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Resum

La il·luminació global és la tasca que pretén afegir realisme al modelatge de la llum
en escenes 3D, tot això engloba un conjunt d'algorismes que ho fan possible.
Aquests algorismes tenen en compte, a més de la llum que prové directament d'una
font de llum (il·luminació directa), els raigs de llum que provenen de la mateixa font
però han passat per reflexos sobre superfícies de l'escena (reflectants o no)
(il·luminació indirecta) . Així doncs, en informàtica és un terme més complex del que
sembla a priori, no només es refereix a les fonts de llum, sinó a totes les condicions
d'il·luminació de l'escena, és a dir, que hem de tenir en compte tots els objectes de
l'escena ja que cadascú influirà d'una manera o altra als altres amb la llum que
reflecteix, refracta o absorbeix. Per ser més precisos per calcular l'IG necessitem
una descripció de l'escena virtual que inclou la posició, la mida i l'orientació dels
objectes geomètrics 3D que componen l'escena, el material associat a cada objecte,
la posició i les característiques de les fonts de llum que il·lumina, l'escena, i una
càmera virtual que defineix com es veu una escena. Un cop definit això, cal
calcular/simular com s'emet la llum de les fonts de llum i rebota a l'escena fins que
arriba al pla de la imatge. La llum que arriba a cada píxel de la imatge definirà el
color del píxel.

Per calcular tota aquesta il·luminació necessitem una capacitat de còmput molt alta
si volem fer-ho en un temps raonable, o uns algorismes que optimitzin aquest càlcul,
i en aquesta tesi és del què tractarem .

Començarem parlant de l'ús de l'algorisme Virtual Point Lights, també anomenat per
alguns autors Instant Radiosity. Aquest algorisme és capaç de generar imatges de
qualitat comparable a la de, per exemple, Path Tracing (que és un algorisme
estàndard en renderitzat fotorealista). -Explicarem com funciona l'algorisme VPLs i
com és capaç de renderitzar una imatge en menys temps que el de Path Tracing i
explicarem com es generen les imatges. A més, també discutirem els artefactes que
es generen usant l’algorisme de Virtual Point Lights i com resoldre'ls.

El nucli d'aquest treball és l'acceleració de l'algorisme VPL original. Per això
recorrerem a tècniques de clustering, que ens permetran reduir dràsticament el
nombre de càlculs implicats. En particular, proporcionarem detalls sobre la
implementació de l'algorisme K-means (un tipus d'aprenentatge no supervisat) i la
seva aplicació al context de la síntesi d'imatges basada en VPL. Mostrarem com es
poden fer servir les mitjanes K per agrupar els punts visibles de cada píxel i també
per agrupar els punts de llum virtuals.

Proporcionarem resultats detallats utilitzant els quatre algorismes diferents:
l'algorisme VPL original, que hem implementat des de zero; VPL amb K-means
clustering dels punts visibles; VPL utilitzant K-means clustering de VPLs; i, finalment,
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els resultats en utilitzar tant el K-means clustering dels punts visibles com dels VPL.
Els resultats mostren millores clares en el temps de síntesi d'imatges.

Finalment, presentarem els resultats obtinguts des de la perspectiva de la qualitat
d'imatge final. Identificarem la principal limitació dels mètodes desenvolupats i
proposarem millores per a treballs futurs.
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Resumen

La iluminación global es la tarea que pretende agregar realismo al modelado de la
luz en escenas 3D, todo esto engloba un conjunto de algoritmos que lo hacen
posible. Estos algoritmos tienen en cuenta, además de la luz que proviene
directamente de una fuente de luz (iluminación directa), los rayos de luz que
provienen de la misma fuente pero que han sido reflejados en superficies de la
escena (reflexivas o no) (iluminación indirecta). Entonces esto en en informática es
un término más complejo de lo que parece a priori, se refiere no sólo a las fuentes
de luz, sino a todas las condiciones de iluminación de la escena, es decir, que
tenemos que tener en cuenta todos los objetos de la escena ya que cada uno va a
influir de un modo u otro a los demás con la luz que el mismo refleja, refracta o
absorbe. Para ser más precisos para calcular GI necesitamos una descripción de la
escena virtual que incluya la posición, tamaño y orientación de los objetos
geométricos 3D que componen la escena, el material asociado a cada objeto, la
posición y características de las fuentes de luz que iluminan la escena, y una cámara
virtual que define cómo se ve una escena. Una vez que se define esto, es necesario
calcular/simular cómo se emite la luz desde las fuentes de luz y cómo rebota en la
escena hasta que toca el plano de la imagen. La luz que incide en cada píxel de la
imagen definirá el color del píxel.

Para calcular toda esta iluminación necesitamos una capacidad de cómputo muy alta
si queremos hacerlo en un tiempo razonable, o unos algoritmos que optimicen este
cálculo, y de eso trataremos en esta tesis.

Empezaremos hablando del uso del algoritmo Virtual Point Lights, también llamado
por algunos autores Instant Radiosity. Este algoritmo es capaz de generar imágenes
de calidad comparable a la de, por ejemplo, Path Tracing (que es un algoritmo
estándar en renderizado fotorrealista). -Explicaremos cómo funciona el algoritmo
VPLs y cómo es capaz de renderizar una imagen en menos tiempo que Path Tracing
y explicaremos cómo se generan las imágenes. Además, también discutiremos los
artefactos que se generan usando los puntos de luz virtuales originales y cómo
resolverlos.

El núcleo de este trabajo es la aceleración del algoritmo VPL original. Para ello
recurriremos a técnicas de clustering, que nos permitirán reducir drásticamente el
número de cómputos implicados. En particular, proporcionaremos detalles sobre la
implementación del algoritmo K-means (un tipo de aprendizaje no supervisado) y su
aplicación en el contexto de la síntesis de imágenes basada en VPL. Mostraremos
cómo se pueden usar las medias K para agrupar los puntos visibles de cada píxel y
también para agrupar los puntos de luz virtuales.

Proporcionamos resultados detallados utilizando los cuatro algoritmos diferentes: el
algoritmo VPL original, que hemos implementado desde cero; VPL con K-means
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clustering de los puntos visibles; VPL utilizando K-means clustering de VPLs; y, por
último, los resultados al utilizar tanto el K-means clustering de los puntos visibles
como de los VPL. Los resultados muestran claras mejoras en el tiempo de síntesis
de imágenes.

