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Abstract

In this memoir we prove a weak version in R2 of Kakutani’s theorem which
gives a solution to the Dirichlet problem.

The Dirichlet problem is a classical problem in partial differential equations
with many applications in various fields. Given a bounded domain D ⊂
Rd and a function f continuous at ∂D, the Dirichlet problem consists in
finding an harmonic function u on D, which matches the values of f on the
boundary.

It is known that for very general domains the solution exists and is unique.

The solution given by Kakutani in 1944 is based in the use of probabilistic
methods, specifically in the properties of Brownian motion, which will play
an important role throughout this memoir.
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Chapter 1

Introduction

The Dirichlet problem is a classical problem in partial differential equations
that arises naturally in the studies of the flow of heat, electricity, fluid
dynamics and many other areas.

The Dirichlet problem. Let D ⊂ Rd be a regular bounded domain and let
f ∈ C(∂D) be a continuous function on the boundary of D. Does there exist a
function u ∈ C2(D) such that {

∆u = 0 in D

u|∂D = f ?

Here ∆u = ∑d
i=1

∂2u
∂x2

i
is the Laplacian in Rd, and the functions u ∈ C2(D) with

∆u = 0 are called harmonic in D.

For the moment we may think that a regular domain is one with nice
boundary; the precise technical conditions will be given later in Chapter
3.

The problem is named for the 19th century mathematicians Peter Gustav
Lejeune Dirichlet, who suggested the first general method for solving this
class of problems. Many prominent mathematicians, such as K.F. Gauss,
Lord Kelvin, B. Riemann and D. Hilbert, worked in this problem.

Nowadays the Dirichlet problem can be solved in a variety of ways. The
classical solution is given in terms of the so-called Poisson Kernel of the
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4 CHAPTER 1. INTRODUCTION

domain (the normal derivative of the Green function), with the help of
Green’s formula.

In this memoir we present, in a modern language, the proof given by Kaku-
tani in 1944, which is based on probabilistic methods, specifically in the use
of Brownian motion.

The Brownian motion in R (or Wiener process) may be thought as a random
continuous trajectory {Bt(ω)|t ≥ 0} starting at 0 and such that:

1) The increments Bt+h − Bt (t ≥ 0, h > 0) follow a Gaussian distri-
bution of mean 0 and variance h, denoted Bt+h − Bt ∼ N(0, h). In
particular Bt ∼ N(0, t).

2) For 0 = t0 ≤ t1 ≤ · · · ≤ tn the increments Btn − Btn−1 , . . . , Bt2 − Bt1

are independent.

Brownian motion in Rd is defined just as Bt = (B1
t , . . . , Bd

t ), where B
j
t

are independent one-dimensional random motions. Therefore Bt in Rd

satisfies properties 1) and 2) above as well, if N(0, h) is interpreted as the
multivariate Gaussian distribution of mean 0 ∈ Rd and covariance matrix
hId.

Brownian motion in Rd can also be viewed as a limit of a random walk on
a lattice ϵnZd as ϵn → 0 (see e.g Chapter 5 in [Y-P]).

A key property of Bt is its lack of memory (Markov’s property, Theo-
rem 3.3): the behaviour of Bt after a fixed time s is the same as a new
Brownian motion starting at the point Bs, regardless of the path taken to
reach Bs.

Another important property of Bt in Rd, given by the independence of the
different Bi

t such that Bt = (B1
t , . . . , Bd

t ), is the isotropy: the density func-
tion of Bt depends only on the distance to 0, ||x||, but not on the direction,
so that the distribution of Bt is isotropic, it is invariant by rotations around
0.

Kakutani’s theorem is stated in terms of Brownian motion starting at a
given point x ∈ Rd. This is just defined as Bx

t = x + Bt, where Bt is the
standard Brownian motion (starting at 0).
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Given a bounded domain D and z ∈ D let τD denote the exiting time of
Bz

t , that is
τD = inf {t > 0| Bz

t /∈ D} .

By the properties of the Brownian motion τD < ∞ almost surely, so that
Bz

τD
is a point of the boundary ∂D with probability one.

Kakutani’s theorem. Let D ⊂ Rd be a bounded regular domain and let f ∈
C(∂D). Then

u(z) = E[ f (Bz
τD
)]

is the unique solution to the Dirichlet problem, that is, u is harmonic in D and
u(ζ) = f (ζ) for all ζ ∈ ∂D.

In this memoir we prove Kakutani’s theorem only for d = 2. We do so
to avoid hiding the main ideas in technicalities. As it will be clear in the
proofs the arguments work as well for any dimension d.

The proof has naturally three parts: showing that u is harmonic in D,
proving that the boundary values of u are f and proving the uniqueness of
the solution.

In order to show that u is harmonic it is enough to prove that it is contin-
uous and satisfies the mean value property. That u is continuous follows
easily from the definition of u and the properties of the Brownian motion.

To prove the mean value property, let x ∈ D and let U = D(x, r) be an
open disk with r > 0, such that U ⊂ D. Let

τU := inf {t > 0|Bx
t /∈ U}

be the first time that Bx
t reaches the boundary ∂U. Then, by the continuity

of Brownian motion clearly τU ≤ τD. In addition, by the isotropy property
mentioned previously, the probability of leaving U through a point ζ ∈ ∂U,
i.e Bx

τU
= ζ, is uniformly distributed over ∂U. In other words, for any

measurable subset A ⊂ ∂U we have

P(Bx
τU

∈ A) =
|A|
|∂U| ,

where | · | denotes the standard Lebesgue measure on ∂U.



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Brownian motion started at z ∈ D, the center of the disk U,
with Bz

τU
= ζ ∈ A ⊂ ∂U.

Since Bx
t has to hit ∂U before hitting ∂D this shows that

u(x) = E[ f (Bx
τD
)] =

1
|∂U|

∫
∂U

E[ f (Bx
τD
)|Bx

τU
= y] dy.

By the lack of memory of Bx
t (Markov’s property) the conditional property

in the integral does not depend on the paths taken to reach y, that is

E[ f (Bx
τD
)|Bx

τU
= y] = E[ f (By

τD)].

This finishes this part of the proof, since then

u(x) =
1

|∂U|

∫
∂U

Ey[ f (By
τD)]dy =

1
|∂U|

∫
∂U

u(y)dy.

The second part of the proof consists in showing that

lim
z→ζ
z∈D

u(z) = f (ζ) ∀ζ ∈ ∂D.

By the hypothesis on D, and since f (ζ) is constant, this is equivalent to

lim
z→ζ
z∈D

Ez[| f (Bz
τD
)− f (ζ)|] = 0. (1.1)
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Fix r > 0 and take the disk D(ζ, r), let τr be the stopping time of Bz
t of the

disk, that is,
τr = inf {t ≥ 0|Bz

t /∈ D(ζ, r)} .

Separating the estimate in cases, depending on whether τr < τD or τr ≥ τD,
we see that

Ez[| f (Bz
τD
)− f (ζ)|] = Ez[| f (Bz

τD
)− f (ζ)|, τr < τD]

+ Ez[| f (Bz
τD
)− f (ζ)|, τr ≥ τD]

≤ 2|̇| f ||∞Pz(τr < τD) + sup
|ζ−η|≤r

η∈∂D

| f (η)− f (ζ)|.

