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The tumour suppressor CYLD regulates the p53
DNA damage response
Vanesa Fernández-Majada1,w, Patrick-Simon Welz1,w, Maria A. Ermolaeva1,2,w, Michael Schell1,w,

Alexander Adam3, Felix Dietlein4, David Komander5, Reinhard Büttner3, Roman K. Thomas6,

Björn Schumacher1,2 & Manolis Pasparakis1

The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-kB, MAP

kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain

poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA

damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to

chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD

interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic

stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubi-

quitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated

with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-

dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans.

Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced

p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes

to the tumour suppressor function of CYLD.
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C
YLD is a tumour suppressor originally identified as the
gene mutated in familial cylindromatosis, a disease charac-
terized by the development of benign skin tumours arising

from ectodermal appendages1. Subsequently, decreased CYLD
expression and mutations of the CYLD genomic locus have been
reported in a number of different cancers including colon,
hepatocellular and myeloid malignancies, suggesting that CYLD
exhibits broad tumour suppressor functions2–5.

CYLD is a deubiquitinating enzyme that selectively hydrolyses
K63- and M1-linked ubiquitin chains but exhibits very little
activity towards K48-linked ubiquitin chains6. CYLD was shown to
negatively regulate NF-kB and MAPK activation by removing
ubiquitin chains from key signalling molecules including
NEMO, TRAF2, TRAF6 and RIPK1 (refs 7–10). In addition,
CYLD was proposed to inhibit Wnt signalling by deubiquitinating
dishevelled11. Furthermore, CYLD was identified as an important
regulator of TNF-induced apoptosis12 and programmed necrosis13,
presumably by deubiquitinating RIPK1 to allow the formation of
death-inducing protein complexes. Moreover, we showed
previously that CYLD catalytic activity is important for the
induction of RIPK3-mediated necroptosis in vivo14,15.

CYLD-deficient mice did not develop spontaneous tumours
but showed increased susceptibility in different models of
carcinogenesis. Mice lacking CYLD exhibited exacerbated colon
carcinogenesis induced by administration of the chemical
carcinogen azoxymethane (AOM) followed by repeated cycles
of dextran sulphate sodium (DSS) -induced inflammation16. In
this study, the authors proposed that CYLD deficiency leads to
increased NF-kB activation in macrophages resulting in elevated
inflammation, which drives enhanced colon carcinogenesis.
Moreover, CYLD deficiency resulted in chronic production of
tumour-promoting cytokines by tumour-associated macrophages
leading to more aggressive tumour growth in a syngeneic
model of lung cancer17. CYLD-deficient animals also showed
increased susceptibility to skin tumorigenesis induced by a
single topical application of the chemical carcinogen 7,12-
dimethylbenz(a)anthracene (DMBA) followed by repeated
cycles of inflammation induced by application of 12-O-tetra-
decanoylphorbol-13-acetate (TPA) (ref. 18). In this study,
Massoumi et al. suggested that CYLD deficiency in keratino-
cytes caused sustained ubiquitination and nuclear translocation of
BCL3 in response to ultraviolet light or TPA, which induced
elevated expression of Cyclin D1 resulting in increased
keratinocyte proliferation and tumour growth. Furthermore,
transgenic expression of catalytically inactive mutant CYLD in
the epidermis also sensitized mice to DMBA/TPA-induced skin
tumorigenesis19. However, in this study the authors suggested
that increased activation of JNK and not NF-kB was responsible
for the enhanced tumorigenesis caused by the expression of
catalytically inactive CYLD. Therefore, it appears that CYLD may
suppress tumour development by different mechanisms acting
either in a cell intrinsic manner in premalignant epithelial cells
or by regulating the tumour microenvironment by acting in
myeloid cells.

The p53 transcription factor is a key tumour suppressor that
is mutated in more than 50% of human cancers. p53 not only
maintains genomic stability after cellular stress by controlling
the expression of genes regulating cellular senescence, cell
cycle progression, cell death and DNA repair but has also been
recently implicated in the regulation of cellular metabolism, stem
cell maintenance and the tumour microenvironment20–22.
Regulation of p53 protein stability by the ubiquitin/proteasome
system is the main mechanism controlling p53 function23,24. p53
ubiquitination by Mdm2 and a number of other E3 ubiquitin
ligases including COP1, Pirh2, ARF-BP1, MSL2 and Parc medi-
ates the degradation and controls the subsecullar localization of

p53 (refs 23,24). In response to cellular stress, HAUSP and a
number of other deubiquitinating enzymes, including Otub1,
USP10, USP29 and USP42 not only remove ubiquitin chains
from p53 but also other proteins regulating p53 ubiquitination
including Mdm2, inducing p53 stabilization (refs 23,24).

Here we show that CYLD acts in intestinal and skin epithelial
cells to suppress DNA damage-induced tumour development and
that this tumour suppressor function of CYLD is mediated at least
in part by the regulation of p53 activation. Lack of CYLD catalytic
activity results in impaired stabilization of p53, reduced
expression of p53 target genes as well as reduced apoptosis in
epithelial cells in response to genotoxic stress. Elevated transgenic
expression of p53 restores DNA damage-induced cellular
responses and partly normalizes the increased tumour suscept-
ibility in mice expressing catalytically inactive CYLD in vivo. In
addition, we show that CYLD regulates DNA damage-induced
p53 responses in Caenorhabditis elegans suggesting that this
function of CYLD is evolutionarily conserved. Mechanistically,
we show that CYLD interacts with and deubiquitinates p53 in
response to DNA damage. Moreover, we provide evidence that
CYLD removes K48-linked ubiquitin chains from p53 indirectly
by cleaving K63 chains, suggesting that p53 is decorated with
complex ubiquitin chains.

Results
Epithelial CYLD suppresses AOM/DSS-induced colon cancer.
To study the function of CYLD deubiquitinase (DUB) activity in
tumorigenesis we employed a conditional knockin mouse model
allowing the cell-specific expression of the catalytically inactive
CYLDR932X mutant (CYLDD932) (ref. 15). The R932X mutation
in mouse CYLD is equivalent to the R936X mutation in human
CYLD, which truncates subdomain III of the Histidine box that
is essential for CYLD catalytic activity8 and was found to
cause cylindromas1 (Supplementary Fig. 1a). By crossing mice
carrying CYLDD932 floxed (CYLDD932FL) alleles with LysM-Cre
and Villin-Cre transgenics we generated two mouse lines
expressing the catalytically inactive CYLDD932 mutant specifi-
cally in myeloid (CYLDD932mye) or intestinal epithelial cells
(IECs) (CYLDD932IEC), respectively (Supplementary Fig. 1b–d).
To address the myeloid cell-specific role of CYLD in inflam-
mation-associated colon cancer, we induced colon carcinogenesis
in CYLDD932mye mice by a single injection of the alkylating
agent AOM followed by repeated cycles of inflammation induced
by oral administration of DSS25 (Fig. 1a). These experiments
revealed that CYLDD932mye mice showed similar levels of
inflammation and tumorigenesis compared with their
CYLDD932FL littermates after AOM/DSS treatment (Fig. 1b–d).
Therefore, in contrast to the suggestion by Zhang et al.16 that
CYLD deficiency in macrophages was responsible for the
increased AOM/DSS-induced colon carcinogenesis in Cyld� /�

mice to AOM/DSS-induced colon cancer, loss of CYLD catalytic
activity specifically in myeloid cells did not sensitize mice to
AOM/DSS-induced inflammation and tumour development.

