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Abstract

Effective conservation actions require effective population monitoring. However, accurately

counting animals in the wild to inform conservation decision-making is difficult. Monitoring

populations through image sampling has made data collection cheaper, wide-reaching and

less intrusive but created a need to process and analyse this data efficiently. Counting ani-

mals from such data is challenging, particularly when densely packed in noisy images.

Attempting this manually is slow and expensive, while traditional computer vision methods

are limited in their generalisability. Deep learning is the state-of-the-art method for many

computer vision tasks, but it has yet to be properly explored to count animals. To this end,

we employ deep learning, with a density-based regression approach, to count fish in low-

resolution sonar images. We introduce a large dataset of sonar videos, deployed to record

wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise

abundant unlabelled data in a self-supervised task to improve the supervised counting task.

For the first time in this context, by introducing uncertainty quantification, we improve model

training and provide an accompanying measure of prediction uncertainty for more informed

biological decision-making. Finally, we demonstrate the generalisability of our proposed

counting framework through testing it on a recent benchmark dataset of high-resolution

annotated underwater images from varying habitats (DeepFish). From experiments on both

contrasting datasets, we demonstrate our network outperforms the few other deep learning

models implemented for solving this task. By providing an open-source framework along

with training data, our study puts forth an efficient deep learning template for crowd counting
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aquatic animals thereby contributing effective methods to assess natural populations from

the ever-increasing visual data.

Introduction

While biodiversity undergoes significant, rapid changes worldwide (e.g. [1]), informed deci-

sion-making in biological conservation depends on accurate empirical data. Monitoring natu-

ral populations can not only reveal how natural systems work, but it is invaluable for detecting

unexpected changes, raise awareness and inform appropriate management decisions (e.g. [2]).

However, counting organisms in the wild, and particularly in underwater populations, is logis-

tically challenging. Estimating fish abundance, for instance, is critical in face of the global

trend of marine resource overexploitation (e.g. [3–5]) and has traditionally relied either on

intrusive, labour-intensive and/or indirect field methods, such as tissue sampling, underwater

surveys and fisheries data (e.g. [6]). Although sampling methods can be species-specific and

prone to biases [7], underwater videos and images generally offer a less invasive and cost-effec-

tive way to generate large volumes of data (e.g. [8]). However, efficiently processing and accu-

rately analysing such volumes of data is a bottleneck. While the time-consuming task of

manually processing underwater images has recently been improved by computer vision mod-

els, how to improve the automation, speed and precision of estimation counts of organisms in

underwater imagery still remains an open problem [9, 10]. Given their sweeping success across

several real-world applications, deep learning models are in the forefront of research to assess

underwater natural populations from visual data.

Monitoring aquatic biota through video and photography can be particularly difficult in

habitats with limited water visibility. Sonar imaging systems are increasingly employed to sam-

ple underwater populations where visibility is a constraint because it uses sound energy,

instead of light, to generate digital images (Fig 1(a)). Sonar technology therefore can expand

the investigation of aquatic biota living in previously inaccessible underwater habitats, such as

deep and very turbid waters (e.g. [11, 12]). However, the resolution of these images is inher-

ently lower than that of single-lens reflex (SLR) underwater cameras and it can be difficult,

even for the human eye, to distinguish between “objects” that are captured without details (Fig

1(c)). Therefore, counting aquatic animals in sonar images comes with additional challenges

for both human and machine. To date, there are limited tools available to process sonar images

and counting target objects in these is still problematic, not easily adaptive to user needs. (For

example, Echoview is a commercial software package for hydroacoustic data processing [13],

delivering capabilities for water-column and bottom echosounder and sonar data processing.

ESP3 is an open-source MATLAB package for visualizing and processing fisheries single-beam

and split-beam acoustics data [14].) In recent studies, authors using Adaptive Resolution

Imaging Sonar cameras to collect vast quantities of data were hindered by the need to manu-

ally count fish in their samples [12]. The development of sophisticated, effective computer

vision models to process, and count fish quickly in, underwater visual data remains in its

infancy, partially due to the lack of manually annotated visual data necessary for training com-

puter vision models.

As with other counting applications (e.g. crowd counting in surveillance footage or count-

ing cells in microbiological imagery), earlier computer vision methods for counting fish

involved hand-crafted techniques such as blob detection [15] or the manual extraction of fea-

tures such as edges to be used in regression techniques [16]. Recent attempts at detecting fish
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in sonar images incorporated depth-search and edge detection algorithms [17] or pixel area

detection with Histogram of Gradient descriptors [18]. However, the effectiveness of the dif-

ferent hand-crafted approaches are bounded by the discriminative power of the manually

designed set of features. Instead, deep convolutional neural networks (CNNs) are trained end-

to-end, that is, the feature extraction and the learning of the meaningful patterns from those

features are jointly (and automatically) optimised to solve the task at hand.

In recent years, deep CNNs have largely outperformed those more traditional approaches

for object counting [19], as seen in other computer vision tasks, e.g. image classification [20]

or facial recognition [21]. Deep learning therefore has potential to be the state-of-the-art solu-

tion also for underwater vision. Despite recent use of deep learning for biological monitoring

in terrestrial habitats (e.g. [22, 23]), increased effort is needed for monitoring aquatic systems

Fig 1. In situ sampling of Lebranche mullet in turbid waters using a sonar imaging system. (a) Schematics of the image production by the sonar

camera. The Adaptive Resolution Imaging Sonar (ARIS) uses 128 beams to project a wedge-shaped volume of acoustic energy and convert their

returning echoes into a digital image that gives an overhead view of the object, here exemplified by a cylinder (reprinted from the ARIS Explorer User

Guide Manual 015045_RevB under a CC BY license, with permission from ©SoundMetrics Coorp, original copyright 2014; this modified image is

similar, but not identical, to the original image, and is therefore for illustrative purposes). (b) In situ sonar sampling during the dolphin-fisher foraging

interactions. The traditional cooperative foraging between wild dolphins and artisanal net-casting fishers targeting mullets, in the murky waters of the

estuarine canal in Laguna, southern Brazil, seen from land and from a drone. Fishers wait in line at the edge of the canal for the dolphins’ foraging cues

(top image: a sudden dive near the coast) which fishers interpret as the moment and place to cast their nets, presumably on top of passing mullet

schools. The sonar camera (blue triangle) was deployed to record passing mullet schools at the spatial scale relevant for the interacting dolphins and

fishers (6–20m). (c) Lebranche mullets (Mugil liza). A still image from a real-time underwater sonar video depicting the overhead perspective view of a

passing mullet school in front of the line of fishers; a typical mullet caught by the fishers is shown (average body length = 42.9 cm ± 7.00 SD, n = 771 fish

measured at the beach). (Photos by M. Cantor, A.M.S. Machado, D.R. Farine; reproduced with permission).

https://doi.org/10.1371/journal.pone.0267759.g001
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[10, 24, 25]. Early use of CNNs to analyse aquatic environments include a combination of tra-

ditional detection-based and object classification methods to indirectly count organisms (e.g.

[26]). More sophisticated counting approaches are gaining traction across the biological field,

such as by segmentation-based methods with U-Net model architectures, where every pixel in

an image is classified [27], or by object detection methods where“regions of interest” (RoI) are

located and used to identify different objects usually with Faster R-CNN framework [28].

