,m,} of degree d which are invariants of A. I, is

d4n—1
nil

Xq parameterized by (mi,...,m,) is called a GT-variety with group A. We prove that all these

a monomial Togliatti system, provided r < ( ), and in this case the projective toric variety

GT-varieties are arithmetically Cohen-Macaulay and we give a combinatorial expression of their
Hilbert functions. In the case n = 2, we compute explicitly the Hilbert function, polynomial and
series of X;. We determine a minimal free resolution of its homogeneous ideal and we show that it is
a binomial prime ideal generated by quadrics and cubics. We also provide the exact number of both
types of generators. Finally, we pose the problem of determining whether a surface parameterized

by a Togliatti system is aCM. We construct examples that are aCM and examples that are not.
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1. INTRODUCTION.

In 1946 [28], Eugenio Togliatti classified the rational surfaces of PV, N > 5, parameterized
by cubics and representing a Laplace equation of order 2, i.e., whose osculating spaces have all
dimension strictly less than the expected 5. Only for one of the surfaces found by Togliatti
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the apolar ideal to the ideal generated by the polynomials giving the parameterization is
artinian, and it is the ideal J = (23,43, 23, 2y2) C K|[z,y, z]. In 2007 [2], Brenner and Kaid
proved that, over an algebraically closed field of characteristic 0, J is the only ideal of the
form (23,93, 2%, f(x,y,2)), with f € k[z,y, 2] homogeneous of degree 3, failing the weak
Lefschetz property (see Section 2 23] for the definition). In 2013, the connection between

these two examples has been clarified and extended. In the article [19], it is proved that,
n+d—1)

given an artinian ideal I C k[xo,...,z,] generated by r forms of degree d, if r < ( A

then [ fails the weak Lefschetz property in degree d — 1 if and only if the n-dimensional
variety Y parameterized by the forms of degree d apolar to I satisfies a Laplace equation of
order d — 1. These ideals I, now called Togliatti systems, have been studied in a series of
articles, see [11, [4], [5], [6], [7], [1I7], [I8], [20] and [24]. In [I7] and [24] there are descriptions
of the minimal monomial Togliatti systems with “low” number of generators, where minimal
means that it does not contain any smaller Togliatti system.

There is an interesting family of examples generalizing one aspect of the ideal J found by
Togliatti. More precisely, we consider the following situation. We fix integers 2 < n < d,
0 <ap<-- < a, <dsuch that GCD(ay,...,a,,d) = 1 and we fix e, a dth primitive
root of 1. Let A C GL(n+ 1, k) be the cyclic subgroup of order d generated by the diagonal
matrix Mo, an = diag(e®,...,e* ). We denote by I; the artinian ideal generated by
all monomials {my,...,m,} of degree d which are invariants of A and by X, the image
of the morphism ¢, : P* — P! defined by (my,...,m,). With this notation, J is the
ideal corresponding to A = (Ms,012) C GL(3,k). The study of the ideals I; C k[xg, 1, x2]
started in [I8], where it is also determined the geometry of the surface S; corresponding
to A = (Mgo12) C GL(3,k). The minimal free resolution of Sy is described, as well as it
is proved that Sy is an arithmetically Cohen-Macaulay surface generated by quadrics and
cubics. Afterwards in [6], some results are generalized for the threefold Fj corresponding to
A = (Mgyp123). The minimality of the ideals I, for any group A = (Ma.n9.01.0,) 18 established
in [4] and [7], and the argument relies on a careful study of the permanent of certain circulant
matrices.

In the present paper, we focus our attention on the arithmetic Cohen-Macaulay property
(shortly aCM) of any variety X, as well as surfaces parameterized by Togliatti systems
I C E[xg, 21, 25]. All these varieties are monomial projections of Veronese varieties. Any
result in this direction should therefore be considered as a contribution to the longstanding
problem of deciding whether projections of Veronese varieties are aCM, posed by Grobner in
[12]. Our first result is Theorem [B.1] stating the non-trivial fact that any monomial invariant
of A of degree a multiple of d can be expressed as a product of monomial invariants of A of
degree d. Tt relies on a result of Erdos, Ginzburg and Ziv ([§]). By a GT-system we shall
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mean a Togliatti system I C k[zg, ..., ,] whose associated morphism ¢; : P"* — P""! is a
Galois covering with group Z/dZ. It follows that I; is a GT-system with group A, provided
r < (d:zl), and in this case we call X; a GT-variety with group A.

Our main result proves that any variety X, is aCM, and so GT-varieties with group A are
aCM (Theorem B.3]). We deduce it from Theorem B proving that the coordinate ring of
Xg is the ring of invariants R™, where A is the diagonal linear group of order d? generated
by Ma.ag....a, a0nd Mgy 1 = diag(e, ..., e). Afterwards, we turn our attention to the Hilbert
function of Xy and we give a combinatorial description of it. In the case n = 2, we are able
to obtain Theorem containing an explicit expression for the Hilbert polynomial and
series, as well as a minimal free resolution of any GT-surface (Theorem [14]). From this we
provide a complete description of the homogeneous ideal of any GT-surface.

Finally, we address the general problem of the arithmetic Cohen-Macaulayness of surfaces
parameterized by monomial Togliatti systems whose coordinate rings are not rings of invari-
ants of finite linear groups. We give a counterexample showing that this property is not
true in general. However, we provide a new class of Togliatti systems, whose varieties are
aCM. These are not GT-systems, but are obtained as a different generalization of the ideal
J. The proof relies on the study of the associated numerical semigroup, using a criterion
due to Goto and Watanabe in [I0] and Trung in [29].

Let us outline how this work is organized. Section [2 contains the basic definitions and
results needed in the rest of this paper. We introduce semigroup rings and the rings of
invariants by finite groups. Next, we present the basic facts on Galois coverings and quotient
varieties by finite groups of automorphisms. Finally, we recall the notion of Togliatti systems
and GT-systems introduced in [4], [I8] and [19].

The main results of this paper are collected in SectionsBland [l In Section Bl we prove that
any variety Xy is aCM. In Section (], we focus on the geometric properties of G'T-surfaces.
We explicitly determine their Hilbert function, polynomial and series. Fixed an integer d > 3
and A = (Mg0.ap) C GL(3,k) with 0 < a < b, we are able to find a function 6(a, b, d) such
that, for all ¢ > 0, the Hilbert function H F'(Xy,t) of X, equals w (see Theorem
M12). We find a minimal free resolution of any GT-surface (Theorem [I4]), which allows
us to conclude that its homogeneous ideal is a binomial prime ideal minimally generated by
quadrics and cubics. We give the exact number of both types of generators (see Corollary
[4.16]).

Section [0 concerns the arithmetic Cohen-Macaulayness of surfaces parameterized by mono-
mial Togliatti systems whose coordinate rings are not rings of invariants of finite linear
groups.
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Notation. Throughout this paper, k£ denotes an algebraically closed field of characteristic
zero, R = klxg, ..., x,] and GL(n+1, k) the multiplicative group of invertible (n+1) x (n+1)
matrices with coefficients in k. If z, 2’ are positive integers, we denote by (z, z’) the greatest

common divisor of z and 2.

2. PRELIMINARIES.

In this section, we introduce the main objects and results we shall use. First, we define
semigroups and normal semigroups, and we present three results on the Cohen-Macaulayness
of semigroup rings needed in the sequel (see [3], [10], [I5] and [31]). Second, we prove that
quotient varieties by the action of finite groups of automorphisms are Galois coverings and
we translate this result from the point of view of Invariant Theory. For a further exposition
in Invariant Theory of finite groups, see for instance [3] and [26]. Finally, we introduce the
weak Lefschetz property and the notions of Togliatti systems and GT-systems.