The estimate of the first summand is direct and the estimate of the second
one follows because when τr ≥ τD one has Bz

τD
∈ D(ζ, r).

The probability P(τr < τD) that Bz
t exists D(z, r) before exiting D tends

to 0 as z approaches ζ. Also, by the continuity of f the supreme in the
previous estimate tends to 0 or r tends to 0. This proves (1.1), and u has
boundary values f .

The memoir is essentially devoted to provide the rigorous definitions and
proofs of the sketch given in this introduction.

The first chapter studies harmonic functions. Its main result is that for a
continuous function being harmonic is equivalent to satisfying the mean
value property. Chapter 2 is devoted to introduce Brownian motion and
the properties that are necessary in the proofs. Here we assure many prop-
erties, without proofs, since a serious study of Brownian motion is well
beyond the scope of this work. The main goal of the chapter is to state
and proof the strong Markov property (Theorem 3.3). In the final chapter
we discuss the regularity conditions on D and give the detailed proof of
Kakutani’s theorem.
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Chapter 2

Harmonic functions

In this chapter we define and study some properties of harmonic functions
in R2. We use its close relationship with holomorphic functions in C ≃ R2.

The main goal is to show that for a continuous function the harmonicity
is equivalent to satisfying the mean value property and to prove the Max-
imum Principle. These are the properties that we will need in the proof of
Kakutani’s theorem.

Definition 1. Given a domain D ⊂ Rd, a function f : D −→ Rd is called
harmonic on D if f ∈ C2(D) and verifies Laplace’s equation ∆ f = 0, i.e,

∆ f =
d

∑
i=1

∂2 f
∂x2

i
= 0.

Since we work in R2, we have

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 .

The next result details the relationship between harmonic and holomorphic
functions.

Theorem 2. Let D ⊂ C be a domain, i.e an open, connected set. Then:

1. If F is holomorphic on D the function f = Re F is harmonic on D.

9
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2. If f is harmonic on D and if D is simply connected, then f = Re F for
some function F holomorphic on D. Moreover F is unique up to adding a
constant.

Proof. 1) Let F be a holomorphic function on D and let it f = Re F. Then
we can write F as F = f + ik, and since F is holomorphic it must verify the
Cauchy-Riemann equations {

fx = ky

fy = −kx.

Therefore,
∆ f = fxx + fyy = kyx − kxy = 0,

that is, f is harmonic on D.

2) In order to prove the second statement we must see that if f =Re F for
a holomorphic function F on D, then there exists another function k, called
harmonic conjugate of f , such that F = f + ik is holomorphic in D. Such F
must therefore satisfy the Cauchy-Riemann equations. In particular

Fx = fx + ikx = fx − i fy

Fy = fy + iky = fy + i fx.

Thus F′ is completely determined by h, and since D is simple connected, it
is uniquely determined, up to addition of constants.

Let us see this in more detail. Define g : D −→ R2 by

g = fx − i fy.

Then g ∈ C2(D) and it is holomorphic, since it satisfies the Cauchy-Riemman
equations {

fxx = − fyy

fxy = fyx.

Fix z0 ∈ D and define F : D −→ R2 by

F(z) = f (z0) +
∫ z

z0

g(w)dw,
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where the integral is taken over any path in D from z0 to z; the integral is
independent of the particular path by Cauchy theorem, since D is simply
connected. Then F is holomorphic on D and F′ = g.

Finally let’s see the uniqueness of this function. Given t =Re F we have

tx − ity = F′ = fx − i fy,

and it follows that (t − f )x = 0 and (t − f )y = 0. So t − f is constant on
D and evaluating at z = z0 we have that this constant must be 0. Therefore
t = f , as desired.

We state below some theorems that we will need to prove the uniqueness
in Kakutani’s theorem.

Identity Principle. Let f and g be harmonic functions on a domain D ⊂ C. If
f = g on a non-empty subset U ⊂ D, then f = g throughout D.

Proof. We can suppose without loss of generality that g = 0, which is equiv-
alent to consider the difference between the functions f − g and the con-
stant 0 function.

Set a function F = fx − i fy. Then, as in the proof of Theorem 1, F is
holomorphic on D and also F = 0 on U since f = 0 on U.

Therefore, applying the identity principle for holomorphic functions, it fol-
lows that F = 0 on all D. Then fx = fy = 0, which means that f is constant
and, since f = 0 on U, we have that f = 0 in all D, as we wanted to
prove.

Maximum Principle. Let f be a harmonic function on a domain D ⊆ C.

1. If f has a local maximum in D, then f is constant.

2. If f extends continuously to D and f ≤ 0 on ∂D, then f ≤ 0 on D.

Proof. 1) Suppose that f attains a local maximum at z ∈ D. Then for some
r > 0 we have that f (w) ≤ f (z) for all w in the disk D(z, r).
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By Theorem 1 there exists a function F holomorfic on D(z, r) such that
f =Re F on the disk. So the function |eF| = e f attains a local maximum
at z and, by the maximum principle for holomorphic functions, it follows
that eF must be constant. Then, f is constant on D(z, r), and hence on the
whole D, by Theorem 2.

2) As D is compact, there a point z ∈ D such that

f (z) = max
D

f .

If z ∈ ∂D, then f (z) ≤ 0 by assumption and we see that f ≤ 0 on D.

If z ∈ D, then by 1) we have that f is constant on D, hence on D, and
therefore f ≤ 0 on D.

2.1 The mean value property

In this section we will prove that for continuous functions the harmonicity
is characterized by the mean value property.

Theorem 3. Let f be a harmonic function on a open neighbourhood of the closed
disk D(z, ρ), ρ > 0. Then f verifies the mean-value property in ∂D(z, ρ), i.e

f (z) =
1

2π

∫ 2π

0
f (z + ρeiθ)dθ.

Proof. Let us choose r > ρ so that f is harmonic on the open disk D(z, r).
Then, applying Theorem 1, there exists a holomorphic function F such that
f =Re F on the disk. By the Cauchy’s integral formula it follows that

F(z) =
1

2πi

∫
|ζ−z|=ρ

F(ζ)
ζ − z

dζ =
1

2π

∫ 2π

0
F(z + ρeiθ)dθ.

Taking the real part on both sides of the equation we finally see that

f (z) = Re F(z) =
1

2π

∫ 2π

0
Re F(z + ρeiθ)dθ =

1
2π

∫ 2π

0
f (z + ρeiθ)dθ.
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Finally, let us prove the equivalence between harmonicity and the mean-
value property.

Theorem 4. Let f be a harmonic function in a domain D ⊆ C. Then, the follow-
ing statements are equivalent:

1. f is continuous on D and it satisfies the mean value property.

2. f ∈ C∞(D) and ∆ f = 0, i.e, f is harmonic.

Proof. Notice that the implication 2) =⇒ 1) is direct by Theorem 3.

Thus, assume that 1) holds, i.e, that for D(z, ρ) ⊆ D

f (z) =
1

2π

∫ 2π

0
f (z + ρeiθ)dθ.

The proof of 2) will consist in two parts: showing that f ∈ C∞(D) and
proving that ∆ f = 0.

