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Abstract

In this project we study three different models of artificial intelligence to carry
out the process of sentiment analysis, which consists of determining the polarity
of a text; that is, detecting whether it is positive, negative or neutral.

The first model studied is a neural network, specifically a long short-term
memory, which uses deep learning techniques. We delve deeper into the study of
its structure and operation, unmasking all the mathematics behind it.

The other two models belong to machine learning: logistic regression and
Naive Bayes. We emphasize the study of its parameters and optimization, with
the intention to understand the learning process of each one.

Finally, we apply the results and techniques developed to implement a Python
program with each model in order to detect the sentiment of thousands of reviews
from social media of different bars and restaurants. We dedicate a whole chapter
to give the results, the analysis of each one and a comparison between them.

Abstract en Català

En aquest projecte estudiem tres models diferents d’intel·ligència artifical per
dur a terme el procés d’anàlisi de sentiments, el qual consisteix en determinar la
polaritat d’un text; és a dir, detectar si és positiu, negatiu o neutre.

El primer model estudiat és una xarxa neuronal, concretament una long short-
term memory, la qual usa tècniques de deep learning. Aprofunditzem sobretot
en l’estudi de la seva estructura i el seu funcionament, desenmascarant totes les
matemàtiques que hi ha al seu darrere.

Els altres dos models són de machine learning: la regressió logística i l’Ingenu
Bayes. Fem èmfasi en l’estudi dels seus paràmetres i optimització, amb la intenció
d’entendre el procés d’aprenentatge de cadascun.

Finalment, apliquem els resultats i tècniques desenvolupades per implementar
un programa en Python amb cada model per tal de detectar el sentiment de milers
de comentaris en xarxes socials de diferents bars i restaurants. Dediquem tot un
capítol a donar els resultats, l’anàlisi de cadascun i una comparació d’aquests.

2020 Mathematics Subject Classification. 62J12, 68T07, 68T50
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Introduction

Thanks to language, humans are able to turn invisible ideas into visible things.
Natural language processing refers to the branch of artificial intelligence con-
cerned with giving computers the ability to understand text and spoken words
in much the same way human beings can.

NLP combines computational linguistics with statistical, machine learning and
deep learning models. Together, these technologies enable computers to process
human language in the form of text “understand” its full meaning, complete with
the speaker or writer’s intent and sentiment. Several NLP tasks break down hu-
man text in ways that help the computer make sense of what it’s ingesting. One
of them, in which we focus on this present work, is sentiment analysis. Senti-
ment analysis, sometimes also called opinion mining, is a NLP technique used to
determine the polarity of a given text; that is, to detect whether data is positive,
negative or neutral.

Study of Different Models for Sentiment Analysis and Language Representa-
tion, the title of this research work, aims to go beyond the study of three different
models to carry out the process of classify texts according to their sentiment and
unmask everything that it is relevant about them.

Before explaining and understanding the whole process of how the three mod-
els work, it is necessary to explain explain how a machine understands our lan-
guage, and therefore, how it is able to represent words. In the first introductory
chapter, Chapter 1, we present the concept of word embedding, the technique of
mapping words to real vectors. Some celebrated results about them are proved. In
2013, a team at Google led by Tomas Mikolov2 created word2vec, a word embed-
ding toolkit that can train vector space models faster than the previous approaches.
We dedicate the next sections in this chapter to talk about it. Finally, to demon-
strate the importance of the benefits it gives, at the end of the chapter a whole
section dedicated to the arithmetic of word vectors is exposed, giving a practical
example.

2Tomáš Mikolov is a Czech computer scientist working in the field of machine learning.
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2

Chapter 2 presents the first model: long short-term memory. LSTM is an
artificial neural network used in the fields of artificial intelligence and deep learn-
ing. This type of networks were invented by Hochreiter and Schmidhuber3 in
1997 and set accuracy records in multiple applications domains. First results were
already reported in Hochreiter’s diploma thesis in 1991 which analyzed and over-
came the famous vanishing gradient problem. In machine learning, the vanishing
gradient problem is encountered when training artificial neural networks with
gradient-based learning methods and backpropagation. In such methods, during
each iteration of training each of the neural network’s weights receives an update
proportional to the partial derivative of the error function with respect to the cur-
rent weight. The problem is that in some cases, the gradient will be vanishingly
small, effectively preventing the weight from changing its value. In the worst case,
this may completely stop the neural network from further training. The aim of the
following sections is to discover what is special about these models that make this
problem disappear. For that purpose, we will explain its structure, the topology of
its layers and the hyperparameters4 that must be taken into account for its proper
implementation.

Slightly changing the point of view, Chapter 3 delves into the fields of proba-
bility and statistics. Logistic regression is a classification model that is very easy
to implement and performs very well on linearly separable classes. It is one of the
most widely used algorithms for classification in industry too, which makes it at-
tractive to play with. Here we discuss its definition and parameter interpretation,
as well as we describe the main assumptions about building a LR model.

To complete the study of the three models, Chapter 4 presents a probabilistic
classifier: Naive Bayes, which is based on applying Bayes’ theorem with strong
(naive) independence assumptions between the features. Apart from explaining
the model and the estimation of its parameters, an important result is given: we
present a sufficient condition for the optimality of Naive Bayes under the Gaussian
distribution. The proof of this result can be found in section 4.3 of this chapter.

The results developed on the previous chapters allow us, in Chapter 5, to
analyse how these models behave in practice. We start with an explanation about
the dataset we are using to train our models, followed by an argumentation of
advantages and disadvantages of each one. Finally, the last section summarize
our conclusions, discuss potential improvements to the models and raise future
work.

3Hochreiter and Schmidhuber are two computer scientists that have published increasingly so-
phisticated versions of LSTM

4In machine learning, a hyperparameter is a parameter whose value is used to control the learn-
ing process.



3

Lastly, let us remark we have written a Python program of the models, avail-
able in the appendix (see A), that includes an algorithm that reads some com-
mentaries and concludes whether the sentiment of the text is positive, neutral or
negative.

The precursor reason that has led me to carry out this work starts as soon
as I joined the data science team to perform my internship in the UVE Solutions
company. The first task I was given was to retrieve an LSTM model previously
implemented by a teammate. I had to be able to make it work and understand its
performance.

The main objective about its implementation is to be able to predict the senti-
ment of some commentaries from reviews on social media, so we can enrich our
database. One can think that we will always have the stars to indicate the polarity
of the text, but not all platforms have one, and with the program implemented, we
may be able to extract the sentiment of commentaries without needing to have a
previous score assigned. This is when I thought of implementing two more differ-
ent models, to analyse what their differences would be and if it would improve or
worsen the predictions quality of the actual model. So one of the goals I set myself
is to get a 90% accuracy in both models, building a simpler models to understand,
program and train. Being able to count on this tool will be very useful and with
so many utilities, from identifying trends of public opinion to evaluate customer
attitudes and emotions towards a specific product line or service.

Last but not least, another objective I would like to achieve, is to ensure that
the theme is passionate and clear to all of you, readers.

https://uvesolutions.com/


Chapter 1

How do we Represent Words?

Machine and deep learning algorithms can’t work with raw text directly; the
text must be converted into numbers. Specifically, vectors of numbers. In this
chapter we introduce the exact mechanism and the math behind word embed-
dings. The general idea is to find a map from words to vectors such that word
similarity and vector-similarity are in correspondence. Whilst vector-similarity can
be readily quantified in terms of distances and angles, quantifying word-similarity
is a more ambiguous task.

This introductory chapter is intended to cover all the mentioned tasks. Sec-
tion 1.1 set the definition of word embedding, Section 1.2 explains a first simple
approach to represent words and finally Sections 1.3 and 1.4 explain in detail the
word2vec tool, with an interesting justification about the behaviour doing algebra
with vectors.

1.1 Word Embeddings

Natural language is a complex system used to express meanings. In this sys-
tem, words are the basic unit of the meaning, but words aren’t things that com-
puters naturally understand. By encoding them in a numeric form, we can apply
mathematical rules and do matrix operations to them, for example.

The technique of mapping words to real vectors is called word embedding. It rep-
resents words or phrases in vector space with several dimensions. Word embed-
dings can be generated using various methods like neural networks, co-occurrence
matrix, probabilistic models, etc.

In recent years, word embedding has gradually become the basic knowledge
of natural language processing.

4



1.2 One-Hot Encoding 5

1.2 One-Hot Encoding

A simple way to represent words is through one-hot representations.

Definition 1.1. Let’s index the vocabulary V by the set {1, ..., N}. A one-hot rep-
resentation of a word is a N-dimensional vector with only one non-zero position
corresponding to the index of that word.

That is, to obtain the one-hot vector representation for any word with index i,
we create a N-length vector with all zeros and set the element at position i to 1.
In this way, each word is represented as a vector of length N, and it can be used
directly by neural networks.