Through this methodology one can successfully detect or count animals and plants, particu-

larly larger ones, in satellite (e.g. whales [29], elephants [30]) and aerial images (e.g. cattle [31],

palm trees [32]). In underwater imaging, rather than estimating abundance directly, the focus

has been on species detection and classification (e.g. [33–37]). Typically, images have been

generated by SLR cameras under good underwater visibility or even constrained environments

[37–39] with relatively few number of target objects (individually labelled) per image: this is

the case with commonly used, publicly available benchmark datasets (e.g. Fish4Knowledge

[40] & Rockfish [41]: average 1 fish/image with fish cropped and centred; DeepFish (“count-

ing” subset): average 1 fish/image in natural habitats [42]). Under these conditions, RoI detec-

tion or segmentation based methods can work well for counting (e.g. instance segmentation

with a Mask R-CNN [43]). A drawback of these methods is that expensive, time-consuming

labelling is usually needed with either bounding boxes to mark the location of objects or pixel-

level segmentation masks. This is particularly cumbersome for images with dense populations

and it is not as an effective approach when objects are overlapping, for example when we have

schools of fish.

The state-of-the-art deep learning methodology for crowd counting is a density-based

approach [44]. CNNs can be trained to directly regress an image to its corresponding density

map, which requires cheaper point annotations in data labelling, so has advantages over RoI

detection and segmentation based methods when counting people in crowds (e.g. [45–49])

and for example overlapping cells [50]. The parallels between human crowd counting and fish

—high variation in number of target objects between images, occlusions and noise—suggest

these methods are efficient for counting fish in underwater images. However, there are surpris-

ingly few examples [51, 52]. We aim to solve the task of automatic fish counting in turbid natu-

ral environments in a special natural context (Fig 1b and 1c): during the traditional fishing

between artisanal net-casting fishers and wild dolphins targeting migrating mullet schools in

southern Brazil (e.g. [53, 54]). These fisher-dolphin foraging interactions are thought to repre-

sent one of the few remaining cases of human-wildlife cooperation [55]. In a few estuaries in

southern Brazil, wild Lahille’s bottlenose dolphins (Tursiops truncatus gephyreus) herd migrat-

ing mullet schools (Mugil liza) towards the coast where a line of artisanal fishers wait for ste-

reotyped foraging behaviours by the dolphins, which they interpret as the right moment to

cast their nets [53]. Although this traditional fishing practice has been considered as mutually

beneficial for both dolphins and fishers (e.g. [53, 56, 57]), the foraging benefits both predators

accrued remains to be properly understood and quantified. The turbid waters complicate the

estimation of the abundance of prey, thus requiring a reliable method such as the sonar-based

underwater imaging system for assessing the mullet schools in the estuarine waters with very

low visibility.

Here we develop an effective density-based deep learning approach to automate the process

of quantifying the fish from sonar image, and provide a new dataset of manually annotated

underwater images from more than 105 hours, over 1 million images, of sonar video footage

recorded in this natural setting (S1 Video). The number of mullet fish between image frames

can vary drastically from 0 to several hundred schooling fish, often densely compacted and dif-

ficult to distinguish between individuals. Noise in data samples (e.g. from dolphins or fishing

nets) need to be correctly ignored by the automated counter. When there are biological, social
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and economic consequences at stake, it is imperative the user can trust the results of an auto-

mated counter, particularly as some critics are wary of deep learning’s “black-box” interpret-

ability [58]. We combined for the first time self-supervised learning and uncertainty

regularization to count fish in underwater images. Our experimental results show a marked

improvement in accuracy on both our baseline deep learning model with no regularizing tech-

niques (42% reduction in mean absolute error (MAE)), and on our experiments where a bal-

ance regularizer is incorporated, the proposed method of the only previous deep learning

study to count schools of fish in low-resolution sonar images [51]. We also achieved a 21%

reduction in MAE in comparison to benchmark experiments on the recent DeepFish dataset

[42] containing fish recorded with traditional underwater cameras. Furthermore, our model

outputs include a measure of prediction uncertainty, enabling informed biological decision

making. Our model is open source and can be adopted to automate the counting of aquatic

organisms in other underwater image data, as we have demonstrated on a completely different

underwater dataset [42].

Materials and methods

Study site and data collection

Sonar-based underwater videos were recorded to quantify the availability of mullet schools

(Fig 1(c)) during the cooperative foraging interactions between Lahille’s bottlenose dolphins

and artisanal net-casting fishers (Fig 1(b)). The water transparency at the lagoon canal is very

low (from 0.3 to 1.5m visibility; collected in situ with a Secchi disk), mullet schools were

recorded by deploying an Adaptive Resolution Imaging Sonar, ARIS 3000 (Sound Metrics

Corp, WA, USA; Fig 1(a)). The videos were recorded in Laguna, southern Brazil, at the main

dolphin-fisher interaction site, the Tesoura beach (28.495775 S, 48.759996 W), a 100-meter

long beach at the inlet canal connecting the Laguna lagoon system to the Atlantic Ocean (e.g.

[57]). The interaction site was sampled during 18 days in May-June 2018, from 09:00 to 17:00,

during the peak of the mullet reproductive migration (e.g. [59]), resulting in more than 105h

of video captured at 3 frames/seconds (S1 Video), totalling over 1 million images of underwa-

ter footage.

Ethics statement

Research permits for field data sampling were obtained from the Brazilian Ministry of Envi-

ronment (SISBio #47876–1, #64956–1).

Data generation and image pre-processing

From the more than 1 million frames, 500 were selected for manual labelling. These images

were chosen from 48 videos distributed across the 18 days of field sampling to encompass a

wide range of variability in terms of number of fish, noise, and environmental conditions that

influence water visibility. Unused (unlabelled) images could then be selected for training the

proxy self-supervised task. We have made data publicly available at [60].

Labelled data. The videos were first manually pre-processed for contrast enhancement

and background removal (Fig 2a and 2b), and then carefully chosen to include a wide range of

possible sample types, from low to high fish counts and from minimal to substantial noise (Fig

2d–2f). Because our labelled dataset is small and we wanted to maximise the chance of our

deep model adapting to, and test its ability on, wide-ranging and challenging observations, our

dataset was not a representative sample of the field data collect.
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As the videos taken were filmed at different ranges, the 500 images were cropped to present

a geographical area of 4x8.5m2, all the same distance from the camera, thus, biological popula-

tion sampling will be comparable between input samples. The images were then resized to the

average using bilinear interpolation, to 320 × 576 pixels. These images were annotated using

Fig 2. Image pre-processing for assessing mullet abundance from sonar images. (a) Raw frame depicting dolphins and a large mullet school. (b)

Contrast enhancement and background removal. (c) Manual labelling of a sample: the large bounding box marks where the raw image was cropped so

all input samples represent a consistent size of geographical area and at a consistent distance from the sonar camera. The smaller bounding boxes mark

where noise (here, a dolphin) is present. Each point annotation marks the location of an individual mullet. (d-f) Examples of variation in the sonar

images in our dataset, to which the density-based deep learning model needs to be adaptable to. (d) Frame with high mullet abundance: large number of

fish, swimming compactly; (e) low abundance: small number of fish, sparsely distributed; (f) noise: 3 dolphins and a fishing net (note the overhead

perspective of a rounded casting net).

https://doi.org/10.1371/journal.pone.0267759.g002
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the Visual Geometry Group Image Annotator [61, 62]. A point annotation was used to mark

the*central coordinate of a fish and a bounding box was drawn around any noise (Fig 2(c)).