Let us start proving that f ∈ C∞. Choose a radial function ϕ ∈ C∞(R) such
that:

(a) supp ϕ ⊆ [0, ϵ],

(b) ϕ > 0 in t ∈ (0, ϵ),

(c)
∫ ϵ

0 ϕ = 1.

Then we fix z ∈ D and we consider the following integral, which as we
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shall see approximates f (z):∫
R2

ϕ(|z − w|2) f (w)dw =
∫

R2
ϕ(|u|2) f (u + z)du

=
∫ ∞

0

∫ 2π

0
ϕ(r2) f (z + reiθ)rdθdr

=
∫ ∞

0
ϕ(r2)r

∫ 2π

0
f (z + reiθ)dθdr

(2.1)

where we made the change to polar coordinates around z. Since, by as-
sumption, f satisfies the mean value property we have that∫ 2π

0
f (z + reiθ)dθ = 2π f (z),

so we can rewrite the first integral (2.1) as∫
R2

ϕ(|z − w|2) f (w)dw = 2π f (z)
∫ ∞

0
ϕ(r2)rdr = π f (z)

∫ ∞

0
ϕ(t)dt

= π f (z)
∫ ϵ

0
ϕ(t)dt = π f (z).

Then
f (z) =

1
π

∫
R2

ϕ(|z − w|2) f (w)dw.

Observe that ϕ(|z − w|2) ∈ C∞ in the variable z ∈ D, so that f (z) is in-
finitely differentiable and

dk f (z)
dzk =

dk

dzk
1
π

∫
R2

ϕ(|z − w|2) f (w)dw =
1
π

∫
R2

dkϕ(|z − w|2)
dzk f (w)dw,

for any k ≥ 1.

This is because we are in the conditions of the differentiation theorem un-
der the integral sign. Let g(z, w) = 1

π ϕ(|z − w|2) f (w), so that

f (z) =
∫

R2
g(z, w)dw.

Denoting M = max ϕ, and since the support of ϕ(|z − w|2) is contained in
D(z,

√
ϵ), we have

|g(z, w)| ≤ MXD(z,
√

ϵ)(w)| f (w)| ≤ MXD(z,
√

ϵ)(w) max
|w−z|<

√
ϵ
| f (w)|
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and

|dg(z, w)

dz
| = (max |ϕ′(w)|)|z − w|| f (w)|XD(z,

√
ϵ)(w)

≤ (max |ϕ′(w)|)
√

ϵ( max
|w−z|<

√
ϵ
| f (w)|)XD(z,

√
ϵ)(w).

Observe that the right hand side of these two estimates gives a function
which is trivially integrable in a neighbourhood of any fixed z0 ∈ C. There-
fore, we can apply the differentiation theorem.

It remains to show that ∆ f = 0 when f ∈ C∞(D) and it verifies the mean
value property. We do so by applying Green’s theorem.

Green’s theorem. Let U ⊆ R2 be a simply connected region with a positively
oriented curve boundary ∂U. If F = (P, Q) : U −→ R2 is a vector field with
continuous partial derivatives in an open region containing U, then∮

∂U
Pdx + Qdy =

∫∫
U
(

dQ
dx

− dP
dy

)dm

where m denotes the Lebesgue measure in R2.

Take U = D(z, r), the disk of center z ∈ D and radius r > 0 and define
F = (P, Q) as follows: {

P = −d f
dy

Q = d f
dx .

Then

∆ f =
d2 f
dx2 +

d2 f
dy2 = Qx − Py.

Writing x and y in polar coordinates around z = (x0, y0) we have{
x − x0 = r cos θ

y − y0 = r sin θ

{
dx = −r sin θdθ

dy = r cos θdθ.
(2.2)

It follows that {
r =

√
(x − x0)2 + (y − y0)2

θ = arctan y−y0
x−x0
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and therefore 
dθ
dx = −(y−y0)

(x−x0)2+(y−y0)2 = − sin(θ)
r

dθ
dy = x−x0

(x−x0)2+(y−y0)2 = cos(θ)
r .

Since on ∂D(z, r) the radius is constant we deduce that dr
dx = dr

dy = 0.

Then, by chain rule, we can write d f
dx and d f

dy as follows:

d f
dx

=
d f
dθ

dθ

dx
= −d f

dθ

sin(θ)
r

d f
dy

=
d f
dθ

dθ

dy
=

d f
dθ

cos(θ)
r

.
(2.3)

Seen this, we proceed to compute the integral of ∆ f on D(z, r) by applying
Green’s theorem. By (2.2) and (2.3).∫∫

D(z,r)
∆ f dxdy =

∫
∂D(z,r)

−d f
dy

dx +
d f
dx

dy =
∫

∂D(z,r)
(−d f

dy
,

d f
dx

)(dx, dy)

=
∫ 2π

0
(−d f

dθ

cos(θ)
r

,−d f
dθ

sin(θ)
r

)(−r sin θdθ, r cos θdθ)

=
∫ 2π

0
(cos θ sin θ − sin θ cos θ)dθ = 0.

(2.4)

It remains to see that if
∫∫

D(z,r) ∆ f dxdy = 0 for all z ∈ R2 and r > 0 then
necessarily ∆ f ≡ 0.

Since f ∈ C∞(D), we have in particular that ∆ f is continuous on D. If
∆ f ̸= 0 somewhere on D, then there exists a point x0 ∈ D and r0 > 0 with
D(x0, r0) ⊂ D where ∆ f > 0. However, that means that∫∫

D(z0,r0)
∆ f dxdy > 0,

which contradicts (2.4).



Chapter 3

Brownian motion

In this chapter we define Brownian motion and gather some of its proper-
ties, emphasizing the ones we will use in the proof of Kakutani’s theorem.
We also prepare concepts and results related to the strong Markov prop-
erty, whose consequence is the lack of memory of a Brownian motion.

The main goal of the chapter is to show that Brownian motion, with a
stopping time for an open or bounded set, satisfies the Strong Markov
property Theorem 3.3, which will be crucial in order to prove Kakutani’s
theorem.

3.1 Brownian motion

There are many ways to define Brownian motion. Here we choose the so-
called canonical model: In order to define the probability space (Ω,F , P),
consider first

Ω = C0[0, ∞) := {ω : [0, ∞) → R| ω is continuous and ω(0) = 0} .

For each t ∈ [0, ∞) fixed consider also the random variables

Bt : Ω −→ R defined by Bt(ω) := ω(t).

Observe that Bt is continuous in t and that B0(ω) = 0 for all ω ∈ Ω.

Let B(R) denote the Borel σ-algebra in R, that is, the σ-algebra generated

17



18 CHAPTER 3. BROWNIAN MOTION

by the open subsets of R. Then we define F as the σ-algebra of subsets of
R generated by B−1

t (A), with A ∈ B(R) and t ∈ [0, ∞).

Finally, let P be the unique probability measure on (Ω,F ) such that:

1. P(B0(ω) = 0) = P(ω(0) = 0) = 1.

2. For any 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the increments

Btn − Btn−1 , Btn−1 − Btn−2 , . . . , Bt2 − Bt1 , Bt1

are independent random variables.