2.1. Semigroup rings and rings of invariants. By a semigroup, we mean a finitely
generated subsemigroup H = (hy, ..., hs) of Z"". We denote by L(H) the additive subgroup
of Z"! generated by H and by r the rank of L(H) in Z"*'. We also denote by k[H| C R the
semigroup ring associated to H, i.e., the graded k-algebra whose basis elements correspond
to the monomials X", j = 1,... ¢, where X" denotes the monomial z{° - - - %" with hj =

(ag,...,a,). By a basis of k[H] we mean a set of elements 0y,...,0, € k[H] such that
K[H] = k[0, ... 00

Definition 2.1. A semigroup H C Z"™! is called normal if it coincides with its saturation
H:={weL(H) | zw € H, for some z € Z>¢}.

Concerning normal semigroups, Hochster proves the following result.
Proposition 2.2. If a semigroup H is normal, then k[H| is Cohen-Macaulay.

Proof. See [15, Theorem 1]. O

A large family of normal semigroups comes from Invariant Theory, precisely those associ-
ated to finite abelian groups acting linearly on R. We take A = Z/Zd, & - -- ® Z/7Zd, and
we choose d;-th primitive roots of unity e;, ¢ = 1,...,r. A can be linearly represented in
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GL(n+1,k) by means of r diagonal matrices diag(e;*", ..., e;™"), where u;; € N, 0 < j <n,
1 <i < r. We consider the ring of invariants R* := {p € R | A\(p) = p for all A € A}. A
polynomial p € R if and only if all its monomials belong to R*. By Noether’s degree bound
(see [26, 1.2 Theorem.]), R* has a finite basis consisting of monomials of degree at most
the order of A. Let X" ..., X be a monomial basis of R* and H = (hy,...,h;). Then
RM = k[H]. Furthermore, a monomial z{°---z% € R™ if and only if (ay,...,a,) satisfies

the system of congruences:
(1) agto; + -+ apty; =0 (mod d;), i=1,...,7.

Now, if w € L(H) is such that zw € H for some z € Zsq, then w € H. So H is normal and
k[H] is a CM ring.

By [16, Proposition 13|, the ring of invariants of any finite group acting linearly on R is
CM. This is a particular case of [16, Proposition 12] that we present next. Let A be a subring
of R: a Reynolds operator is a A-linear map p : R — A such that pj4 = ids. We have:

Theorem 2.3. Let A be a subring of R such that there exists a Reynolds operator p and R
is integral over A. Then A is a Cohen-Macaulay ring.

Proof. See [16 Proposition 12]. d

Let G C GL(n+1,k) be a finite group acting on R. We denote by R the ring of invariants
of G. One can easily check that the map p: R — R®, defined by p(p) = |G| > gec 9(p), is
a Reynolds operator. Furthermore, any element p € R is a solution of the equation

[T - 9w) =0,

gelG

which is a polynomial in Y with coefficients in R“. So R is integral over R“ and, by Theorem
23, RY is CM.

Partially motivated by the results of Proposition and Theorem 2.3 Goto, Suzuki and
Watanabe, and Trung proved:

Theorem 2.4. Let H be a semigroup and assume that there exist Q-linearly independent
elements fi,..., fm € H such that z - H C (f1,..., fm), for some positive integer z. The
following conditions are equivalent.
(i) k[H] is Cohen-Macaulay.
(ii) If w € L(H) and there exist i,j with 1 < i < j < m, such that w+ f; € H and
w+ f; € H, thenw € H.
(iti) N2y (fi + H) € (2%, fi) + H.
(iv) H =2 H;, where H; = {w € L(H) | w+g € H for someg e (3_7_, ; ., Qi f;)NH.
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In particular, set H* = {w € H | w+ f;,w+ f; € H for somei # j € {1,...,m}}. Then
k[H] is Cohen-Macaulay if and only if H' = H.

Proof. See [10, Theorem 2.6] and [29, Lemma 2. O

Remark 2.5. Let H be a normal semigroup which satisfies the hypothesis of Theorem [2.4]
By Proposition 2.2 the semigroup ring k[H] is CM. Notice that H trivially verifies Theorem

241(i1).
2.2. Galois coverings and quotient varieties. We recall that a covering of a variety X
consists of a variety Y and a finite morphism f : Y — X. The group of deck transformations

G = Aut(f) is defined to be the group of automorphisms of Y commuting with f. We say
that f:Y — X is a covering with group Aut(f).

Definition 2.6. A covering f : Y — X with group Aut(f) is Galois if Aut(f) acts transi-
tively on a fibre f~!(x) for some z € X.

When a group G acts on a variety X, there is a natural way of constructing Galois

coverings.

Definition 2.7. Let G be a group acting on a variety X. The quotient of X by G is defined
to be a variety Y with a surjective morphism p : X — Y such that any morphism p: X — Z
to a variety Z factors through p if and only if p(x) = p(g(z)), for all z € X and g € G.

Remark 2.8. If it exists, the quotient variety is unique up to isomorphism and is denoted by
X/@G. In particular, the morphism p : X — X/G verifies that if z,y € X, then p(z) = p(y)
if and only if g(x) = y, for some g € G.

Proposition 2.9. Let G be a finite group acting on an affine variety X. Then, X/G is the
affine variety whose coordinate ring A(X/G) is the ring of reqular functions on X, invariants
of G, and m: X — X/G is the quotient of X by G.

Proof. See |25, Section 12, Proposition 18]. d

Proposition 2.10. Let G be a finite group acting on a projective variety X and X/G its
quotient space. If the orbit of any point x € X is contained in an affine open subset of X,
then X/G is a projective variety and 7w : X — X/G is the quotient of X by G.

Proof. See |25, Section 12, Proposition 19]. O

Proposition 2.11. Let X be a projective variety and G C Aut(X) be a finite group. If the
quotient variety X /G exists, then m : X — X/G is a Galois covering with group G.
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Proof. Set G = {g1,...,Ggn,id}. The group Aut(mw) consists of all automorphisms of X
commuting with . If f: X — X belongs to Aut(r), then for all z € X we have 7(f(z)) =
m(x). For any x € X, there exists g; € G such that f(z) = g;(x), and hence X = V(f —g1)U
-~ UV(f = gn). The irreducibility of X allows us to conclude that f = g;, for some g¢; € G.
Therefore, Aut(7) = G and it is clear that given 7(x) € X/G, the fibre 7! (7(2)) = G,, so
Aut(m) = G acts transitively on 7! (7 (x)). O

A finite group of automorphisms of the affine space A"*! can be regarded as a finite
group G C GL(n + 1,k) acting on R. Let {fi,..., fi} be a basis of RY, also called a set
of fundamental invariants of G, and let k[wy,...,w; be the polynomial ring in the new
variables wy, ..., w;. We denote by syz(fi,..., f;) the kernel of the morphism from A"*! to
A! defined by w; — f;, i =1,...,t. We have:

Proposition 2.12. Let G C GL(n + 1,k) be a finite group acting on A" let {f1,..., fi}
be a set of fundamental invariants of G and let 7 : A"t — A! be the morphism defined by
(fi,---s ft). Then,
(i) w(A"L) is the quotient of A" by G with affine coordinate ring RC.
(i) RE = k[wy, ..., w/syz(fi,..., f1), i.e., [(m(A™Y)) = syz(fi1,..., fi).
(iii) 7 is a Galois covering of w(A™) with group G.

Proof. See [26] Section 6], Proposition and Proposition 2111 O

The cardinality of a general orbit G(a), a € A" is called the degree of the covering.
Moreover, if we can find a homogeneous set of fundamental invariants {fi,..., f;} of G such
that 7 : P" — P! is a morphism, then the projective version of Proposition .12 is true.