The point annotations of fish can then be used to derive corresponding ground truth density

maps. The bounding boxes which label noise were used for subsequent data augmentation and

provide opportunity for further experimental work with this dataset. Two biologists analysed a

subset of samples together to reach a consensus on how to consistently identify the number of

mullet, but then only one annotator annotated the whole dataset in order to avoid including

different subjective biases. The abundance of mullet in a single cropped frame ranges from 0

to 438, with a mean of 42 (Fig 3). Our dataset is imbalanced with more samples containing 0

or low numbers of fish than high, typical of data collected in the wild and making the task of

training deep learning models more challenging.

Unlabelled data. The pool of unlabelled data contains samples with mullet in abundance

of 0 to dense schools of> 500/image, and multiple sources of noise: Lahille’s bottlenose dol-

phins, up to 4/image, fishing nets and the sea floor. Range of sonar varies between 0.7 − 10

meters (min) and 5.5 − 20.3 meters (max) and with varying camera settings affecting clarity

and distortion of objects. For use in training, simple pre-processing steps were taken: images

were chosen at random, cropped to the same geographical area as above and resized to

320 × 576 pixels.

Deep learning multi-task framework

We derived an effective deep learning architecture in order to count fish to the required degree

of accuracy, when labelled data is limited or costly to acquire and when images have been col-

lected in the wild so contain noise, occlusions and in the case of sonar images, are low-resolu-

tion. Deep models trained on small datasets are prone to overfitting thus we regularize our

Fig 3. Distribution of labelled dataset by number of fish. Number of fish plotted in log scale: the subset of data is

skewed towards samples with low numbers of fish. This imbalanced distribution is even more exaggerated in the

complete dataset, a common theme of data collected in the wild.

https://doi.org/10.1371/journal.pone.0267759.g003
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learning algorithm to enhance generalisability. Our multi-task network consists of one branch

that learns the supervised task of regressing an input image to an estimated fish count via a

density mapping and two parallel Siamese branches which simultaneously learn the self-super-

vised task of ranking unlabelled images according to the number of fish. In addition, our

model learns to predict the noise variance within each labelled sample. This entire framework

is shown in Fig 4.

Supervised counting task with labelled data. As is common practice in crowd counting

studies, we trained our model to regress any given image I 2 ½0; 255�
HI�WI�3

to a predicted

count of fish. However, following the approach of other crowd counting works [45–49, 64],

instead of directly regressing the count, we predict a density map D̂ 2 RH�W that can then be

integrated as a proxy for the count ĉ:

ĉ ¼
XH

i¼0

XW

j¼0

D̂ði; jÞ: ð1Þ

The backbone of our model is ResNet-50 [63], a state-of-the-art deep architecture with

identity shortcut connections. Differently from the original model, the fully connected softmax

layer (i.e. “FC-1000”) is replaced by a counting head consisting of a 2D convolutional layer

with kernel size 1 × 1 and 2 filters. This layer produces a tensor Ẑ 2 RH�W�2
, where H = HI/32

and W = WI/32 are the spatial units, and 2 are the number of channels. The first channel

Fig 4. Pipeline of our final network. The multi-task network is trained end-to-end to simultaneously regress labelled images to corresponding density

maps and rank the unlabelled images in order of fish abundance. The backbone of each branch is a ResNet-50 [63] followed by a 1 × 1 convolutional

layer with 2 output filters. A non-learnable Global Average Pooling layer is added to each branch of the Siamese network so the resulting scaler count of

first image in the pair (I, I0) can be subtracted from the second image. All parameters are shared (represented by the orange dashed arrows) thus

incorporating the self-supervised task adds no parameters to the base model. The inclusion of an additional channel in our output tensor to estimate

noise variance only adds a further*2x parameters in the head, equivalent to 0.01% of the total number. K is the batch size, where a batch contains K
images from the labelled subset of data, and K pairs of images from the larger unlabelled pool of data. H and W are the height and width of some input

3-channel RGB image, whereas H0 and W0 are the height and width of the output tensors from the backbone and heads.

https://doi.org/10.1371/journal.pone.0267759.g004
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corresponds to the predicted density map D̂ and the second one to the noise variance map

V̂ 2 RH�W
that we will discuss later.

For the training of the model, the binary image masks resulting from manual point annota-

tions (where 1-valued pixels denote presence of fish) are converted to the corresponding

ground truth density maps by convolving a Gaussian kernel of size s and standard deviation σ.

Let Ltrain ¼ fðIi;DiÞg; i ¼ f1; . . . ;NLtrain
g be our labelled training dataset. The model weights

can then be optimised for the task of counting fish by minimising the difference between pre-

dicted and actual counts over the training data guided by a simple L1-norm absolute loss func-

tion. We refer to this as Lc to distinguish the “count” loss hereinafter. More precisely, given a

batch of K, K � NLtrain
, labelled images:

Lc ¼
XK

k¼1

jck � ĉkj: ð2Þ

where ck ¼
PHI

i¼0

PWI
j¼0

Dkði; jÞ is the count integrated over the ground truth density map Dk,

whereas ĉk is the count from the predicted density map D̂ in Eq 1 both corresponding to

image Ik. Next, we show how we modify the loss to deal with aleatoric uncertainty introduced

by different sources of noise by using the predicted noise variance map V̂ .

Regularizing the loss term: Aleatoric uncertainty. There are varying levels of noise

within our dataset, as will be typical of data collected in an unconstrained, wild setting. There

is also the challenge of manually labelling images accurately and consistently, particularly in

those displaying a large number of fish. Fig 2(d) shows an example image with a dense school

of fish. The fish are seen simply as blue blobs with no detailed features, making it difficult to

decipher the number present when they swim close together or even overlap. Fig 2(f) shows

the level of noisy objects that can occur in images that need to be distinguished from mullet.

Furthermore, adjustments to camera settings and focus range affect the clarity or distortion of

objects and brightness of projected image. Thus for some data, the best achievable prediction

for mullet abundance, will be an uncertain prediction.

The need to model uncertainty in computer vision was highlighted by the work of [65] and

these ideas were incorporated into the task of crowd counting by [66]. Aleatoric uncertainty

specifically is uncertainty in the data and arises from genuine observational noise. To quantify

this in regression problems, the noise variance also needs to be learned alongside the count

prediction. No matter how much data we have, there will always be a degree of uncertainty in

the prediction of inherently noisy images and having an understanding of this uncertainty will

be invaluable. This was the motivation behind the work of [66] in crowd counting, and for our

application of it to fish counting. We have focused solely on heteroscedastic aleatoric uncer-

tainty (the assumption that observational noise varies with the input data). We hypothesise

that incorporating this measure of uncertainty should not only lead to a higher level of accu-

racy in count predictions through optimising model training, but it will also provide the user

with an understanding of the uncertainty surrounding a given result.

To do so, we estimate the noise variance of an image Ik, i.e. ŝ2
k , from the already produced

noise variance map V̂ as follows:

ŝ2
k ¼

XH

i¼0

XW

j¼0

V̂ kði; jÞ: ð3Þ
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Then we adjust our loss function to introduce this regularizer of the aleatoric uncertainty.

More precisely, for a batch of K images, the original counting loss Lc now becomes Lcau:

Lcau ¼
XK

k¼1

jck � ĉkj
ŝ2

k
þ log ŝ2

k: ð4Þ

There is a resulting trade off between the two components: during training, the model

learns to increase the value of ŝ2
k when the difference between ck and ĉk is large to decrease its

contribution to the overall loss, but minimise ŝ2
k when the difference is small. This way, the

model is able to learn to ignore noisy samples, weakening their impact on training. But, the

noise variance component is added to the overall loss so the model is penalised for increasing

ŝ2
k . This prevents it from simply learning to make ŝ2

k large for all samples. Note the actual

model output is log ŝ2
k for greater numerical stability [65] (to avoid dividing by zero). Also, as

variance should be positive, this ensures the model cannot learn to make the predicted noise

output negative to drive down loss: we multiply Lc component by e− “predicted noise” which

would result in a large multiple if the predicted noise variance was negative. To learn this par-

allel prediction roughly twice the number of parameters are needed in the counting head,

which is negligible compared to the overall number of parameters in the entire backbone

architecture.