Finalmente presentaremos los resultados obtenidos desde la perspectiva de la
calidad de imagen final. Identificamos la principal limitación de los métodos
desarrollados y proponemos mejoras para trabajos futuros.
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Abstract

Global illumination is the task that aims to add realism to the modeling of light in 3D
scenes, all this encompasses a set of algorithms that make it possible. These
algorithms take into account, in addition to the light coming directly from a light
source (direct illumination), the light rays that come from the same source but have
been through reflections on surfaces of the scene (reflective or not) ( indirect
illumination). So this in computing science is a more complex term than it seems a
priori, it refers not only to light sources, but to all the lighting conditions of the scene,
that is, we have to take into account all the objects of the scene since each one will
influence the others in one way or another with the light that it reflects, refracts or
absorbs. To be more precise to calculate GI we need a description of the virtual
scene which includes the position, size and orientation of the 3D geometric objects
that compose the scene, the material associated with each object, the position and
characteristics of the light sources which illuminate the scene, and a virtual camera
that defines how a scene is seen. Once this is defined, one needs to
compute/simulate how light is emitted from the light sources and bounces on the
scene until it hits the image plane. The light that hits each pixel of the image will
define the pixel color.

To calculate all this lighting we need a very high computing capacity if we want to do
it in a reasonable time, or some algorithms that optimize this calculation, and this is
what we will deal with in this thesis.

We will start by talking about the use of the Virtual Point Lights algorithm, also called
Instant Radiosity by some authors. This algorithm is able to generate images of
comparable quality to that of, for example, the Path Tracing (which is a standard
algorithm in photo-realistic rendering). -We will explain how the VPLs algorithm works
and how it is able to render an image in less time than Path Tracing and explain how
the images are generated. Furthermore, we will also discuss the artifacts that are
generated using the original virtual point lights and how to solve them.

The core of this work is the acceleration of the original VPLs algorithm. To this end,
we will resort to clustering techniques, which will allow us to drastically reduce the
number of computations involved. In particular, we will provide details on the
implementation of the K-means algorithm (a type of non-supervised learning) and its
application in the context of VPLs-based image synthesis. We will show how
K-means can be used to cluster the visible points from each pixel, and also to cluster
the virtual light points.

We provide detailed results using the four different algorithms: the original VPLs
algorithm, which we have implemented from scratch; VPLs with K-means clustering
of the visible points; VPLs using K-means clustering of the VPLsa; and, finally, the
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results when using both K-means clustering fo the visible points and of the VPLs.
The results show clear improvements in image synthesis time.

Finally we will present the results obtained from the perspective of the final image
quality . We identify the main limitation of the methods developed, and propose
improvements for future work.
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Section 1 - Introduction
The methods to get a 3D visualization of a virtual scene that is practically
indistinguishable from reality are called Photorealistic Rendering. Many of them have
been developed for photorealistic rendering and even more variations of them exist.
But before starting to get into the matter, we must understand the basic theory that is
behind these methods.

What we are aiming at is to be as close as possible to how light interacts with matter
in real life. For that we need to use physics and its laws to describe light transport in
a scene. We know that no energy is ever lost, it is merely transformed into another
form. Since light is composed of electromagnetic waves, this is basically a flow of
energy problem.

All of this leads us to the rendering equation [9]. The rendering equation is an aspect
of computer graphics that deals with how light radiates and bounces off surfaces, so
that we can synthesize realistic images of three-dimensional (3D) virtual scenes.
The problem is that in most cases it is impossible to solve the rendering equation

analytically.  Therefore, we need to use methods to approximate its value.𝐿
𝑟
(𝑥, ω

𝑜
) 

Global illumination (GI) is the task that aims to add realism to the modeling of light in
3D scenes. All this encompasses a set of algorithms that make GI possible. The
base algorithm that we are going to work on in this Thesis is the Virtual Point Lights
(VPL) algorithm, also called Instant radiosity, which was introduced by Alexander
Keller in 1997 [1]. Briefly speaking,

The advantage of this method is that it can be quite fast when compared to other
(more computationally demanding) techniques such as, for example, path tracing
[REF]. We only calculate the VPLs once at the beginning of the algorithm, and then
we render the scene. It has some disadvantages like if not enough VPLs are
generated then some relevant light transport paths can be missed. This problem is
something that we are going to try to solve in this project using a clustering algorithm
which will let us use more VPLs without having a negative impact in rendering times.
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1.1 - Motivation

3D modeling or graphic design has acquired an important role in recent years in the
creation of video games, visual effects, virtual tours for architectural projects, or as a
learning and experimentation tool. Every time a greater quality of the images is
sought, to the point of being practically impossible to differentiate them from a
photograph or a video of the real world. But all this has a problem, and it is the
computational cost at the time of rendering such amount of information.

We are talking about millionaire companies that use cutting-edge technology every
day to be able to render all their projects in less time. To put what we mean in
perspective, the clear example would be the movie "The Jungle Book" (2016) by
Disney, which needed to use the Google cloud network, with thousands of computers
working in parallel, as reported Robert Legato, responsible for the special effects,
since each frame of that film, using a normal computer, had a time of 80 hours, which
would be equivalent to about 1500 years to complete the film. That's why getting
even a small improvement in rendering time would be a very important improvement
in this sector.

Finally, I would like to add the personal and academic interest in this field, which the
graphs and data visualization course generated in me last year.

1.2 - Objectives

Here we will see the main objectives of this thesis, which are composed of a main
one that we can subdivide into several sub-objectives.

The main goal is to reduce rendering time while maintaining as much as possible the
quality of the produced images. .For this we have three sub-objectives, which would
be: (i) to understand and implement the Virtual Point Lights algorithm efficiently; (ii)
use the K-means clustering algorithm for clustering VPLs, hence reducing the
number of VPLs that need to be taken into consideration to illuminate the virtual
scene; (iii) and finally, use the K-means clustering algorithm to cluster the visible
points, hence reducing the number of visible points for which the illumination is
explicitly computed.

For this we will use a ray tracer already implemented which will be explained later.
This work implies understanding how the raytracer works, how it is organized from
the base, and to be able to see later the improvements that have been made to the
raytracer.

The Ray tracer has been provided to us by the Doctor and tutor of TFG Ricardo
Marques. This ray tracer will serve as the basis to be able to create our project
successfully.
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1.3 -  Planification

In any big project, when we look at the deadline it can seem like we have a lot of time
ahead of us and that it will be easy for us to finish it on time. And that's a mistake. We
have learned over the years that we have seen ourselves working on a project until
the last moment before the deadline, that good planning and guidance of this is very
important to succeed in any great project that we get into. So that’s why we divided
all we have to do into three different phases, and each phase was divided into 5
different tasks.
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Figure 1.3.1: TFG Gantt chart

As we mentioned before, we had 3 phases of the planification (see Table 1.3.2), the first one
called the implementation of the VPLs where we had a long term of learning, first about the
ray tracer and then about the VPL base algorithm, that was before to start building a base
shader to have something to start implementing the future algorithms.

Once the first one was finished we started learning about the K-means clustering and as
soon as we had an idea how it works, the implementation task started. Even in the Figure
1.3.1 all the work seemed very lenear on its evolution, every time we implemented something
we had to do some adjustment to previous methods. That's why it took a long time to finish
phase one and two and start doing the experiments.

Finally the Experiments, analysis and results phase, as its title says, is the phase where all
the code is working fine and we can do the test and know if we achieved our initial objectives.

Phase 1 Implementation VPL

Task 1 Understanding the Ray tracer and implementing a simple shader.