2.3. Lefschetz properties and Togliatti systems. Let I C R be a homogeneous artinian
ideal. The weak Lefschetz property (WLP for short) is an important property of these ideals,
which has attracted much interest in the last years, see for instance [2], [13], [19], [21], [22]
and [23]. We recall the definition. We say that I has the WLP if there is a linear form
L € Ry such that, for all integers 7, the multiplication map

xL: (R/I% — (R/I)j+1

has maximal rank. We say that I fails the WLP in degree jj if for any linear form L € Ry, the
multiplication map xL : (R/I);, = (R/I);y+1 has not maximal rank. In 2013 [19], Mezzetti,
Miro-Roig and Ottaviani established a close connection between algebraic and geometric
language showing that the failure of the WLP for ideals generated by forms of the same
degree is related to the existence of varieties whose all osculating spaces of a certain order
have dimension less than expected. To state the precise statement, we shortly recall the
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definition of the Macaulay’s inverse system I~! of I and the language of osculating spaces
and Laplace equations.

In addition to R, we consider a second polynomial ring R = k[Xo,...,X,]. We have
the apolarity action of R on R by partial differentiation, i.e., if F € R and h € R, then
F-h= F(aiXo, e %) o h. By definition, the Macaulay inverse system I~! of a graded
ideal I C R is the graded R-submodule of R annihilator of I: ™' = {h € R | F-h =
0 for all ' € I}. On the geometric side, we recall that, if X is a rational projective variety
with a birational parameterization P* --» X C P"~! given by r forms Fi, ..., F, of degree
d in R, then the projective sth osculating space TS X , for = general, is generated by the
s-th partial derivatives of Fi,---, F, at the point z. The expected dimension of T;S)X is
maz{r—1, ("js) — 1}, but it could be lower. If strict inequality holds for all smooth points of
X, and dim T X = (”:fs) —1—0 for general x, then X is said to satisfy o Laplace equations
of order s. Indeed, in this case the partials of order s of Fi,..., F, are linearly dependent,
which gives ¢ differential equations of order s satisfied by Fi, ..., F;.

In [I9] the following theorem is proved.

Theorem 2.13. Let I C R = kl[zg...,x,] be an artinian ideal generated by r forms
Fi,...,F. of degree d and let 17! be its Macaulay inverse system. If r < (":ﬁl), then

the following conditions are equivalent.
(i) I fails the WLP in degree d — 1;
(ii) Fi, ..., F. become k-linearly dependent on a general hyperplane H of P™;
(iii) The n-dimensional variety Y = p(P"), where ¢ = @-1: P" —-» P("a) 1 s the
rational map associated to (I7')q, satisfies at least one Laplace equation of order
d—1.

Proof. See [19, Theorem 3.2]. O

An artinian ideal I C R generated by r < (d:ﬁl

system if it satisfies the three equivalent conditions in Theorem [2.13 In particular, a Togliatti

) forms of degree d defines a Togliatti

system is called smooth if the variety Y in Theorem 2T3[(iii) is smooth, and monomial if T
can be generated by monomials. The name is in honour of Eugenio Togliatti, who proved
that for n = 2 the only smooth Togliatti system of cubics is the monomial ideal

(2) I = (23,23, 25, xom179) C k[zo, 71, 72]

(see [2], [18], [27] and [28]). The corresponding variety Y, parameterized by (I7')s, is a
smooth surface in P°, known as Togliatti surface; its 2-osculating spaces have all dimension
< 4 instead of the expected dimension 5. The systematic study of Togliatti systems [
was initiated in [19], where one can find in particular a classification of monomial Togliatti
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systems with “low” number of generators; for further results the reader can see [1], [17], [18],
[20] and [24]. In [I8] the authors introduced the notion of Galois-Togliatti system (shortly
GT-system), which we recall now.

Definition 2.14. A GT-system is a Togliatti system I, C R generated by r forms Fi, ..., F,
of degree d such that the morphism ¢;,: P* — P"~! defined by (Fi,..., F,) is a Galois
covering with cyclic group Z/dZ.

In the sequel, the image of the morphism ¢;, will be denoted by X,;. The varieties X,
and Y, introduced in Theorem are called apolar. The first example of GT-system is
the ideal (2). The corresponding pair of apolar varieties is formed by the Togliatti surface
Y C P° and the cubic surface X3 C P3.

Example 2.15. Fix integers n = 2, d = 5, fix e a 5th primitive root of 1 and let A =

(diag(1,e,e®)) C GL(3,k) be a cyclic group of order 5. The homogeneous component of

degree 5 of R™ is generated by the invariant monomials zj, 29, x5, ¥322 x5, zoz123. In total

n+d—1
n—1
ideal Is C R generated by these monomials fails the WLP in degree 4 and the morphism

we have r = 5 monomials so the inequality r < ( ) is satisfied. Omne proves that the
or, : P2 — P* is a Galois covering of degree 5 with cyclic group Z/5Z (see Corollary B.4)).
Actually o7, (P?) is the quotient surface by the action of the finite group of automorphisms
of P? generated by diag(1,e,e?).

In the following, we will study GT-systems [I; generated by forms of degree d which are
invariants of a finite diagonal cyclic subgroup of GL(n+1, K) of order d. Note that Definition
214 does not assume that the ideal is monomial. For examples of non-monomial Togliatti
systems, the reader can look at [5]. However, the Togliatti systems we will study in Sections
[, 4 and [l are all monomial.

3. THE ARITHMETIC COHEN-MACAULAYNESS OF GT-VARIETIES.

In this section, we study the ideals generated by all monomials {my, ..., m,,} of degree d

which are invariants of a finite diagonal cyclic group A C GL(n+ 1,k) of order d. They are
d+n—1
n—1

which we call GT-varieties with group A; in particular we prove that they are aCM.

To this end, we fix integers 2 <n < dand 0 < oy < -+ - < o, < d with GCD(av, . .., v, d) =
1. We denote by Mgy.a,....a, the diagonal matrix diag(e®, ..., e*"), where e is a dth prim-
itive root of 1. We consider the cyclic group A = (Mga,...0n) € GL(n + 1,k) of or-
der d, and the abelian group A C GL(n + 1,k) of order d* generated by Mgy.a,.. o, and
Mg

sdyeeey

monomial GT-systems, provided pg < ( ) We study the varieties associated to them,

\ = diag(e,...,e). As usual R (respectively R™) represents the ring of invariants
of A (respectively A). Let {my,...,m,,} be the set of all monomials of degree d which
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are invariants of A and denote by I; the monomial artinian ideal generated by them. Let

¢, : P — Pra~! be the morphism associated to I; and define X, := ¢, (P"). Let wy, ..., w,,
be a new set of indeterminates, let S := kfwy,...,w,,] denote the polynomial ring and
I(X4) C S the homogeneous ideal of Xj.

Our first result shows that {m, ..., m,, } is a k-algebra basis of RE e, RM = klmq,...,my,].

This will allow us to prove that any variety X, is aCM and that I, is a monomial GT-system,
d+n—1)
n—1 /"

provided pg < (

Theorem 3.1. The set of monomials of degree d which are invariants of A is a k-algebra
basis of R™.

Proof. We want to prove that RY = klmi,...,m,,]. Since A acts diagonally on R, this
is equivalent to show that for all ¢ > 1, any monomial m € R of degree td belongs to

klmi,...,m,,], i.e., it is a product of ¢t monomials m;,,...,m;, € (mq,...,m,,), non nec-
essarily different. We proceed by induction on t. We fix ¢t > 2, we take a monomial m =
20z 29 € RY of degree td and we consider S := {ayg, .%., ag, a1, A, aq, ..., 0, 0 a

a sequence of integers where aq is repeated ag times, «a; is repeated a; times, and so on.
Since t > 2, S contains more than 2d — 1 elements. Hence by [8, Theorem| and [9], there
exists a subsequence S’ C S of d elements summing to a multiple rd of d. We write &' =

{ag, bo. g, aq, b1 g, .o g, bre @}, and we consider the monomial = :58%1{1 o-axbh € R
Clearly m divides m. Moreover, by + by + - -+ + b, = d and agby + ayby + - - - + apb, = rd.
Therefore, 7 is an invariant of A, and m/m € k[my, ..., m,,] by induction hypothesis. So
the proof is complete. O

Example 3.2. We illustrate Theorem 1] with the example of ideal ). Fix n =2, d =3
and let A = (Mz012) C GL(3,k). A monomial z{°z{*25* € R" if and only if there exist
integers ¢ > 1 and r € {0,1,2,...,2t} such that (ag, a1, az) € Z2 is a solution of the system

ag+ay +as = 3t
()i =
ay + 2ay = 3r.