Regularizing: Data augmentation of labelled data. We performed various augmentation

techniques to increase the amount of training data. Augmentation techniques included image

crops, translations, horizontal flips, small rotations, and superimposing objects (e.g. dolphin)

from one image onto a randomly chosen new image. When augmenting by cropping, the

crops are placed on a new blank background, similar to [67], or superimposed onto a different

image. Because the sonar camera used here was tilted down so the acoustic energy beams can

reach the mullets while minimizing interference from water surface reflections when generat-

ing “birds-eye view” images (Fig 1(a)), the measurable size of such large fish (Fig 1(c)) will be

consistent regardless of how deep (up to *8m) or how distant from the sonar camera (*3 to

20m) the mullets were. Scale-awareness is therefore not a key factor to consider when training

the network, so the resizing of images is not used in synthetic data generation.

Regularizing: Self-supervised ranking task with unlabelled data in a multi-task net-

work. To make the most of unlabelled images and address limited availability of labelled

training data, we took inspiration from the work of [64] on crowd counting. We incorporated

Siamese branches in our architecture that learn to rank pairs of images according to the num-

ber of fish based on self-supervised ranking information. We can then leverage some poten-

tially useful information on the comparative number of fish between two images, for the

original counting task. Let U = {Ii}, i = {1, . . ., NU} be the dataset of *1M unlabelled images,

hence NU being much greater than NLtrain
. We can then define pairs of unlabelled images, e.g.

ðIi; I0iÞ, where I0i 2 PðIiÞ is an image subregion cropped from Ii, thus containing equal or fewer

fish. Pð�Þ is simply the function that generates all subregion images from Ii. From U, we gener-

ate the dataset of all possible unlabelled image pairs Ptrain ¼ fðIi; I0iÞg; i ¼ f1; . . . ;NPtrain
g and

pick a subsample of it, namely Ptrain, with a size that equates to the size of the sample of labelled

image Ltrain. Algorithm 1 illustrates the generation of P.

Algorithm 1 Generate ranked pairs of unlabelled images
1: Input:
2: U = {unlabelled images}
3: Output:
4: P = {}
5: for Ii 2 U do
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6: x1 = left x location of Ii bounding box
7: y1 = upper y location of Ii bounding box
8: x2 = right x location of Ii bounding box
9: y2 = lower y location of Ii bounding box
10: hIi

= image Ii height
11: wIi

= image Ii width
12: Si = [] ⊳ Output of P function, a list of subregion
images derived from Ii
13: for f 2 {0.25, 0.5, 0.75} do ⊳ iterate over crop
factors
14: Cf = crop Ii’s region to pixels (x1, y1 + f � hIi

, x2 − f � wIi
, y2)

15: choose l where 0 � l � f � wIi
⊳ random horizontal

translation
16: choose u where 0 � h � f � hIi

⊳ random vertical
translation
17: choose value in {0, 1} and horizontally flip if 1 ⊳
random horizontal flip
18: If = new blank image of size ðwIi

; hIi
Þ ⊳ initialize new

blank image where to place the crop
19: place crop Cf on If aligning crop’s topleft corner at (u, l)

⊳ pixel location
20: Si = Si+ [If] ⊳ append to the end of list
21: end for
22: end for
23: Si = [Ii] + Si ⊳ concatenate original image to the
front of list
24: for j = 1 to |Si| do ⊳ generate all combinations of
ordered pairs
25: for k = j + 1 to |Si|
26: P = P [ {(Ij, Ik)} ⊳ join sets
27: end for
28: end for
29: return P

The two Siamese ranking branches share the same backbone architecture from the counting

branch. The only difference is the inclusion of a global average pooling layer at the end of the

ranking branches to produce the average count estimate across density maps’ spatial units.

This task is trained with a standard pairwise ranking hinge loss Lr, applicable to a Siamese

architecture. For a batch of K (s.t. K � NUtrain
) unlabelled image pairs:

Lr ¼
XK

k¼1

maxð0; pk
0 � pk þ �Þ ð5Þ

where p̂ 0k ¼
1

HW

PH
i¼0

PW
j¼0

D̂ 0kði; jÞ is the global average pooling over spatial units of the pre-

dicted density map D̂ 0k corresponding to image I0k in the pair, p̂k ¼
1

HW

PH
i¼0

PW
j¼0

D̂kði; jÞ the

global average pooling of D̂k corresponding to Ik, and � is a ranking margin set to zero here. It

is known from the cropping and ordering within pairs, that p0 � p and thus if the model pre-

dicts this order correctly the loss value for this pair will be 0. Otherwise the difference of the

two will be added to the total loss: the greater the difference is, the greater the increase in loss.

This way the model can learn the correct order within a pair according to number of fish [64].

It is not necessary to know the exact count of either image, hence enabling the self-supervised

task.

We trained this task together with the supervised one in a multi-task network. The model is

end-to-end trained, simultaneously learning to rank the unlabelled data and count the number
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of fish in labelled data. The weights are shared across all branches, which means no additional

layers are included and the number of trainable parameters is the same as for the supervised

on its own. The input to the multi-task model is a mini-batch consisting of K images from the

labelled dataset and K pairs of images from the unlabelled dataset. The ranking loss is simply

added to the supervised counting loss Lcau to achieve this:

L ¼ Lcau þ Lr ð6Þ

As shown later in the experiments, training the self-supervised ranking task (with more

training data) improves the performance and generalisability of the supervised task of count-

ing fish in labelled image data. We therefore know that any improvement in results is not due

to more complexity in the model.

Results

Experimental setup

Dataset split and evaluation metrics. The labelled dataset was randomly split into a hold-

out partition of 350 training images, 70 validation, and 80 test. We made sure that the distribu-

tion of data in these sets was reasonably consistent to minimise bias in results. Validation is

used for early-stopping during training and hyperparameter optimisation. Once trained, we

ran inference on the test data to analyse performance.

Following the common practice in counting by deep learning literature, we evaluate test

results using the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE):

MAE ¼
1

NLtest

XNLtest

k¼1

jck � ĉkj ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NLtest

XNLtest

k¼1

ðck � ĉkÞ
2

v
u
u
t ð8Þ

where NLtest
is the number of test samples.