We then assessed the role of epithelial CYLD by expo-
sing CYLDD932IEC mice to AOM/DSS colon carcinogenesis.
CYLDD932IEC mice reacted very strongly to AOM/DSS treat-
ment, requiring the use of a milder protocol including only one
DSS cycle to ensure survival of the mice (Fig. 1e). Under this
protocol, CYLDD932IEC mice developed pronounced weight loss
associated with severe colitis, while their CYLDD932FL littermates
exhibited only mild colitis (Fig. 1f,g). Tumour evaluation on
day 60 revealed that CYLDD932IEC mice harboured increased
numbers of tumours in their colons compared with their
CYLDD932FL littermates (Fig. 1h). Moreover, tumours in
CYLDD932IEC mice were larger and more advanced with
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Figure 1 | Epithelial CYLD suppresses AOM/DSS-induced colon tumorigenesis. (a) CYLDD932mye and CYLDD932FL male littermates were injected with

10mg kg� 1 AOM followed by two cycles of treatment with 2% DSS. (b) Graph showing body weight. (c) Quantification of murine endoscopic index of

colitis severity (MEICS) on the indicated days. (d) Graph showing colon tumour numbers on day 65. One representative out of two independent

experiments is shown. (e) CYLDD932IEC and CYLDD932FL male littermates were injected with 7.5mg kg� 1 AOM followed by one cycle of treatment with

2% DSS. (f) Graph showing body weight. (g) MEICS on the indicated days. (h) Representative endoscopy images and graph showing colon tumour

numbers. One representative out of five independent experiments is shown. (i) Representative Hematoxylin and Eosin (H&E) stained distal colon sections

on day 60 from the indicated AOM/DSS-treated mice. Scale bars, 2,500 and 50mm. (j) Graphs showing the incidence of low-grade intraepithelial

neoplasia (D1/D2) and high-grade intraepithelial neoplasia/carcinoma in situ (D3/Cais), and the cumulative size of high-grade intraepithelial neoplasia/

carcinoma in situ D3/(Cais) in the indicated AOM/DSS-exposed mouse lines. The evaluated samples comprise specimens from experiments shown in

Fig. 1e–h and Supplementary Fig. 2a–d. For all experiments, data are shown as mean±s.d. Statistical significance was determined with Student’s t-test;

*Pr0.05, ***Pr0.0005.
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increased incidence of high-grade intraepithelial neoplasia and
carcinoma in situ compared with CYLDD932FL littermates
(Fig. 1i,j). Collectively, these results showed that CYLD catalytic
activity functions in epithelial cells to suppress AOM/DSS-
induced colon tumorigenesis.

CYLD suppresses DNA damage-induced tumorigenesis. To
dissect whether CYLD suppresses colon tumorigenesis by
preventing AOM-mediated tumour initiation or DSS-induced
tumour promotion, we first studied the response of
CYLDD932IEC mice to DSS (Fig. 2a). When treated with multiple
cycles of DSS in the absence of AOM, CYLDD932IEC mice
showed similar weight loss and colitis development compared
with their CYLDD932FL littermates, while none of the mice
showed colon tumours when sacrificed on day 180 (Fig. 2b,c).
These results showed that epithelial CYLD does not regulate DSS-
induced colon injury and inflammation, and suggested that
CYLD catalytic activity might be important for the response of
epithelial cells to AOM-induced DNA damage.

To assess the role of epithelial CYLD in DNA damage-driven
tumorigenesis, we exposed CYLDD932IEC mice to a model
of inflammation-independent intestinal tumour development
induced by repeated injections of AOM (Fig. 2d). Endoscopic
analysis on week 12 revealed the presence of colon tumours in all
CYLDD932IEC mice, while none of their CYLDD932FL littermates
showed tumours at this stage (Fig. 2e). Macroscopic and histo-
logical analysis of colons on week 18 revealed strongly increased
AOM-induced tumorigenesis in CYLDD932IEC mice compared
with CYLDD932FL littermates. CYLDD932IEC mice showed
increased tumour incidence and developed more tumours, which
were larger and more advanced with increased incidence of high-
grade intraepithelial neoplasia and carcinoma in situ compared
with CYLDD932FL animals (Fig. 2f–h). Thus, epithelial specific
inhibition of CYLD catalytic activity sensitized mice to AOM-
induced colon carcinogenesis.

To test whether CYLD regulates carcinogen-induced tumour
formation in other epithelia, we generated mice expressing the
catalytically inactive CYLDD932 mutant in epidermal keratino-
cytes (CYLDD932epi) by crossing CYLDD932FL mice with K14-
Cre transgenics (Supplementary Fig. 1e,f). To induce skin
tumours, we treated CYLDD932epi and CYLDD932FL littermates
with eight consecutive weekly topical applications of the
carcinogen DMBA on the shaved back skin (Fig. 2i). Evaluation
of skin tumour development 12 weeks after the last DMBA
application revealed the presence of papillomas in B70% of the
CYLDD932epi mice compared with B30% of their littermate
controls. Moreover, about two-thirds of the papillomas found in
CYLDD932epi mice were classified as medium to big, while nearly
all papillomas found in CYLDD932FL mice were small (Fig. 2j,k).
Collectively, these results showed that CYLD catalytic activity in
epithelial cells suppresses DNA damage-induced tumorigenesis in
the intestine and skin.

CYLD promotes DNA damage-induced apoptosis. Cell death
amid irreparable genomic lesions is a mechanism preventing
DNA damage-driven tumour development. We reasoned that
CYLD might prevent chemical carcinogen-induced tumour
development by promoting DNA damage-induced cell death.
Indeed, we found that 8 h after AOM injection colonic crypts in
CYLDD932IEC mice contained reduced numbers of TUNEL-
positive epithelial cells compared with CYLDD932FL littermates,
indicating that loss of CYLD DUB activity protected IECs from
DNA damage-induced death (Fig. 3a). CYLD was previously
identified as an important regulator of cell death induced by RIP
kinase 1 (RIPK1) downstream of death receptor and Toll-like

receptor signalling12,13. Furthermore, we showed that CYLD
catalytic activity regulates RIPK3-induced necrosis in intestinal
and skin epithelial cells in vivo14,15. Since RIPK1 was recently
shown to regulate cellular responses to DNA damage26, we
hypothesized that CYLD might control DNA damage-induced
cell death and tumour development by regulating RIP kinase-
dependent pathways and tested this hypothesis using relevant
genetic mouse models. We found that neither Ripk3� /� nor
double FADDIEC-KO/Ripk3� /� mice, which lack RIPK3 in all
cells and FADD specifically in IECs15, showed increased suscepti-
bility to AOM/DSS- or AOM-mediated intestinal tumorigenesis
(Supplementary Fig. 2). These results suggest that the tumour
suppressing role of CYLD is independent of RIPK3 and FADD/
caspase-8 mediated cell death pathways.