Although one-hot word vectors are easy to construct, is not ideal. On the one
hand, viewing all the words as discrete units leads us to a sparsity problem. Since
there can be a huge corpus of words, representing and storing them as one-hots
can be extremely expensive.

Besides that, one-hot word vectors cannot accurately express the similarity
between different words, such as the cosine similarity. Seeing its definition:

Definition 1.2. The cosine similarity of two vectors x, y ∈ Rd is the cosine of the
angle θ between them:

cos(θ) =
xTy
||x||||y|| ∈ [−1, 1]. (1.1)

Since the one-hot vectors of any two different words are necessarily orthogonal,
taking the dot product of even two synonyms would yield a similarity score of 0.
So one-hot vectors cannot encode similarities among words.

1.3 Word2vec

The word2vec algorithm was proposed to address the above issue. This tool
creates a vector representation of words based on the corpus we are using and it
manages to capture the semantic representation of words in a vector. It maps each
word to a fixed-length vector, and these vectors can better express the similarity
and analogy relationship among different words.

Word2vec is not a single algorithm, it consists of models for generating word
embeddings. These models are shallow two-layer neural networks having one
input layer, one hidden layer and one output layer. Word2vec utilizes two archi-
tectures: the continuous bag of words and skip-gram. For semantically mean-
ingful representations, their training relies on conditional probabilities that can
be viewed as predicting some words using some of their surrounding words in
corpora.



6 How do we Represent Words?

In the following, we proceed to explain them briefly.

1.3.1 The Skip-Gram Model

The skip-gram model aims to predict all the contextual words given only the
central word. Here, each word has two d-dimensional-vector representations for
calculating conditional probabilities. That is, for any word with index i in the
dictionary, we denote by vi ∈ Rd and ui ∈ Rd its two vectors when used as
a center word and a context word, respectively. The conditional probability of
generating any context word wo (with index o in the dictionary) given the center
word wc (with index c in the dictionary) can be modeled by:

P(wo|wc) =
exp(uT

o vc)

∑i∈V exp(uT
i vc)

, (1.2)

where the vocabulary index set V = {0, 1, ..., |V| − 1}.
Consider a text sequence of length T, where the word at time step t is denoted

as w(t). Assume that context words are independently generated given any center
word. For context window size m, the likelihood function of the skip-gram model
is the probability of generating all context words given any center word:

T

∏
t=1

∏
−m≤j≤m,j ̸=0

P(w(t+j)|w(t)), (1.3)

where any time step that is less than 1 or grater than T can be omitted.

Figure 1.1: The Skip-Gram Model Architecture.

The skip-gram model parameters are the center word vector and context word
vector for each word in the vocabulary. In training, we learn the model parameters
by maximizing the likelihood function, i.e., maximum likelihood estimation, a
method of estimating the parameters of an assumed probability distribution, given
some observed data. This is equivalent to minimizing the following loss function:

−
T

∑
t=1

∑
−m≤j≤m,j ̸=0

log P(w(t+j)|w(t)). (1.4)
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When using stochastic gradient descent1 to minimize the loss, in each itera-
tion we can randomly sample a shorter subsequence to calculate the (stochastic)
gradient for this subsequence to update the model parameters. To calculate this
(stochastic) gradient, we need to obtain the gradients of the log conditional prob-
ability with respect to the center word vector and the context word vector. In
general, according to 1.2, the log conditional probability involving any pair of the
center word and the context word w0 is

log P(wo|wc) = uT
o vc − log

(
∑
i∈V

exp(uT
i vc)

)
. (1.5)

Through differentiation, we can obtain its gradient with respect to the center
word vector vc as

∂ log P(wo|wc)

∂vc
= uo −

∑j∈V exp(uT
j vc)uj

∑i∈V exp((uT
i vc)

= uo − ∑
j∈V

(
exp(uT

j vc)

∑i∈V exp(uT
i vc)

)
uj

= uo − ∑
j∈V

P(wj|wc)uj.

Note that this calculation requires the conditional probabilities of all words
in the dictionary with wc as the center word. The gradients for the other word
vectors can be obtained in the same way.

After training, for any word with index i in the dictionary, we obtain both
word vectors vi (as the center word) and ui (as the context word). In natural
language processing applications, the center word vectors of the skip-gram model
are typically used as the word representations.

1.3.2 The Continuous Bag of Words Model

On the other hand, the continuous bag of words model assumes that a center
word is generated based on its surrounding context words in the text sequence.
That is, exactly the opposite task of skip-gram model.

For any word with index i in the dictionary, we denote by vi ∈ Rd and ui ∈ Rd

its two vectors when used as a context word and a center word, respectively. The
conditional probability of generating any center word wc (with index c in the
dictionary) given its surrounding context words wo1 , ..., wo2m (with index o1, ..., o2m

in the dictionary) can be modeled by

P(wc|wo1 , ..., wo2m) =
exp( 1

2m uT
c (vo1 + ... + vo2m))

∑i∈V exp( 1
2m uT

i (vo1 + ... + vo2m))
, (1.6)

1Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of
a differentiable function.
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where the vocabulary index set V = {0, 1, ..., |V| − 1}.
Consider a text sequence of length T, where the word at time step t is denoted

as w(t). For context window size m, the likelihood function of the CBOW model is
the probability of generating all center words given their context words:

T

∏
t=1

P(w(t)|w(t−m), ..., w(t−1), w(t+1), ..., w(t+m)), (1.7)

where any time step that is less than 1 or grater than T can be omitted.

Figure 1.2: The CBOW Model Architecture.

Training continuous bag of words models is almost the same as training skip-
gram models. The maximum likelihood estimation of the CBOW model is equiv-
alent to minimizing the following loss function:

−
T

∑
t=1

log P(w(t)|w(t−m), ..., w(t−1), w(t+1), ..., w(t+m)). (1.8)

Notice that

log P(wo|Wo) = uT
c v̄o − log

(
∑
i∈V

exp(uT
i v̄o)

)
,

whereWo = {wo1 , ..., wo2m} and v̄o =
vo1 ,...,vo2m

2m .

Through differentiation, we can obtain its gradient with respect to any context
word vector voi(i = 1, ..., 2m) as

∂ log P(wc|Wo)

∂voi

=
1

2m

(
uc − ∑

j∈V

exp(uT
j v̄o)uj

∑i∈V exp(uT
i v̄o)

)
=

1
2m

(
uc − ∑

j∈V
P(wj|Wo)uj

)
.
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1.4 The Arithmetic of Word Vectors

An important aspect of these representations is the ability to solve word analo-
gies of the form “A is to B what C is to X” using simple arithmetic. For example,
it allows us to solve the following question: “Man is to king as woman is to _ ?”
We’ll see that the following relation of sum of vectors is fulfilled:

uqueen = uking − uman + uwoman.

Although introducing strong independence assumptions between the elements
of the context, as we already saw, the skip-gram variant is very effective in practice.
Below we provide a theoretical justification for the presence of additive composi-
tionality in word vectors learned using this model. In particular, we show that
additive compositionality holds in an even stricter sense (small distance rather
than small angle) under certain assumptions on the process generating the cor-
pus. As a corollary, we explain the success of vector calculus in solving word
analogies.

A natural way of capturing the compositionality of words is to say that the set
of context words C = {c1, ..., cm} has the same meaning as the single word c if
for every other word w, p(w|c1, ..., cm) = p(w|c). Although this is an intuitively
satisfying definition, we never expect it to hold exactly; instead, we replace exact
equality with the minimization of Kullback-Leibler divergence.

Definition 1.3. For discrete probability distributions P and Q defined on the same
probability space X , the Kullback–Leibler divergence (also called relative entropy)
from P to Q is defined to be

DKL(P||Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
. (1.9)

So we state that the best candidate for having the same meaning as the set of
context words C is the word

argminc∈V DKL(p(·|C)||p(·|c)). (1.10)

Definition 1.4. We refer to any vector that minimizes (1.10) as a paraphrase of the
set of words C.

There are two natural concerns with (1.10). The first is that, in general, it is not
clear how to define p(·|C). The second is that KL-divergence minimization is a
hard problem, as it involves optimization over many high dimensional probability
distributions. Our main result shows that both of these problems go away for any
language model that satisfies the following two assumptions:
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1) For every word c, there exists Zc such that for every word w,

p(w|c) = 1
Zc

exp(uT
c vw). (1.11)

2) For every set of words C = {c1, ..., cm}, there exists ZC such that for every
word w,

p(w|C) = p(w)1−m

ZC

m

∏
i=1

p(w|ci). (1.12)

Theorem 1.5. The skip-gram model satisfies the first assumption, and the second one too,
when m ≤ ∆.