Task 2 Understanding the VPL algorithm

Task 3 Implement VPL algorithm

Task 4 Solving the artifacts with clamping, and other math mistakes in the code

Task 5 Display VPL method and shader

Phase 2 Implementing K-means clustering

Task 1 Understanding the K-means algorithm

Task 2 Implement Visible Points clustering shader

12



Task 3 Implement shader to display clusters and centroids in different colors

Task 4 Implement Virtual Point Lights clustering shader

Task 5 Method and shader to display VPL clusters

Phase 3 Experiments, Analisis and Results

Task 1 Experiments with VPL shader

Task 2 Experiments with VPL clustering shader

Task 3 Experiments with Visible Point clustering shader

Task 4 Experiments with VPL clustering + Visible Point clustering shader

Task 5 Final Conclusions
Table 1.3.2: Gantt chart explanation: Here we can see a summarization of what each task means.
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1.4 - Thesis structure

This Final Degree Thesis deals with one of the methods for rendering photorealistic
images: Virtual Point Lights (VPL). Furthermore, it also deals with the algorithm of
K-means to accelerate the rendering. Virtual Point Lights is a relatively fast method
that can produce realistic-looking results, and K-means is an algorithm used in other
fields, more used for Data management. These details will be explained l in Section
3.

All of this Final Degree Thesis was implemented using a base ray tracer provided by
Dr. Ricardo Marques, tutor of this thesis, and the language we used is C++ and the
integrated development environment is Visual Studio. This is detailed  in Section 4.

In Section 5, we have the results of all the experiments that we did to complete this
thesis, as well as our conclusions. Finally, in section 6, we explain the future work
that can be done to improve more of this work that has been done.
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Section 2 - State of the Art

2.1 - Global illumination

The behavior of light in the real world it's far from simple, although we can think it is
not that complicated, when we start evaluating a scene we realize why it is not
simple. All of us know that light can be reflected, refracted, scattered, and absorbed.
All of this can happen multiple times from one light source, imagine multiple light
sources with different wavelengths to different extents. This means that surfaces that
are not directly illuminated, can still be visible (indirect illumination) or a white object
can appear in any other color because of the influence of a nearby object, and light is
being reflected from it to the wall (color bleeding). All these effects are collectively
referred to as global illumination (GI). The term global illumination refers to the fact
that we need to take into account lighting conditions in the whole scene, because
nearby surfaces (or even surfaces that are quite far away) can influence each other
and it is therefore insufficient to just calculate lighting in one place (see Figure 2.1).

Figure 2.1: Image demonstrating several global illumination effects; multiple diffuse and specular
bounces, caustics and scattering.
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2.2 - Rendering equation approximation

To model light transport in a scene, we need to express it in mathematical terms.
That means that we need to make use of physics and its laws to derive equations,
which describe light transport in the scene. One of the fundamental laws of physics is
the law of conservation of energy, which states that no energy is ever lost, it is merely
transformed into another form. Since light is electromagnetic waves, it is basically a
flow of energy. Its amount is expressed as which means energy arriving at𝐿(𝑥 ← ω)
point from direction , or which means energy emitted from point in𝑥 ω 𝐿(𝑥 → ω) 𝑥
direction .ω

The outgoing radiance from a point with normal n towards a direction𝐿
𝑜
(𝑥, ω

𝑜
) 𝑥 𝑥 ω

𝑜

is the sum of the emitted and reflected radiance ( and respectively),𝐿
𝑒
(𝑥, ω

𝑜
) 𝐿

𝑟
(𝑥, ω

𝑜
)

modeled as:

(Eq. 1) 𝐿
𝑜
(𝑥, ω

𝑜
) =  𝐿

𝑒
(𝑥, ω

𝑜
) + 𝐿

𝑟
(𝑥, ω

𝑜
)

(Eq. 2) 𝐿
𝑟
(𝑥, ω

𝑜
) =  

𝑆
∫ 𝐿

𝑖
(𝑥, ω

𝑖
)𝑓

𝑟
(𝑥, ω

𝑖
, ω

𝑜
)𝐺(𝑥, 𝑠

𝑗
)𝑉(𝑥, 𝑠

𝑗
)

As we said before in most cases it is impossible to solve analytically. So an𝐿
𝑟
(𝑥, ω

𝑜
) 

intuitive approximation of Equation (2) would be to model the light reflected at each
point s ∈ S as a virtual point light, with emission (Eq. 3) equal to the energy𝐼(𝑠

𝑗
,  𝑥)

reflected at s towards x, the is the BRDF (Bidirectional Reflectance𝑓
𝑟
(𝑥, ω

𝑖
, ω

𝑜
)

Distribution Function) the fundamental quantity to describe the spectral and
directional properties of reflectivity(the material), would be the geometry term𝐺(𝑥, 𝑠

𝑗
)

and finally which is the visibility or the amount of light sources that hit the𝑉(𝑥, 𝑠
𝑗
)

visible point. Therefore, if we precompute a sampled set of N virtual lights, then
can be approximated as:𝐿

𝑟
(𝑥, ω

𝑜
)

(Eq. 3) 𝐿
𝑟
(𝑥, ω

𝑜
) ≈

𝑗=1

𝑁

∑ 𝐼(𝑠
𝑗
,  𝑥)𝑓

𝑟
(𝑥, ω

𝑖
, ω

𝑜
)𝐺(𝑥, 𝑠

𝑗
)𝑉(𝑥, 𝑠

𝑗
)

In this Final Degree Thesis to synthesize an image we calculate the visibility 𝑉(𝑥, 𝑠
𝑗
)

just for the cluster center or centroid, and the rest of the equation is calculated for
each visible point. We do that because to calculate the visibility we need to throw a
lot of shadow rays so it has a high computational cost, and calculating this just for the
cluster center or centroid means reducing substantially the cost.
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The emission , material and the geometry term are𝐼(𝑠
𝑗
,  𝑥) 𝑓

𝑟
(𝑥, ω

𝑖
, ω

𝑜
) 𝐺(𝑥, 𝑠

𝑗
)

calculated for each visible point because have really low computational time and
cost, and it give more smoothness in the images if the of the near clusters are𝑉(𝑥, 𝑠

𝑗
)

similar.
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2.3 - Virtual Point Lights Algorithm

Virtual Point Lights (VPL) algorithm, also called Instant radiosity, was introduced by
Alexander Keller in 1997 [1]. Itis a two phase algorithm (see Figure 2.3.1). The first
phase is executed at the beginning (in the preprocess method), where many particles
(VPLs) are traced through the scene, to do that we trace a number of light rays
bouncing throughout the scene then we record where each ray hits the scene, and
create a virtual light at that point. This algorithm has two parameters: Number of
VPLs generated on light source (N) and number of bounces each light undergoes
until terminated (B), to calculate the final amount of VPLs we have to multiply N by B.
Once the light rays are traced randomly from the light source, we store them in an
array with or without the light source, depending if we want to render the scene only
using VPLs or VPLs plus the light sources.