3. For all t ≥ 0 and h > 0 we have

Bt+h − Bt ∼ N(0, h),

where N(0, h) denotes the standard normal distribution with mean 0
and variance h. In particular Bt ∼ N(0, h).

We recall here that a continuous random variable X is called normal of
mean µ and variance σ2, denoted X ∼ N(µ, σ2), if its density function is

fX(x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

, x ∈ R.

Remark 3.1. The construction of this probability P is far from trivial, but
it is well-known and can be found in many references (see e.g [Krot] or
[Y-P]). In any case, it is by no means in the scope of this memoir.

Definition 5. The one-dimensional standard Brownian motion is the 4-tuple

(Ω,F , P, {Bt|t ∈ [0, ∞)}).

Remark 3.2. In almost every case dealing with Brownian motion we have
to consider a general starting point x ∈ R, which can be different from 0.
For that reason, we define the Brownian motion starting at a point x as

Bx
t := Bt + x.

This satisfies conditions 2) and 3) above, and has Bx
0 = x almost surely.

Moreover, we define the corresponding probabilities Px also by translating
P:

Px(A) := P((t 7−→ Bt + x) ∈ A) A ∈ F .
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One may think of Brownian motion as a random path starting at 0 and
governed by the probability distribution P, which is what really determines
its behaviour.

In order to study the properties of stopping times and prove the strong
Markov property we need the notion of filtration adapted to the Brownian
motion.

Definition 6. A filtration (Ft)t≥0 is an increasing family of sub-σ-algebras Ft of
the σ-algebra F .

In our case it would be natural to choose, for each t ≥ 0, the smallest
σ-algebra for which all the variables {Bs|s ≤ t} are measurable, denoted
by F 0

t . Intuitively, we can interpret F 0
t as the information that we have

of {Bt|t ≥ 0} up to time t. However, the filtration (F 0
t )t≥0 is not right-

continuous and we will need continuity in some proofs.

Instead define
Ft :=

⋂
r>t

F 0
r =

⋂
s>t

(
⋂
r>s

F 0
r ) =

⋂
s>t

Fs.

3.1.1 Brownian motion basic properties

In this section we recall several properties of Brownian motion. Some of
them are introduced just to have a better intuition of how Bt behaves, and
are not proved. We emphasize (and prove) the ones we use in the proof of
Kakutani’s theorem.

1. Almost surely, for all 0 < a < b < ∞, Brownian motion is not mono-
tone on the interval [a, b]. Roughly speaking, Bt goes back and forth
all the time.

2. Almost surely Brownian motion is not differentiable at any t ≥ 0.

3. Law of larges numbers: almost surely,

lim
t→∞

Bt

t
= 0.

This property, shows that t goes to infinity before Brownian motion.

4. Scaling invariance: suppose {Bx
t |t ≥ 0} a Brownian motion starting
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at x ∈ R and let a > 0. Then {Xt|t ≥ 0} defined by Xt =
1
a Ba2t is also

a Brownian motion starting at x.

5. Levy’s modulus of continuity: almost surely,

lim
h→0

sup
t∈[0,1−h]

|Bt+h − Bt|√
2h log( 1

h )
= 1.

6. It α ∈ (0, 1
2), then, almost surely, for any t ≥ 0 exist ϵ > 0 and c > 0

such that

|Bt − Bs| ≤ c|t − s|α

for any s ≥ 0 with |t − s| < ϵ

In order to work in R2 we define d-dimensional Brownian motion.

Definition 7. The Brownian motion in Rd, still denoted {Bt| t ≥ 0}, is defined
as

Bt = (B1
t , B2

t , . . . , Bd
t )

where Bi
t, i ∈ {1, . . . , d} , are independent one-dimensional Brownian motions.

Similarly, the Brownian motion in Rd starting at x = (x1, . . . , xd) is Bx
t =

(B1
t , B2

t , . . . , Bd
t ), where B

xi
t are one-dimensional independent Brownian motions

starting at xi ∈ R.

Remark 3.3. As we define Brownian motion in R2, we have Bt = (B1
t , B2

t )

where B1
t , B2

t are independent one-dimensional Brownian motions. Ob-
serve that then Bt ∼ N(0, t), where now N(0, t) is the 2-dimensional Gaus-
sian of mean 0 and covariance matrix tId, that is, the Gaussian distribution
with density: for w = (x, y) ∈ R2

F(w) = F(x, y) =
1√

2π(t)
e−

x2
2(t)

1√
2πt

e−
y2
2t =

1
2πt

e−
1
2

x2+y2
t .

Similarly for w ∈ R2 and Bz
t ∼ N(z, t), the density function is

Fz(w) =
1

2πt
e−

1
2
|w−z|2

t . (3.1)
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From now on Bz
t will always denote a two-dimensional Brownian motion

starting at z = (x, y) ∈ R2.

Observe that F(x, y) above depends only on the distance from (x, y) to 0.
This leads to an important property, which will be used in the proof of
Kakutani’s theorem.

Lemma 3.4 (Isotropy of Brownian motion). Let U = D(z, r), with r > 0, be
a disk centered at z ∈ R2 and let Bz

t be a Brownian motion started at the center of
the disk. Then, the probability that Bz

t leaves U is uniformly distributed over ∂U,
i.e, if ζ ∈ ∂U denotes the first point of ∂U hit by Bz

t and A ⊂ ∂U is measurable,
then

Pz(ζ ∈ A) =
|A|
|∂U| ,

where | · | denotes the Lebesgue measure on ∂U.

Proof. By Remark (3.1) this probability is invariant by rotations, so it must
be the normalized measure on ∂U.

Figure 3.1: Brownian motion started at the center of the disk U, with Bz
τU

=

ζ ∈ A ⊂ ∂U. The set A has green color.
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3.1.2 Preliminaries for the strong Markov’s property

We begin here the preparations to state and prove the strong Markov prop-
erty. We also state some other results related to the fact that Brownian
motion has no memory.

Markov’s property of memory loss intuitively can be understood as the fact
that the future behaviour of a Brownian motion {Bx

t |t ≥ 0}, with x ∈ R,
that at time s > 0 is at point y (Bx

s = y) does not depend on the path Bx
t ,

t < s. Moreover, for time t > s its behavior is equivalent to a new Brownian
B

y
t starting from y. In other words, it means that the path before we get to

a point is irrelevant in what follows.

Theorem 8 (Weak Markov’s property). Let {Bx
t |t ≥ 0} be a Brownian motion

starting at x ∈ R2. Given s > 0, the process
{

Bx
t+s − Bx

s |t ≥ 0
}

is a Brownian
motion starting at the origin, which is independent of the process {Bx

t |0 ≤ t ≤ s}.

Proof. First let us see that Xt = Bx
t+s − Bx

s verifies the conditions of Brown-
ian motion (see Section 3.1):

• Xt is continuous in t because it is the subtraction of continuous func-
tions.

• For t = 0 we have X0 = Bx
s − Bx

s = 0.

• Given t, s, h ≥ 0

Xt+h − Xt = Bx
t+s+h − Bx

s − (Bx
t+s − Bx

s )

= Bx
t+s+h − Bx

t+s ∼ N(0, t + s + h − (t + s)) = N(0, h).