Information-entropy-based balance regularization. For further comparison, we also

validate our uni-task and multi-task networks with and without a balance regularizer [51] in a

study that is, to the best of our knowledge, the only other attempt to count fish in multi-beam

sonar images with deep learning. In that study [51], the authors incorporated a regularizing

technique to increase the weight of less common samples in their dataset, i.e. those with high

numbers of fish. This in turn increased the overall accuracy of the network’s predictions, par-

ticularly for this subgroup of samples. Our dataset is imbalanced, as commonly seen with data

collected in the wild [51]. There are a far greater number of images containing less than 50 fish

compared to those with several hundred. We therefore adjust our loss function, which weights

samples during online compilation of mini-batches. We group all images into 3 classes accord-

ing to number of fish, c:

• Class 1: 75% of images, c< 50

• Class 2: 18% of images, 50� c< 150

• Class 3: 7% of images, c� 150

The following “information-entropy-based” balance regularizer (IEB-reg), Lieb, is then

applied so that the weight given to a sample is negatively correlated with the number of
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samples of its same class in the batch. For a batch of K� NL images:

Lieb ¼ �
XK

k¼1

log
KclassðkÞ

K

� �

jck � ĉkj ð9Þ

where Kclass(k) is the number of images of the same class as Ik in the batch. The Lieb regularizing

term is then added to the absolute loss function Lc:

L ¼ Lc þ lLieb ð10Þ

We found the hyperparameter λ optimal at 0.1 for our study. Higher values caused the term

Lieb to dominate over Lc and meant the model was unable to properly learn. Note this is differ-

ent from [51] who used λ = 1 but they worked with patches of up to 8 fish meaning much

smaller absolute differences in dense inputs. In contrast, the larger absolute differences in our

patches can be over 50x greater than the smaller absolute differences. This high absolute differ-

ence is also seen in less common images which the regularizer adds more weight to.

Ablation experiments

To evaluate the performance of our overall methodology and the different individual regulariz-

ing components, we carried out 9 ablation studies (Table 1). All 9 trained models were tested

on the 80-image test set for comparison. In order to alleviate the stochastic behavior caused by

the random initialization of the deep models’ weights and the optimization algorithm, we run

3 trials of each ablation study and average across these.

Out of the 9 ablation studies, the method that combined all our proposed regularizing tech-

niques, the multi-task with aleatoric uncertainty regularization, MT + AU-reg (viii), achieved

the lowest MAE score of 6.48. The pure multi-task network, MT (vi), achieved the lowest

RMSE score 14.27. These are a marked improvement from the outcome of the baseline uni-

task network, UT (i), where MAE and RMSE of predictions was 11.09 and 23.88 respectively

and the models where the balance regularizer (IEB-reg) [51] was implemented, UT + IEB-reg

(ii) and MT + IEB-reg (vii).

Results of the experiments are shown in Table 2. Additionally, Fig 5(a) shows the results of

each method split by 5 subgroups of the data according to the number of fish present to under-

stand the effect of each ablation study on them. The subgroups shown are in line with the

Table 1. Overview of 9 ablation studies.

Method Loss function Number of train samples Weight initialization

(i) Uni-task (UT) L ¼ Lc 350 ImageNet // Xavier

(ii) + IEB-reg L ¼ Lc þ lLieb 350 ImageNet // Xavier

(iii) + AU-reg L ¼ Lcau 350 ImageNet // Xavier

(iv) + IEB-reg & AU-reg L ¼ Lcau þ lLieb 350 ImageNet // Xavier

(v) + augmented data L ¼ Lc 5,672 UT (i)
(vi) Multi-task (MT) L ¼ Lc þ Lr 5,672 + 5,672 pairs UT (i)
(vii) + IEB-reg L ¼ Lc þ Lr þ lLieb 5,672 + 5,672 pairs UT + IEB-reg (ii)
(viii) + AU-reg L ¼ Lcau þ Lr 5,672 + 5,672 pairs UT + AU-reg (iii)
(ix) + IEB-reg & AU-reg L ¼ Lcau þ Lr þ lLieb 5,672 + 5,672 pairs UT + AU-reg (iii)

Uni-task (UT) models (i-iv) were initialised with ImageNet weights [63, 68] (ResNet-50 backbone) and Xavier initialisation method [69] (final convoluational layer). UT

+ augmented data (v) and the multi-task (MT) models (vi-ix) were initialised with trained weights from their comparative UT network. To maximise chances of success,

MT + IEB-reg & AU-reg (ix) was initialised with UT + AU-reg (iii) instead of UT + IEB-reg & AU-reg (iv), as (iii) produced better results than (iv).

https://doi.org/10.1371/journal.pone.0267759.t001
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categories chosen for assigning weights according to the balance regularizer (IEB-reg). Except

the most common group of c< 50 fish / sample has been broken down further to show results

for samples with less than 25 fish separately. The reason being that these images will be mostly

sparsely distributed and relatively easy to count. Beyond 25 fish, more occlusions between

individuals will occur. Samples which contain large elements of noise, usually either dolphins

or fishing nets, are also shown as a separate subgroup to examine how each model, with associ-

ated loss term, handles this particular challenge. Instead of plotting the MAE, the absolute

error in a given sample prediction has been divided by the average ground truth fish count for

that group (“Normalised MAE” (NMAE), y-axis). The MAE across a subgroup g has thus been

somewhat normalised and so can more reasonably be compared between subgroups:

NMAEðgÞ ¼
PMg

k¼1 jck � ĉkj
PMg

k¼1 ck
ð11Þ

where Mg is the number of samples within a subgroup g.

Ablation on aleatoric uncertainty regularization. When modifying the network archi-

tecture and loss function with aleatoric uncertainty regularization (AU-reg), to quantify,

alongside the prediction for fish abundance, the uncertainty in the prediction, ŝ2
k ,UT + AU-

reg (iii) achieved more accurate predictions than the baseline model UT (i). MAE decreased

from 11.09 to 8.89, a 20% reduction, and RMSE decreased from 23.88 to 20.24, by 15%

(Table 2).

Ablation on data augmentation. UT + augmented data (v) which was trained on the

same UT (i) architecture and loss function, but where training data has been augmented to

increase the number of samples from 350 to 5,672, improves the baseline UT (i) MAE score

from 11.09 to 7.88 and RMSE score from 23.88 to 17.20 (Table 2). This equates to a 28% reduc-

tion in both error scores.

Ablation on self-supervised task with unlabelled data (multi-task network). As the UT

+ augmented data (v) showed that training with additional synthetic data, notably improved

performance, we train all our multi-task networks (vi-ix) with this larger labelled dataset and

compare our results with (v). MT (vi) which adds the pair-wise ranking hinge loss to the loss

term and trains on unlabelled data as well as the labelled samples, reduces the MAE score fur-

ther from 7.88 to 7.05 (11% decrease), and RMSE from 17.20 to 14.27 (17% decrease) from UT

+ augmented data (v) (Table 2). It actually achieved the lowest RMSE score out of all

approaches taken, showing it is the least susceptible to extreme values. Fig 5(a) allows for a

greater understanding of what is driving this improvement: the last two columns show MT

Table 2. MAE and RMSE results of 9 ablation studies.

Method Average Experiment 1 Experiment 2 Experiment 3

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

(i) Unit-task (UT) 11.09 23.88 10.65 22.73 11.88 25.44 10.74 23.47

(ii) + IEB-reg 10.27 22.01 10.28 21.91 11.52 26.99 9.00 17.13

(iii) + AU-reg 8.89 20.24 8.79 19.16 8.37 20.45 9.50 21.10

(iv) + IEB-reg & AU-reg 11.27 25.22 11.09 23.03 11.02 25.20 11.69 27.42

(v) + augmented data 7.88 17.20 7.94 16.48 8.17 17.35 7.53 17.78

(vi) Multi-task (MT) 7.05 14.27 7.18 15.39 6.54 13.88 7.42 13.53

(vii) + IEB-reg 7.87 16.67 9.91 21.81 6.16 13.13 7.53 15.07

(viii) + AU-reg 6.48 14.81 6.26 13.66 6.31 15.12 6.88 15.65

(ix) + IEB-reg & AU-reg 7.25 16.99 7.64 19.26 6.44 16.02 7.67 15.67

https://doi.org/10.1371/journal.pone.0267759.t002
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Fig 5. Performance of the deep learning models for counting fish in sonar images: (a) Error analysis for sample

subgroups—categorised by number of fish or noise present. The MAE for a sample has been divided by the average

actual count within each subgroup so results are somewhat normalised and can be compared between subgroups (Eq

11). The percentage of samples that fall within each group are: c< 25: 34%, 25� c< 50: 10%, 50� c< 150: 14%,

c� 150: 9%, Noise: 34%. The reason c< 50 (our first class for balance regularization) is altogether lower than 75% is

because many of these samples have been put into the “noise” subgroup for this analysis. (b) The relationship between

predicted noise variance and absolute error score, for models with AU-reg (iii, viii, ix). (c-f) Four sample images with

corresponding ground truth and predicted density map. Predicted density maps from our best performing model, MT

+ AU-reg (viii). The density maps can be interpreted as a typical heat map where areas of red indicate dense regions of

mullet.

https://doi.org/10.1371/journal.pone.0267759.g005
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(vi) better predicts samples with high numbers of fish and samples with noise compared with

(v).