The second phase is the rendering of the scene which is very simple compared to
other algorithms, in Virtual Point Light algorithm we only need to trace primary rays
from the camera to the scene and then trace shadow rays to every VPL and
determine how much every point is illuminated by taking an sum of the contributions
of the VPLs that illuminate it.

Figure 2.3.1: Creation of the VPLs (left) and rendering of the final image using the resulting VPLs
(right).

The advantage of this method is that it can be quite fast. We only calculate the VPLs
once at the beginning, as a pre-processing step, and then render the scene using the
generated VPLs.

The disadvantages of this method are, that it is biased and that usually not so many
VPLs are generated and therefore some light transport paths can be missed, so the
final image can not be as perfect as we expected (see Figure 2.3.2). So before
rendering a lot of scenes we need to know how many VPLs we will need if we want
good results without wasting a lot of time.
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Another disadvantage is when we use a glossy surface some artifacts can appear,
something that can be solved with clamping.

Figure 2.3.2 Illustration of singularities. From left to right: Unbounded VPLs, Bounded VPLs,
unbiased solution (non-VPL) (Source: [6])
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Section 3 - Efficient Global Illumination
Through Virtual Point Lights
To have an overview of what we are going to explain more precisely in the
methodology, we will try to summarize in a few words the algorithms that have been
used in this thesis. First of all we are going to explain the base algorithm of virtual
point lights, its phases, and we will explain how each VPL of virtual light is formed
and how the rays are traced from the camera for later rendering.

We will also explain the importance of clamping in the VPL algorithm since without it
you would see a lot of artifacts in the corners of the scene, these artifacts appear as
bright points of light.

Finally we will explain the operation of the clustering used in the previous part of the
render (preprocess) to improve the rendering times using the K-means algorithm.
We are going to explain this algorithm in a general way, applied to the clustering of
visible points, to the clustering of virtual point lights and finally how the images are
synthesized in each of these algorithms.

3.1 - Virtual Point Lights Algorithm
Virtual Point Lights (VPL) algorithm, also called Instant radiosity is a two phase
algorithm. The first phase is executed at the beginning (in the preprocess method),
where many particles (VPLs) are traced through the scene, to do that we trace a
number of light rays bouncing throughout the scene then we record where each ray
hits the scene, and create a virtual light at that point.

To have a better understanding of the algorithm we can divide the first phase in 5
steps.

Five steps of Virtual Point Lights Algorithm.

1. Choosing the number of VPL and bounces we will use. The total number
of VPL will be VPL x Bounces (see Figure 3.1.0).

2. LightRay: From the light source we trace a ray to a random direction of the
scene as many times as num of VPL we chose.

3. Position. The intersection that we will get from the ray we traced before, will
be the place where the VPL will be placed.

4. Light Intensity. The VPL created will be assigned the light intensity that
reaches at that point from the main light source.
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5. Bounces. The steps 2, 3 and 4 will be repeated but the starting point of the
lightRay will be the VPL that we just created instead of the first LightSource. This will
be a recursive function that will be repeated for each VPL as many times as bounces
we chose (see Figure 3.1.1).

Figure 3.1.0: Two images generated with different numbers of VPLs;  The left-most figure was
generated using 100 VPLs and 1 bounces, and the second one generated using 2000 VPLs and 2
Bounces.

In the second phase to render the scene using the VPLs that we generated, we need first to
trace primary rays from the camera to the surface of the scene and then we trace shadow
rays to every VPL generated and determine how much every point is illuminated (see Figure
3.1.2).
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Figure 3.1.1: Representation of how two VPL of 2 bounces each are created. The starting point will be
the light source on the top.

Figure 3.1.2: Rendering phase. In the rendering phase we shoot primary rays to the scene and from
the intersection point we trace shadow rays to all the light sources (Point lights and Virtual Point
Lights).
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3.1.1 - The importance of Clamping in VPLs-based Algorithms

The incident radiance (r) (Eq. 2) at an object surface is calculated by dividing𝐿
𝑖
(𝑥, ω

𝑖
)

the intensity (I) of the light source for the distance (d) between the object and the light
source:

=𝑟 𝐼
𝑑

So when we use VPLs, and those end up in a corner the the distance between the
light source (VPL) and the material is nearly 0 which end up in a nearly infinite
radiance, and that's why some artifacts or singularities appear in some corners.

Figure 3.1.3: Illustration of singularities or artifacts solving. A clear improvement in the scene
appears when we apply clamping in the VPL radiance.
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3.3 - VPL-based image synthesis with clustering of visible
points

3.3.1 - K-means clustering explained in general context
K-means clustering algorithm
This algorithm is applied twice in this project, once when we cluster the visible points
or intersections (See figure 3.5.2), and when we cluster the VPLs (See Figure 3.5.3).

Clustering is the process of dividing the entire data into groups (also known as
clusters) based on the patterns in the data. For that purpose we need to establish
how many clusters (k) we need and the characteristics that differentiate one cluster
from another. K-means is a distance-based algorithm, where we calculate the
distances to assign a point to a cluster.

In K-Means, each cluster is associated with a centroid. The main objective of the
K-Means algorithm is to minimize the sum of distances between the points and their
respective cluster centroid. All of that and how it works will be explained in more
detail below.

k initial "means" (in
this case k=3) are
randomly generated

k clusters are created
by associating every
observation with the
nearest mean

The centroid of each of
the k clusters becomes
the new mean.

Steps 2 and 3 are
repeated until
convergence has been
reached.

Figure 3.3.1 Demonstration of standard algorithm [11]

The K-means algorithm can be divided in 5 steps:

Step 1: Choose the number of clusters k

The first step in k-means is to pick the number of clusters, k.
The clusters have two properties:
1. All the data points in a cluster should be similar to each other.
2. The data points from different clusters should be as different as possible.

24

https://en.wikipedia.org/wiki/Centroid


Step 2: Select k random points from the data as centroids

The centroid of a cluster is defined as the equidistant point from the objects
belonging to that cluster. (See Figure 3.3)

Step 3: Assign all the points to the closest cluster centroid

Once we have initialized the centroids, we assign each point to the closest cluster
centroid. As we said in step 1 we need to focus on the cluster's properties, the data
points in a cluster should be similar to each other and the data points from different
clusters should be as different as possible.

Step 4: Recompute the centroids of newly formed clusters

Now, once we have assigned all of the points to either cluster, the next step is to
compute the centroids of newly formed clusters.

Step 5: Repeat steps 3 and 4

The step of computing the centroid and assigning all the points to the cluster based
on their distance from the centroid is a single iteration, and we will have to repeat
steps 3 and 4 until one of the stopping criteria that we chose happens.