CYLD facilitates DNA damage-induced p53 activation. Since
AOM and DMBA are genotoxic agents, we reasoned that CYLD
activity might increase DNA damage-induced cell death and
therefore suppress tumour development by regulating the DNA
damage response in epithelial cells. DNA damage induces the
stabilization and activation of the transcription factor p53, which
promotes cell cycle arrest to facilitate DNA repair or induces the
death of cells carrying irreparable DNA lesions. Moreover,
AOM-induced death of IECs depends on p53 signalling27. To
address whether CYLD controls the p53-dependent death
of epithelial cells in response to DNA damage we employed
intestinal organoid cultures. Organoids from CYLDD932IEC,
CYLDD932FL, p53IEC-KO and p53FL mice were treated with
Camptothecin (CpT), a topoisomerase inhibitor inducing
replication fork stalling and the formation of DNA double-
strand breaks28 or Mitomycin C (MMC), a chemical carcinogen
that, similarly to AOM, induces DNA alkylation and subsequent
interstrand crosslink (ICL) formation29, and cell death was
assessed by microscopic evaluation as well as detection of
caspase-3 cleavage by immunocytochemical, immunoblot and
fluorescence-activated cell sorting (FACS) analyses. As expected,
CpT and MMC treatment induced epithelial cell death in wild
type but not in p53-deficient organoids (Fig. 3b,c and
Supplementary Fig. 3a–b). Consistent with our in vivo results,
CYLDD932 mutant organoids were largely protected from
CpT- and MMC-induced epithelial cell death compared
with CYLDD932FL organoids (Fig. 3b–d and Supplementary
Fig. 3a–c). Therefore, lack of CYLD catalytic activity inhibited the
p53-dependent death of IECs in response to DNA damage in vivo
and in vitro.

To address how CYLD regulates DNA damage-induced p53
responses we first examined whether CYLD regulates p53
stabilization in response to genotoxic stress. We found that
CYLDD932 organoids showed strongly impaired stabilization of
p53 as well as reduced expression of the p53-dependent genes
Cdkn1a, Bax and gadd45 in response to CpT (Fig. 3e,f). To assess
whether lack of CYLD DUB activity affected DNA damage-
induced p53 responses in other epithelial cells, we analysed
CpT-induced p53 activation in primary epidermal keratinocytes.
Similarly to IECs, CYLDD932 mutant keratinocytes showed
impaired DNA damage-induced p53 stabilization and p53-
dependent gene expression compared with controls (Fig. 3g,h).
Together, these experiments showed that CYLD DUB activity is
required for efficient stabilization and activation of p53 and the
induction of cell death in primary epithelial cells exposed to DNA
damage.

p53 overexpression reverts tumorigenesis in CYLDD932IEC

mice. Our results suggested that CYLD regulates DNA damage-
induced responses primarily by facilitating the optimal
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Figure 2 | CYLD suppresses DNA damage-induced tumorigenesis independent of inflammation. (a) CYLDD932IEC and CYLDD932FL male mice were

given three 7-day cycles of 2% DSS in the drinking water. (b) Graphs showing body weight throughout the treatment and quantification of MEICS after

each DSS cycle. (c) Representative H&E-stained distal colon sections from DSS-treated mice on day 180. Scale bar, 100mm. One representative out of two

independent experiments is shown. (d) CYLDD932IEC and CYLDD932FL female littermates received weekly injections of 10mg kg� 1 AOM for 6 weeks.

(e) Representative endoscopic images on week 12. (f) Graph showing colon tumour numbers on week 18. (g) Representative H&E-stained histological
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neoplasia/carcinoma in situ (D3/Cais), and the cumulative size of high-grade intraepithelial neoplasia/carcinoma in situ D3/(Cais) in the indicated mice

exposed to AOM. The evaluated samples comprise specimens from experiments shown in Fig. 2d-h. Pooled data from three independent experiments is
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significance was determined with Student’s t-test; ***Pr0.0005.
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stabilization of p53 in response to genotoxic stress. To assess
whether increased expression of p53 could rescue impaired
DNA damage responses in cells expressing mutant CYLD, we
crossed the CYLDD932IEC mice with ‘super p53’ mice carrying
supernumerary copies of the p53 gene in the form of large
genomic transgenes30. Indeed, increased p53 expression could
largely restore DNA damage-induced apoptosis and expression
of p53 target genes in CYLDD932IEC intestinal organoids
(Fig. 4a–c). In addition, CYLDD932IEC Superp53 mice deve-
loped less AOM/DSS- and AOM-induced colon tumours com-
pared with CYLDD932IEC littermates, showing that increased
p53 expression could partially restore the increased susceptibility
of CYLDD932IEC mice to chemical carcinogen-induced colon

tumorigenesis (Fig. 4d,e). These results provide additional
experimental evidence supporting that CYLD controls cellular
responses to DNA damage by promoting the stabilization and
activation of p53, and that regulation of p53-dependent responses
to genotoxic stress contributes to the tumour suppressing
function of CYLD.

Inactivating CYLD mutations are found in several human
cancers. Mutations of the Cyld genomic locus have been pre-
viously reported in different tumour types2,3,5. We analysed
sequencing data from 7,042 human tumour samples31 and found
that CYLD mutations were present in a number of different
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cancers (Supplementary Fig. 4a). Determination of the frequency
of inactivating mutations in 27,836 genes across cancer (COSMIC
database) showed that inactivating mutations were significantly
enriched in CYLD and that the CYLD mutation spectrum
resembled the spectrum of known tumour suppressors (Supple-
mentary Fig. 4b). In addition, we found a statistically significant
association between the presence of CYLD mutation and the
accumulation of mutations per tumour (Supplementary Fig. 4c),
suggesting that loss of CYLD catalytic activity may favour the
accumulation of somatic mutations in human cancers by
impairing DNA damage-induced p53 responses. Moreover,
CYLD was predicted to regulate p53 in an unbiased bioinfor-
matics approach aiming to build a functional human protein
interaction network by combining protein interaction, gene
expression and gene ontology annotations with genome-wide
cancer data sets32, further supporting that regulation of p53
signalling by CYLD is functionally relevant for human cancer.

CYLD regulates DNA damage-induced p53 responses in
C. elegans. To assess the functional conservation of the role of
CYLD in regulating p53-dependent cellular responses to DNA
damage, we investigated the function of the highly conserved
cyld-1 gene in C. elegans. Similar to mammals, nematodes activate

a conserved DNA damage checkpoint pathway that induces cell
cycle arrest of mitotic germ cells and in meiotic pachytene cells
activates the p53 homologue CEP-1 to trigger apoptosis33–35

through transcriptional activation of the BH3 domain only
proteins EGL-1 and CED-13 (ref. 36,37). In agreement with
previous results35, cep-1 knockdown completely protected
C. elegans from DNA damage-induced germ cell apoptosis
(Fig. 5a). Strikingly, worms treated with RNA interference
(RNAi)-mediated knockdown of cyld-1 showed significantly
reduced number of apoptotic cells following ionizing radiation
(IR)-induced DNA damage (Fig. 5a). Likewise, a cyld-1(tm3768)
mutant strain, which harbours a deletion of 496 bp in exon 14
that is predicted to result in the expression of truncated
catalytically inactive CYLD-1 (Supplementary Fig. 5), showed
reduced IR-induced germ cell death compared with wild-type
worms (Fig. 5b).