Proof. Clearly, the skip-gram model satisfies the first assumption by definition.
Now, let’s proof that it satisfies the second one, with the restriction that m ≤ ∆.
First, assume that m = ∆. In the skip-gram model target words are conditionally
independent given a context word, i.e., p(c1, ..., cm|w) = ∏m

i=1 p(ci|w).

Applying Baye’s rule,

p(w|c1, ..., cm) =
p(c1, ..., cm|w)p(w)

p(c1, ..., cm)
=

p(w)

p(c1, ..., cm)

m

∏
i=1

p(ci|w)

=
p(w)

p(c1, ..., cm)

m

∏
i=1

p(w|ci)p(ci)

p(w)
=

p(w)1−m

ZC

m

∏
i=1

p(w|ci),

where ZC = 1
∏m

i=1 p(ci)
.

This establishes the result when m = ∆. The cases m < ∆ follow by marginal-
izing out ∆−m context words in the last equality.

Theorem 1.6. In every word model that satisfies assumptions 1) and 2), for every set of
words C = {c1, ..., cm}, any paraphase c of C satisfies:

∑
w∈V

p(w|c)vw = ∑
w∈V

p(w|C)vw. (1.13)

Proof. Note that

p(w|C) = p(w)1−m

ZC

m

∏
i=1

p(w|ci) =
p(w)1−m

ZC
exp(

m

∑
i=1

uT
ci

vw −
m

∑
i=1

log Zci)

=
1
Z

p(w)1−m exp(uT
Cvw),

where Z = ZC ∏m
i=1 Zi, and uC = ∑m

i=1 ui.
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Minimizing the KL-divergence DKL(P(·|c1, ..., cm)||p(·|c)) as a function of c is equiv-
alent to maximizing the negative cross-entropy as a function of uc, i.e., as maxi-

mizing Q(uc) = Z ∑w
exp(uT

Cvw)

p(w)m−1 (uT
c vw − log Zc).

Since Q is concave, the maximizers occur where its gradient vanishes. As

∇uc Q = Z ∑
w

exp(uT
Cvw)

p(w)m−1

[
vw −

∑n
l=1 exp(uT

c vl)vl

∑n
k=1 exp(uT

c vk)

]
=

∑n
l=1 exp(uT

c vl)vl

∑n
k=1 exp(uT

c vk)

−Z ∑
w

exp(uT
Cvw)vw

p(w)m−1 = ∑
w∈V

p(w|c)vw − ∑
w∈V

p(w|c1, ..., cm)vw,

we see that theorem 1.6 follows.

Theorem 1.7. In every word model that satisfies assumptions 1) and 2) and where p(w) =
1
|V| for every w ∈ V, the paraphrase of C = {c1, ..., cm} is

u1 + ... + um. (1.14)

Proof. Recall that uC = ∑m
i=1 ui. When p(w) = 1

|V| for all w ∈ V, the negative cross-
entropy simplifies to Q(uc) = Z ∑w exp(uT

Cvw)(uT
c vw − log Zc), and its gradient

∇uc Q to

Z ∑
w

exp(uT
Cvw)

[
vw −

∑n
l=1 exp(uT

c vl)vl

∑n
k=1 exp(uT

c vk)

]
= Z ∑

w
exp(uT

Cvw)vw −∑
w

exp(uT
c vw)vw.

Thus, ∇Q(uC) = 0 and since Q is concave, uC is its unique maximizer.

With all the established theory, we are now ready to show that the word vectors
encode the semantic relations through linear translations.

Corollary 1.8. Let’s rescue the presented case. Man and Woman share the relation-
ship Male− Female. This means that Man is the paraphrase of {Woman, X}, where
X is the abstract set of all the words that encode the relationship Male− Female.

Since King and Queen share the same Male− Female relationship, then King is
the paraphrase of the set of words {Queen, X}.

Using Theorem 1.7, we get:{
uman = uwoman + uX

uking = uqueen + uX
=⇒ uqueen = uking − uman + uwoman.
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In the following illustration, we can see more examples about this phenomenon.

Figure 1.3: Algebra with Word Embeddings.



Chapter 2

Long Short-Term Memory
Network

Once we have introduced word embeddings, so we know how to transform
words into machine-readable vectors, we can proceed to explain how a RNN
works, since it processes a sequence of vectors one by one.

The goal of this chapter is to present the structure of a long short-term mem-
ory, a deep learning architecture based on a recurrent neural network. Section
2.1 presents the main idea of recurrent neural networks, Sections 2.2 and 2.3 ex-
plains the structure and architecture of an LSTM, including an explanation of its
activation functions, gates and equations. To go further, in Section 2.4 a theorem
is detailed, talking about the topology of the layers when applying the activation
functions. Finally, Section 2.5 details the most relevant hyperparameters to have a
look at.

2.1 Recurrent Neural Networks

A recurrent neural network is a type of neural network which uses sequential
data or time series data. Sequential data refers to data whose sequence is important
for it to have meaning, such as text. RNNs are good at modelling this type of data
due to the ability to retain memory about a sequence. In order to do it, RNNs
have a looping mechanism that is used to remember the words that came before
each word in the sentence.

Generally, every neural network consists of vertically stacked components that
are called layers. There are three types:

• An input layer that takes as input the raw data and passes them to the rest of
the network.

13



14 Long Short-Term Memory Network

• One or more hidden layers that are intermediate layers located between the
input and output layer and process the data by applying complex non-linear
functions to them. More specifically, the function applies weights to the
inputs and directs them through an activation function1 as the output.

• An output layer that takes as input the processed data and produces the final
results.

A simple RNN can be illustrated by the following:

Figure 2.1: A Recurrent Neural Network with One Hidden Layer.

However, RNNs are not good at capturing long-term dependencies, because of
gradient vanishing and exploding problems. One approach to tackle such prob-
lems is to use diferent activation functions, composed of gating units. A very
successful attempt at this is the long short-term memory, which made it possible
to capture distant dependencies between data.

Long short-term memory networks were introduced by Hochreiter & Schmid-
huber in 1997. They are a special kind of RNN, able to retain memory over longer
periods of time. They have internal mechanisms called gates that can regulate the
flow of information, that allows them to decide whether to keep certain informa-
tion from the previous input or to forget it.

2.2 Activation Functions in a LSTM

Definition 2.1. The mathematical representation of sigmoid activation function is:

σ(x) =
1

1 + e−x . (2.1)

1Basically, an activation function is just a simple function that helps regulate the values flowing
through the network, changing its inputs into outputs with a defined range.
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The sigmoid activation function receives input and translates the output values
between 0 and 1.

Definition 2.2. The mathematical representation of tanh activation function is:

tanh(x) =
ex − e−x

ex + e−x . (2.2)

On the other hand, the tanh activation function squishes values to always be
between -1 and 1.

2.3 LSTM Architecture

To better understand diagrams that will come next, first let’s give a detailed
definition about point-wise product, or also called element-wise product, a point-wise
operation we will use.

Definition 2.3. Given two functions f , g : X → Y, the point-wise product
( f · g) : X → Y is defined by ( f · g)(x) = f (x) · g(x).

For the element-wise multiplication, we use the dot with the outer circle sym-
bol, ⊙, referred to as the Hadamard product.

Definition 2.4. For two matrices A and B of the same dimension m × n, the
Hadamard product A⊙B is a matrix of the same dimension as the operands, with
elements given by (A⊙B)ij = (A)ij(B)ij.

In order to better understand the formulas that follow, mention that we can
still perform point-wise operations by invoking the broadcasting mechanism. This
mechanism first expand one or both arrays by copying elements appropriately so
that after this transformation, the two tensors have the same shape. Second, carry
out the point-wise operations on the resulting arrays. In this way, we can add
matrices with vectors, even if they have different dimensions.

Also comment that the sigma function is applied to each element of the matrix,
since it takes real values. To leave already the explanation of the symbols in the
diagrams: each line carries one vector, from the output of one node to the input
of one of more nodes. Circles mean point-wise operations and boxes are neural
network layers. A line merge represents a concatenation of vectors, while a line fork
symbolizes a copy of vectors.
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2.3.1 Input Gate, Forget Gate and Output Gate

The data feeding into the LSTM gates are the input at the current time step
and the hidden state of the previous time step. They are processed by three fully-
connected layers with a sigmoid activation function to compute the values of the
input, forget and output gates. As a result, values of the three gates are in the
range of (0, 1).

Mathematically, suppose that there are h hidden units, the batch size is n, and
the number of inputs is d. Thus, the input is Xt ∈ Rnxd and the hidden state of the
previous time step is Ht−1 ∈ Rnxh. Correspondingly, the gates at time step t are
defined as follows: the input gate is It ∈ Rnxh, the forget gate is Ft ∈ Rnxh and the
output gate is Ot ∈ Rnxh.