Possible stopping criteria:
1. Centroids of newly formed clusters do not change
2. Points remain in the same cluster
3. Maximum number of iterations are reached
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3.3.2 - K-means clustering of visible points

The goal of using this algorithm applied to visible points is to reduce the time when
rendering, to do that we will treat every cluster as a whole visible point, and to
understand how this reduces the time of rendering, we will show in numbers. For
example working with an image of 512x512, this does in total 262.144 visible points,
if we cluster them into clusters of 100 visible points, we will end with 2600 clusters
approx, this means the render will have to deal with 2600 “pixels”, obviously is not
that simple, and will be explained in more detail just below, but is to show how it
reduces the rendering time.

Figure 3.3.2: Clustering of the visible points. From left to right: (left) the original scene on which
clustering will be performed;(ii) the result of a normal shader to see which shows the 3D positions and
the surface normals ; (iii) the result of clustering the visible points, where each cluster is depicted
using a random colo; (iv) close-up view of the left bottom corner to appreciate the centroids (green
dots) and how the normal distance avoids clusters to spread across differently aligned surfaces.

The steps of the k-means are the same as in Section 3.3.1 but now will be explained
for the visible points clustering.

Step 1: Choose the number of clusters k

Choosing the wrong amount of clusters will end in high rendering time or in a poor
quality final image, and we want a balanced time and final quality.

Step 2: Select k random points from the data as centroids

The centroid of a cluster is defined as the equidistant point from the objects
belonging to that cluster. In this algorithm the centroid will be suffering changes in
each iteration of the algorithm until it stabilizes.(see Figure 3.5.1)

Step 3: Assign all the points to the closest cluster centroid

For that we will use a three dimensional Euclidean distance and the distance
between their Normal all combined.
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In a three dimensions plane, for points given by their Cartesian coordinates(p,q)
which are three-dimensional vectors, the distance ( ) is:𝑑

𝑒

𝑑
𝑒
(𝑝, 𝑞) =  (𝑝

1
−  𝑞

1
)2 + (𝑝

2
−  𝑞

2
)2 + (𝑝

3
−  𝑞

3
)2

To calculate the Normal distance, we use the dot product or scalar product between
its Normal vectors ( ):𝑛

𝑝 
,  𝑛

𝑞

𝑛
𝑝 

 ·  𝑛
𝑞
 =  |𝑛

𝑝 
| · | 𝑛

𝑞
| 𝑐𝑜𝑠θ

With that we will get the result of the and the outcome of this operation will be𝑐𝑜𝑠θ
between 1 to -1. 1 will mean the Normal has the same angle, 0 will mean the vectors
are orthogonal, difference of 90 degrees, and -1 will be totally opposite directions.

Our final objective is to get one number as a result of the combination of Euclidean
distance and the Normal distance, so we combined them like this:

𝑑(𝑝, 𝑞) =   (𝑑
𝑒
(𝑝, 𝑞)  𝑖𝑓  𝑐𝑜𝑠θ <  𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∞ { } 

Step 4: Recompute the centroids of newly formed clusters

In each iteration we will check all distances, explained in step 3, between the new
centroids and the intersections.

Step 5: Repeat steps 3 and 4

In the project the stopping criteria is a maximum number of iterations, due to the big
changes in the algorithm happen in the first iterations, that’s why we will use 3 or 4
iterations maximum, because the changes that can happen after that first 3 iterations
will be minimum and in proportion the computational time increment will not be worth.

3.3.3 - Synthesizing an image with visible points clustering

This is the most important part, since it is where we must make the most of the
clustering, trying to make it as little noticeable as possible. For this we have used an
approximation of the rendering formula, since in most cases it is impossible to solve

analytically, and stochastic techniques are usually used to compute it.𝐿
𝑟
(𝑥, ω

𝑜
)

The outgoing radiance from a point x with normal nx towards a direction𝐿
𝑜
(𝑥, ω

𝑜
) ω

𝑜

is the sum of the emitted and reflected radiance ( and respectively).𝐿
𝑒
(𝑥, ω

𝑜
) 𝐿

𝑟
(𝑥, ω

𝑜
)
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As we said before in most cases it is impossible to solve analytically. So an𝐿
𝑟
(𝑥, ω

𝑜
) 

intuitive approximation of Equation (Eq. 2 Section 2.2) would be to model the light
reflected at each point s ∈ S as a virtual point light, with emission equal to𝐼(𝑠

𝑗
,  𝑥)

the energy reflected at s towards x, the is the BRDF (Bidirectional𝑓
𝑟
(𝑥, ω

𝑖
, ω

𝑜
)

Reflectance Distribution Function) the fundamental quantity to describe the spectral
and directional properties of reflectivity(the material), would be the geometry𝐺(𝑥, 𝑠

𝑗
)

term and finally which is the visibility or the amount of light sources that hit𝑉(𝑥, 𝑠
𝑗
)

the visible point. Therefore, if we precompute a sampled set of N virtual lights, then
can be approximated as:𝐿

𝑟
(𝑥, ω

𝑜
)

𝐿
𝑟
(𝑥, ω

𝑜
) ≈

𝑗=1

𝑁

∑ 𝐼(𝑠
𝑗
,  𝑥)𝑓

𝑟
(𝑥, ω

𝑖
, ω

𝑜
)𝐺(𝑥, 𝑠

𝑗
)𝑉(𝑥, 𝑠

𝑗
)

To synthesize an image we calculate the visibility just for the cluster center or𝑉(𝑥, 𝑠
𝑗
)

centroid, and the rest of the equation is calculated for each visible point. We do that
because to calculate the visibility we need to throw a lot of shadow rays so it has a
high computational cost, and calculating this just for the cluster center or centroid
means reducing substantially the cost.
The emission , material and the geometry term are𝐼(𝑠

𝑗
,  𝑥) 𝑓

𝑟
(𝑥, ω

𝑖
, ω

𝑜
) 𝐺(𝑥, 𝑠

𝑗
)

calculated for each visible point because have really low computational time and
cost, and it give more smoothness in the images if the of the near clusters are𝑉(𝑥, 𝑠

𝑗
)

similar.
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3.4 - VPL-based image synthesis with clustering of VPLs

3.4.1 - K-means clustering of VPLs

The goal of using this algorithm applied to Virtual point lights is to reduce the amount
of Shadow rays that we have to trace for each visible point, meaning in the end
reduce some rendering time.

To simplify what we did with this algorithm is to do an average of all the VPLs
intensities and positions.

The steps of the k-means are the same as in the 3.3.1 but now will be explained for
the Virtual Point  Lights clustering.

Step 1: Choose the number of clusters k

As it happens in the previous clustering algorithm, choosing the wrong amount of
clusters will end in higher rendering time or in a poor quality final image, and we want
a balanced time and final quality.

Step 2: Select k random points from the data as centroids

The centroid of a cluster is defined as the equidistant point from the objects
belonging to that cluster. In this algorithm the centroid will be suffering less changes
in each iteration of the algorithm until it stabilizes.(See Figure 3.3)

Step 3: Assign all the points to the closest cluster centroid

As we explained previously we will use the combination of Euclidean distance and
the Normal distance and we combined them like this:

𝑑(𝑝, 𝑞) =   (𝑑
𝑒
(𝑝, 𝑞)  𝑖𝑓  𝑐𝑜𝑠θ <  𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∞ { } 

Step 4: Recompute the centroids of newly formed clusters

In each iteration we will check all distances, explained in step 3, between the new
centroids and the intersections.