We then examined whether increasing the levels of CEP-1/p53
could sensitize cyld-1(tm3768) worms to DNA damage-induced
germ cell apoptosis in cyld-1(tm3768) mutant worms carrying the
gld-1(op236) mutation. The Quaking homologue GLD-1 binds
to the cep-1/p53 mRNA and represses its translation. The gld-
1(op236) mutant allele is defective in binding and repressing
the cep-1/p53 mRNA resulting in elevated CEP-1/p53 protein
levels and increased DNA damage-induced apoptosis38.
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Indeed, cyld-1(tm3768);gld-1(op236) double-mutant worms
displayed an intermediate phenotype between cyld-1(tm3768)
and gld-1(op236) single mutants, demonstrating that increased
levels of CEP-1/p53 partly restored the sensitivity of cyld-1
mutant worms to DNA damage-induced apoptosis (Fig. 5c). In
addition, these findings showed that loss of CYLD-1 catalytic
activity partly inhibited the increased sensitivity of gld-1(op236)
worms to apoptosis, providing additional evidence that
CYLD-1 acts at the level of CEP-1/p53 to control the DNA
damage response in C. elegans. Together, these results show that
nematode CYLD-1 is required for the efficient activation of
CEP-1/p53-dependent responses to DNA damage. Since the
NF-kB signalling pathway is absent in C. elegans39, these

results also provide evidence that the role of CYLD in
regulating DNA damage-induced p53 responses is not
dependent on its function as a negative regulator of NF-kB
activation. In agreement with this, lack of CYLD catalytic
activity did not considerably affect the DNA damage-induced
IkBa degradation and the transcription of NF-kB target
genes in mouse primary epithelial cells, supporting an NF-kB-
independent function of CYLD in the regulation of the DNA
damage response (Supplementary Fig. 6).

CYLD interacts with p53 in response to DNA damage. Given
the well-established function of CYLD as a deubiquitinating
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enzyme, we hypothesized that CYLD could regulate p53 activa-
tion by deubiquitination. We first tested whether CYLD and p53
interact with each other in cells exposed to DNA damage. We
found that HA-CYLD expressed in HEK-293 T cells co-immu-
noprecipitated with endogenous p53 or overexpressed GFP-p53
in reciprocal IPs and that this interaction was enhanced after
DNA damage (Fig. 6a,b). Furthermore, GST pull-down assays
showed that recombinant His-CYLD bound recombinant GST-
p53 but not GST, suggesting that CYLD directly interacts with
p53 (Fig. 6c). In addition, endogenous CYLD co-immunopreci-
pitated with endogenous p53 in primary epidermal keratinocytes
and HCT116 cells in response to DNA damage (Fig. 6d,e).
Together, these results showed that CYLD interacts with p53 and
this interaction is enhanced by genotoxic stress.

CYLD deubiquitinates p53 facilitating its stabilization. To test
whether CYLD expression could alter p53 ubiquitination, we first
used HEK-293 T cells. Expression of p53 together with HA-Ub in
HEK-293 T cells resulted in robust ubiquitination of p53 also in
the absence of DNA damage (Fig. 7a). Consistent with a role of
CYLD in negatively regulating p53 ubiquitination, co-expression
of HA-CYLD strongly reduced the ubiquitination of p53 (Fig. 7a
and Supplementary Fig. 7a,b). In addition, overexpression of HA-
CYLD diminished the ubiquitination and increased the stabili-
zation of endogenous p53 in CpT-treated HCT116 cells
(Fig. 7b,c). To assess whether CYLD DUB activity is required for
the removal of ubiquitin chains from p53, we examined whether
expression of two catalytically inactive CYLD mutants (the
C-terminal truncated mutant R936X that is the human equivalent
to the mouse R932X mutation and the CYLDH871N mutant
where the putative catalytic Histidine is changed to Arginine
abolishing DUB activity8) affected p53 ubiquitination. As shown
in Fig. 7d and Supplementary Fig. 7c,d, in contrast to WT CYLD,
the catalytically inactive CYLDR936X (R/X) and CYLDH871N
(H/N) mutants did not diminish p53 ubiquitination although
they bound p53, demonstrating that CYLD DUB activity is
required to reduce p53 ubiquitination. Furthermore, recombinant
His-CYLD reduced ubiquitination of Flag-p53 immunoprecipi-
tated from CpT-treated HEK293T cells, showing that CYLD

can directly deubiquitinate p53 in a cell-free in vitro assay
(Supplementary Fig.7e). Together, these results suggested that
CYLD directly interacts with and deubiquitinates p53 facilitating
its optimal stabilization in response to DNA damage.

CYLD removes complex ubiquitin chains from p53. It is gene-
rally believed that ubiquitination of p53 with K48-linked chains
controls its constant degradation in unstressed cells, while inhi-
bition of the formation as well as DUB-mediated removal of K48
chains is essential for p53 stabilization in response to DNA
damage24. CYLD selectively hydrolyses K63- and M1-linked
ubiquitin chains but exhibits very little activity towards K48-
linked ubiquitin chains6. We therefore wondered whether CYLD
could remove K48-linked ubiquitin chains from p53. To address
this question, we first assessed the capacity of CYLD to reduce
p53 ubiquitination in cells overexpressing HA-tagged Lys-to-Arg
ubiquitin mutants that can only form K48- or K63-linked
chains. This experiment showed that CYLD diminishes p53
ubiquitination in cells expressing HA-mutant ubiquitin forming
K63 only chains, but also in cells expressing HA-mutant ubiquitin
forming K48 only chains (Fig. 7e). As an alternative approach, we
used K63 or K48 linkage-specific antibodies to assess the type of
chains CYLD removes from p53. As shown in Fig. 7f, wild type
but not catalytically inactive CYLD diminished both K63- and
K48-linked ubiquitin chains from p53 in cells overexpressing
wild-type ubiquitin (Fig. 7f). Together, these results provided
evidence that CYLD removes also K48-linked ubiquitin chains
from p53.

To understand how CYLD, a DUB that efficiently hydrolyses
K63 and linear chains but shows little activity against K48-linked
ubiquitin chains, removes K48 chains from p53 we performed
ubiquitin chain restriction (UbiCRest) analysis40 on ubiquitinated
Flag-p53 (Flag-p53(Ub)n) immunoprecipitated from MG132/
CpT-treated HEK-293 T cells. This experiment showed that
USP21 (unspecific DUB) completely removed ubiquitin chains
from p53, while OTUB1 (K48 linkage-specific DUB) and AMSH
(K63-linkage-specific DUB), but not OTULIN (M1-linkage-
specific DUB), strongly reduced p53 ubiquitination (Fig. 7g),
suggesting that p53 is ubiquitinated with K48 and K63 but not
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linear chains. Interestingly, immunoblot analysis with K48
linkage-specific antibodies showed that USP21 and OTUB1
completely removed, but also AMSH strongly diminished K48-
linked ubiquitin chains from p53 (Fig. 7g). Since AMSH is highly
specific for K63 chains and cannot hydrolyse K48 linkages, its
effect on removing K48 chains from p53 is most likely indirect,
either by hydrolysing K63 linkages in a heterotypic K63/K48
ubiquitin chain background, or by cleaving intact K48 chains at
the substrate-proximal ubiquitin. CYLD behaved similarly to
AMSH in these experiments, suggesting that CYLD most likely
also removes K48 chains from p53 indirectly.

Discussion
Genomics studies in human cancers as well as experiments in
mouse models have established CYLD as an important tumour
suppressor in a variety of malignancies1–5,16–19. Most studies so

far attributed the tumour suppressing properties of CYLD to its
function as negative regulator of NF-kB, MAPK and Wnt
signalling. Nevertheless, the mechanisms of CYLD-mediated
tumour suppression remain poorly understood. CYLD was
recently shown to regulate death receptor-induced apoptosis
and necroptosis, suggesting that regulation of death receptor-
mediated programmed cell death could also contribute to its
tumour suppressing functions. However, our in vivo genetic
studies showing that double FADD/RIPK3 deficiency did not
sensitize mice to AOM-induced colon tumorigenesis provided
evidence that regulation of death receptor-induced programmed
cell death is not critical for the tumour suppressing role of CYLD.