In particular, {z3, 3, 23, xox 25} is the set of all monomials of degree 3 in R*. Fix ¢ > 1 and
let m = z°x{*25* € R® be a monomial of degree 3t. First we assume that agajas # 0. We
may also assume that ag = min{ag, a;,as}, the other cases follow in the same way. Then

a1—agp ,,a2—ag

clearly m = (xoxixe)™ x5 PR

and z{'" "z € RY. So we have that a; — ag + as — ag
and a; —ag+2(ag —ag) are multiples of 3, which implies that a; —ag and as —ag are multiples
of 3. Now we assume agajao = 0. We may suppose that ag = 0 and a;as # 0. We have that
a1 + ao and a; 4 2a, are multiples of 3, which gives that a; and ay are multiples of 3.

Theorem 3.3. X, is a toric aCM variety.
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Proof. By definition, X, is parameterized by monomials and hence it is toric. By Theorem
B, we have that {my,...,m,,} is a set of fundamental invariants of A. Therefore, the the-
orem follows directly from the projective version of Proposition 2.12(i) and [16, Proposition
13). 0

Corollary 3.4. If g < ("ﬁ;l), then 1, is a monomial GT -system.

Proof. We have to prove that I, is a Togliatti system and ¢, : P" — Pr! is a Galois
covering with group Z/dZ. By Theorem B.I] and the projective version of Proposition 212,
o1, : P* — P is a Galois covering with group Z/dZ. It only remains to prove that if
g < (d:ﬁzl), then I, fails the WLP in degree d — 1. By [21l Proposition 2.2] and Theorem
this is equivalent to check that for L = xy + -+ + x, € Ry, the map XL : (R/1;)4-1 —
(R/1;)4 is not injective. We take p = H;.l;i(eja%o + -+ €79, Tt is straightforward to
see that X L(p) = H?;é(emoxo + -4 €%, is an invariant of A, so X L(p) = 0 and XL is
not injective. O

Definition 3.5. An ideal I; as in Corollary B.4lis called a GT-system with group A.

We present examples of families of monomial G'T-systems, which also motivates our next
definition.

Example 3.6. (i) Fix integers d > 3 and 0 < a < b. Let A = (My0,45) C GL(3, k). In [I§]
the authors prove that pug < d+ 1. Hence, by Corollary B.4], I, is a monomial GT-system.
(i) Fix integers 3 = n < d and let A = (Myp123) C GL(4,k). In [6] it is proved that
Ha < (2;d). So by Corollary B.4], I, is a monomial GT-system.
(iii) Fix an integer n > 2 and let A be the subgroup of GL(n + 1,k) generated by
Myi1012...n- In [, the authors show that pi,11 < (f_"l). By Corollary B4, the associ-
ated ideal I,,,; is a monomial GT-system.

Definition 3.7. We call GT -variety with group A any projective variety ¢, (P™) associated
to a a GT-system I, with group A = (My.ay....0n) C GL(n + 1,k).

Example B.6[(iii) provides us with examples of GT-varieties of any dimension n > 2. As a
corollary of Theorem we have:

Corollary 3.8. Any GT-variety Xy with group A = (Mga,...0n) C GL(n+ 1,k) is aCM.
4. HILBERT FUNCTION OF GT-SURFACES.

In this section, we give a combinatorial description of the Hilbert function of any GT-
variety Xy with group A = (My.ag...0,) C GL(n + 1,k) in terms of the invariants of A. For
the particular case of G'T-surfaces, we explicitly compute their Hilbert function, polynomial
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and series. We also determine a minimal free resolution of their homogeneous ideals. As a
corollary, we obtain that the homogeneous ideal of any GT-surface is minimally generated
by quadrics and cubics.

The following well-known result is needed.

Lemma 4.1. Let G C GL(n+ 1,k) be a ﬁm’te group and fix t > 1. We have:

dim RG = |G| Ztrace (t

geG

where g\ is the linear map induced by g on R,.

Proof. See [26, Theorem 2.1]. O

Remark 4.2. Let G C GL(n+ 1,k) be a finite group and let {my,...,m.} be a monomial
basis of Ry. Fix ¢ € G and t > 1. In this basis, the linear map ¢(*) is represented by a matrix
whose columns are the coordinates of g(m;), 7 =1,..., L. In particular, if G acts diagonally
on R, then ¢ is represented by a diagonal matrix.

The following proposition follows from [3, Theorem 6.4.2]. For sake of completeness we

include an elementary proof.

Proposition 4.3. The Hilbert function HF (X4, t) of X4 in degree t > 1 equals the number
of monomials of degree td which are invariants of A.

Proof. Fix t > 1 and let my,...,my € R be all monomials of degree td; we write m; =
x86 o ~:c?fl, i=1,...,N. By Lemma [£1] we have the equalities:
HF(X4,t) = dim(( Z trace( A\ dtmce(z AU,
AEA AeA

Fix j € {1,...,d — 1} and A\ =
map A\ by a diagonal matrix whose entry in position (4,7), we note )\g:?), corresponds to

eootittandh =1 N. If m; € R, then \[[) = 1. Otherwise \(\%) = e/(@oah+-+anai) £
1. Now determining trace(>,., A) is straightforward. Indeed, the (i,4) entry of the
matrix Y, A0D) is d if m; € R, and equal to 1+ e/(C0t++anah) 4 g2j(aoabttanai) 4. .. 4
eld=Dilaoas++anah) otherwise. If € # 1 is a dth root of 1, we have 1+&4---+ £ = 0, and

the result follows. O

M. o, € Ao We can represent the induced linear

For fixed ¢t > 1, the monomials of degree td in R* are completely determined by the
following systems:

tr —
aoYo + iy + 0+ oy, = rd
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For each r € {0,...,aut}, we define |(x)];, to be the number of solutions of (%), in ZZ{".

We can rewrite Proposition as follows.

Corollary 4.4. For any t > 1, we have: HF(Xg,t) = 3070 [(%)1.0]-

Example 4.5. Continuing with Example B2 we consider A = (Ms,12) C GL(3,k). The
monomials of degree 3 in R* are {x3, 23 23, oz 22} Next we list those of degree 3t, for
t—2,3.4.

_ 6 ,.3,3 .4 6 4 2,..2,.2 ,.3,.3 4 .6 _

— 9 ,.6,.3 .7 3,6 4.4 5,2,2 ,.6,.3 ,.9 7 2,.56,.2 ,.3,3.,.3 ,4 4 .6,.3

4.4 2,2 3,.6 ,.3,.6
_ 9,.3 ,.10 6,.6 ,.7,.4 822 9,.3 13,9 4,7 5.2 1.6,.3,.3 .7 4

10 8 3,..6,.3 5 5 ,.6,.6 ,.9,.3 7 5,.0 ..3,.3,.6 7

6,6 7 8 3.9 3.9 12
2928, woxtal xdxial, adad, i), vor 20 xl?}, HF(X3,4) = 31.

Let wq, wq, w3, wy be new indeterminates, we denote by S = kw1, ws, w3, wy] the polynomial
ring. X3 is the cubic surface V(wiwaws — wi) C P? and we have HP(X3)(t) = 3t + 3t + 1.