Step 5: Repeat steps 3 and 4

In the project the stopping criteria is a maximum number of iterations, due to the big
changes in the algorithm happen in the first iterations, that’s why we will use 2 or 3
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iterations maximum, because the changes that can happen after that first 3 iterations
will be minimum and in proportion the computational time increment will not be worth.

3.4.2 - Synthesizing an image with Virtual Point Lights clustering

The synthesization of the image using VPL clustering is the same as we don’t use
this algorithm, but with the algorithm it is faster. From every visual point we trace
shadow rays to the cluster center or centroid and we work with that if it was a VPL or
Light source, with its own intensity and position. (See Figure 3.5.2)

Figure 3.4.2: Clustering VPLs. From left to right, the left-mostimage shows the scene for which the
VPLs are generated; the center image shows the position of all VPLs generated (as small blue dots);
and the right-most image shows the centroids (as large blue dots) resulting from clustering the
original VPLs .
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3.5 - VPL-based image synthesis with visible points and
VPLs clustering
When we combine both algorithms, what we have to do to synthesize the final image,
is really close of what we explained in the Section 3.3.3, but instead of throwing
shadow rays from the centroid of visible points to the VPLs, we trace shadow rays to
the VPL clustering centroid or cluster center. Remember that we do that to calculate
the amount of Light sources that hits the centroid of visible point cluster center also
called visibility . And then as we explained before we calculate the rest of the𝑉(𝑥, 𝑠

𝑗
)

rendering equation approximation for each visible point in the cluster. Detailed visual
results and timings for this rendering approach are shown in Section 5.

Figure 3.5.1: Clustering of the visible points. From left to right: (left) the original scene on which
clustering will be performed; (ii) the result of clustering the visible points, where each cluster is
depicted using a random colo; (iii) close-up view of the left bottom corner to appreciate the centroids
(green dots) and how the normal distance avoids clusters to spread across differently aligned surfaces.
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Section 4 - Implementation

4.1 - Visual Studio
Microsoft Visual Studio is an integrated development environment (IDE) for Windows
and macOS. It is compatible with multiple programming languages, such as C ++, C
#, Visual Basic etc… It will be the escollit program since I had previously contacted
other subjects, and the Ray tracer Base was created with Visual Studio due to its
compatibility with C++.

4.2 - Base Ray tracer

The ray tracer base has been the program that, as the name says, has served as the
basis for me to start studying global illumination from VPL and the use of other
algorithms. It is capable of rendering scenes using different types of shaders, like
path shader, direct shader, depth shader and others, all of which use the
programming language of C++, C++ is the most used language for programming
graphics related due to its versatility.

To explain the base ray tracer deeply I will divide it into 8 parts or what the visual
studio says in 8 filters (see figure 4.1): Cameras, Core, light sources, materials,
samplers, shapes, shaders, and The Main.

The cameras are the point of view of the scene, from where the first rays are
traced(see Figure 3.2).

The core is where all the necessary objects to work with a ray tracer are needed, like
3D vector, bitmap, intersection, rays, textures etc…

Light sources as its name says is the class that helps us to create light sources( Area
lights and point lights) , and in the future will also contain the VPL class.

Materials contain the 3 different materials that we can create(mirror, phong and
transmissive), even in this project we will only work with diffuse reflections.

The sampler lets us trace a random ray to any direction of an hemisphere from any
point in the scene

Shapes contain two basic shapes to create the scenes, which are spheres and
triangles.

Shaders have all the different classes that render images in a different way, here the
vast majority of my work will be done.
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And finally the main class, is where the preprocess, the render, the post process are
executed.

4.3 - Changes done in the base ray tracer
To explain what changes in the base tracer were done we will use the filters used
before to explain the base ray tracer to have some order in the explanation.

The filters that had some changes are: Shaders, Core, Samplers, Light Sources and
the Main class.

The shaders are where the vast majority of changes were done. Here we added six
new shaders, each one render the image in different ways or using different
algorithms:

1. Simple Shader
2. VPL shader
3. simple clustering shader
4. VAL shader
5. VPL clustering shader
6. Simple Shader 2

Simple shader, despite the name, is the main shader, where the usage of VPLs, the
clustering of them and the clustering of visible points is done, and rendered, so it is
everything except simple. In order to do this in this class, we needed to overwrite the
render and the preprocess methods. Also we had to implement the distance
calculators, one with vectors as parameters and other with VPLs. For the clustering
of visible points we needed to modify the intersection class in the Core filter, we
added two labels to set them as a centroid and to assign them to the cluster.

VPL shader only renders images using VPLs, and light sources.

Simple clustering shader is used to render images using VPLs and clustering of
visible points.

VAL shader is used to render images using VPLs and the cluster of them.

VPL clustering shader and Simple Shader 2 both are used to create images where
the algorithms can be explained because they can show the scene with the clusters
painted with different colors with their centroids, and images where VPLs and VPLs
clusters can be shown.(See Figures 3.3 and 3.4)

Continuing with the samplers, the necessity to add a spherical sampler to trace
random rays from point lights was essential.
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In Light Sources filter we had to add the VPL class which is similar to the
lightsource class, but with more functions, to let us set a new position for the VPL
(used during the clustering of VPL where we change the position of the centroid) and
to set a new intensity due to it changes depending of how many VPL are in the VPL
cluster.
Finally in the main class we added a timer to calculate to the millisecond how long
each process takes.
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Section 5 - Results

5.1 - Experimental Set-Up

As final objectives of this project we sought to maintain a good image quality and
lower the execution time in the rendering process, for this, as we have explained
previously, the global illumination algorithms have been used through VPL, and the
clustering of visible points and VPL through the K-means clustering.

To show the results we will start from a reference image generated only with VPL
(Figure 5.1.1), and with it we will see if the application of one, some or all of the
algorithms improves the rendering time or not, without substantially losing the quality
of the image.

Figure 5.1.1: Reference Image. This image was generated using 2000 VPLs 2 Bounces, 2600 visible
point clusters with 4 iterations in the k-means algorithm, 400 VPL clusters and 2 iterations in the
k-means clustering.
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We are going to do several tests comparing different parameters (Figure 5.1.2):

- Virtual Point Lights
- Bounces
- Visible point clusters
- VPLs clusters
- The number of iterations in the K-means algorithm.

Virtual Point Lights VPL

Bounces B

Visible Point Clusters VpC

VPLs Clusters VPLC

number of iterations in K-means(visible points) K-mVp

number of iterations in K-means(VPLs) K-mVPL

Preprocess Time pT

Render Time rT

Total Time tT

Figure 5.1.2: Table of notation. of the parameters that we will use during all the results.
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5.2 - Results for the Original VPL Algorithm Implementation

This can be called the base experiment, where we will use the original VPLs
algorithm (detailed in Section 3.1) and see how the quality and the time of the images
we can get depends on the amount of VPLs used in the implementation.