Ablation on multi-task network with aleatoric uncertainty regularization. When com-

bining all three techniques in a multi-task network with aleatoric uncertainty regularization

(and training on the larger labelled dataset with synthetic images), MT + AU-reg (viii), we

achieved the lowest MAE error score out of all the approaches tested. MAE was 6.48, a 0.57, or

8%, reduction on the second best score from MT (vi). This is a 4.61, or 42% reduction in MAE

from baseline UT (i), where none of these techniques were implemented (Table 2). MT + AU-

reg (viii) achieves the best results (lowest NMAE score on the bar plot) for more densely popu-

lated fish images with limited noise, where images contain more than 50 fish (Fig 5(a), col-

umns 3 and 4). It achieved the second best error score, behind MT (vi), for images containing

substantial noise (Fig 5(a), last column).

With uncertainty regularization, we also obtain a measure of prediction uncertainty ŝ2,

alongside the prediction of fish abundance. In Fig 5(b), the measure of prediction uncertainty

(outputted as log ŝ2) is plotted against the absolute error of the count prediction for the best

performing three out of four methods where uncertainty regularization has been incorporated:

UT + AU-reg (iii), MT + AU-reg (viii) and MT + IEB-reg & AU-reg (ix). There is a moderate

positive correlation between the absolute error score and estimated uncertainty of a sample. For

the two multi-task networks, the correlation statistic (r) reaches 0.68 and 0.73, without and with

the IEB-reg respectively (p< 0.001, one-tailed test, in all cases). The noise variance predictions,

or uncertainty measure, are heavily skewed towards lower values, seen in the scatter plots where

a high number of samples are clustered in the bottom (left) corners. Specifically, MT + AU-reg

(viii) gives a prediction uncertainty score as 0 � log ŝ2 < 1:7 for 90% of samples and 1:7 �

log ŝ2 < 3:7 for just 10% of samples. In fact, nearly 50% of samples have predicted log ŝ2 ¼ 0.

Four test sample images along with their corresponding ground truth and predicted density

maps are shown in (Fig 5c–5f) so results can be compared locally. The density maps can be

interpreted like typical heat maps, where areas of red indicate dense regions of mullet. Predic-

tion outputs are from MT + AU-reg (viii), the best performing model. In image Fig 5(c),

where mullet are in relatively high numbers with some occlusions between fish, we can see the

model gives a perfect prediction and a relatively low uncertainty measure of 0.31, so we can be

confident in this prediction. This is in contrast to Fig 5(d), where the number of fish is similar

but they are seen more densely compact. Differences in the sonar video settings can also cause

variability between images, for example anti-aliasing control can introduce distortion in the

image as seen here, and so it is more difficult to distinguish between individual mullet. Whilst

the model’s prediction is within 98% accuracy (error = -2), the uncertainty score is relatively

high (log ŝ2 ¼ 1:42) for these reasons. We can see this discrepancy in uncertainty score when

different types of noisy objects dominate the image: in Fig 5(e) the model is able to distinguish

between dolphin and fish confidently (log ŝ2 ¼ 0) and gives a perfect prediction. But with the

fishing net present in Fig 5(f), the uncertainty score is high, 1.53, within the highest 15% of

scores. Whilst the model clearly recognises most of the noisy object correctly as not mullet, the

blue blobs at the middle bottom of the image have been “incorrectly” predicted as mullet. This

is difficult to decipher for even an expert human labeller: these could be mullet as the model

predicts or splashes from the net (how they have been annotated). This uncertainty score is

meaningful.

Implementation and training procedure details

The ResNet-50 backbone of the uni-task networks (i-iv), was initialised with ImageNet weights

[63, 68]. Transfer learning in this way has been proved effective in related computer vision
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research [64]. Any additional layers were initialised with Xavier initialisation method [69].

These models were trained for 300 epochs. To mitigate the effect of randomness in training

deep models (due to the descent algorithms needed for optimising many parameters), ablation

studies UT + augmented data (v), and the multi-task architectures (vi-ix), were initialised with

weights from corresponding uni-task models (i-iv). The incremental effect of the synthetic

data and the self-supervised task could then be evaluated. These models were trained for a fur-

ther 200 epochs. The Adam Optimizer [70] was used for minimising the loss term, with a

learning rate of 10−4. For uni-task models (i-iv), which were initialised from the start (with

ImageNet weights, [63, 68]), we lowered the learning rate to 10−5 after 200 epochs. As for the

size of the mini-batches, we set K = 10. In the case of the multi-task models, the number of

pairs is also K, meaning 10 labelled images and 10 pairs of images are used in each training

iteration (Fig 4). When generating ground truth density maps, s = 4 and standard deviation σ
= 1 were used.

All models were built with Tensorflow 2.2 and Keras API.

Transfer learning and comparison with state-of-the-art approaches

Comparison with information-entropy-based balance regularization. Aleatoric uncer-

tainty regularization, AU-reg, outperformed the IEB-reg for both the uni-task, 8.89 vs 10.27

MAE, and multi-task network, 6.48 vs 7.87. For a thorough evaluation, we also experimented

with modifying the loss term to include both the balance and uncertainty regularizer: UT

+ IEB-reg & AU-reg (iv) and MT + IEB-reg & AU-reg (ix), but performance was worse when

comparing to the baselines, UT (i) and MT (iv) and the networks with AU-reg only, UT + AU-

reg (iii) and MT + AU-reg (viii) (Table 2).

Evaluation on DeepFish dataset. To demonstrate the generalisability of our proposed

counting framework, MT + AU-reg (viii), we tested it on the recently published, publicly avail-

able benchmark dataset DeepFish [42]. DeepFish contains 40k underwater images from 20 dif-

ferent coastal and nearshore benthic habitats in Australia, with a binary classification label,

either “fish” or “no fish”. Alongside this, a subset of 3,200 images are annotated with a simple

point annotation to mark the number of individual fish (Fig 6). This “counting” subset of data

can therefore be used to train and test counting schemes. Data were collected in full HD reso-

lution from a digital SLR underwater camera and there is a mean of 1.2 fish/image, ranging

from 0–18 fish. This contrasts to our dataset with much lower visibility and mean of 42 fish/

image, range 0–438.