In Theorem B3] we proved that S/I(X,) is CM; moreover, since X, is toric, we have that

o . . . 5 5 7, b 5

its ideal is generated by binomials: I(Xy) = (w]'---w.,* — w]" ---w/* | mi* - -mu* =
o/ . .

mit - emynt, SR 6 = > ;). We now consider a minimal graded free S-resolution N,

of S/I(X,).
Ne: 0= Nyn1—-—=>No—= Ny =S —=S5/I(Xy) =0,

where N; = ®]>l S(—j =Dk and by, >0,1 <1< pg—n-—1.

As usual, the Cohen-Macaulay type of S/1(X4) is the dimension of the free S-module
Nuy—n—1. We recall that S/I(Xy) is level if N,,_,,_1 is generated in only one degree and
that S/1(Xy) is Gorenstein if it is level and dim(N,,_,—1) = 1. We denote by reg(Xy) :=
fug—n—1 + 1 the Castelnuovo-Mumford regularity of S/1(X4). The ideal I(X,) is minimally
generated by b; ; binomials of degree j+1, 7 =1,..., fi. Weset i =min{l < j < f, | by, #
0}. We highlight two combinatorial ways of computing b, ; which follow from Proposition
13 For completeness we include a simple proof. Let {m!, ..., mi} C R* be the set of
all monomials of degree td. Each m§- is a product of ¢+ monomials of degree d in R* (see
Theorem [B.1]). We denote by |m§| the number of different ways of expressing m§» as product
of t monomials of degree d.

Proposition 4.6. With the above notation, we have:

1 1 (i+1)an N
d i
b= (45) = X s = - ),

r=0 j=1
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Proof. Computing the Hilbert function of X, in degree ¢ + 1 from N,, we obtain that
HF (X4, i+1) = dimy(Si41)—b1;. By Corollary 4l we get dimy,(S;1+1)—b1,; = fogé”l)d | (%) i1

which implies the first equality. By Proposition L6, b, = (‘;‘_ﬁl) - Zf:ol)a”d |(%)]i41,-- Now
(‘;‘_ﬁl) is the number of all possible combinations of i 4 1 monomials of degree d in R*. Thus
(’j‘ﬂl) = Zjvzl |m’*1[, from which the second equality follows. O

Example 4.7. (i) In the case of the cubic surface X3 of Example @0 HF(X3,1) = 4,
HF(X3,2) =10 and HF(X3,3) = 19. We obtain by ; = (*}')—10 = 0 and by, = (*1?)—19 =
20— 19=1.

(i) Let A = (My,0123) C GL(4, k) (see Example B.6(ii)). In [6 Example 4.2], the authors
compute a minimal set of binomial generators of the associated GT-variety X,. They show
that I(X4) is generated by exactly 12 quadrics. On the other hand, we have HF'(Xy4, 1) = 10
and HF(Xy,2) = 43. By Proposition 6] b;; = (10;1) — 43 = 55 — 43 = 12 which confirms
[6l, Example 4.2].

From now on we focus on GT-surfaces. We fix an integer d > 3 and a cyclic group
A = (Mgoap) C GL(3,k) of order d with 0 < a < b. From Example B.6](i) it follows that
the ideal I; generated by all monomials {m4,...,m,,} C RA of degree d is a monomial
G'T-system with group A, so the associated variety X, is a G'T-surface with group A. In the
rest of this section we will use the following notation.

Notation 4.8. We put
/! a / b ! d 1! d

R OV R O M Y]
We denote by A and p the uniquely determined integers such that 0 < A < d’ and b =

Aa' + pd'.

By Proposition B3, HF (X, t) is the number of integer solutions (yo, y1,¥2) € Z2, of the
systems

(%)t = o t o o = b , r=20,...,bt
7 ayy + by, = rd

or, equivalently,

Lemma 4.9. HF(Xy,t) equals the number of integer solutions (yo,y1,12) € Z3, of the
systems:

+oy oty = td
() = Yo n (a,d) ., r=0,... T\
’ o+ )\(gz) = rd

which satisfy y1 + yo < td.
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Proof. Let (yo,y1,12) € Z2, be a solution of ()¢, for some r € {0,...,bt}. Notice that (a,d)
divides ys, since ((a,d),b) = 1 and ((a,d),a) = ((a,d),d) = (a,d). We have ay; +by, = ay; +
a’'\ys + pud'ys = rd. For convenience we write y5 = (fﬁl). Therefore, a'yy +a' Ay, = (r — pyb)d’
which implies that o’ divides (r — uys). We obtain y; + Ay, = r'd’, where 0 <7/ < At. Thus,

(Yo, Y1, y2) uniquely induces a solution of the systems (%), satistying y; + yo < td.

Conversely, let (yo,y1,y5) be a solution of (xx),, for some r € {0,...,tA\} such that
y1 + (a,d)yy, < td. We have that y; + Ay = rd’, which implies ay; + aA\y), = ra’d. Since
a'\=b—pd, we get ay; +alyy = ay, +b(a, d)yh, — pd'(a, d)yy, = ra’d and so ay, +b(a, d)y), =
(ra’" + pyh)d. Writing yo := (a,d)yh, (Yo, Y1, y2) verifies that ay; + bys = 1’d for some
0 <r" <tb. Then (yo,y1,y2) induces a unique solution of some system ()., if and only if
Y1+ yo < td. O

Example 4.10. (i) Consider A = (Mg,035) C GL(3, k) and write 5 =3-7+ (—2) - 8. Both
systems (*);, and (%x*);, give the same set of monomials:

8 .6 4.2 2 8 233 4 4 8
{xg, xyr129, XYL TS, ], LT TS, T Ts, T}

(ii) Consider A = (Mg,023) C GL(3,k). The systems (%), give the set of seven monomials:

6 33 42 6 32 2.4 6
Lo, Loy, LoLg, Ty, LoL Ty, LyLo, Ty.

The solutions (yo, y1,¥2) € Z‘;O of the systems

(#%)1, = o + 4+ 12 =0 , r=0,1,2,3,
v+ 3’3/2 = 3r
are: (6,0,0), (3,3,0), (5,0,1), (0,6,0), (2,3,1), (4,0,2), (1,3,2), (3,0,3), (0,3,3), (2,0,4),
(1,0,5) and (0,0,6), but only the following seven triples (6,0,0), (3,3,0), (5,0, 1), (0,6,0),
(2,3,1), (4,0,2), (3,0, 3) satisfy also y; + 2y < 6, according to Lemma .9

Remark 4.11. (i) Assume (a,d) = 1 (respectively (b,d) = 1) and write b = A\a + ud
(respectively a = N'b+ p'd). Tt is straightforward to check A # 1 (respectively X # 1).
(ii) Assume (a,d), (b,d) > 1. If (a,d) < (b,d) (respectively (b,d) < (a,d)), it is easy to
see that we can write b = Aa’ + pd’ with (b, d) < A (respectively a = X'V + p/d”) with

(a,d) < d").