• For 0 = t0 ≤ t1 ≤ · · · ≤ tn

Xti − Xti−1 = Bx
ti+s − Bx

s − (Bx
ti−1+s − Bx

s )

= Bx
ti+s − Bx

ti−1+s,

so the increments Xtn − Xtn−1 , . . . , Xt1 − Xt0 are independent.

Remark 3.5. Notice that the fact that the increments
{

Bx
t+s − Bx

s |t ≥ 0
}

are
also a new Brownian motion means that the information of Bx

t at time
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t < s is irrelevant to the future, since its behavior corresponds to a new
Brownian. In other words, as a consequence of Theorem 8 we have that
Bx

t+s − Bx
s is independent of the filtration F 0

s .

The next result tells us a little bit more than Theorem 8: it proves that
Bx

t+s − Bx
s is actually independent of Fs as well.

Theorem 9. For all s ≥ 0 the process
{

Bx
t+s − Bx

s | t ≥ 0
}

is independent of
Fs =

⋂
r>s F 0

r .

Proof. Take {sn}n decreasing to s. By continuity

Bx
t+s − Bx

s = lim
n→∞

(Bx
t+sn − Bx

sn).

Since {sn}n decreases to s and Fs =
⋂

r>s F 0
r ⊆ F 0

sn , we have that Bx
t+sn

−
Bx

sn is independent of F 0
sn (Remark 3.5), which means that it is independent

of Fs as well.

Also, by Remark 3.5 for all t1, . . . , tm ≥ 0 the vector

(Bx
t1+s − Bx

s , . . . , Bx
tm+s − Bx

s ) = lim
j→∞

(Bx
t1+sj

− Bx
sj

, . . . , Bx
tm+sj

− Bx
sj
)

is independent of Fs. Then by continuity, the process
{

Bx
t+s − Bx

s | t ≥ 0
}

is independent of Fs too.

A consequence of the previous result is the following:

Blumenthal’s 0–1 law. Let x ∈ R2 and A ∈ F0. Then Px(A) is either 0 or 1.

Proof. Applying the previous theorem with s = 0 we have that Bx
t − Bx

0 is
independent of F0 =

⋂
r>0 F 0

r , hence A ∈ F0 is independent of itself.

Therefore
P(A) = P(A ∩ A) = P(A)P(A).

This is only possible if P(A) is either 0 or 1.

3.2 Stopping times

In this section we deal with stopping times and some of their properties, in
particular those which are used in the proofs of the strong Markov property
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and of Kakutani’s theorem.

Definition 10. A random variable τ : Ω −→ [0, ∞) is called a stopping time
with respect to the filtration (Ft)t≥0 if {τ ≤ t} ∈ Ft for all t ≥ 0.

Notice that one example are the constant variables τ(ω) = s, which deter-
mine a stopping time because {s ≤ t} ∈ Ft for all t ≥ 0.

There is another example of stopping time that we will work with called
hitting time. The hitting time for a set D ⊆ R2 is the first time that a
Brownian motion hits D and we denote it as τD.

Lemma 11. Let D ⊂ R2 be an open set and define τD = inf {t > 0|Bt ∈ D}.
Then τD is a stopping time.

Proof. We need to see that
{

τD ≤ t
}
∈ Ft for all t ≥ 0, and for that, it is

sufficient to show that {
τD < t

}
∈ Ft for all t ≥ 0.

Take the countable set Q ∩ (0, t); then by continuity of Brownian motion
we have {

τD < t
}
=

⋃
s∈Q∩(0,t)

{Bs ∈ D} ∈ Ft.

Stopping times are stable by increasing limits.

Proposition 3.6. Let (τn)n be an increasing sequence of stopping times converg-
ing to τ. Then τ is a stopping time.

Proof. Let us fix t and let us prove that {τ ≤ t} ∈ Ft. That the sequence
increases implies that τn ≤ τ and, since limn→∞ τn = τ,

{τ ≤ t} =
∞⋂

n=1
{τn ≤ t} ∈ Ft.
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Next we prove the analogue of Lemma 11 for the hitting time of a closed
set.

Proposition 3.7. Let H ⊂ R2 be a closed set and define τH = inf {t ≥ 0|Bt ∈ H}.
Then τH is a stopping time.

Proof. Define the open set

G(n) =
{

x ∈ R2| ∃y ∈ H with |x − y| < 1
n

}
=

{
x ∈ R2|d(x, H) <

1
n

}
.

Since H is closed we have that

H =
∞⋂

n=1

G(n).

Consider now the hitting times of the open set G(n): τn = τG(n). By
Lemma 11 these τn are stopping times. Then, by proposition Proposi-
tion 3.6 the limit is also a stopping time, since clearly τn increases to τH.
Since

τH = inf

{
t ≥ 0|Bt ∈

∞⋂
n=1

G(n)

}
= inf {t ≥ 0|Bt ∈ H} ,

the proof is finished.

In the proof of Kakutani’s theorem we use exiting times, instead of hitting
times. The exiting time of D ⊆ R2 is just the hitting time of the comple-
mentary Dc, therefore it is well defined for both open and closed sets. We
denote

τD = τDc
= {t ≤ 0|Bt /∈ D} .

Remark 3.8. Given two sets, open or closed, such that A ⊂ B in R2, their
respective exiting times τA and τB satisfy τA ≤ τB.

3.2.1 Regularity of some stopping times

The next proposition bounds the exiting times of sets of finite measure and
will be useful in Chapter 3.
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Proposition 3.9. For an open or closed subset U ⊂ R2 with Lebesgue measure
m(U), we have

Pz(τU > t) ≤ m(U)

2πt
, t ≥ 0.

In particular, if m(U) < ∞, then

Pz(τU = ∞) = lim
t→∞

Pz(τU > t) = 0.

Proof. If τU > t, then Bz
t ∈ U and therefore {τU > t} ⊂ {Bz

t ∈ U}. Hence,
since Bz

t ∼ N(z, t) has density given by (3.1):

Pz(τU > t) ≤ Pz(B
z
t ∈ U) =

∫
U

e
−||z−y||2

2t

2πt
dy ≤

∫
U

1
2πt

dy =
m(U)

2πt
,

as desired.

Remark 3.10. The closure of a bounded open set D is always in a disk. That
implies that it has finite measure, and therefore a Brownian motion starting
at z ∈ D leaves D in finite time with probability 1. (This also proofs that Bz

t
goes to infinity with probability 1, since it leaves any disk D(0, n), n ≥ 1).

A technical property of stopping times, required in the proof of Kakutani’s
theorem, is that of upper semicontinuity. One might think that the function
h(t) = P(τD > t), for a given domain D, is always continuous. It turns
out that there are domains with irregular points where the function does
strange things. Fortunately, we can ensure its semicontinuity.

Definition 12. A real-valued function h : R2 −→ R is upper semi continuous at
a point z ∈ R2 if

lim sup
x→z

h(x) ≤ h(z).

Analogously, it is lower semi continuous if

lim inf
x→z

h(x) ≥ h(z).

The specific property that we will need is the following.

Lemma 13. Let ( fn)n∈N be an increasing sequence of continuous functions in R2

such that
lim

n→∞
fn(z) = f (z), z ∈ R2.
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Then, f is lower semi continuous for all z ∈ R2, meaning that

lim inf
x→z

f (x) ≥ f (z), z ∈ R2.