Our results presented here revealed a novel function of CYLD
as a regulator of p53 signalling. The role of CYLD in regulating
p53 is evolutionarily conserved as shown by our findings that
CYLD deficiency impairs p53-dependent DNA damage-induced
germ cell apoptosis in C. elegans. Since the role of ubiquitination
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in the regulation of CEP-1/p53 signalling in C. elegans remains
unclear, the precise mechanism by which CYLD controls DNA
damage-induced CEP-1/p53 activation in worms remain to be
investigated. Loss of CYLD catalytic activity reduced, but did not
completely abolish, DNA damage-induced stabilization and
activation of p53 in primary epithelial cells, suggesting that
CYLD facilitates optimal p53 activation. This modulatory
function of CYLD explains why CYLD-deficient mice do not
phenocopy the severe phenotype of p53 knockout animals.

The stabilization and activation of p53 in response to
cellular stress is regulated by the combined action of a number
of E3 ubiquitin ligases and deubiquitinases23,24. p53 stability
is controlled by K48 ubiquitin chains that target p53 for
proteasome-dependent degradation. In addition, Ubc13 has
been shown to elicit K63-dependent ubiquitination of p53 regu-
lating its transcriptional activation41. Until recently, research on
ubiquitin signalling has focused mainly on homogenous ubiquitin
chains. However, there is increasing evidence from both in vivo
and in vitro studies that single polyUb chains can contain
multiple linkage types sequentially or in branched structures42,43.
The properties of individual linkage types as well as their
ability to be hydrolysed by DUBs remain intact when chains
are branched43,44. Moreover, branched chains were shown to
be processed faster by the 26S proteasome compared with
homogeneous chains42,44. To our knowledge, the presence and
possible functional role of complex ubiquitin chains on p53 has
not been studied thus far. Our results using mutant ubiquitins
and chain-specific ubiquitin antibodies showed that CYLD could
remove not only K63 but also K48 chains from p53. Although we
cannot exclude that CYLD could also hydrolyse directly K48
chains on p53, this is unlikely as previous experiments showed
that CYLD efficiently hydrolyses K63 and linear chains but
exhibits very little activity against K48 chains45. The results of the
UbiCRest experiment showing that AMSH, a DUB that is highly
specific for K63 chains could also remove K48 chains from p53
similarly to CYLD, suggest that these enzymes remove K48 chains
indirectly. The most likely explanation of these findings is that
p53 is decorated with mixed and/or branched K63/K48 ubiquitin
chains and that CYLD can remove K48 chains indirectly by
catalysing the cleavage of K63 linkages. We did not directly
address the specific role of the proteasome in mediating CYLD-
induced degradation of p53, as any experiment involving
proteasome inhibition would result in p53 stabilization and
thus would be inconclusive in proving the specific role of CYLD.
However, given that CYLD mutation did not alter p53 mRNA
levels (Supplementary Fig. 8), it is reasonable to conclude that
CYLD stabilizes p53 by preventing its K48 chain-dependent
proteasomal degradation. Collectively, these results provide a
rational mechanism explaining how CYLD can regulate p53
protein stability directly, although it remains unclear whether
CYLD targets additional proteins in the p53 pathway. Moreover,
these findings provide experimental evidence that p53 is
decorated with mixed and/or branched ubiquitin chains contain-
ing more than one linkages, suggesting that complex ubiquitin
chains play an important role in regulating p53 signalling.

Our findings that CYLD catalytic activity is required for
efficient DNA damage-induced activation of p53 suggest that
regulation of p53 signalling is a major tumour suppressing
mechanism of CYLD that is likely to synergize with its previously
reported functions in negatively regulating NF-kB and Wnt
signalling. By regulating these three pathways CYLD can affect
three independent but interconnected processes that are central
for tumorigenesis: genomic stability, inflammation and cell
growth. The combined function of CYLD in modulating the
activity of these pathways provides a rational mechanism for its
important tumour suppressor role in a variety of human

malignancies. In conclusion, our results reveal a novel tumour
suppressor function of CYLD as a regulator of p53-dependent
cellular responses to DNA damage.

Methods
Mice. CYLDD932FL (ref. 15), Rip3k� /� (ref. 46), FADDFL (ref. 47), p53FL

(ref. 48), Superp53 (ref. 30), Villin-Cre 49 and K14-Cre transgenic mice50 have been
previously described. For all experiments 8–10-week old gender-matched mice
were used. Littermates carrying loxP-flanked alleles but not Cre served as control
mice. Animals requiring veterinary attention were provided with appropriate care
and excluded from the experiments. Mice were maintained at the animal facilities
of the Institute for Genetics, University of Cologne, kept under a 12 h light cycle,
and given a regular chow diet (Harlan, diet #2918) ad libitum. All animal
procedures were conducted in accordance with European, national and
institutional guidelines and protocols and were approved by local government
authorities (Landesamt für Natur, Umwelt und Verbraucherschutz
Nordrhein-Westfalen, Germany).

Carcinogenesis protocols. Two per cent DSS (MP, MW 36000-50000) was
provided in drinking water ad libitum. AOM (Sigma) was dissolved in sterile
PBS and injected intraperitoneally at a dose of 7.5 or 10mg kg� 1 body weight.
Colitis and tumour formation was monitored by high-resolution mini endoscopy.
For DMBA-induced skin cancer, mice were treated topically on the shaved back
skin with 25mg of DMBA (Sigma) in 100ml acetone once a week during 8 weeks.
Animals were sacrificed after 12 weeks of latency. The tumour size scoring was
done as follows; small: Z1mm; medium: Z3mm; and big: Z5mm diameter.

High-resolution mini endoscopy. Mice were anaesthetized using intraperitoneal
injection of ketamine (Ratiopharm)/Rompun (Bayer) and a high-resolution mini-
endoscope, denoted Coloview (Karl-Storz, Tuttlingen, Germany), was used to
determine the murine endoscopic index of colitis severity as described previously51.

Histology and immunohistochemistry. Samples were fixed overnight in 4%
paraformaldehyde, embedded in paraffin and cut in 4 mm sections. Paraffin sections
were rehydrated and heat-induced antigen retrieval was performed in 10mM
Sodium Citrate, 0.05% Tween-20 pH 6. Primary antibody used for IHC was anti-
active Caspase 3 (Cell Signalling, 9661 (1:1,000 dilution). Biotinylated secondary
antibodies were purchased from Perkin Elmer and Dako. Stainings were visualized
with ABC Kit Vectastain Elite (Vector) and DAB substrate (DAKO). Incubation
times with the DAB substrate were equal for all samples. General cell death was
evaluated using DeadEnd Fluorometric TUNEL System (Promega). Pictures were
taken with a fluorescence microscope (Leica) at the same exposure and intensity
settings.

Histopathological evaluation. Intraepithelial neoplasias (IEN) were classified
according to their grading in low- or high-grade/carcinoma in situ, this classifi-
cation was made according to the WHO standard guidelines. The cumulative
tumour size was calculated by summing up the size of all tumours found per
sample. Tumour grade and size were evaluated blindly by two independent
experienced pathologists. Histological sections that were not optimal for a proper
evaluation were discarded from the analysis.