To implement our framework we incorporated a ranking task alongside the counting task,

making use of the larger, weakly labelled, classification dataset: the parallel Siamese

Fig 6. Three sample images from the “counting” subset of the DeepFish dataset with point level annotation. All data were collected with HD

resolution digital cameras in 20 different marine habitats in tropical Australia. Mean of 1.2 fish/image, ranging from 0–18 individuals. (a) Low algal bed,

count: 3, classification: “fish” (b) Reef trench, count: 2, classification: “fish” (c) Upper mangrove, count: 0, classification: “no fish”. The images were

obtained from the open-source dataset DeepFish [42], licensed under a Creative Commons Attribution 4.0 International License.

https://doi.org/10.1371/journal.pone.0267759.g006
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architecture of our network can again learn to rank pairs of images as it is known that an

image labelled as “fish” has a greater number of fish than an image labelled with “no fish”. As

there were so few fish / image it did not make sense to take random crops of images (Algo-

rithm 1), but we were still able to leverage large quantities of data that otherwise could not be

used in the supervised counting branch alone. Compared to the proposed benchmark model

[42], we reduced the MAE for fish count by 21%, 0.30 vs 0.38 (Table 3). We also demonstrate

that this implementation benefits from transfer learning when initialising the new model with

the weights of our previously model trained with our novel dataset: the MAE is lower when we

initialised the model with weights from previous training on our dataset versus the ImageNet

weights, 0.30 vs 0.34 (Table 3).

Discussion

Our findings exemplify how deep learning by regression can be effectively employed to count

aquatic organisms in underwater images and we present a successful, open-source framework

along with novel training data. We leveraged abundant unlabelled data in a self-supervised

task, to enhance performance of the direct supervised task, to count mullet fish with high accu-

racy in challenging low-resolution sonar imagery. By combining this with uncertainty regular-

ization, accuracy not only improved but we provide a meaningful quantification of prediction

uncertainty to the user for informed biological decision-making. Our proposed multi-task net-

work with uncertainty regularization, MT + AU-reg (viii), achieved an MAE of 6.48, on images

containing up to 438 mullet. This was a 42% improvement in error over our baseline deep

learning model where no regularization techniques were implemented. Moreover, we intro-

duce a new large dataset of sonar videos and a fully annotated subset of 500 images [60].

While the demand for processing large volumes of visual data to assess natural populations

led a surge in developing computer vision tools, traditional methods are limited in their gener-

alisability. The success of deep learning in broader image analysis is encouraging, but the lack

of annotated underwater data is one key factor constraining progress of its use to count aquatic

animals. The majority of progress has been made in classifying species or detecting individuals

where numbers are low and sparsely distributed (e.g. [36, 37, 39]). We advance this by building

a widely applicable framework that tackles the task of counting when abundance can be high

and occlusions common from schooling fish. This is particularly challenging with low-resolu-

tion images, such as from sonar cameras, and when data are collected in an unconstrained,

wild environment, where noise and variation is inevitable. The techniques we adopted address

these challenges and improve the accuracy and generalisability of a deep network. Further-

more, we demonstrate an improvement when compared to the alternative, state-of-the-art,

deep learning methodologyfor analysing underwater data in the form of both comparable low

Table 3. MAE result on DeepFish dataset.

Method MAE

i) DeepFish (benchmark) [42] 0.38

ii) Ours—Multi-task + AU-reg (without TL) 0.34

iii) Ours—Multi-task + AU-reg (with TL) 0.30

Comparison between DeepFish authors’ benchmark result and our model, with and without transfer learning (TL).

“Without TL”: initalised with ImageNet weights [63, 68], “with TL”: initialised with pre-trained weights from

previous training on our novel sonar image dataset.

https://doi.org/10.1371/journal.pone.0267759.t003
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resolution sonar images [51], namely the proposed balance regularizer, and high-resolution

images from a breadth of wild habitats[42].

To ensure robust assessment of our methodology, we carried out 9 different ablation studies

with varying training data, model architectures and loss functions, and trialled 3 times each.

Prediction error on our test data improved with each novel technique implemented: from

innovative ways to augment the annotated data, to building a multi-task network to simulta-

neously train the self-supervised task, to finally combining this with uncertainty regularisation.

All weights are shared across the supervised and self-supervised task, and adding a channel to

accommodate for uncertainty prediction added an immaterial number of parameters. Thus,

the improvement in performance is not simply due to a more complex model (that may gener-

alise less well). Note also, this is the result from tests on a biased challenging sample, deliber-

ately chosen to contain a significantly higher proportion of noisy samples and those with

dense schools of fish.

Regularizing: Self-supervised task with unlabelled data (multi-task

network)

The improvement in prediction error, both MAE and RMSE, from comparing the results of

MT (vi) with the uni-task model, UT + augmented data (v) (both trained on the larger labelled

dataset with synthetic images), supports our hypothesis that by increasing the size of the train-

ing set through unlabelled data, and training the parallel self-supervised ranking task,

improves the model’s ability to count fish accurately in unseen data. In fact, MT (vi) achieves

the lowest RMSE out of all 9 methods. Its performance is notable when predicting samples

containing higher numbers of fish and samples with substantial noise (Fig 5(a)). We speculate

that this is because by adding significantly more unlabelled data, we likely increase the number

of samples that fall within these two challenging categories, which will disproportionately

require more training data. Samples with high numbers of fish also make up the smallest per-

centage of the labelled training data, adding to the likelihood that the uni-task models (i-v) will

not be as well adapted to this category. These samples are also the most time-consuming to

annotate. Thus, adding more of such images through unlabelled data allows for an efficient

way to access these samples to help increase the accuracy of the corresponding predictions. A

common outcome of trained neural networks’ predictions, is a regression to the mean of train-

ing data. The mean of our training data is 42 fish. Thus the multi-task’s ability to predict

images of extreme high values compared to the uni-task network, is also a positive sign that it

is more robust to not simply regressing to the mean.

Regularizing: Multi-task network with aleatoric uncertainty

To date, computer vision tools that have been developed for calculating fish abundance pro-

vide only an estimation of number or biomass (e.g. [43, 51, 52]), so the user will have no

knowledge of the uncertainty around a prediction. By contrast, our proposed model incorpo-

rates uncertainty regularization to the multi-task network, MT + AU-reg (viii). As well as pro-

viding an indication of the inherent noise present in samples resulting in uncertain

predictions, this regularization was found to improve MAE in both the UT (i) and MT (vi)

models by 20% and 8% respectively, with MT + AU-reg (viii) achieving the lowest MAE out of

all methods. This supports our hypothesis that it improves model training leading to more

accurate predictions. Notably, the MT + AU-reg (viii) improves predictions for medium to

dense samples of mullet to an even greater extent than MT (vi) (Fig 5(a), columns 3 and 4).

Again, this is a positive indication that it is not simply regressing predictions to the mean. It

achieved the second lowest error score with samples where substantial noise is present,
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comparatively worse than the MT (vi). This is expected because essentially adding this regular-

izing term, allows the model to ignore noisy images in training so it learns to predict non-

noisy images more accurately, but in turn there will be a trade-off in its ability to handle noisy

images.

We found that there was a moderate correlation between uncertainty and error in predic-

tion. The uncertainty predictions were also heavily skewed towards a low score (Fig 5(b)). In

practice, the user can then choose to treat sample results with high relative noise variance

scores with caution or investigate further. These uncertainty predictions are likely to be both

few and meaningful in suggesting there could be an error in count prediction, thus manageable

and beneficial for further human interpretation. When considering the application of these

methods for aquatic monitoring and conservation, or fisheries and aquaculture management,

over or underestimating populations could lead to adverse consequences such as biased deci-

sions. Therefore, a greater understanding of how much a prediction can be depended on is

crucial.