In the results the preprocessing time will not appear because the higher one was
0.008 seconds, and compared to the render time of 183.06 seconds we can ignore it.
So we will only use total time.

The timings obtained for this experiment are linear with the number of VPLs. Every
22 VPLs approximately increases 1 second of rendering time.

About the quality of the images, the important place to spot the biggest differences
are in the shadows, as the amount of VPLs increase the shadows are more and
more smooth.

Number of VPLs = 100
Number of Bounces(B) = 1
Total time (tT) = 4.524s

Number of VPLs = 500
Number of Bounces(B) = 1
Total time (tT) = 22.2s
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Number of VPLs = 500
Number of Bounces(B) = 2
Total time (tT) = 45.7s

Number of VPLs = 1000
Number of Bounces(B) = 1
Total time (tT) = 44.74

Number of VPLs = 1000
Number of Bounces(B) = 2
Total time (tT) = 90.61s

Number of VPLs = 2000
Number of Bounces(B) = 2
Total time (tT) = 183.1s

Figure 5.2.1: Scenes resulting from the tests, using only VPLs.
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Figure 5.2.2: Graph that shows the linear proportion of the number of VPLs and the rendering time.
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5.3 - Results using VPL clusters

The objective of this experiment is to see what is the amount of clusters that we can
use to improve the rendering time and still maintain a good quality of the resulting
image. As the amount of VPLs that we are going to use are 4000, as a reminder, (the
number of total VPLs are the initial number of VPLs multiplied by the number of
bounces). The maximum number of clusters that we intend to use is 2000 and the
minimum amount is 100. (see Figure 5.3.1)

About the quality of the images, the important place to spot the biggest differences
are in the shadows, as the amount of VPLs clusters increase the shadows are more
smooth. Also, mention that the first image, which has 2000 VPL clusters, has the half
rendering time that the reference image but the same quality.(see Figure 5.3.2)

Number of VPLs = 2000
Number of Bounces(B) = 2
Number of VPL Clusters= 2000
Preprocess time (pT) = 0.049s
Render time (rT) = 91.649s
Total time (tT) = 91.698s

Number of VPLs = 2000
Number of Bounces(B) = 2
Number of VPL Clusters = 1300
Preprocess time (pT) = 0.042s
Render time (rT) = 64.931s
Total time (tT) = 64.973s
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Number of VPLs = 2000
Number of Bounces(B) = 2
Number of VPL Clusters = 800
Preprocess time (pT) = 0.024s
Render time (rT) = 38.739s
Total time (tT) = 38.763s

Number of VPLs = 2000
Number of Bounces(B) = 2
Number of VPL Clusters = 400
Preprocess time (pT) = 0.017s
Render time (rT) = 18.688s
Total time (tT) = 18.705s

Number of VPLs = 2000
Number of Bounces(B) = 2
Number of VPL Clusters = 200
Preprocess time (pT) = 0.012s
Render time (rT) = 9.018s
Total time (tT) = 9.03s

Number of VPLs = 2000
Number of Bounces(B) = 2
Number of VPL Clusters = 100
Preprocess time (pT) = 0.008s
Render time (rT) = 4.521s
Total time (tT) = 4.529s

Figure 5.3.1: Scenes resulting from the tests, using only VPL clusterization.
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As we can see in the following figure, or rather we cannot see, the image barely
changes, almost the same smoothness in the shadows, so in conclusion this
algorithm helps to relocate the VPLs with a lot more information not affecting the
quality of the image, and reducing the rendering time in a half.

Original VPL Algorithm Implementation VPL clustering Implementation

Number of VPLs = 2000
Number of Bounces(B) = 2
Total time (tT) = 183.1s

Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVPL) = 2
Number of VPL Clusters = 2000
Preprocess time (pT) = 0.049s
Render time (rT) = 91.649s
Total time (tT) = 91.698s

Figure 5.3.2: Image comparing. Scenes resulting from the tests, using only VPL clustering and half of time
reduction.
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5.4 - Results using visual point clusters

As our reference image was the one generated with 2000VPLs and 2 Bounces,
ending with a total of 4000VPLs, in this experiment we are now looking for the perfect
or optimus amount of visible point clusters(VpC). And we will fix the iterations for the
clustering in 4 iterations.

Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVp) = 4
Number of Visible Points Clusters = 100
Preprocess time (pT) = 1.937s
Render time (rT) = 49.481s
Total time (tT) = 51.418s

Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVp) = 4
Number of Visible Points Clusters = 500
Preprocess time (pT) = 9.559s
Render time (rT) = 51.748s
Total time (tT) = 61.307s
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Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVp) = 4
Number of Visible Points Clusters = 1250
Preprocess time (pT) = 23.572s
Render time (rT) = 49.542s
Total time (tT) = 73.114s

Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVp) = 4
Number of Visible Points Clusters = 2600
Preprocess time (pT)= 49.992s
Render time (rT) = 51.701s
Total time (tT) = 101.693s

Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVp) = 4
Number of Visible Points Clusters = 4000
Preprocess time (pT) = 76.966s
Render time (rT) = 53.661s
Total time (tT)= 130.627s

Number of VPLs = 2000
Number of Bounces(B) = 2
K-means iterations (K-mVp) = 4
Number of Visible Points Clusters = 8000
Preprocess time (pT) = 157.899s
Render time (rT) = 53.913s
Total time (tT) = 211.812s

Figure 5.4.1: Scenes resulting from the tests, using VPL, and visible point clustering.

As we expected in this experiment we see a linear time increment in the preprocess,
where we see an improvement of the quality of the image as we raise the amount of
clusters. The final thing that this algorithm needs to compare with an image of only
using VPL and no clustering with the image using visible points clusterization, we
realize that is totally worth it in rendering time. Forward will be explained how this can
be improved. But to have an idea would be using Fuzzy clustering[10], in which each
cluster is influenced with its surrounding clusters, this will make a smoother shadow,
and maintain the good rendering time.

Surprisingly the render time is almost the same always, there are not big differences,
and this is because, at first we thought that the big differences would be when we do
the rendering process, and here the big difference is when we do the clustering of
visible points.
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Even that we did another experiment to see how different is the computational cost of
calculating the visibility and calculating the emission , the material𝑉(𝑥, 𝑠

𝑗
) 𝐼(𝑠

𝑗
,  𝑥)

and the geometry term for each visible point.𝑓
𝑟
(𝑥, ω

𝑖
, ω

𝑜
) 𝐺(𝑥, 𝑠

𝑗
)

The experiment was timing the visibility calculation versus timing the other part of the
rendering equation, using 100 clusters versus 8000 clusters.