They are calculated as follows:

It = σ(XtWxi + Ht−1Whi + bi), (2.3)

Ft = σ(XtWx f + Ht−1Wh f + b f ), (2.4)

Ot = σ(XtWxo + Ht−1Who + bo), (2.5)

where Wxi, Wx f , Wxo ∈ Rdxh and Whi, Wh f , Who ∈ Rhxh are weight parameters and
bi, b f , bo ∈ R1xh are bias parameters.

Remark 2.5. It is worth mentioning that we have to take into account that the
above equations are for only a one-time step. This means that these equations will
have to be recomputed for the next time step. Thus, if we have a sequence of 5
time steps, then the above equations will be computed 5 times, one for each time
step, respectively.

Remark 2.6. Also, add up that the weight matrices Wxi, Wx f , Wxo, Whi, Wh f , Who and
biases bi, b f , bo are not time-dependent. This means that these weight matrices
don’t change from one time step to another. In other words, to calculate the
outputs of different time steps same weight matrices are used.

Figure 2.2: Computing the Input, Forget and Output Gates in a LSTM Model.
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2.3.2 Candidate Memory Cell

Next we introduce the candidate memory cell C̃t ∈ Rnxh. Its computation is
similar to that of the three gates described above, but using a tanh function as the
activation function. This leads to the following equation at time step t:

Ĉt = tanh(XtWxc + Ht−1Whc + bc), (2.6)

where Wxc ∈ Rdxh and Whc ∈ Rhxh are weight parameters and bc ∈ R1xh is a bias
parameter.

Figure 2.3: Computing the Candidate Memory Cell in a LSTM Model.

2.3.3 Memory Cell

It’s now time to update the old cell state Ct−1, into the new cell state Ct. The
previous steps already decided what to do, we just need to actually do it. To
govern input and forgetting we have two dedicated gates for such purposes: the
input gate It governs how much we take new data into account via C̃t and the
forget gate Ft addresses how much of the old memory cell content Ct−1 ∈ Rnxh we
retain. We arrive at the following update equation:

Ct = Ft⊙Ct−1 + It⊙C̃t. (2.7)

If the forget gate is always approximately 1 and the input gate is always ap-
proximately 0, the past memory cells Ct−1 will be saved over time and passed to
the current time step. This design is introduced to alleviate the vanishing gradient
problem and to better capture long range dependencies within sequences.
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Figure 2.4: Computing the Memory Cell in a LSTM Model.

2.3.4 Hidden State

Finally, we need to decide what we’re going to output, so we need to define
how to compute the hidden state Ht ∈ Rnxh. We put the cell state Ct through tanh
and multiply it by the output of the sigmoid gate, so that we only output the parts
we decided to, that is:

Ht = Ot⊙tanh(Ct). (2.8)

Whenever the output gate approximates 1 we effectively pass all memory in-
formation through to the predictor, whereas for the output gate close to 0 we
retain all the information only within the memory cell and perform no further
processing.

Figure 2.5: Computing the Hidden State in a LSTM Model.

2.4 Topology of tanh and Sigmoid Layers

Each layer stretches and squishes space, but it never cuts, breaks or folds it.
Intuitively, we can see that it preserves topological properties. For example, a set
will be connected afterwards if it was before (and vice versa).
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Transformations like this, which don’t affect topology, are called homeomor-
phisms. Formally, they are bijections that are continuous functions both ways.

Theorem 2.7. Layers with N inputs and N outputs are homeomorphisms, if the
weight matrix W is non-singular. (Though one needs to be careful about domain
and range.)

Proof. Let’s consider this step by step:

• First, let’s assume W has a non-zero determinant. Then it is a bijective linear
function with a linear inverse. Linear functions are continuous, so multiply-
ing by W is a homeomorphism.

• Second, remember that translations are homeomorphisms.

• Last, tanh and sigmoid are continuous functions with continuous inverses.
They are bijections if we are careful about the domain and range we consider.
Applying them point-wise is a homeomorphism.

Thus, if W has a non-zero determinant, our layer is a homeomorphism.

Remark 2.8. This result continues to hold if we compose arbitrarily many of these
layers together.

2.5 Hyperparameters

When designing a model, the most important step among all is perhaps the
training of such a model so that it is capable of making robust predictions in
any new testing data. It is thus pertinent to choose a model’s hyperparameters
(parameters whose values are used to control the learning process) in such a way
that training is effective in terms of both time and fit.

It is important to have in mind that tuning the most relevant hyperparameters
for LSTM makes a difference in order to get the optimum results. To achieve it, in
this section we mention the most relevant.

2.5.1 Number of Nodes and Hidden Layers

There is no final number on how many nodes (hidden neurons) or hidden
layers one should use, so depending on the individual problem a trial and error
approach will give the best results.
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As a general rule, one hidden layer will work with most simple problems and
two layers with reasonably complex ones. Also, while many nodes within a layer
can increase accuracy, fewer number of nodes may cause underfitting2.

2.5.2 Number of Units in a Dense Layer

A dense layer is the most frequently used, which is basically a layer where each
neuron receives input from all neurons in the previous layer — thus, “densely
connected”. Dense layers improve overall accuracy and 5–10 units or nodes per
layer is a good base. So the output shape of the final dense layer will be affected
by the number of neuron or units specified.

2.5.3 Dropout

Dropout is a regularization method where input and recurrent connections
to LSTM units are probabilistically excluded from activation and weight updates
while training a network.

Every LSTM layer should be accompanied by a dropout layer. Such a layer
helps avoid overfitting3 in training by bypassing randomly selected neurons, thereby
reducing the sensitivity to specific weights of the individual neurons. While
dropout layers can be used with input layers, they shouldn’t be used with out-
put layers as that may mess up the output from the model and the calculation of
error. While adding more complexity may risk overfitting (by increasing nodes
in dense layers or adding more number of dense layers and have poor validation
accuracy), this can be addressed by adding dropout.

2.5.4 Weight Initialization

Ideally, it is better to employ different weight initialization schemes according
to what activation function is used. However, more commonly a uniform dis-
tribution is used while choose initial weight values. It is not possible to set all
weights to 0.0 as the asymmetry in the error gradient is brought out by the opti-
mization algorithm; to begin searching effectively. Different set of weights results
in different starting points of the optimization process, potentially leading to dif-
ferent final sets with different performance characteristics. Weights should finally

2Underfitting happens when a machine learning model is not complex enough to accurately
capture relationships between a dataset’s features and a target variable.

3Overfitting is the production of an analysis that corresponds too closely or exactly to a particular
set of data, and may therefore fail to fit to additional data or predict future observations reliably.
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be initialized randomly to small numbers (an expectation of the stochastic opti-
mization algorithm, otherwise known as stochastic gradient descent) to harness
randomness in the search process.

2.5.5 Learning Rate

This hyperparameter defines how quickly the network updates its parame-
ters. Setting a higher learning rate accelerates the learning but the model may not
converge or even diverge. Conversely, a lower rate will slow down the learning
drastically as steps towards the minimum of loss function will be tiny, but will
allow the model to converge smoothly.

2.5.6 Momentum

The momentum hyperparameter has been researched into to integrate with
RNN and LSTM. Momentum is a unique hyperparameter which allows the accu-
mulation of the gradients of the past steps to determine the direction to go with,
instead of using the gradient of only the current step to guide the search.

2.5.7 Number of Epochs

This hyperparameter sets how many complete iterations of the dataset is to
be run. While theoretically this number can be set to an integer value between
one and infinity, this should be increased until the validation accuracy starts to
decrease even though training accuracy increases (and hence risking overfitting).

2.5.8 Batch Size

This hyperparameter defines the number of samples to work on before the
internal parameters of the model are updated. Large sizes make large gradient
steps compared to smaller ones for the same number of samples “seen”.



Chapter 3

Logistic Regression Model

Now we slightly change the point of view and focus on a more statistical and
probabilistic environment for the following two chapters. In this one we study
logistic regression closely. As preparation for this chapter, we first introduce in
Section 3.1 generalized linear models and its components, to understand better
the model we are dealing with. In Sections 3.2 and 3.3 we present its definition
and parameter interpretation, as well as we present the logistic function. Section
3.4 generalize the model to multiple predictors, some of which may be qualitative,
and the one that we use in our program to not only classify negative and positive,
but neutral cases too. Later, Sections 3.5 and 3.6 try to reveal the logic of fitting
logistic regression models. Finally, Sections 3.7 and 3.8 talk about the cost function
and how we can utilize gradient descent to compute the minimum cost. The last
section, Section 3.9, describes the main assumptions about building a LR model.

3.1 Generalized Linear Models

Generalized linear models have three components: first, the random component,
to identify the response variable Y and its probability distribution. Second, the
linear predictor, to specify the explanatory variables through a prediction equation
that has linear form. And last, the link function, that specifies a function of E(Y)
that the GLM relates to the linear predictor. Let’s see a better definition of each
one.