Proof. Since ( fn)n∈N is increasing, it holds that f (z) ≥ fm(z) for all m ∈ N

and z ∈ R2. Given a fixed z ∈ R2 and m ∈ N, it follows that

lim inf
x→z

f (x) ≥ lim inf
x→z

fm(x) = fm(z).

as desired.

Lemma 14. Let D ⊂ R2 be a domain. For any fixed t > 0 the function f (x) =
Px(τD ≤ t) is lower semi continuous on R2.

Proof. We want to prove that for all z ∈ R2

lim inf
x→z

Px(τD ≤ t) ≥ Pz(τD ≤ t).

We will construct an increasing sequence of continuous functions that con-
verges pointwise to Px(τD ≤ t) and then apply the previous lemma (Lemma 13).
Fix 0 < s < t. By the Markov property (Theorem 8), we can write

Px(∃u ∈ (s, t] : Bx
u ∈ Dc) = Ex[Px(∃u ∈ (0, t − s] : Bx

u+s ∈ Dc|Fs)]

= Ex[PBx
s (∃u ∈ (0, t − s] : B

Bx
s

u ∈ Dc]

= Ex[PBx
s (τD ≤ t − s)],

where Ex denotes the expectation of a Brownian motion started at x mea-
sured by Px.

This expectation can be expressed as the integral of the conditional expec-
tations given that Bx

s = y, for y ∈ R2. Since Bx
s ∼ N(x, s) has density



28 CHAPTER 3. BROWNIAN MOTION

function given by (3.1), we get

Ex[PBx
s (τD ≤ t − s)] =

∫
Ω

PBx
s (τD ≤ t − s)dP

=
∫

Ω

∫
R2

PBx
s (τD ≤ t − s|Bx

s = y)Fx(y)dydP

=
∫

Ω

∫
R2

Py(τD ≤ t − s)Fx(y)dydP

=
∫

R2
Py(τD ≤ t − s)Fx(y)dy

=
∫

R2

1
2πs

e−
|x−y|2

2s Py(τD ≤ t − s)dy.

Since the right hand side of the equation is continuous in x, then the left
side is continuous as well.

It remains to show that Px(τD ≤ t) is the increasing limit

lim
s→0

Px(∃u ∈ (s, t] : Bu ∈ Dc).

Take a sequence (sn)n∈N such that sn ↘ 0 as n → ∞, and note that the
sequence of sets (An)n∈N defined by An := {∃u ∈ (sn, t]|Bu ∈ Dc}, is in-
creasing to τD and

{τD ≤ t} = {∃u ∈ (0, t]|Bu ∈ Dc} =
⋂

n∈N

An.

By the continuity of the measure Px it follows that

lim
n→∞

Px(An) = Px(τD ≤ t),

and by Lemma 13 the function f (x) = Px(τD ≤ t) is lower semi continu-
ous.

Remark 3.11. A reformulation of the previous Lemma 14 is that

Pz(τD > t) = 1 − Pz(τD ≤ t)

is upper semicontinuous, that is,

lim sup
x→z

Px(τD > t) ≤ Pz(τD > t).
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3.3 Strong Markov’s property

As we have seen, Brownian motion has no memory (Theorem 8 and Theo-
rem 9), meaning that for a Brownian motion Bz

t that passes across a point
y at a given time s, the following path of this motion will have the same
distribution as B

y
t−s. Here we prove the same result as in Theorem 8, but

when the time s is randomized.

Let us observe that a stopping time τ can be discretized in the following
way: let

τn =
m + 1

2n if τ ∈ [
m
2n ,

m + 1
2n ) m ∈ Z. (3.2)

Then, by construction 0 ≤ τn − τ ≤ 1
2n .

Strong Markov’s property. For any τ finite stopping time, the process

{Bτ+t − Bτ|t ≥ 0}

is a Brownian motion independent of Fτ.

Proof. We will first see the independence for the Brownian motion defined
with the discretization (τn)n of τ, so that passing to the limit we will have
the independence for the τ case. Then, we will finish the prove by showing
that the that Brownian motion passing to the limit is also Brownian motion.

We begin by using the discretization τn defined in (3.2) to define the fol-
lowing processes. Let Bk =

{
Bk

t |t ≥ 0
}

where

Bk
t = Bt+ k

2n
− B k

2n
,

and let B∗ = {B∗
t |t ≥ 0} be defined by

B∗
t = Bt+τn − Bτn .

It is immediate to see that Bk
t and B∗

t verify the Brownian motion proper-
ties detailed in Section 3.1.

We want to see here that B∗
t is independent of Fτn . It will be enough to see

that for all t ≥ 0, A ∈ F and E ∈ Fτn

P({B∗ ∈ A} ∩ E) = P({B∗ ∈ A})P(E).
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Since
{

Bk ∈ A
}

is independent of E ∩
{

τn = k
2n

}
∈ F k

2n
, by Theorem 9

with time s = k
2n , we have that

P({B∗ ∈ A} ∩ E) =
∞

∑
k=0

P(
{

Bk ∈ A
}
∩ E ∩

{
τn =

k
2n

}
)

=
∞

∑
k=0

P(
{

Bk ∈ A
}
)P(E ∩

{
τn =

k
2n

}
).

Moreover, by the Weak Markov property (Theorem 8) we have that inde-
pendently of k, P(

{
Bk ∈ A

}
) = P({Bt ∈ A}) = P({B∗ ∈ A}), so

∞

∑
k=0

P(
{

Bk ∈ A
}
)P(E ∩

{
Tn =

k
2n

}
) = P({Bt ∈ A})

∞

∑
k=0

P(E ∩
{

τn =
k

2n

}
)

= P({B∗ ∈ A})
∞

∑
k=0

P(E ∩
{

τn =
k

2n

}
).

We can rewrite the discrete summation as
∞

∑
k=0

P(E ∩
{

τn =
k

2n

}
) = P(E),

so it follows that

P({B∗ ∈ A} ∩ E) = P({B∗ ∈ A})P(E).

We have seen that B∗ is a Brownian motion independent of the filtration
Fτn and now we will see this for time τ.

Since τn ≥ τ and (τn)n converges to τ as n → ∞, we have Fτn ⊃ Fτ and

Bs+t+τ − Bt+τ = lim
n→∞

Bs+t+τn − Bt+τn . (3.3)

Notice that we define B∗ as Bs+t+τ −Bt+τ, which is a Brownian motion in-
dependent of Fτn and Fτn ⊃ Fτ, that is, {Bt+τ − Bτ|t ≥ 0} is independent
of Fτ.

To finish the proof, it only remains to show that {Bt+τ − Bτ|t ≥ 0} is a
Brownian motion, but this is routinary. Let be Xt = Bt+τ − Bτ. We have to
see that Xt verifies the conditions of Brownian motion (see Section 3.1):
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1. For t = 0 we have X0 = Bτ − Bτ = 0.

2. Given t, s, h ≥ 0

Xt+s − Xt = Bτ+t+s − Bτ − (Bτ+t − Bτ)

= Bτ+t+s − Bτ+t

which follows a normal distribution N(0, s).