Organoid cultures. Mice were killed and intestines were flushed with PBS and
cut longitudinally before villi were mechanically removed. Intestinal crypts were
collected in PBS containing 2mM EDTA. Crypts were plated in matrigel (BD)
and supplemented with minimal growth medium containing ENR: 100 ngml� 1

mNoggin, 100 ngml� 1 R-Spondin, 50 ngml� 1 mEGF. ENR was added to the
medium every 3–4 days. Outgrowing crypts were passaged once a week. Organoids
were stimulated in culture with CpT 10 mM (Sigma) or MMC 10mgml� 1 (Sigma)
for the indicated times. For protein and RNA extraction, organoids were harvested
with PBS, disrupted by pipetting and washed again with PBS in order to discard the
organoid’s lumen content.

Keratinocyte isolation and culture. Primary epidermis keratinocytes were iso-
lated from the skin of mice between days 0 and 3 and cultured in minimal calcium
medium (0.05mM CaCl) supplemented with 4% Chelex-treated fetal calf serum
and epidermal growth factor (10 ngml� 1). Keratinocytes were stimulated in cul-
ture with CpT 10mM (Sigma) for the indicated times. Keratinocytes were lysed
with RIPA lysis buffer containing proteases and phosphatase inhibitor tablets
(Roche) for protein extraction and in Trizol reagent (Invitrogen) for RNA
extraction.

Cell transfection. HEK (Life Technologies-Invitrogen), HCT116 and HCT116
TP53� /� (Horizon) negative for mycoplasma according to the MycoAlert
Mycoplasma Detection Kit (Lonza) were cultured in DMEM with 10% FBS. Cells
were plated at sub-confluence and transfected using lipofectamine 2000 (Life
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Technologies) according to the manufacturer protocol. HCT116 and HCT116
TP53 � /� were validated by genotyping gDNA and cDNA by Horizon. HEK
cells were validated by karyotyping by Invitrogen and employed for our expression
vector experiments given their high capacity to be transfected and efficiency in
exogenous gene expression.

Plasmids. Flag-P53 was provided by Dr Zhenkun Lou52; HA-CYLD were provided
by Dr. Ana Bigas53; CYLD-WT, CYLDR936X and CYLDH871N mutant were
provided by Dr. Gilles Courtois8; HA-Ubiquitin-WT (Addgene plasmid 17608),
HA-Ubiquitin-K63-only (Addgene plasmid 17606) and HA-Ubiquitin-K48-only
(Addgene plasmid 17605) were provided by Dr. Ted Dawson. GFP-p53 (Addgene
plasmid 12091) was provided by Dr. T. Jacks. GST-p53 (Addgene plasmid 39479)
was provided by Dr. Ie-Ming Shih. PCS2-Flag and pcDNA3-Ha plasmids were
used to equalize amount of transfected DNA between samples.

Immunoblotting. Total protein cell extracts were separated by SDS–
polyacrylamide gel electrophoresis gels and transferred to Immobilon-P poly-
vinylidene difluoride membranes (Millipore). Membranes were probed with pri-
mary antibodies; anti-p53(1C12) (Cell Signaling; 2524; 1:750 dilution), anti-p21(C-
19) (Santa Cruz Biotechnology; sc-397; 1:1,000 dilution), anti-cleaved caspase-3
(Asp175) (Cell Signaling; 9661; 1:1,000 dilution), anti-phospho JNK (Invitrogen;
44-682G; 1:1,000 dilution), anti-JNK (Cell Signaling; 9252; 1:1,000 dilution), anti-
IkBa (Santa cruz; sc-371; 1:1,000 dilution), anti-tubulin (Sigma; T6074; 1:5,000)
and anti-actin (Santa Cruz Biotechnology; sc-1616; 1:1,000 dilution) antibodies at
4� O/N. Membranes were incubated with secondary horseradish peroxidase-cou-
pled antibodies (GE Healthcare and Jackson Immune Research) and developed
with chemiluminescent detection substrate (GE Healthcare and Thermo Scientific).

Quantitative RT-PCR. Total RNA was extracted with Trizol Reagent (Invitrogen)
and RNeasy Columns (Qiagen) and cDNA was prepared with the SuperscriptIII
cDNA-synthesis Kit (Invitrogen). PCR with reverse transcription was performed
by TaqMan analysis (Applied Biosystems) using the following primers: Cdkn1a
(Mm00432448_m1); Bax (Mm 00432051_m1); gadd45 (Mm 00432802_m1);
PUMA (Mm 00519268_m1); Noxa (Mm 00451763_m1) and TATA-Box binding
protein (Tbp) (Mm00446973_m1). Tbp was used as reference gene.

Southern blotting. Genomic DNA extraction, digestion and Southern blotting
were performed according to standard protocols. The probe used for Southern
blot analysis of the CYLD mutation was amplified using primers: sense:
50-TCATGGCCAGCAGTCTCGAAG-30 ; anti-sense: 50-TTTCTGTGGGCCT
ACATACGG-30 .

Cell death assays. Three days after splitting, intestinal organoids were treated
with CpT (Sigma) 10mM for the indicated time points. To get single-cell
suspension, organoids were harvested with Tryple solution (Life Technologies),
passed four times through a syringe (23G needle) and incubated at 37� for 5min.
Digestion was stopped with 2%FCS/PBS solution. Cells were then incubated with
PBS containing amine-reactive dye (LIVE/DEAD dye, Live Technologies) washed,
fixed with 2% PFA and permeabilized with PBS containing 1%BSA, 0.1%TritonX-
100 in PBS. Cells were then stained with anti-cleaved caspase-3 (Asp175) anti-
bodies (Cell Signaling; 9661; 1:50 dilution), followed by secondary antibodies
coupled to ALEXA Fluor 488 (Molecular Probes; 1:200 dilution). Cleaved caspase 3
only positive cells were analysed using a FACS Calibur (BD).

Ubiquitinated p53 immunoprecipitation and detection. Forty-eight hours after
transfection, cells were incubated sequentially with MG-132 (Calbiochem) 20 mM
and CpT (Sigma) 10 mM for 7 and 3 h, respectively. Cell were lysed in IP buffer
(8M Urea, 20mM Tris pH 7.5, 135mM NaCl, 1% Triton X-100, 10% glycerol,
1.5mM MgCl2, 5mM EDTA, 2mM N-ethylmaleimide (NEM) plus proteases and
phosphatase inhibitor tablets (Roche)) and briefly sonicated. Urea was diluted to
1M with urea-free IP buffer before antibody was added. IPs were done with anti
p53(1C12) (Cell Signalling; 2524; 3 mg) antibodies or an isotype control IgGs (Santa
Cruz Biothecnology; 3 mg) at 4� O/N. IgGs were captured with ProteinA-Magnetic
Beads (Life technologies). For the FLAG IPs, anti-Flag M2 Magnetic Beads
(Sigma; M8823; 3 mg) were used. Proteins were eluted with LDS reducing sample
buffer (Bio-Rad) by heating at 70 �C for 3min and were resolved using NuPAGE
4–12% Bis-Tris gels (Life Technologies) and transferred O/N at 20V by wet
transfer to nitrocellulose membranes. Membranes were probed with anti-p53
(DO-I) (Santa Cruz Biotechnologies; sc-126; 1:1000 dilution), anti-ubiquitin (Santa
Cruz Biotechnologies; sc-8017; 1:1000 dilution), anti-ubiquitin K48-specific Apu-2
(Millipore; 05-1307; 1:1000 dilution), anti-ubiquitin K63-specific Apu-3 (Millipore;
05-1308; 1:1000 dilution), anti-Ha (12CA5) (Roche; 11 583 816 001; 1:1000 dilu-
tion) and anti-CYLD (provided by Dr R. Masoumi and Cell Signaling; 8462 S;
1:1000 dilution) antibodies at 4� O/N. Membranes were incubated with secondary
horseradish peroxidase-coupled antibodies (GE Healthcare and Jackson Immu-
neResearch) and developed with chemiluminescent detection substrate (GE
Healthcare and Thermo Scientific). In all immunoprecipitation experiments the