Advances relative to previous work on deep learning to count fish

We tested our framework against the regularization method of the only previous study on

using deep learning to count schools of fish in sonar images [51]: we incorporated the balance

regularizing term therein proposed, IEB-reg, in our uni-task and multi-task networks, UT

+ IEB-reg (ii) and MT + IEB-reg (vii), and ran these as additional experiments. In both cases,

the pure respective models, UT (i) and MT (vi), and these models with uncertainty regulariza-

tion, UT + AU-reg (iii) and MT + AU-reg (viii), performed better than the models with IEB-

reg in terms of overall prediction error (Table 2). We expected the IEB-reg to improve results

of the less common, more densely populated images as it increases the weight of these samples

within a batch. This was the case when comparing UT + IEB-reg (ii) to UT (i), but surprisingly

not when comparing MT + IEB-reg (vii) to MT (vi) (Fig 5(a)). One plausible explanation

could be overfitting these types of samples during training by adding too much weight, hence,

not performing so well on unseen data.

When the networks were trained with both IEB-reg and AU-reg together, it was apparent

that these two regularizers do not complement each other. Prediction accuracy was worse than

when only AU-reg was implemented as highlighted in the results for samples containing sub-

stantial noise (Fig 5(a), last column): UT + IEB-reg & AU-reg (vi) and MT + IEB & AU-reg

(ix) produced the highest NMAE (Eq 11) scores out of all the uni-task and multi-task net-

works, respectively. This likely results from both regularizers reducing the weighting of noisy

images (which tend to contain fewer fish) in training and thus when used together, the perfor-

mance on this type of data in testing is worse.

We also tested our proposed model architecture on a recently published dataset, DeepFish,

where visual images were collected with a digital SLR underwater camera and so are of an

entirely different format to sonar images. By improving upon the results of the author’s bench-

mark deep model [42], we demonstrate our model can provide reasonably accurate predictions

on wide-ranging underwater data: on low-resolution, monochromatic and densely populated

images, as well as on high-resolution, sparsely populated images, of varying habitats and spe-

cies of fish.

Other recent work deployed a hybrid CNN based on a multi-column and dilated CNN to

count farmed Atlantic salmon fish with a density-based regression methodology [52]. Here

natural images were used and so fish present more distinct features. Data were also collected in

an enclosed mariculture net cage so it is unlikely other noisy objects were present and is thus

difficult to compare our study directly. A multi-column network is computationally expensive
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to train but it would be interesting to incorporate a dilated backend in our network, as in [66],

to see if performance can be improved still. The challenge of distinct lack of available labelled

datasets was addressed by using a variety of techniques to augment thousands of side scan
sonar images from a small starting dataset to count fish and dolphins, up to 34 and 3 respec-

tively per image [67]. Different from the Adaptive Resolution Imaging Sonar used in our

study, side scan sonars only image non-moving targets which, combined with much fewer

fisher detected per image, complicates any direct comparison with our results. Nevertheless,

our study supports their findings that it is possible to solve a problem like this even with a rela-

tively small starting labelled dataset by adopting data augmentation techniques. From this, we

expand the training data with synthetic data to improve model predictions on unseen sonar

data— a widely proven and adopted technique in deep learning research [71]. We show that

leveraging unlabelled data and incorporating uncertainty regularisation, together with data

augmentation, improves performance further.

From technical to applied relevance

Beyond the technical merit and relevance in solving the task of processing low-resolution

sonar-based underwater footage for the broader application of quantifying abundance of other

underwater species, there is also a practical and conservation relevance in this context in the

ability to automatically and accurately count mullet fish at the spatial scale that matters for the

dolphin-fisher interaction in southern Brazil. To properly evaluate the speculative benefits of

this interaction, the first steps are quantifying precisely both the (1) availability of mullet schools

at the very local scale at which the dolphin-fisher interaction takes place; and (2) the proportion

of the mullet available that is caught by fishers and dolphins when interacting and when forag-

ing independently. Quantifying these benefits for interacting dolphins and fishers is crucial to

determine whether their interactions are indeed mutual and, if so, to determine the minimum

conditions of prey availability at which this traditional, century-old interaction can persist and

remain resilient in face of the global trend of decline fisheries seen at local, regional and global

scales (e.g. [3–5]). Given the real concern that the mullet stocks in southern Brazil are in decline

[72] and causing a decline in the frequency of dolphin-fisher interactions, evaluating whether

these changes can collapse this unique socio-ecological system becomes imperative. Our deep

learning tool can now be used to efficiently and effectively process the more than 1 million

images collected in field sampling and used to infer an estimation of the local mullet population.

Corresponding uncertainty predictions alongside each sample count prediction, will allow for a

greater understanding in how much each automated image count can be trusted, the first time

this measure has been incorporated for counting fish with deep learning.

From labelling a dataset such as this, we understand the challenges it presents. It is difficult

even for the biological experts to determine fish numbers in very dense images and at times

distinguish between noise and fish. To this end, there will very likely be inaccuracies, bias, and

even inconsistencies in the labelling which will have affected the training capacity of the model

and lead to discrepancies between predictions and ground truths. This is likely the cause of

many errors in predictions—i.e. not necessarily the limitations of such a model in its capability

of image analysis. Expanding this dataset with more labelled images and using multiple anno-

tators to reduce noise by consensus after removing bad annotations based on inter-rater agree-

ment metrics [73, 74] would be a beneficial development, as well as training the deep network

on data from wider biological research and introducing the temporal dimension to capture

motion information.
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Conclusion

Effective tools for monitoring fish stocks in the wild are required to support conservation

efforts worldwide as well as wide-ranging biological research [9, 10]. Imaging devices and

computer vision systems can be hugely valuable in being able to automatically access underwa-

ter populations in a cheap, efficient, and non-intrusive way. However, automatically counting

fish in video and image data is a challenging task, particularly when dense schools of fish and/

or substantial noise is present. While traditional computer vision methods are limited in their

generalisability, deep learning for counting aquatic animals in video and imagery is largely

unexplored, especially in comparison to research carried out in other applications. One of the

potential reasons for this is the lack of large publicly available underwater video/image datasets

and the difficulty and cost of having them manually and accurately annotated to train powerful

deep models. In this context, we provide a novel dataset of sonar video footage of mullet fish

recorded in a specific, special, cooperative foraging system between bottlenose dolphins and

artisanal fishers [60]. From this large dataset, 500 images were manually labeled with point

annotations locating the contained fish. Moreover, we developed an effective density-based

deep learning approach to automate the process of quantifying fish from sonar images. Our

multi-task network learnt to count fish by regressing an image to its representational density

map, exploiting the labelled data, while learning to rank pairs of unlabelled images by their rel-

ative fish count as a way to leverage useful information for the counting task and make the

most of unlabelled data. To favour interpretability and further improve the results, aleatoric

uncertainty was estimated alongside the density maps by our network. The results obtained

demonstrate the effectiveness of our techniques and, in particular, the possibility of using

them to analyse a wider range of underwater imaging as, for instance, with traditional under-

water photography, such as the DeepFish dataset. In providing an open-source framework for

practical use, our study puts forth a template for crowd counting animals. We make our data,

code and pre-trained network available to benefit the advancement of other counting models

via transfer learning, thereby contributing to the continuous development of methods for

assessing natural populations in times of biological crisis.

Supporting information

S1 Video. Sonar video sample. Underwater video generated by an Adaptive Resolution Imag-

ing Sonar (ARIS 3000, Sound Metrics Corp, WA, USA) displaying the top view of a passing

mullet school (Mugil liza) before a fishing net is cast by artisanal fishers in Laguna, southern

Brazil. The video was manually pre-processed for contrast enhancement and background

removal.
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