Definition 3.1. The random component of a GLM identifies the response variable Y
and assumes a probability distribution for it. Standard GLMs treat the n observa-
tions on Y as independent. We denote those observations by (y1, ..., yn).

The assumed distribution will depend on the data we are working with. When
the observations are binary, we assume a binomial distribution for Y. For example,

22
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to model success or failure, each yi might be the number of successes out of a
certain fixed number of trials.

On the other hand, when each observation is a count, we then assume a distri-
bution for Y that is defined on all the nonnegative integers, usually the Poisson or
the negative binomial.

Otherwise, if each observation is continuous, such as a subject’s weight in a
dietary study, we might assume a normal or a gamma distribution for Y.

Definition 3.2. The linear predictor of a GLM specifies the explanatory variables.
The name reflects that the variables enter linearly as predictors on the right-hand
side of the model equation, in the form:

α + β1x1 + ... + βpxp. (3.1)

Definition 3.3. The expected value µ = E(Y) of the probability distribution of Y
has a value that varies according to values of the explanatory variables. The link
function, specifies a function g that relates µ to the linear predictor as

g(µ) = α + β1x1 + ... + βpxp. (3.2)

The link function g connects the random component with the linear predictor
function of the explanatory variables. Link function literally “links” the linear
predictor and the parameter for probability distribution.

Definition 3.4. The general equation for GLM is:

Ŷ = β0 + β1X1 + ... + βkXk. (3.3)

Remark 3.5. The β’s in a GLM are coefficients or weights assigned to the predictor
variables, i.e., the X’s on the right hand side of the prediction equation. The first
β, β0, is a constant. That it, it is the same for every observation regardless of any
values on any of the X′s.

Instead, the other β’s are all associated with a variable. Because the variable
is multiplied by the β, the β is a “weight” that determines how much the X con-
tributes to prediction.

We can note an interesting property about this coefficients and a very simple
proof of its interpretation.

Theorem 3.6. A β gives the predicted change in Y for a one unit change in the X, keeping
everything else constant.
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Proof. Assume GLM equation of the form of equation 3.3 and concentrate on the
ith X. We can write this equation as:

Ŷ0 = ... + βiXi. (3.4)

Now change the value of Xi from Xi to Xi + 1. The predicted value is now:

Ŷ1 = ... + βiXi + 1. (3.5)

Subtracting equation 3.4 from 3.5 gives:

Ŷ1 − Ŷ0 = βiXi + 1− βiXi = βi. (3.6)

So a β gives the predicted change in Y for a one unit increase in X.

Remark 3.7. Note carefully that the actual magnitude of a β ’s is a function of
the units of measurement of its X. Suppose X was measured in milligrams. The
β would give the predicted change in Ŷ for a one milligram increase in X. If we
changed the scale of X from milligrams to micrograms, then the β in the new
equation would give the change in Ŷ from a one microgram change in X. One can
therefore arbitrarily make a Ŷ larger or smaller by simply changing the scale of its
variable.

This scale property of β leads to one of the most important cautions in in-
terpreting the results from a GLM: never compare the β ’s across variables to
determine the importance of the variables in prediction.

3.2 Interpreting Parameters in Logistic Regression

Logistic regression uses an equation as the representation, very much like lin-
ear regression. Very simplistically explained, logistic regression works as follows.

Definition 3.8. For a binary response variable Y and an explanatory variable X,
let π(x) = P(Y = 1|X = x) = 1− P(Y = 0|X = x). The logistic regression model is

π(x) =
eβ0+β1x

1 + eβ0+β1x . (3.7)

Definition 3.9. Equivalently, the log odds, called the logit, has the linear relation-
ship

logit[π(x)] = log
π(x)

1− π(x)
= β0 + β1x. (3.8)

Notice that this equates the logit link function to the linear predictor.
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3.3 Logistic Function

As we design the logistic regression algorithm, one of the things we might
naturally want is for the hypothesis hθ(x) to output values ∈ {0, 1}. To that end,
we choose our hypotheses hθ(x) as

hθ(x) = g(θTx) =
1

1 + e−θT x
,

where g is a sigmoid function which we already defined in 2.1.
Since θTx could be < 0 and > 1, which is not very natural for a binary classifica-

tion problem with labels ∈ {0, 1}, logistic regression passes it through the sigmoid
function g(z) which forces the input from ∈ (−∞, ∞) to an output ∈ (0, 1).

The logistic sigmoid function was developed by statisticians to describe proper-
ties of population growth in ecology, rising quickly and maxing out at the carrying
capacity of the environment. It’s an S-shaped curve that can take any real-valued
number and map it into a value between 0 and 1, but never exactly at those limits.

3.4 The Multinomial Logistic Regression Model

In the previous lines we focused on the use of the logistic regression model
when the outcome variable is dichotomous or binary. This model can be easily
modified to handle the case where the outcome variable is nominal with more
than two levels.

Definition 3.10. Like ordinary regression, multinomial logistic regression extends to
models with multiple explanatory variables. For instance, the model for π(x) =

P(Y = 1) at values x = (x1, ..., xp) of p predictors is

logit[π(x)] = α + β1x1 + β2x2 + ... + βpxp. (3.9)

Remark 3.11. The alternative formula, directly specifying π(x), is

π(x) =
eα+β1x1+β2x2+...+βpxp

1 + eα+β1x1+β2x2+...+βpxp
. (3.10)

The parameter βi refers to the effect of xi on the log odds that Y = 1, controlling
the other xj. For instance, eβi is the multiplicative effect on the odds of a 1-unit
increase in xi, at fixed levels of other xj.
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3.5 Fitting Logistic Regression Models

The coefficients β of the logistic regression algorithm are unknown, and must
be estimated based on the available training data. This is done using maximum-
likelihood estimation. In a general sense, the method of maximum likelihood
yields values for the unknown parameters that maximize the probability of obtain-
ing the observed set of data. In order to apply this method we must first construct
a function, called the likelihood function. This function expresses the probability of
the observed data as a function of the unknown parameters.

Definition 3.12. Assuming that the m training examples are generated indepen-
dently, we can write down the likelihood of the parameters as

L(θ) =
m

∏
i=1

(
(hθ(x(i)))y(i)(1− hθ(x(i)))1−y(i)

)
.

Since it is easier to maximize the log likelihood rather than the likelihood, and
we will need this formula in a further section, we have the following:

logL(θ) =
m

∑
i=1

(
y(i) log(hθ(x(i))) + (1− y(i)) log(1− hθ(x(i)))

)
.

Now, per maximum likelihood estimation, we need to find the values that
maximize this function. Thus, the resulting estimators are those that agree most
closely with the observed data. To find this values, we need to run the gradient
ascent. The update rule is given by

θ ← θ + α
∂

∂θ
logL(θ).

3.6 Maximum Entropy Models

In information theory1, the entropy of a random variable is the average level of
"information", "surprise" or "uncertainty" inherent to the variable’s possible out-
comes. Mathematically:

Definition 3.13. Given a discrete random variable X, with possible outcomes
x1, ..., xn which occur with probability P(x1), ..., P(xn), the entropy of X is formally
defined as:

H(X) = −
n

∑
i=1

P(xi)logP(xi). (3.11)

1Information theory is the scientific study of the quantification, storage, and communication of
digital information.



3.7 Cost Function 27

Note: The choice of base for log, the logarithm, varies for different applications.

Classification in machine learning often employs a standard loss function,
called cross entropy loss, that minimizes the average cross entropy between ground
truth and predicted distributions.

Definition 3.14. The cross-entropy of the distribution q relative to a distribution p
over a given set is defined as follows:

H(p, q) = −Ep[log(q)], (3.12)

where Ep[·] is the expected value operator with respect to the distribution p.

Remark 3.15. The definition may be formulated using the Kullback–Leibler diver-
gence, DKL(p∥q), which we already defined in 1.3:

H(p, q) = H(p) + DKL(p ∥ q).

Theorem 3.16. Maximizing the likelihood with respect to the parameters θ is the same as
minimizing the cross-entropy.

Proof. Given N conditionally independent samples in the training set, then the
likelihood of the parameters θ of the model qθ(X = x) on the training set is:

L(θ) = ∏
i

qθ(X = i)Np(X=i),

so the log-likelihood, divided by N is

1
N

log(L(θ)) = 1
N

log ∏
i

qθ(X = i)Np(X=i) = ∑
i

p(X = i)logqθ(X = i) = −H(p, q),

so that maximizing the likelihood with respect to the parameters θ is the same as
minimizing the cross-entropy.

3.7 Cost Function

The cost function summarizes how well the model is behaving. In other words,
it tells us how close the model’s predictions are to the actual outputs for a given
set of parameters. The cost function has its own curve and its own gradients. The
slope of this curve tells us how to update our parameters to make the model more
accurate.
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Figure 3.1: Global and local minima

In linear regression, we use MSE as the cost function, but in logistic regression,
using the mean of the squared differences between actual and predicted outcomes
as the cost function might give a wavy, non-convex solution; containing many
local optima, as we can see in Figure 3.1.