whole cell extracts fraction correspond to 5% of the total lysate subjected to the
immunoprecipitation, while 50% (for overexpressed proteins IPs) or 100% (for
endogenous proteins IPs) of the total immunoprecipitation was loaded for
immunoblot analysis.

Pull-down assay. GST fusion proteins were purified from the Escherichia coli
BL-21 strain in lysis buffer using glutathione-Sepharose (Amersham Bioscience).
Sepharose beads with GST fusion proteins where incubated with the indicated
HEK-293T-transfected cell lysate in binding buffer O/N at 4 �C. Beads were
washed with binding buffer and proteins were eluted with LDS reducing sample
buffer (Bio-Rad) by heating at 70 �C.

Lysis buffer: 20mM Tris-HCl, pH 7.4, 1mM NaCl, 0.2mM EDTA, 1mM
dithiothreitol, 1mgml� 1 lysozyme, 1mM PMSF and a protease inhibitor tablet
(Roche).

Binding buffer: 25mM Tris-HCl, pH 7.5, 200mM NaCl, 0.2% Nonidet P-40,
1mM DTT, 1mM EDTA, 10% Glycerol and a proteases inhibitor tablet (Roche).

Ubiquitin chain-restriction analysis on p53. Ubiquitin chain restriction analysis
was performed as previously described40,54. Briefly, ubiquitinated p53 was
immunoprecipitated from transfected HEK-293 T cells, as described above, and
incubated with the different deubiquitinases (DUBs) (USP21, 1.5 mM; OTULIN,
1 mM; OTUB1, 15mM; AMSH*, 9 mM; CYLD, 0.7 mM) in deubiquitination reaction
buffer (70mM Tris (pH 7.5), 170mM NaCl and 13 mM DTT) during 30min at 37�.
Beads were washed with deubiquitination reaction buffer and proteins were eluted
with LDS reducing sample buffer (Bio-Rad) by heating at 70 �C for 3min.

C. elegans strains and growth conditions. The N2 Bristol strain was used as wild
type. The deletion mutant cep-1(lg12501) carries a 1213 bp deletion corresponding
to 30,458–31,670 on cosmid F52B5 and takes out a large part of the cep-1 open
reading frame. The mutant cyld-1(tm3768) harbours a deletion of 496 bp in the
exon 14 of the gene. The gld-1(op236) mutant harbours a V to F substitution
at amino acid 276 in the cep-1 mRNA binding domain. Mutant strains were
backcrossed against N2 at least four times. Worms were grown under standard
laboratory conditions (20 �C) on nematode growth medium (NGM) agar
containing OP50 Escherichia coli.

RNA interference treatment in C. elegans. Overnight cultures of HT115 bacteria
containing specific RNAi constructs were grown in lysogeny broth media con-
taining ampicillin. RNAi expression was induced by adding 1mM Isopropyl b-D-
1-thiogalactopyranoside (IPTG) and incubating the cultures at 37 �C for 20min
before seeding the bacteria on NGM agar supplemented with ampicillin and 3mM
IPTG. Worms were used for experiments after 2 generations of RNAi feeding.

Cyld-1 RNAi sequence (Ahringer collection55, chromosome III, clone F40F12,
ORF F40F12.5): 50-TCAGATAGTCCTTCTCGATCAGCCATCGAATCAAAGAA
TACCCATTGATTCGATGAAGTTCGAACATAAGCAACGTAATGAGATGTT
TCTATGCACAGAACCGCTGAGAGAACCATTTTGTGGGAGTGTGGTTTCT
TTTGTGGTTTTCCAGGTGGGTAGAGATCTCGACTCTTGTGATCTTCAATT
TCCGGCAAAAGATGTGTATGGTGGAAACATTTTCTGCAGAATATCACTT
CCGAATAGAAAACTCTTCTCGTCAGGAAACACGTCGGGCAGTAGACTTC
TGAGCATGCTTGACATTTTGAACAAGCCGGAACCGCTCCAGCAACGAAC
GGAGTAATGTCAATTGTTTCCAGAGGAAGAATCTTATCAAACACTTTCTG
TTGTCCATATCTTGGTAATTGCATAATCAATACTGGAGGAGCTTTTGCAA
ATGTTACTTGAGCTGATCTCATATGCCGTTCGAGCAAATGCTGTGAAGTT
GCTGCACCTCCCAGCCAATCATCCACCACAATTGGTACAAGATATTGAG
AATCTTTTGCGTGATTTTGTCCGCTGAAAATTGAGAATATTAATACTAAT
TGATTACTTTCGATATAAATAAGAATAAATTGGAAAAAAACTAACATCA
ACTTTATGAATGGCTCAGCATGGAAAACTTTGGAGAATATGAATCCAAG
AATCTCTTCTGGATCTTTTTCTTCATTTGTAAGCCCTGTTACATGCGGCA
TGAGCTCAGCGAGCAATTTTCGAAGTTTCATGACATGATCCGCTCGCAC
ATAATGAACTTTTCGAAGAGGGAACACGATCTCGTGGGCCAGAATTTTT
TGAAATTGTTGAGCCGTTTCTGATCCTTTGATCGATTTTTCAAGAAGACT
GAAATTATATTTTAAAATTTTTTATTGAGAGCATGCCAAACTTACAAATC
AAAGCAAGTGGTTTGGACAAACATTGCATACAACGTGGCATCCAGATAA
CACGAGTTACAGTAACCCTGAATTCCTTTCTGCCTGCCAACTAATTGTTG
CATGTCCTTTGCAATTCCACATTTTTGCTTCTCCACTCCTGAATCCATACT
TCCGAAATCTTCAGTTCGCCGGCTGATGTTATTATACGTTTGGCTAGTTG
GATAGGTTGAA-30 .