Theorem 4.12. Using Notation[].8, let 6(a,b,d) := (a,d) + (\,d') + (A — (a,d),d"). Then,
(i) HF (Xqt) = 262 + 10(a, b, d)t + 1;
(i)
d—0(a,b,d)+2 d+0(a,b,d)—4
-8lebd)+? 2 | dtbabdd, g
(1—-2)? '

HS(Xd,Z) =
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Proof. (i) By Lemma B9, we only have to count the number of solutions (yo,y1,92) € Z2,
of ()¢, 7 =0,...,tA, which satisfy y; + (a,d)ys < td. Without loss of generality, we may
assume that (a,d) < (b,d). Fix r € {0,...,t\}. The solutions of (xx);, are determined by
the values of y5 such that

(r —t(a,d))d rd
NI <y < | —
and are of the form (td — rd + (A — 1)ya, rd’ — A\y2,y2). Now we impose y; + (a,d)ys < td.
This is equivalent to rd’ — A\ys < td — (a,d)ys if and only if (A — (a,d))ys > rd —td. Thus we

%H <y, <[], Putting

max{0, [

have to count the number of y’s in the range max{0, |
all together, we get:

taA—1 taA—1

HF(Xg,t) =2+ Z(L%dlj +1) - > ((%1 +1).
r=1 r=t(a,d)+1 ’

L%J _ (m—l)(n—lz)—l—(m,n)—l‘ S0

Given two positive integers m, n, it holds that Z?:_ll
(td —1)(A=1)+t(d' N =1

HF(Xgt) =2+tA—1+ 5

t(A_(avd))_l Td,t

- > [mn — (t(A = (a,d)) = 1).

r=1
We observe that | A_”(‘gil)) 1= /\_”(‘gtd)) - | if and only if rd’ is a multiple of A\—(a, d); otherwise
(%1 = L%j + 1. We consider the set S = {r e Z | 1 <r < t(A — (a,d) —
1) and t(A — (a,d)) divides rd't}. An integer r € S if and only if rd" is a multiple of

LOCM(d' )\ — (a,d)) = £2=@d) g4 18| = ¢(\ — (a,d),d') — 1 and we obtain:

(A_(avd)d/) ’
t(A—(a,d))—1
rdt . (td —1)(tA —t(a,d) — 1) ,
Z ((}\_ (CL, d))t—l - 2 _'_t()‘ (CL, d)) 1 t(d7>‘ (CL, d))
r=1
It is straightforward to check that
/ roy

(i) By definition HS(Xq,2) = > g HF(Xa, )2 =

:Zgﬁzt—i_zwt’zt—i_zzt:

>0 >0 >0
_ 52241 . dabd) , P d-blabd)t? 2 | dHblabd)d, | 4
(1—-2)3  (1—-2)2 1-=z (1—2)3 ’
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As a direct consequence of the above computations and the fact that S/1(Xy) is CM (see
Theorem B.3]) we have:

Corollary 4.13. (i) g = M and Xy C Pra-t is a projective surface of degree

d+6(a b,d)— d+5

deg(Xy) = d and codzmenszon codim(X,y) = . If d is prime, g = and

codim(Xy) = L.
(il) S/1(Xy) is a level ring of Cohen-Macaulay type mzb’d)” with Castelnuovo Mumford

reqularity reg(Xy) = 3.

The information on the Hilbert function HF(Xy, z) and the regularity allow us to deter-
mine a minimal graded free S-resolution of any GT-surface X,;. We set ¢ = codim(X,) and
h=deg(Xy) —c—2= 7d_6(“’2b’d)+2 —1.

Theorem 4.14. (i) If(a,b,d) = 3, then a minimal graded free S-resolution of S/I(Xy)
18
0— Sbc’2(—c - 2) — @?:15@7171'(_6 -1+ 1) — @izl,ngC*Q”'(—c -1+ 2)
= Dim 08P (—1 — i) = S — S/1(Xg) — 0,

where

mi:{l@g Jrei<e-1i=1
l(?) if 1<i<e¢, i=2.
(i) IfO(a,b,d) > 4, a minimal graded free S-resolution of S/1(Xy) is
0 — SP2(—c—2) = @2, S%Vi(—c—i+1) = Pim125% 2 (—c — i +2)
5 oo = @y 98P (—c — i+ h) — SPemh11(—c + h)
e SP(22) S = S/I(X,) — 0,

where
() +(e—h=0(°) f1<i<c—h-1i=1
b =4 1(,5) ifc—h<l<c—1,i=1
(l—c+h+1)(f) if c—=h<l<e¢, i1=2.

Proof. (i) The hypothesis 0(a,b,d) = 3 implies deg(Xy) = d = 2c+ 1. We are in the
assumptions of [32 Corollary 3.4(i)], from which the result follows.

(ii) If O(a, b,d) > 4, we have that deg(Xy) = d < 2c. We show that if d > 9, then deg(X,) =
d > ¢+ 3, and in this case the result follows from [32, Corollary 3.4(ii)]. The remaining
cases associated to d = 4,6 and 8 have been checked computationally in Example [4.18 using
the software Macaulay2 ([11]). The inequality d > ¢ + 3 is equivalent to 6(a,b,d) + 2 =
(a,d) + (AN, d') + (A — (a,d),d') +2 < d. Next we see that it holds for each d > 9. It is
straightforward to see that d = (a,d)(\,d')(\ — (a,d),d)d with d > 1. Now consider the
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system of inequalities a3yd —a — B — v — 2 < 0 with o, 3,7 > 1. There are no integer
solutions for d > 5. For 1 <d < 4, it is easy to see that d < 8. O

Remark 4.15. Fix d > 3 and let X; and X, be GT-surfaces with groups A = (My0,a)
and A" = (Mgowp) C GL(3,k), respectively. If O(a,b,d) = 0(a’,V',d), then S/I1(X,) and
S/I(X}) have the same Betti numbers.

A consequence of Theorem [£T4]is the following.

Corollary 4.16. (i) If0(a,b,d) = 3, then I(X4) is minimally generated by (*4;°) quadrics
and pg — 3 cubics.
(ii) If 0(a,b,d) > 4, then I1(X,) is minimally generated by (*4 %) + 2(pa — 3) — d + 1
quadrics.

Remark 4.17. With Theorem .14 we recover [18, Theorem 7.2], where the authors de-
termine a minimal graded free resolution of the GT-surface with group A = (Mgo12) C

GL(3,k).

We end this section showing the shape of a minimal graded free resolution of the coordinate
ring of all GT-surfaces X, for d = 4,6,8. All the computations have been made with the
software Macaulay2 ([L1]).

Example 4.18. (i) Fix d = 4 and let X, be a GT-surface with group A = (My0.p) C
GL(3,k). For all integers 0 < a < b < 4 with GCD(a,b,d) = 1, we have that 0(a,b,4) = 4.
Let S = Ek[wy,...,ws]: in any case a minimal graded free S-resolution of S/I(X,) is of the
form
0— S(—4) = S%(=2) - A — S/I(X,) — 0,
i.e., X; C P*is a complete intersection of 2 quadrics.
(ii) Fix d = 6 and let X4 be a GT-surface with group A = (Ms.0.)GL(3, k). We have:

4 if a=1 and b=25; or
0(a,b,6) = a=4 and b=>5.
5 otherwise.

Let S = kfwy,...,ws] and S = kf[wy,...,wy]. A minimal graded free S-resolution of
S/1(Xg) with 0(a,b,6) = 4 has the shape:

0 — S*(—5) — S3(—4) ® S*(-3) = S*(—2) = S — S/I(Xs).
A minimal graded free S-resolution of S/I(Xg) with (a,b,6) = 5 has the shape:
0— S(—6) = S (—4) = S°(=3) = 57 (~2) = S — S/I(Xs) — 0.

In this case, X is an arithmetically Gorenstein surface of PS.
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(ili) Fix d = 8 and let Xg be a GT-surface with group A = (Mg qp). We have:

5 if a=1 and b=4,5; or
= d b=4,T,
0(a, b, 8) = a=3 an , 75 or
a=4
4 otherwise.
Let S = k[wy, ..., ws] and S = k[wy, ..., w;]. Asin the previous case, we obtain the following

resolutions:

0 — S*(=7) — S°(—6) @ S*(—5) — S*(—4) — S*(=3) = S (~2) = S — S/I(Xg) — 0,
0— 5 (=6) = S (=5) @5’ (—4) = S°(=4) ® 5 (=3) > §'(=2) » § — §/I(Xs) — 0.