In this case, finding an optimal solution with the gradient descent method is
not possible. Instead, we use a logarithmic function to represent the cost of logistic
regression. It is guaranteed to be convex for all input values, containing only one
minimum, allowing us to run the gradient descent algorithm.

Precisely, the cost function used in logistic regression is Log Loss. Let’s see its
formal definition.

Definition 3.17. The Log Loss, which is the negative average of the log of corrected
predicted probabilities for each instance, is

J(θ) = − 1
m

m

∑
i=1

(
y(i) log(hθ(x(i))) + (1− y(i)) log(1− hθ(x(i)))

)
, (3.13)

where the logs are natural logarithms.

Computing the gradient, which we will need in the next section, requires the
partial derivative of the loss function with respect to each parameter. For this
reason we expose the following theorem.

Theorem 3.18. (Partial Derivative of the Cost Function for Logistic Regression)
The partial derivative of the logistic regression cost function with respect to θ is

∂J(θ)
∂θj

= ∇θj J(θ) =
m

∑
i=1

((hθ(x(i))− y(i))x(i)j ). (3.14)

Proof. Remember our original cost function is of the form:

J(θ) = − 1
m

m

∑
i=1

(
y(i) log(hθ(x(i))) + (1− y(i)) log(1− hθ(x(i)))

)
.
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Now, log hθ(x(i)) = log 1
1+e−θx(i)

= −log(1 + e−θx(i)), and

log(1− hθ(x(i))) = log(1− 1
1 + e−θx(i)

) = log(e−θx(i))− log(1 + e−θx(i))

= −θx(i) − log(1 + e−θx(i)).

Plugging in the two simplified expressions above in our original cost function,
we obtain:

J(θ) = − 1
m ∑m

i=1

(
−y(i)(log(1 + e−θx(i))) + (1− y(i))(−θx(i) − log(1 + e−θx(i)))

)
,

which can be simplified to:

J(θ) = − 1
m

m

∑
i=1

(
y(i)θx(i) − θx(i) − log(1 + e−θx(i))

)
= − 1

m

m

∑
i=1

(
y(i)θx(i) − log(1 + eθx(i))

)
,

where the second equality follows from:
−θx(i) − log(1 + e−θx(i)) = −[log(eθx(i)) + log(1 + e−θx(i))] = − log(1 + eθx(i)).
Now, it only remains to compute the partial derivative of the last equation with

respect to θj using the following:

∂
∂θj

y(i)θx(i) = y(i)x
(i)
j

∂
∂θj

log(1 + eθx(i)) =
x(i)j eθx(i)

1+eθx(i)
= x(i)j hθ(x(i)).

Finally, plugging in the two components above in the expression for ∂J(θ)
∂θj

, we
obtain the end result:

∂J(θ)
∂θj

=
m

∑
i=1

(
(hθ(x(i))− y(i))x(i)j

)
.

3.8 Gradient Descent

We already have all the tools to investigate how we can utilize the gradient
descent algorithm to calculate the optimal parameters.

As we already state, gradient descent is an iterative optimization algorithm,
which finds the minimum of a differentiable function. In this process, we try dif-
ferent values and update them to reach the optimal ones, minimizing the output.

In the following discussion, we will apply this method to the cost function of
logistic regression in order to find an optimal solution minimizing the cost over
model parameters:

minθ J(θ).
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Let’s assume we have a total of n features. In this case, we have n parameters
for the θ vector. To minimize our cost function, we need to run the gradient
descent on each parameter θj:

θj ← θj − α
∂

∂θj
J(θ).

Furthermore, we need to update each parameter simultaneously for each itera-
tion. In other words, we need to loop through the parameters θ0, θ1, ..., θn in vector
θ = [θ0, θ1, ..., θn].

To complete the algorithm, we need the value of ∂
∂θj

J(θ), which we already
have computed using theorem 3.18:

∂J(θ)
∂θj

=
1
m

m

∑
i=1

(
(hθ(x(i))− y(i))xj

)
.

Plugging this into the gradient descent function leads to the update rule:

θj ← θj − α
1
m

m

∑
i=1

(
hθ(x(i))− y(i)

)
x(i)j .

By iterating over the training samples until convergence, we reach the optimal
parameters θ leading to minimum cost.

3.9 Assumptions

We can’t build a logistic regression model without understanding the basic as-
sumptions of it. In the following lines, we are going to explain these assumptions
in depth and discuss briefly the techniques to check these assumptions for the
given data.

• The most critical assumption of logistic regression is that there should be lit-
tle or no multicollinearity in the provided dataset. This condition occurs when
the features or independent variables of the dataset are highly correlated to
each other in a manner, that they do not contribute unique or independent
information in the regression model.

If a model has correlated variables, it becomes hard to determine which vari-
able contributes to estimating the target variable. If the level of correlation
is high between variables, it leads to problems while fitting and interpreting
the model.

The most popular approach to detect multicollinearity is by using the corre-
lation matrix, which measures the correlation degree between the indepen-
dent variables in a given dataset.
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• Logistic regression is very sensitive to outliers. It assumes that there are no
extreme outliers or influential observations in the given dataset. We can get
unexpected outcomes due to the presence of just one outlier in our data.

The most common way to test for extreme outliers and influential observa-
tions in a dataset is to calculate Cook’s distance for each observation.

Definition 3.19. Cook’s distance, often denoted as Di, is used in regression
analysis to identify influential data points that may negatively affect your
regression model. The formula for Cook’s distance is:

Di =
r2

i
p ∗MSE

∗ hii

1− hii
,

where ri is the ith residual, p is the number of coefficients in the regression
model, MSE is the mean squared error and hii is the ith leverage value.

• The last assumption we comment is that it requires quite large sample sizes.
The size of the dataset should be large enough to make suitable conclusions
from the logistic regression model.



Chapter 4

Naive Bayes Model

In this chapter we are going to present the theory of probabilistic classifiers, to
study deeply Naive Bayes classifier, a simple one belonging to this family.

In machine learning, a probabilistic classifier is a classifier that can predict,
given an observation of an input, a probability distribution over a set of classes,
rather than only outputting the most likely class that the observation should be-
long to.

Section 4.1 covers the main idea of the model and its definition. Section 4.2
talks about parameter estimation and finally Section 4.3 provides a theorem of
sufficient and necessary conditions for the optimality of Naive Bayes. Section
4.4 comment the main assumptions we make when implementing a Naive Bayes
model. To conclude this chapter, and with it, the two statistical models studied,
the last section, Section 4.5, argue some relationship between LR and NB.

4.1 Definition

Naive Bayes methods are a set of supervised learning algorithms based on ap-
plying Bayes’ theorem with the “naive” assumption of conditional independence
between every pair of features given the value of the class variable. That is, chang-
ing the value of one feature, does not directly influence or change the value of any
of the other features used in the algorithm.

Bayes’ theorem states the following relationship, given class variable y and
dependent feature vector (x1, ..., xn):

p(y|x1, ..., xn) =
p(y)p(x1, ..., xn|y)

p(x1, ..., xn)
. (4.1)
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4.2 Parameter Estimation and Event Models

A class’s prior may be calculated by assuming equiprobable classes or by cal-
culating an estimate for the class probability from the training set. To estimate the
parameters for a feature’s distribution, one must assume a distribution or gener-
ate nonparametric models for the features from the training set. The assumptions
on distributions of features are called the event model of the Naive Bayes classifier.
These assumptions lead to distinct models. In the following lines we present 3
examples.

4.2.1 Gaussian Naive Bayes

When dealing with continuous data, a typical assumption is that the contin-
uous values associated with each class are distributed according to a normal (or
Gaussian) distribution. Suppose the training data contains a continuous attribute,
x. The data is first segmented by the class, and then the mean and variance of x
is computed in each class. Let µk be the mean of the values in x associated with
class Ck, and let σ2

k be the Bessel corrected variance of the values in x associated
with class Ck. Suppose one has collected some observation value v. Then:

p(x = v|Ck) =
1√

2πσ2
k

e
− (v−µk)

2

2σ2
k . (4.2)

4.2.2 Multinomial Naive Bayes

With a multinomial event model, samples (feature vectors) represent the fre-
quencies with which certain events have been generated by a multinomial (p1, ..., pn),
where pi is the probability that event i occurs. The likelihood of observing a vector
x = (x1, ..., xn) is given by

p(x|Ck) =
(∑n

i=1 xi)!
∏n

i=1 xi

n

∏
i=1

pxi
ki

. (4.3)

4.2.3 Bernoulli Naive Bayes

In the multivariate bernoulli event model, features are independent binary
variables describing inputs. If xi is a boolean expressing the occurrence or absence
of the i’th term from the vocabulary, then the likelihood of a document given a
class Ck is given by

p(x|Ck) =
n

∏
i=1

pxi
ki
(1− pki)

1−xi . (4.4)
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4.3 The Optimality of Naive Bayes

We just saw that the different Naive Bayes classifiers differ mainly by the as-
sumptions they make regarding the distribution of p(xi|y). In this section we
present a sufficient condition for the optimality of Naive Bayes under the gaussian
distribution, and show theoretically when Naive Bayes works well.