The result and the conclusions:

100 clusters 8000 clusters

Visibility𝑉(𝑥, 𝑠
𝑗
) 0.055 seconds 4.559 seconds

Emission 𝐼(𝑠
𝑗
,  𝑥)

Material 𝑓
𝑟
(𝑥, ω

𝑖
, ω

𝑜
)

Geometry term 𝐺(𝑥, 𝑠
𝑗
)

49.203 seconds 50.323 seconds

Table 5.4.2: Time table. Table that shows that calculation of Visibility is 3 times higher than the 3
other terms.

To put that in perspective we need to know the difference of time of each so we did
that:

0,055
𝑠

100
𝑐

=  0. 00055
𝑠/𝑐

49.203
𝑠

262144
𝑐

=  0. 00018
𝑠/𝑣𝑝

0,00055
𝑠/𝑐

0,00018
𝑠/𝑣𝑝

=  3, 05
𝑣𝑝/𝑐

It means that for each visibility we calculate we can calculate 3 Emission𝑉(𝑥, 𝑠
𝑗
)

, 3 Material and 3 Geometry term , so yes there is a𝐼(𝑠
𝑗
,  𝑥) 𝑓

𝑟
(𝑥, ω

𝑖
, ω

𝑜
) 𝐺(𝑥, 𝑠

𝑗
)

difference between them. But the calculations that have to be done to calculate the
visibility of 8000 centroids represent less than 3% of the total sum of calculations that
have to be done in total, so the fact that they are three times more expensive does
not influence too much in the total time spent.

To add to the information explained above, we have to mention a way to reduce the
clustering time, a way not applied in this thesis, which will mean a high total time (tT)
reduction. This can be done while the clustering, of visible points, instead of re assign
all the visible to one centroid in each iteration, we can do the reassignment one each

two visible points, due to the cost of K-means clustering Big O = , it could be a 6𝑛3

times reduction of the time.
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5.5 - Results using VPL clusters and Visible point clusters

With this experiment we intend to see if the use of the two clustering algorithms at
the same time will improve the final time. So far we have been able to verify that the
clustering of visible points gives us a very high rendering speed, but lowers the
quality in the shadows, and the VPL clustering keeps a high quality of the image, and
reduces the rendering time in a half.

So we could think that this would not be the case due to the preprocessing time
generated by the clustering algorithm in visible points, in any case we believe that Its
rendering time together with the improvement in rendering time of the Virtual Point
Lights clustering algorithm will achieve a lower total final time than the others.

Now we will check if one algorithm compensates the other. To be able to do it we are
going to put the parameters of the reference image at 4000VPLs and 2600 clusters
of visible points.

Reference image, Original
VPL Algorithm

VPL clustering
Implementation

VPL clusters and Visible
point clusters

Preprocess time (pT) = 0
Render time (rT) = 183.1s
Total time (tT) = 183.1s

Preprocess time (pT) = 0.049s
Render time (rT) = 91.649s
Total time (tT) = 91.698s

Preprocess time (pT) = 48.934
Render time (rT) = 4.915
Total time (tT) = 53.849

Figure 5.5.1: Scenes resulting from the tests, using VPLs clusters and Visible Point clusters.

As we can well see in figure 5.5.1, the use of clustering algorithms have both
improved the final image synthesis time, since both improve rendering time, and
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although the clustering of visible points has a high time in the preprocess, it is not
high enough to negatively affect the final result.
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Section 6 - Discussion
The goal of this study or project was to learn about global illumination through the
usage of Virtual Point Lights, and try to improve the timings of rendering by applying
K-means which is a clustering method, which aims to partition a set of n observations
into k groups in which each observation belongs to the group whose mean value is
closest.

We started with a base ray tracer, in which we had to familiarize ourselves in the
shortest possible time, in this part it took us a little longer than expected.

Secondly, we implemented the original VPL algorithm, which was implemented
correctly and we got good results with that implementation. Some artifacts that could
be solved lately.

Thirdly we implement the K-means clustering algorithm in different ways, thus
creating a total of 3 more classes.To all this add the implementation of extra classes
to be able to visualize the results, that is, to be able to see the VPLs, the clusters and
their centroids in the scene.

Finally, we performed different tests in order to provide our initial objectives. The tests
consisted of executing the same scene using the greatest possible variety of
parameters, and thus comparing the execution times and the qualities of the resulting
images.

6.1 Limitations
Since we found good results in our tests, it would have been interesting to further test
the model with more complex scenes to render, scenes with larger objects, with
different textures, shapes and more light sources. Although the Cornell box has been
and is very useful for when time is limited and the real need is to do a large number
of tests.

Due to the short deadline we had, it was impossible to perform the tests mentioned
above, but with the ones already done proving that this algorithm is viable to improve
rendering times, the more complex scene test would have been interesting to see
more limitations and maybe some artifacts that can appear due to the algorithm.

6.2 Future work
As mentioned during the explanations of the algorithms and in general in different
parts of the thesis, there are two main items to improve, both would be in the
clustering algorithm, although each one affects it differently.
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One item would be the quality of the shadows, which basically show the clusters too
much, this is because between cluster and cluster the visibility of the VPLs is very
different. Remember that Visibility is only calculated by the centroid and is shared to
the visible points of that same cluster. This could be solved by changing from a strict
clustering algorithm like the one we have used, to one where each element could
belong to more than one cluster, called Fuzzy clustering.

Fuzzy clustering is a class of clustering algorithms where each element has a fuzzy
membership degree to the groups. This type of algorithm arises from the need to
solve a deficiency of exclusive grouping, which considers that each element can be
unequivocally grouped with the elements of its cluster and, therefore, does not
resemble the rest of the elements, in our case this translates into highly differentiated
clusters in the image.

The last item to solve or improve would be the need to reduce the clustering time,
due to the amount of iterations that the clustering have to do to relocate the cluster
center, to improve that, instead of going through all the visible points one by one , we
can do the reassignment one each two visible points, during all the middle iterations,
and in the last one use them all or assign the visible points without cluster to the
cluster of the visible point next to it. The best option would be to use them all in the
last iteration, because assigning a visible point to the cluster of the neighboring
visible point, could cause some artifacts in the image, due to the cost of K-means

clustering it could be a 6 times reduction of the total time of the𝑓(𝑛) = 𝑂(𝑛3) 
clusterization.
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Section 7 - Conclusions

The main objective of this thesis was to make a shader based on the Virtual Point
Lights algorithm, which in itself is already more efficient than the Path tracer, and
improve this shader from a clustering algorithm called K-means, the which has been
used to cluster two different elements, the visible points and the virtual point lights.

In the end, the results showed that we achieved objectives we were aiming for. We
proved that the Virtual Point Light algorithm is a path to follow to improve the timings
of rendering.

Also we proved that a clusterization of different elements in the image helps to
reduce the rendering time by quite a lot, in our case was possible with the K-means
algorithm, which is an algorithm rather thought for big data management and with
that we also proved that we can maintain a good quality of the image even when we
are rendering two times faster than without using clusterization.

Therefore, we can say that the objectives of our Final Grade Thesis have been
successfully achieved.
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