3. For 0 = t0 ≤ t1 ≤ · · · ≤ tn

Xti − Xti−1 = Bti+s − Bs − (Bti−1+s − Bs)

= Bti+s − Bti−1+s,

so we get the increments Xtn − Xtn−1 , . . . , Xt1 − Xt0 are independent.
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Chapter 4

Kakutani’s theorem

In this final chapter we give the detailed proof of Kakutani’s theorem. We
begin with a discussion about the domains where the Dirichlet problem
can be solved.

4.1 Regular domains

The Dirichlet problem has solution for most bounded domains D ⊂ R2 but
not all. If the boundary ∂D isn’t good enough and has complicated parts
is not possible to solve it.

Definition 15. Let D ⊂ R2 be an open set and let ζ ∈ ∂D. The point ζ is called
regular if Pζ(τD = 0) = 1. The domain D is regular if all points ζ ∈ ∂D are
regular.

Remark 4.1. By Blumenthal‘s 0-1 law (Section 3.1.2), the probability of the
event {τD = 0} ∈ F0 must be 0 or 1. Therefore Pζ(τD = 0) > 0 is equiva-
lent to Pζ(τD = 0) = 1.

Unfortunately, there is no clear geometrical description of regular points
or domains. We state a rather general geometrical condition that implies
regularity.

Definition 16. A point ζ ∈ ∂D satisfies the truncated cone condition if there
exists a truncated cone V with vertex at ζ such that V ⊂ Dc.

33



34 CHAPTER 4. KAKUTANI’S THEOREM

Figure 4.1: Domain verifying the cone condition at the point ∂(x).

Proposition 4.2. If D satisfies the cone condition at ζ ∈ ∂D, then ζ is a regular
point of ∂D.

Proof. As pointed out in Remark 4.1, it is enough to show that Pζ(τD =

0) > 0. Let V be a cone contained in Dc with vertex ζ. Since t ≤ τD implies
B

ζ
t ∈ D notice that

Pζ(t > τD) ≥ Pζ(B
ζ
t /∈ D) ≥ Pζ(B

ζ
t ∈ V ∩ D(ζ, r))

Figure 4.2: The orange colour is V ∩ D(ζ, r) and the red V ∩ ∂D(ζ, r).

where r > 0. Then, due to the Brownian motion isotropy (Lemma 3.4), we
can rewrite the last term in the following way. Let m denote the Lebesgue
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measure in R2; then

Pζ(B
ζ
t ∈ V ∩ D(ζ, r)) =

m(V ∩ ∂D(ζ, r))
m(∂D(ζ, r))

Pζ(B
ζ
t ∈ D(ζ, r)),

where C(V) := m(V∪∂D(ζ,r))
m(∂D(ζ,r)) is a positive constant. Then

Pζ(t > τD) ≥ C(V)Pζ(B
ζ
t ∈ D(ζ, r)).

By the previous remark, it remains to see that Pζ(B
ζ
t ∈ D(ζ, r)) is bounded

below by a positive constant. To prove it, we will use that B
ζ
t ∼ N(ζ, t) and

write the density function Fζ(w) of (3.1) in polar coordinates:

Pζ(B
ζ
t ∈ D(ζ, r)) =

∫ r

0

∫ 2π

0

1
2πt

e−
ρ2
2t ρdθdρ =

∫ r

0

1
t

e−
ρ2
2t ρdρ

=
∫ r√

t

0
e−

u2
2 udu = 1 − e−

r2
2t .

This tends to 1 as t → 0, as desired. Thus, passing to the limit as t tends to
zero, it follows that

Pζ(τD = 0) = Pζ(
∞⋂

n=1

{
τD <

1
n

}
) = lim

n→∞
Pζ(τD <

1
n
)

≥ lim
n→∞

C(V)Pζ(B
ζ
1
n
∈ D(ζ, r)) = C(V) > 0.

Let us see some examples of domains satisfying (or not) the cone condition:

1. Convex domains are regular. For every ζ ∈ ∂D, for D convex, there
exists a line through ζ (tangent to D) so that D is on one side of the
line. Any cone V on the other side proves that ζ is regular.

2. The punctured disk Ω = D\ {0} is clearly not regular at z = 0:
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3. The open set D = D(1, 1) ∪ D(−1, 1) does not verify the cone condi-
tion at z = 0. Notice that there is only one tangent line to D through
0 and therefore is not possible to let it be the vertex of a truncated
cone in Dc:

4.2 Proof of Kakutani’s theorem

Let us recall the statement.

Kakutani’s theorem. Let D ⊂ R2 be a bounded regular domain and let f ∈
C(∂D). Then

u(z) = Ez[ f (Bz
τD
)]

is the unique solution to the Dirichlet problem with data function f , that is{
∆u = 0 in D,

u|∂D = f .

Proof. First we shall to prove that u(z) is harmonic and that its boundary
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values, u(ζ), ζ ∈ ∂D, coincide with f (ζ). We will finish by proving the
uniqueness.

1. u is harmonic:
First, notice that f (Bz

τD
) is continuous at any z ∈ D, since it is composed

by Bz
τD

∈ ∂D, which is continuous by definition, and f continuous at the
boundary points of D. So, as the expectation of a continuous function is
continuous, u(z) = Ez[ f (Bz

τD
)] is continuous.

Since u(z) is continuous its enough to check the mean value property (see
Theorem 4).

Thus, given z ∈ D and U = D(z, r) a disk centered in z and such that
U ⊆ D, we want to prove that:

u(z) = E[ f (Bz
τD
)] =

1
|∂U|

∫
∂U

E[ f (Bw
τD
)]|dw| = 1

|∂U|

∫
∂U

u(w)|dw|,

where |dw| indicates the arc length of ∂U.

Consider the exiting time of U,

τU = inf {t > 0|Bz
t /∈ U}

( see Lemma 11 and 3.2). Since U ⊂ D we have τU < τD < ∞ almost surely
(see Remark 3.8 and Proposition 3.9).

By the isotropy (Lemma 3.4) at the Brownian motion, the probability that
Bz

τD
leaves U through A ⊂ ∂U is uniformly distributed in ∂U, that is:

Pz
(
Bz

τU
∈ A

)
=

|A|
|∂U| .

Then, since Bz
t has to leave U before leaving D, we can write:

u(z) = E[ f (Bz
τD
)] =

∫
∂U

E[ f (Bz
τD
)|Bz

τU
= w]

|dw|
|∂U|

By the strong Markov property (Theorem 3.3) the distribution of Bz
t after

hitting ∂U at a point w ∈ ∂U is the same as Bw
t , and therefore:

E[ f (Bz
τD
)|Bz

τU
= w] = E[ f (Bw

τD
)].
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Therefore

u(z) = E[ f (Bz
τD
)] =

∫
∂U

E[ f (Bw
τD
)]
|dw|
|∂U| =

1
|∂U|

∫
∂U

u(w)|dw|,

as desired.

2. u has boundary values f :
Let ζ ∈ ∂U fixed. We want to prove that

lim
z→ζ
z∈D

u(z) = f (ζ).

Since ζ is a regular boundary point of D we have Pζ(τD = 0) = 1, so:

u(ζ) = Eζ [ f (Bζ
τD)] = Eζ [ f (Bζ

0)] = Eζ [ f (ζ)] = f (ζ).