Typically, an example E is represented by a tuple of attribute values (x1, x2, ..., xn),
where xi is the value of attribute Xi. Let C represent the classification variable, and
let c be the value of C. The probability of an example E = (x1, x2, ..., xn) being class
c is

p(c|E) = p(E|c)p(c)
p(E)

, (4.5)

according to Bayes Rule.

Definition 4.1. A Bayesian classifier is a function defined as follows:

fb(E) =
p(C = +|E)
p(C = −|E) . (4.6)

Assume that all attributes are independent given the value of the class variable,
that is:

p(E|c) = p(x1, x2, ..., xn|c) =
n

∏
i=1

p(xi|c), (4.7)

the resulting classifier is then:

fnb(E) =
p(C = +|E)
p(C = −|E)

n

∏
i=1

p(xi|C = +)

p(xi|C = −) . (4.8)

The function fnb(E) is called a Naive Bayesian classifier.

Definition 4.2. Sn
++ is the space of symmetric positive definite n×n matrices, defined

as

Sn
++ = {A ∈ Rnxn : A = AT and xT Ax > 0 for all x ∈ Rn such that x ̸= 0}. (4.9)

Definition 4.3. A vector-valued random variable X = [X1, ..., Xn]T is said to have
a multivariate normal (or Gaussian) distribution with mean µ ∈ Rn and covariance
matrix Σ ∈ Sn

++ if its probability density function is given by

p(x; µ, Σ) =
1√

2π|Σ|
e−

1
2 (x−µ)TΣ−1(x−µ). (4.10)
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We write this as X ∼ N (µ, Σ).

Let us restrict our discussion to two attributes X1 and X2, and assume that the
class density is a multivariate gaussian in both the positive and negative classes.
That is,

p(x1, x2,+) =
1√

2π|Σ|+
e−

1
2 (x−µ+)TΣ−1

+ (x−µ), (4.11)

p(x1, x2,−) = 1√
2π|Σ|−

e−
1
2 (x−µ−)TΣ−1

− (x−µ), (4.12)

where x = (x1, x2), Σ+ and Σ− are the covariance matrices in the positive and neg-
ative classes respectively, |Σ|+ and |Σ|− are the determinants of Σ+ and Σ−, Σ−1

+

and Σ−1
− are the inverses of Σ+ and Σ−, µ+ = (µ+

1 , µ+
2 ) and µ− = (µ−1 , µ−2 ), µ+

i and
µ−i are the means of attribute Xi in the positive and negative classes respectively,
and (x− µ+)T and (x− µ−)T are the transposes of (x− µ+) and (x− µ−).

We assume that two classes have a common covariance matrix Σ+ = Σ− = Σ,
and X1 and X2 have the same variance σ in both classes.

Now we are able to follow our discussion with all the expressions defined.
When applying a logarithm to the bayesian classifier, defined in 4.1, we obtain

the classifier fb below:

fb(x1, x2) = log
p(x1, x2,+)

p(x1, x2,−) = − 1
σ2 (µ

+ + µ−)Σ−1(µ+ − µ−) + xTΣ−1(µ+ − µ−).

(4.13)
Then, because of the conditional independence assumption, we have the cor-

respondent Naive Bayesian classifier fnb:

fnb(x1, x2) =
1
σ2 (µ

+
1 − µ−1 )x1 +

1
σ2 (µ

+
2 − µ−2 )x2. (4.14)

Assume that Σ =

(
σ σ12

σ21 σ

)
.

X1 and X2 are independent if σ12 = 0. If σ ̸= σ12, we have Σ−1 =

 −σ
σ2

12−σ2
σ12

σ2
12−σ2

σ12
σ2

12−σ2
−σ

σ2
12−σ2

.

Note that, an example E is classified into the positive class by fb, if and only if,
fb ≥ 0. Similarly with fnb. Thus, when fb or fnb is divided by a non-zero positive
constant, the resulting classifier is the same as fb or fnb. Then,

fnb(x1, x2) = (σ+
1 − σ−1 )x1 + (σ+

2 − σ−2 )x2, (4.15)
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and

fb(x1, x2) =
1

σ2
12 − σ2

(σ12(µ
+
2 − µ−2 )− σ(µ+

1 − µ−1 ))x1

+
1

σ2
12 − σ1

(σ12(µ
+
1 − µ−1 )− σ(µ+

2 − µ−2 ))x2 + a,
(4.16)

where

a = − 1
σ2

12 − σ2
(σ2(µ+ + µ−)Σ1(µ+µ−),

a constant independent of x.

For any x1 and x2, Naive Bayes has the same classification as that of the under-
lying classifier if

fb(x1, x2) fnb(x1, x2) ≥ 0. (4.17)

That is,

1
σ2

12 − σ2
((σ12(µ

+
1 − µ−1 )(µ

+
2 − µ−2 )− σ(µ+

1 − µ−1 )
2)x2

1

+ (σ12(µ
+
1 − µ−1 )(µ

+
2 − µ−2 )− σ(µ+

2 − µ−2 )
2)x2

2

+ (2σ12(µ
+
1 − µ−1 )(µ

+
2 − µ−2 )− σ((µ+

1 − µ−1 )
2

+ (µ+
2 − µ−2 )

2))x1x2) + a(µ+
1 − µ−1 )x1 + a(µ+

2 − µ−2 )x2 ≥ 0.

(4.18)

This last equation represents a sufficient and necessary condition for fnb(x1, x2) =

fb(x1, x2). Let’s try to simplify this.

Let µ+
1 − µ−1 = µ+

2 − µ−2 . Equation is simplified as

w1(x1 + x2)
2 + w2(x1 + x2) ≥ 0, (4.19)

where w1 =
(µ+

1 −µ−1 )2

σ12+σ , and w2 = a(µ+
1 − µ−1 ).

Let x = x1 + x2 and y = w1(x1 + x2)2 + w2(x1 + x2).

Figure (4.1) shows the area in which Naive Bayes has the same classification
with the target classifier. So, this shows that under certain condition, Naive Bayes
is optimal.
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Figure 4.1: Naive Bayes has the same classification with that of the target classifier
in the shaded area

The following theorem presents a sufficient condition for that Naive Bayes
works exactly as the target classifier.

Theorem 4.4. fb = fnb, if one of the following two conditions is true:

1. µ+
1 = −µ−2 , µ−1 = −µ+

2 , and σ12 + σ > 0.

2. µ+
1 = µ−2 , µ+

2 = µ−1 , and σ12 − σ > 0.

Proof.

1. If µ+
1 = −µ−2 , µ−1 = −µ+

2 , then (µ+
1 − µ−1 ) = (µ+

2 − µ−2 ). It is straightforward
to verify that − 1

σ2 (µ
+ + µ−)Σ−1(µ+ − µ−) = 0. That is, for the constant a in

the equation 4.16, we have a = 0. Since σ12 + σ > 0, equation 4.19 is always
true for any x1 and x2. Therefore, fb = fnb.

2. If µ+
1 = µ−2 , µ+

2 = µ−1 , then (µ+
1 − µ−1 ) = −(µ+

2 − µ−2 ), and a = 0. Thus,

equation 4.18 is simplified as (µ+
1 −µ−1 )2

σ12
(x1 + x2)2 ≥ 0. Since σ12 − σ > 0,

equation 4.19 is always true for any x1 and x2. Therefore, fb = fnb.

This theorem represents an explicit condition that Naive Bayes is optimal.
It shows that Naive Bayes is still optimal under certain condition, even though
the conditional independence assumption is violated. In other words, the condi-
tional independence assumption is not the necessary condition for the optimality
of Naive Bayes. This provides evidence that the dependence distribution may play
the crucial role in classification.
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4.4 Assumptions

As we already commented at the beginning of the chapter, we make two im-
portant naive assumptions:

• All features are independent from each other.

I our case, that means each word is independent from the others, so given a
sentence, there is no relation between any two words.

• Every feature contributes equally to the output.

Again, for what concerns us, that means each word contributes equally to
the decision of the model, regardless of its relative position in the sentence.

4.5 Relationship Between Naive Bayes Classifiers and Lo-
gistic Regression

The page limit disallow presenting complete proofs of the following results.
See [NJ01] for a complete study, where Ng and Jordan (2001) present some theo-
retical and empirical comparisons between logistic regression and the Naive Bayes
classifier.