5. A NEW FAMILY OF ACM SURFACES PARAMETERIZED BY MONOMIAL TOGLIATTI
SYSTEMS

Let n,d be positive integers and fix e, a dth primitive root of 1. We denote by I' C
GL(n+1, k) the finite diagonal group of order d generated by Mgy, . 1 := diag(e,...,e). The
Veronese variety V,, 4 C P51 s the projective variety whose homogeneous coordinate
ring is the ring of invariants R'. The set M, 4 C R of all monomials of degree d is a k-
algebra basis of R'. By a monomial projection of V,, 4, we mean a projective variety given
parameterically by a subset of M,, 4. In [I2], Grébner posed the problem of determining
which monomial projections of Veronese varieties are aCM. Since then, there have been
many efforts to solve this still open problem, see for instance [14], [29] and [30]. In Section B],
we proved that all GT-varieties with finite linear diagonal cyclic group are aCM. However,
not all surfaces parameterized by monomial Togliatti systems are aCM. For instance, the
Togliatti system I = {x3, 7, 3, 2z 129, 230309, 0312} C klT0, 21, T3] gives rise to a non
aCM surface X := p;(P?) C P°. Indeed, we have checked with the software Macaulay?2, [11],
that codim(X) =3 < pd(S/I(X)) = 4.

It is then natural to pose the following problem:

Problem 5.1. To determine whether a monomial projection of Va4, corresponding to a
monomial Togliatti system, is aCM.

In this section, we prove the arithmetic Cohen-Macaulayness of a new family of surfaces
parameterized by monomial Togliatti systems: their coordinate ring is not the ring of invari-
ants of any finite linear group. Nevertheless, their construction is rather naturally related to
GT-systems. We denote R = k[xg, 1, x2].
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Definition 5.2. We define the semigroup Hj := ((3,0,0), (0, 3,0),(0,0,3),(1,1,1)) C Z3,
Set m = (1,1,1). Inductively for ¢t > 2, we define Hgt = ((3t,0,0), (0, 3t,0), (0,0, 3t), m +
H3(t_1)>, where m + Hg(t_l = {m +h | h € H3(t_1 }

Let us illustrate the above definition with the following three examples.

Example 5.3. (i) Hs = ((6,0,0), (0,6,0), (0,0,6), (4,1,1), (1,4,1), (1,1,4), (2,2,2)).
(i) Hy = ((9,0,0),(0,9,0),(0,0,9),(7,1,1),(1,7,1),(1,1,7),(5,2,2), (2,5,2), (2,2,5),
(3,3,3)).

(ifi) Hys = ((12,0,0), (0,12,0), (0,0,12), (10,1,1), (1,10,1), (1,1, 10), (8,2,2), (2,8,2),
(2,2,8),(6,3,3),(3,6,3), (3,3,6), (4,4, 4)).

We denote by J;; C R the monomial artinian ideal associated to Hs;. All ideals J3;
have ps; = 3t + 1 generators. It is easy to check by induction that they are Togliatti
systems. Indeed, the first ideal J; is of course the monomial GT-system (2]) with group
(M3.012) C GL(3,k). On the other hand, for any ¢, J3; = (23, 23, 23!, xox129J31-1).

By Theorem B3] k[Hj] is CM. Notwithstanding, for ¢ > 1 the semigroups Hj; are not
normal and k[Hs] are not rings of invariants of finite linear groups. For ¢ > 1, Hj; is not
normal since m € Hs,, the saturation of Hs, (see Definition B.1)), and m ¢ Hs,. To check
the second assertion, assume by contradiction that k[Hs] is the ring of invariants of a finite
group G C GL(3,k), and let p : R — R® be the Reynolds operator. We have that for all
t>1,(3,3(t —1),0) ¢ Hs (see Lemma [5.7]), or equivalently xoxf gé RY. We observe
that (3,3(t —1),0) +tm can be written as [(t — 1)m + (3,0,0)] + [m + (0,3(t — 1),0)] € Hs,.

tot ot 3, 3(t=1) G t ot 3(t Dy ottt 3.3(=1)y _
So zriTh - Z(Eollfl € R“ and W(e };ave p(:)s(]&rlx2 w3x] ) = xbdtxl - plade]T ) =
3 3(t—1 t—1)\ 3 3(t—1 s s
xhatxh - agx] Therefore p(z3z]" ") = ada? and we get a contradiction.

Our goal is to prove that all k[H3] are CM rings. To this end, we want to apply Theorem
241 But first we need some preparation. We fix ¢ > 1 and we put f; = (3t,0,0), fo =
(Oa Bta 0)7 f3 = (07 Oa Bt)

Remark 5.4. (i) Notice that fi, fo and f3 are Q-linearly independent and (3t)Hs, C

(f1, f2, f3)-
(ii) By construction Hs C Hs, so Hj; C Hy. This means that for all © = (a1,as,a3) € Hyy

there exist f > 1 and r € {0,...,2tf} such that u is a solution of the system:

a1+a2+a3:3ft
a2+2a3:3r.

(%) =

The converse is not true: (3,3(t — 1),0) ¢ Hs, but it belongs to Hj.
(iii) All generators of Hg, different from f1, fo, f3 have all three components different from
0.
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Remark 5.5. By construction, we can describe
3(t—1)+1
Hy ={u=Aifi + Asfo+ Asfs + Z Ajys(m +hy)} C Z2,,
j=1

where A; € Z>q fori =1,...,3t+1 and h; is a generator of Hy;—yy, for j =1,...,3(t—1)+1.
Notice that a generator h = (ay, as,a3) of Hy, different from fi, fo, f3 can be expressed as
sm+h', where 0 < s = min{a, az,a3} < tand b’ € {(3(t—s),0,0),(0,3(t—s),0),(0,0,3(t—
).

We give a couple of examples.

Example 5.6. (i) Consider Hg. We have: (4,1,1) = m + (3,0,0), (1,4,1) = m + (0,3,0),
(1,1,4) = (1,1,1) + (0,0,3) and (2,2,2) = 2m.

(ii) Consider Hyg. We have: (7,1,1) = m + (6,0,0), (1,7,1) = m + (0,6,0), (1,1,7) =
m 4 (0,0,6), (5,2,2) = 2m + (3,0,0), (2,5,2) = 2m + (0,3,0), (2,2,5) = 2m + (0,0,3) and
(3,3,3) = 3m.

Any u € Hj represents a monomial of degree a multiple of 3¢, namely (3t)f. For any
representation u = Af; + Aofo + Asfsz + Z?SII)H Ajis(m + hj) in Hs, it holds that
Z3t+l A o f

i=1 i = J-

Lemma 5.7. Let w = (a1, a2,a3) € Hs be such that a;,a; # 0 and a = 0, for {i,j,k} =
{1,2,3}. Then w € Hs, if and only if a; and a; are multiples of 3t.

Proof. We can assume (i, j, k) = (1,2,3). If w = (a1, as,0) € Hs;, then w cannot be generated
in Hs, by any element belonging to m+Hj;—1). So we obtain w = A; fi+ Ay fo with a; = 3tA,
and ay = 3tA,. Conversely, w = (3tA;,3tA,,0) € Hy, for all integers Aq, Ay > 0. O

Corollary 5.8. Ifw € Hs is as in Lemmal[5.7, then either w € Hs, or w+ fi,w+ f; ¢ Ha,.

Remark 5.9. If w = (ay,as,a3) € Hs only has one nonzero component, namely a;, then
w = A, f;, where a; = 3tA;.

We are now ready to prove the main theorem of this section.

Theorem 5.10. For any t > 1, k[Hs] is CM.

Proof. By Theorem 24 it is enough to prove that H' = {w € Hz, | w+ fi,w+ f; €
Hs; for some 4,5 € {1,2,3},i # j} is contained in Hs;. We claim that this inclusion is a
consequence of the following condition:

Condition (x): if w = (a1, as,a3) € Hs is such that ajasag # 0 and w + f; € Hs, for some
i € {1,2,3}, then either w € H3 or w+ fj,w+ fp ¢ Hs for {1,7,k} = {1,2,3}.
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Proof of the claim. We have already shown the same statement for elements w with
ayazaz = 0 in Corollary and Remark (.9 Since H' C Hs, C Hs, an element w € H'
satisfying w + f;,w + fi € Hs, for some j, k € {1,2,3} such that j # k, belongs to Hs.
This proves the claim.