cep-1 RNAi sequence (Ahringer collection55, chromosome I, clone F52B5, ORF
F52B5.5): 50-AAAAATTCTAGGCCAGTCTGGAGTCATTTAAAAACGCGGCAAT
GTTTACCGCGTTTCAAATCAATTTTTTGCTAATTTTTTAATAACACTTATTGC
TTGATCTTTATTCATAATCAAATACATTTGTGAATTGTTGATCTTTTTTTTTG
AACATTTGTTTTCACTCTTTGAATTGGTTCTTTTGAAAAAGCTCTTTATAATC
GAGTAAAATTAATAGTGAAAATCTCTCTTTAAACATTTTAATATACTAAATA
AAAACCATTTCAGAAACGAAATTCTCCACGCATACATCAAACAAGTTCGA
ATTGTTGCCTATCCACGACGTGACTGGAAGAATTTCTGTGAGCGAGAAG
ACGCAAAACAAAAGGATTTCAGATTTCCCGAGTTACCTGCCTACAAGAA
GGCGAGCCTAGAATCGATAAATATCAAACAAGAGGTCAATCTAGAGAAC
ATGTTCAACGTGACCAATACTACTGCACAGGTTTGTCTAGAATATGATTT
AAAAGAATTTGGAAAATAGTAAATAACTTCAATTTCCAAAATCATGCCTTG
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TAGAAATATCAATTTTCTGCCAGAAGAATATACCATATTTATCATGATTCT
TTTCAATTTTCTATAGAAAAACGTTTTCTTCTTGTTTCCGTCGAATGAACAA
AAACTGAATTGAAATTCGATATCTTATCTCCCAATGACTTCCTTTATGCGTA
ATGTTTGCTCGACCACAAAGCTTTGAAATGTTTTATTTCGATCTAATTTTTT
AAATATATATGCTCTAATTCCCAAGACATTCAATTATTTTCTCAACGCAATA
TGAAATAAGATTTTAAATTTACAGATGGAACCATCAACTTCATATTCATCT
CCATCAAACAGTAATAATCGGAAGAGATTTTTGAATGAGTGTGATTCTC
CAAATAATGATTATACAATGATGCACAGAACTCCACCAGTAACAGGTTA
TGCAAGTCGTCTTCATGGATGCGTTCCTCCGATTGAAACTGAACACGAA
AACTGTCAATCTCCGTCGATGAAGAGAAGTCGCTGTACCAATTATTCG
TTTAGAACGCTCACTGTAAGTATTTTTAGCTCACTCTTAAAGCAATATTAT
AATTAATTTTGATTCACAATAAATTTCAGCTGTCGACTGCTGAGTATACAA
AAGTCGTCGAATTTCTGGCACGCGAAGCAAAAGTTCCCAGATACACTT
GGGTTCCGACGCAAGTAGTCTCCCATATATTGCCAACTGAAGGACTTGA
AAGGTATTTATAAAGATTTATAAAGATTGCCGTAATTTCTTTTTTTTGAAGA
TTCCTCACCGCTATAAAAGCAGGGCACGATTCAGTGTTGTTCAATGCAA
ACGGAATTTATACAATGGGGGATATGATTAGAGAATTCGAGAAACATAA
TGACATCTTCGAAAGAATTGGTATCGATTCTTCGAAATTGTCGAAATAC
TACGAAGCGTTTCTCAGCTTTTACCGCATCCAGGAAGCGATGAAACTG
CCAAAGTAAAAATCATATCACCACCTGGTTTAATCGCCTAATTTGTTTTCA
CAA-30.

Irradiation experiments in C. elegans. For ionizing radiation experiments, syn-
chronized populations of L1 worms were obtained by passing mixed-stage cultures
through 11-micrometre filter. Worms were then grown at 20 �C on Petri dishes
containing NGM agar supplemented with OP50 E. coli. 48 h later late L4 worms
were picked on new plates and irradiated using ISOVOLT, Titan E machine (GE)
in combination with a 0.5mm aluminium filter. Germ cell corpses were scored
blindy as described56. Quantification of corpses formation upon irradiation is
shown as mean of germ cell corpses/gonad (n¼ 20–25)±s.d.

Mutational analysis of human tumour samples. To determine the CYLD
mutation frequency across different cancer entities, sequencing files from 7,042
human tumour samples31 (Sanger Institute Server) were analysed. We used the
Human Genome HG19 annotation to link each mutation to its respective gene.
Samples with low tumour content or weak sequencing criteria and mutations that
were annotated as non-somatic were excluded from further analysis. A sample was
classified as Cyld mutant, if it carried at least one somatic mutation in the coding
region of the Cyld gene. We analysed primary tumour sites, for which at least two
independent Cyld mutant samples were available (recurrent mutation).

To characterize the impact of CYLD mutations on the mutation spectrum size,
we counted the number of mutations per sample between Cyld mutant and wild
type and compared the average mutation count by using Student’s t-test. For all
primary tumour sites, which contained recurrent Cyld mutations, at least 175
samples were examined. Therefore samples were large enough to fulfil the
prerequisites of Student’s t-test as well as in order to estimate the variation within
each group of data. In all groups compared by t-test variance was similar enough
to apply a homoscedastic testing.

Further, we compared the mutation types in CYLD with the mutation spectra of
known tumour suppressors and oncogenes. We determined the frequency of
inactivating mutations in 27,836 genes across the entire COSMIC database. For
each gene, we tested whether inactivating mutations were significantly enriched or
underrepresented in its mutation spectrum, assuming a uniform distribution of
inactivating mutations (w2-test). Significance values were corrected for multiple
testing (Benjamini–Hochberg correction).

Statistical analysis. For the animal experiments in order to determine group size
necessary for adequate statistical power, power analysis employing the program
G*power57 was performed using preliminary data sets. Mice of the indicated
genotype were assigned at random to groups. Mouse studies were performed in a
blinded fashion. Results are shown as mean ±s.d. or ±s.e.m. Statistical
significance was determined with the Student’s t-test; *Pr0.05, ** Pr0.005,
***Pr0.0005. Groups were large enough to fulfil the prerequisites of Student’s
t-test as well as to determine that the variance between groups is similar.

Reproducibility of experiments. For the animal experiments; experiments
presented in Figs 1b–d,f–h and 2b were repeated twice obtaining similar results.
Results shown in Fig. 2f,j correspond to pooled data from 3 independent
experiments. Results shown in Fig. 4d, Supplementary Fig. 2b–d and
Supplementary Fig. 2f correspond to pooled data from two independent experi-
ments. The histological pictures shown in Figs 1i and 2c,g,k are representative
for 36, 17, 30, 46 animals in total, respectively.

Immunofluorescence images presented in Fig. 3a are representative for six
animals in total. Microscopy images presented in Supplementary Fig. 3 are
representative for two different experiments.

FACS quantification of cleaved caspase-3 experiments shown in Figs 3c and 4b
were repeated three times with technical duplicates when possible, obtaining
similar results.

qPCR analysis shown in Fig. 3f,h are representative from two independent
repetitions using different primary cell isolations and technical duplicates. In qPCR

analysis in Fig. 4c biological triplicates were used. Results shown in Supplementary
Fig. 6a are representative from two independent repetitions.

Western blot shown in Fig. 3b,e,g and Fig. 4a were repeated at least three times.
Interaction experiments shown in Fig. 6a were repeated four times; and
experiments shown in Fig. 6b–e were repeated twice obtaining similar results.

Ubiquitination experiments shown in Fig. 7a,d were repeated four times.
Experiments presented in Fig. 7e,f were reproduced twice. The ubiquitin chain
restriction analysis shown in Fig. 7g was reproduced three times obtaining
comparable results.

For the C. elegans data; experiments shown in Fig. 5a were repeated twice and
experiments presented in Fig. 5b,c were repeated three times obtaining comparable
results.

Data availability. The mutational analysis of human tumour samples presented in
Supplementary Fig. 4 was performed on the sequencing data reported by Alex-
androv et al.31, which is available from ftp://ftp.sanger.ac.uk/pub/cancer/
AlexandrovEtAl. The authors declare that all other data supporting the findings of
this study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request.
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