• When the GNB modeling assumptions do not hold, logistic regression and
GNB typically learn different classifier functions. In this case, the asymp-
totic (as the number of training examples approach infinity) classification
accuracy for logistic regression is often better than the asymptotic accuracy
of GNB. Although logistic regression is consistent with the Naive Bayes as-
sumption that the input features Xi are conditionally independent given Y, it
is not rigidly tied to this assumption as is Naive Bayes. Given data that dis-
obeys this assumption, the conditional likelihood maximization algorithm
for logistic regression will adjust its parameters to maximize the fit to (the
conditional likelihood of) the data, even if the resulting parameters are in-
consistent with the Naive Bayes parameter estimates.

• GNB and logistic regression converge toward their asymptotic accuracies at
different rates. GNB parameter estimates converge toward their asymptotic
values in order log(n) examples, where n is the dimension of X, the fea-
ture vector (x1, ..., xn). In contrast, logistic regression parameter estimates
converge more slowly, requiring order n examples. In the paper, the authors
also show that in several data sets logistic regression outperforms GNB when
many training examples are available, but GNB outperforms logistic regres-
sion when training data is scarce.



Chapter 5

Results, Analysis and Comparison
Between the Models Used

So far this research developed all the necessary tools required to study all the
math behind the three different chosen models to classify our data. To accomplish
this goal, some background in probabilistic theory has been developed, including
all the necessary results to be able to understand LR and NB properly, along
with the study of recurrent neural networks, required to provide a satisfactory
description of the LSTM and its workflow.

Once all the theory is established, we can analyse how models behave in prac-
tice. In this chapter, we review the results of the models we built and some analysis
and comparison between them. Section 5.1 explains the dataset we are using to
train our models, Section 5.2 covers an argumentation of advantages and disad-
vantages of each model and Section 5.3 talks about the execution time, results and
metrics of the resultant programs. Finally, Section 5.4 summarize our conclusions,
discuss potential improvements to the models and raise future work.

5.1 About de Dataset

Data comes from internet websites, public and legal sources, given by the com-
pany UVE Solutions. The format of the input is an Excel file, and it contains
894.690 entries corresponding to reviews on social media of bars and restaurants,
written in Spanish. Each row contains the text commentary (Comment column)
and the stars received (Score column). Score column is the one we use to train our
model in order to make predictions on the sentiment, since it is the one that will
help us to label the Sentiment column. We will assign a 0 to scores with value 1
and 2 (negative class), a 1 to scores with value 3 (neutral class) and a 2 to scores
with value 4 or 5 (positive class).
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In Figures 5.1 and 5.2 we can see a histogram of the stars and sentiment class
distribution, respectively:

Figure 5.1: Stars Distribution. Figure 5.2: Sentiment Class Distribution.

We can observe that we have a lot of reviews with positive ratings, while we
have a much smaller sample of negative and neutral commentaries. This makes
us think that our models will surely have a good behavior with the positive class,
and therefore a higher accuracy, than the rest of the classes.

5.2 Advantages and Disadvantages

When it comes to the execution time, Naive Bayes is the fastest one, since it
only takes 4.22 minutes to execute the whole program. Instead, logistic regres-
sion and LSTM require 18.59 minutes and 5.47 minutes, respectively. So we can
already state that the main advantage of the Naive Bayes model is its simplicity
and fast computation time. As we studied in Section 4.3, this is mainly due to its
strong assumption that all events are independent of each other. Although this
assumption can be incorrect in real life, we can see the model still performs very
well in various scenarios.

Regarding the logistic regression model, it attempts to predict precise proba-
bilistic outcomes based on independent features. On high dimensional datasets,
like the one we are dealing with, this may lead to the model being overfit on the
training set, which means overstating the accuracy of predictions on the training
set and thus the model may not be able to predict accurate results on the test
set. This usually happens in the case when the model is trained on little training
data with lots of features. So on high dimensional datasets, regularization tech-
niques should be considered to avoid overfitting. Regularization works by adding
a penalty or regularization term to the loss function. It is a form of regression that
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shrinks the coefficient estimates towards zero, so it forces us not to learn a more
complex or flexible model.

On the subject of LSTMs, they require a lot of resources and time to get trained
and become ready for the desired application. In technical terms, they need high
memory-bandwidth because of linear layers present in each cell which the system
usually fails to provide for. Often, they are prone to overfitting and it is difficult
to apply the dropout algorithm (see Subsection 2.5.3) to curb this issue.

5.3 Results of the Model Evaluation

Extract metrics to evaluate and analyse the behavior of the models we build is
essential, since that lets you see if there is something weird going on with them,
how to fix it, and how to ultimately improve their performance.

The accuracy that we have obtained for each one can be seen in Figure 5.3.

Figure 5.3: Testing Accuracy of the Three Models.

To go further, let’s define some metrics we should take into account in order
to evaluate the predictions of our models.

Definition 5.1. Precision metric is the ratio of True Positive and the sum of True
Positive and False Positive.

Definition 5.2. Recall metric is the ratio of True Positive and the sum of True
Positive and False Negative.

We can see a visual representation of these two metrics in Figure 5.4.
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Figure 5.4: Precision and Recall Computation.

Definition 5.3. The F1 score metric gives the combined result of Precision and
Recall. Precisely, it is a harmonic mean of Precision and Recall:

F1score =
2

( 1
Recall ) + ( 1

Precision )
. (5.1)

Definition 5.4. Support is the number of actual occurrences of the class in the
dataset. It doesn’t vary between models, it just diagnoses the performance evalu-
ation process.

In the following figures, 5.5, 5.6 and 5.7, we can see a classification report of its
predictions.

Note: For the LSTM, due to memory problems, since we are not able to
allocate the gibibytes we are required, we have only been able to test 5000 entries,
so it gives us very low values of precision and recall. Remark these are not entirely
true, since we are comparing different proportions, but we still show them to get
an idea of the distribution of the predictions with a small sample.
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Figure 5.5: Classification Report for Logistic Regression.

Figure 5.6: Classification Report for Naive Bayes.

Figure 5.7: Classification Report for LSTM.
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Definition 5.5. A confusion matrix is a N x N matrix, where N is the number of
target classes, used for evaluating the performance of a classification model. The
matrix compares the actual target values with those predicted by the machine
learning model.

We can see its structure in Figure 5.8.

Figure 5.8: Binary Classification Problem (2x2 Matrix).

We have plotted the confusion matrices of the three models in Figures 5.9, 5.10
and 5.11:

Figure 5.9: Confusion Matrix for Logistic Regression.
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Figure 5.10: Confusion Matrix for Naive Bayes.

Figure 5.11: Confusion Matrix for LSTM.

In general, after many tests with different comments, we can observe that long
comments are very well predicted, whereas the models have a hard time under-
standing a certain sarcasm, idioms or short phrases. To see a few examples of how
the different models evaluate a text, we have invented the following six comments:

1) Buen sitio para tapear con buenos precios, buenas tostas y buen vino y una
camarera muy atenta y simpática que te recomienda sitios a los que ir a
tapear y a cenar.

2) No se puede fumar, fatal.

3) Cerveza con sabor a alcantarilla.

4) Regular.

5) Ni fu ni fa.

6) Por la boca vive el pez.
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Comment LR LSTM NB

1 Positive Positive Positive

2 Negative Negative Negative

3 Positive Negative Negative

4 Negative Neutral Negative

5 Neutral Positive Neutral

6 Negative Positive Positive

Table 5.1: Sentiment Predictions of Invented Commentaries.

In the above table we summarize the predicted values by each model. We can
see that they do not differ much, but some perform these cases better than others.

5.4 Conclusions and Future Work

Although 90 % of accuracy has not been reached, which was one of the ob-
jectives, both LR and NB have achieved an accuracy of more than 85 %, which is
pretty decent.

Concerning to improve the accuracy of these two models, we could be inter-
ested in which text features are the most helpful predictors for the classification
task. As for the LSTM, it should be said that no iterations or optimizations have
been made, hence I think that its accuracy is not reaching its maximum. It re-
mains pending as future work to improve this model, and with it, this metric. It
will be useful to have in mind the adjustment of hyperparameters we commented
in Section 2.5.

A task already proposed to work later within the company is to create a model
that is able to predict not only the sentiment of an entire sentence, but of a single
word. It would be very helpful and interesting, because in this way, we could
obtain a user rating segmented by products or dishes, for example.

I also think it would be interesting not only to classify a review as negative,
neutral or positive, but to increase polarity with other feelings, such as anger or
joy.



Appendix A

Implementation

You can find the Python implementation of the models by scanning the follow-
ing QR code, which is linked to a GitHub repository:

or also by clicking or copying this link in your browser:

https://github.com/nurialopezraich/Sentiment-Analysis.

Note: You will only find the implementation of logistic regression and Naive
Bayes, the two models that are original work, since all the implementation of the
LSTM belongs to UVE Solutions.
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