Proof of Condition (x). We can assume (7,5, k) = (1,2,3). Set w+ f1 = A1 fi + Asfo +
Asfs + Zj Ajis(m+h;) € Hy. We may assume that A; = 0, otherwise the result is trivial.
We observe the following. Let w = m + h; = s;m + (3(t — 5;),0,0) and v = m + h; =
sim + (3(t — s;),0,0), with s;,s; > 0, be two generators of Hs. Therefore we can write
ut+v=1[(s; —)m+ 3(t—s;+1),0,0)] + [(si + 1)m + [(3(t — s; — 1),0,0)]. Similarly if we
replace h;, h; by (0,3(t—s;),0), (0,3(t—s;),0) or (0,0, 3(t—s;)), (0,0,3(t —s;)) respectively.
So after doing suitable transformations on the summands of w + f;, we reduce it to one of
the following forms.

Case 1: w+ f1 = Asfo+ Asfs + [ssm + (3(t — 51),0,0)] + [sam + (0,3(t — s2),0)] + [s3m +
(0,0,3(t — s3))] with 0 < s; < t. Since s; + so + s3 + 3(t — s1) = 3t + a5, we have
0 < s9,83 < t, where s > 0 or s3 > 0. Let us assume that sg,s3 > 0, the other cases
follow in the same way up to minor modifications. By hypothesis, w + f; can be written
as a sum of Ay + Az + 3 generators of Hs;. The first component of w + f; corresponds to
a; + 3t = s1+ 3(t — s1) + S + 83, 80 a3 = S92 + s3 — 2s1. Notice that w = (sg + s3 —
281,81 + So + 3+ A3t + 3(t — s82), 81 + S2 + S3 + A33t + 3(t — s3)). If 89,53 > s1, we have
w = Asfo+ Asfs+ [(s2 — s1)m + (0,3(t — s2 + 51),0)] + [(s3 — s1)m + (0,0, 3(t — s3 + s1))].
Indeed, s1+ s9+ S3 = 89— Ss1+ 83 — 1+ 351, hence w € Hs;. Otherwise, suppose for instance
that sy < s; and write

(4) w = (82 + 83 — 281)771 + (O, Ag?)t + 3t — 382 + 381, A33t + 3t — 383 + 381).

If w € Hs;, then w is a sum of Ay + Az + 2 generators of Hs;. We observe that A,3t + 3t —
3s9 + 381 > (Ag + 1)3t, A33t + 3t — 3s3 + 3s1 > A3t and sg + s3 — 2s; < s3 < t. This
means that we can write w as a sum of at least Ay + 2 generators of type sm+ (0, 3(t — s),0)
plus at least A3z + 1 generators of type sm + (0,0,3(t — s)), where all s < ¢. Indeed, since
a; = Sg + s3 — 251 < t, a generator in w cannot be of the form tm, otherwise w + f; does.
If this was the case, such generator would be either f5, or f3, or it would correspond to
sm+ (0,3(t — s),0) or sm + (0,0,3(t — s)) with 0 < s < ¢. But this is a contradiction,
because that would give rise to an expression of w with at least Ay + Az + 3 summands (see
Remark 5.4(3)). Performing the same kind of arguments, we see that w + fo, w + f3 ¢ Ha;.
The case s3 < s; is analogous.

Case 2: w+ f1 = Agfo+ Asfs+tm+ [sym~+ (3(t—s1),0,0)] + [sam+ (0, 3(t — 52),0)] + [s3m +
(0,0,3(t — s3))], where s; > 0 and some s; > 0, i = 2,3. We assume sg, s3 > 0 for simplicity.
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By hypothesis, w + fo is a sum of Ay + Az + 4 generators of Hy,. If so > s1 (respectively
S3 > 81),

w = Ag fatAg fs+(t—s51)m+(0,3s1,0)+59m+(0, 3(t=52), 0)+ (s3—51)m+(0,0, 3(t—s5+51)),

hence w € Hg;. We see that if s9, 53 < s1, then w ¢ Hj,. If not, w can be written as a sum
of Ay + Aj + 3 generators and we have:

w=m(t+ so+ 83 —2s1) + (0,3t Ay + 3t — 389 + 351, 3t A3 + 3t — 353 + 3s1).

Notice that ¢ +s9+ 53 —251 < t, 3t Ay +3t—3s2+3s1 > (Ay+1)3t and 3t A3+ 3t —3s3+3s1 >
(As 4+ 1)3t. So, w is a sum of at least Ay + Az + 4 generators of Hs. Arguing in a similar
way, we also obtain that w + fo, w + f3 ¢ Hs,.

Case 3: w+ f1 = Agfo+ Az fs+2tm+[sym~+ (3(t —s1),0,0)] + [sam+ (0, 3(t — 52), 0) + s3m+
(0,0,3(t — s3))]. Here the situation is slightly different. If s; > 0, then w € Hj;. Indeed,
w = Agfo+ Asfs + [(t — s1)m + (0,3(t — s1),0)] + [(t — s1)m + (0,0,3(t — s1))] + [sam +
(0,3(t — s2),0)] + [s3m + (0,0, 3(t — s3))]. So we suppose s; = 0, in which case ss, s3 > 0 and

we have:
w = (82 + 83 — t)m + (0, 3tA2 + 3t + 3t — 382, 3tA3 + 3t 4+ 3t — 383),

with so+ 53—t <t, 3tAy+ 3t + 3t — 359 > (A2 + 1)3t and 3tAz + 3t + 3t — 3s3 > (Ag + 1)3t
If w € Hs;, then it should be written as a sum of at least A + Az + 4 generators, which is a
contradiction. Performing the same arguments we also obtain w + fo, w + f3 ¢ Hs;.

Case 4: w+ fi = As fo+As fs+ K (tm)+[sim+(3(t—s1),0,0)]+[s9m+(0, 3(t—s2), 0)] +[s3m+
(0,0,3(t — s3))], with K > 3. We always have w € Hg;, indeed tm +tm +tm = fi + fo+ f5.

This proves Condition (x) and the theorem follows. O
Let us see how Theorem works in k[Hg].

Example 5.11. Case 1. The only possibility is w+ f; = A5(0,6,0)+ A3(0,0,6) +[(1,1,1) +
(3,0,0)] +[(1,1,1) +(0,3,0)] + [(1,1,1) + (0,0, 3)], where necessarily a; = 0. For simplicity
we set Ay = A3 =0. If s1,80 >0, then w = (0,1 4+4+1,1+14+4) = fo + f3 € Hg.

Case 2. We consider w + f; = (2,2,2) +[(1,1,1) +(3,0,0)] + [(1,1,1) 4+ (0,3,0)] + [(1,1,1) +
(0,0,3)], with s; = s9 = s3 = 1. Then we have: w = (2,2,2) + (0,2 4+ 4,2 +4) =
[m +(0,3,0)] + [m + (0,0, 3)] € Hg.

Case 3. We consider w+ f1 = (2,2,2)4+(2,2,2)+[(1,1,1)4+(0, 3,0)]+[(1,1,1)+(0, 0, 3)], with
a; = 0. Then we have: w = (0,9,9),w + (0,6,0) = (0,15,9),w + (0,0,6) = (0,9,15) ¢ Hg.

Fix an integer k£ > 1. For each integer ¢ > 0, we define H§(1+t,k) = ((3(1+t'k),0,0), (0, 3(1+
t/k), O), (0, O, 3(]. + t/kf)), km + H§(1+(t’—1)k)> C Z320 We have:
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Corollary 5.12. k[H§(1+kt')] is CM for all integers k > 1 and t' > 0.
Proof. Tt follows from the same proof as Theorem .10 replacing m by km. U

Remark 5.13. (i) Hjyypyy is generated by 3(¢' + 1) + 1 elements in Z?.

(1+
(ii) Our initial family Hs; can be rewritten as Hy ) for ¢ > 0.

A+t
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