Moreover, since f (ζ) is a constant it follows that

Ez[ f (Bz
τD
)]− f (ζ) = Ez[ f (Bz

τD
)− f (ζ)].

Then,

|u(z)− f (ζ)| = |Ez[ f (Bz
τD
)− f (ζ)]| ≤ Ez[| f (Bz

τD
)− f (ζ)|],

so its suffices to show that

lim
z→ζ
z∈D

Ez[| f (Bz
τD
)− f (ζ)|] = 0. (4.1)

Let ϵ > 0. We want to find r > 0 so that if |z − ζ| < r and z ∈ D then
Ez[| f (Bz

τD
)− f (ζ)|] < ϵ.

Fix r > 0 and take the disk D(ζ, r). Let τr be the stopping time τD(ζ,r).
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Figure 4.3: Disk centered at ζ ∈ ∂D with radius r such that z ∈ D(ζ, r).
The black line indicates ∂D.

In order to prove (4.1) we separate two cases, depending on whether Bz
t

leaves first D(ζ, r) or the domain D:

Ez[| f (Bz
τD
)− f (ζ)|] = Ez[| f (Bz

τD
)− f (ζ)|, τr ≤ τD]

+ Ez[| f (Bz
τD
)− f (ζ)|, τD ≤ τr].

For the first term, we estimate brutally

Ez[| f (Bz
τD
)− f (ζ)|, τr ≤ τD] =

∫
{τr≤τD}

| f (Bz
τD
)− f (ζ)|dP(ω)

≤ 2 · || f ||∞ · Pz(τr ≤ τD).

For the second term, since τD < τr and therefore Bz
τD

∈ D(ζ, r), we can
estimate as follows:

Ez[| f (Bz
τD
)− f (ζ)|, τD < τr] ≤ sup

|ζ−η|≤r
η∈∂D

| f (ζ)− f (η)| · Pz(τD < τr)

≤ sup
|ζ−η|≤r

η∈∂D

| f (ζ)− f (η)|.
(4.2)
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It remains to show that these two terms tend to 0 as z tends to ζ. The first
one will go to zero because Pz(τr ≤ τD) tends to 0 as z tends to ζ, whereas
the second one will vanish because of the continuity of f .

Let us prove first that the second term (4.2) tends to zero.

By the continuity of f , given ϵ > 0 there exists r > 0 such that for all
η ∈ D(ζ, r) ∩ ∂D we have | f (ζ) − f (η)| < ϵ/2. Since τD < τr, we have
Bz

τD
∈ D(ζ, r) and therefore

sup
|ζ−η|≤r

η∈∂D

| f (ζ)− f (η)| ≤ ϵ

2
,

as desired.

Let us see now that the first term can also be made smaller than ϵ/2. In
order to show Pz(τr ≤ τD) tends to zero, assume that z ∈ D is close enough
to ζ so that |z − ζ| < r

2 .

So, if we consider the disk centered at z with radius r
2 then D(z, r

2) ⊂
D(ζ, r) and so τD(z, r

2 )
≤ τr. Therefore,

Pz(τr ≤ τD) ≤ Pz(τD(z, r
2 )

≤ τD),

and it suffices to estimate P(τD(z, r
2 )

≤ τD) as z tends to ζ (i.e, as r → 0).

For any small t > 0 the event E = {τD(z, r
2 )

≤ τD} is the union of E1 =

E ∩ {τD ≤ t} and E2 = E ∩ {τD > t}. Since clearly E1 ⊆ {τD(z, r
2 )

≤ t} and
E2 ⊆ {τD > t} we deduce that

E = {τD(z, r
2 )

≤ τD} ⊆ {τD(z, r
2 )

≤ t} ∪ {τD > t} .

It follows that

Pz(τD(z, r
2 )

≤ τD) ≤ Pz(τD(z, r
2 )

≤ t) + Pz(τD > t).

Therefore, it is enough to see that both probabilities tend to zero as t → 0.
For that, we bound the first term using distribution of Bz

t as t tends to 0
and, for the second term, we take the limit with z approaching ζ.
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Figure 4.4: Disks D(z, r
2) ⊂ D(ζ, r) such that ζ ∈ D(z, r

2).

Let Pz(τD(z, r
2 )

≤ t) and notice that its value clearly increases as t increases,
so

Pz(τD(z, r
2 )

≤ t) = Pz(∃s < t|Bz
s /∈ D(z,

r
2
)) ≤ max

s≤t
Pz(B

z
s /∈ D(z,

r
2
))

= Pz(B
z
t /∈ D(z,

r
2
)).

Moreover, since Bz
t ∼ N(z, t), using the density function Fz(w) of (3.1) in

polar coordinates we have that

Pz(τD(z, r
2 )

≤ t) ≤ Pz(B
z
t /∈ D(z,

r
2
)) =

∫ ∞

r
2

∫ 2π

0

1
2πt

e−
ρ2
2t ρdθdρ

=
∫ ∞

r
2

1
t

e−
ρ2
2t ρdρ = e−

r2
8t

Therefore

lim
t→0

Pz(τD(z, r
2 )

≤ t) ≤ lim
t→0

e−
r2
8t = 0.

Thus for t small enough we have

Pz(τD(z, r
2 )

≤ τD) <
ϵ

4
+ Pz(τD > t).
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So it remains to prove that for any fixed t, limz→ζ Pz(τD > t) = 0. Applying
Remark 3.11 we see that

lim sup
z→ζ

Pz(τD > t) ≤ Pζ(τD > t) = 1 − Pζ(τD ≤ t),

where Pζ(τD ≤ t) increases as t does. So

Pζ(τD = 0) ≤ Pζ(τD ≤ t) ≤ 1,

since Pζ(τD = 0) = 1 by the assumption of regularity on ζ. Then, taking z
close enough to ζ we have that Pz(τD > t) < ϵ/4.

Finally, it follows that

Ez[| f (Bz
τD
)− f (ζ)|, τD < τr] ≤

ϵ

2
+ (

ϵ

4
+

ϵ

4
) ≤ ϵ,

and therefore (4.1) holds.

It only remains to show that the solution is unique. To prove the unique-
ness we will not require probabilistic methods, since this is given by the
fact that the solution u is harmonic.

Suppose that h ∈ C2(D) is another solution to the Dirichlet problem. Then,
u and h harmonic on D and we have that the function (u − h) is also har-
monic since

∆(u − h) = ∆u − ∆h = 0.

Moreover, (u − h) = 0 on ∂D because f (ζ) = u(ζ) = h(ζ) for all ζ ∈ ∂D.

Applying the maximum principle, Theorem 2, of harmonic functions to
u − h, we have that

max
z∈D

(u − h)(z) = max
ζ∈∂D

(u − h)(ζ) = 0.

Therefore, h = u on D as we wanted to prove.
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Conclusions

We conclude by emphasizing that solving the Dirichlet problem via Brow-
nian motion is an example of how powerful are the probabilistic methods
in the study of many problems in different areas of Mathematics.

In this memoir we illustrate how the properties of Brownian motion lead to
an explicit solution to a classical partial differential equation with boundary
values.
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