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Abstract— Breathing pattern has been shown to be dif-
ferent in chronic obstructive pulmonary disease (COPD)
patients compared to healthy controls during rest and walk-
ing. In this study we evaluated respiratory parameters and
the breathing variability of COPD patients as a function of
their severity. Thoracic bioimpedance was acquired on 66
COPD patients during the performance of the six-minute
walk test (6MWT), as well as 5 minutes before and after
the test while the patients were seated, i.e. resting and
recovery phases. The patients were classified by their level
of airflow limitation into moderate and severe groups. We
characterized the breathing patterns by evaluating common
respiratory parameters using only wearable bioimpedance.
Specifically, we computed the median and the coefficient of
variation of the parameters during the three phases of the
protocol, and evaluated the statistical differences between
the two COPD severity groups. We observed significant
differences between the COPD severity groups only during
the sitting phases, whereas the behavior during the 6MWT
was similar. Particularly, we observed an inverse relation-
ship between breathing pattern variability and COPD sever-
ity, which may indicate that the most severely diseased
patients had a more restricted breathing compared to the
moderate patients.

Index Terms— bioimpedance, chronic obstructive pul-
monary disease, 6MWT, breathing pattern, wearables
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I. INTRODUCTION

THE assessment of chronic obstructive pulmonary disease
(COPD) requires the confirmation and evaluation of the

airflow limitation of the patient [1]. To achieve this, the pul-
monary function is measured by performing a spirometry test
[2]. The assessment is complemented with questionnaires, that
are commonly used to assess the symptoms of COPD patients.
These tests and questionnaires make the assessment of COPD
complex since it includes different sources of information and
requires medical equipment as well as clinical experts. As a re-
sult, COPD assessment results in a big socioeconomic burden,
in particular considering that it is one of the leading causes of
death worldwide [3], [4]. Therefore, simplifying COPD mon-
itoring is an important challenge for the healthcare systems.
To address this need, other non-invasive techniques have been
investigated as complementary methods for respiratory disease
monitoring. Examples include thoracic bioimpedance [5]–[8]
or electromyography [9]–[11] which have been shown to have
a good performance in capturing respiratory information. Nev-
ertheless, the use of these techniques in healthcare applications
needs to be further validated to confirm the clinical benefit.
This validation implies technical and regulatory certification
of wearable sensors as well as user trust in the proposed
techniques (i.e. clinical experts and patients) to be accepted
for the clinical practice [12].

Thoracic bioimpedance has been suggested to provide res-
piratory information related to ventilation due to its lin-
ear relationship with respiratory volume [5]–[7], having the
advantage of being a less intrusive technique compared to
spirometry. Most of the previous studies, however, focused
on static measurements in which the breathing of the subjects
was controlled. At the same time, an important aspect of the
applicability of bioimpedance for breathing monitoring is its
use in common activities like walking. This will allow the
evaluation of breathing and its adaptability under different
activities with different metabolic demands. Therefore, future
studies that evaluate the use of bioimpedance should include
other breathing evaluation in free conditions to confirm its
usability for respiratory monitoring.

Breathing pattern is regulated in rhythm and depth by
the central nervous system to adapt ventilation to different
metabolic demands. Consequently, breathing pattern shows
variability in nature. Alterations in the variability have been
associated with pathological states such as restrictive lung
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disease [13], vegetative states [14], postoperative patients [15],
and COPD [16], [17]. Therefore, the monitoring of breathing
pattern variability is a potential source of information on
respiratory control in different diseases. Furthermore, previous
studies have shown that thoracic bioimpedance can be used
for detecting respiratory cycles and for estimating breathing
pattern parameters [18]–[21]. Hence, monitoring breathing
patterns using wearable bioimpedance is an interesting un-
obtrusive approach for evaluating respiration in health and
disease.

The present study aims to evaluate the breathing patterns of
COPD patients during sitting and walking, which are activities
that require different metabolic demands. The characterization
of the breathing pattern included the estimation of respiratory
parameters as well as studying their variability, using only
wearable bioimpedance. The evolution of the breathing pattern
was investigated across the different activities but also depend-
ing on COPD severity. The novelty of this study lies in two
relevant factors: the use of wearable bioimpedance for estimat-
ing breathing pattern in COPD patients and the evaluation of
breathing pattern depending on the COPD severity. The results
of the present analysis support the applicability of wearable
bioimpedance for pulmonary disease monitoring, in particular,
evaluating COPD disease progression and exacerbation.

II. MATERIALS AND METHODS

A. Study population

Sixty-six patients previously diagnosed with COPD were
recruited at Ziekenhuis Oost-Limburg (ZOL) (Genk, Belgium)
during their consultation or rehabilitation session. The study
followed the Declaration of Helsinki and was approved by the
institutional medical ethics committee (reference 18/0047U).
All patients gave written consent prior their study participa-
tion.

The population was divided into two groups depending on
the patients’ forced expiratory volume in one second (FEV1)
% pred obtained from the spirometry test. The FEV1 parameter
assesses the airflow limitation and is useful to predict health
status in COPD patients [1]. Patients with FEV1 % pred higher
than 50 % were classified as moderate, whereas, patients with
FEV1 % pred lower than 50 were classified as severe.

B. Protocol and physiological acquisition

The protocol consisted of three consecutive phases:
1) a 5-minute resting phase,
2) a standard six-minute walk test (6MWT) [22],
3) a 5-minute recovery phase.

During the resting and recovery phases, the patients were
seated in a wheelchair. Note that the metabolic demand is
different for the sitting and walking phases, being higher
during walking. The distance walked by the patients during
the 6MWT was annotated for the clinical record.

Thoracic bioimpedance was acquired using a wearable
research prototype device (Stichting imec the Netherlands,
Eindhoven, the Netherlands). The patients wore the device
around the neck and attached to chest using adhesive stickers,

Fig. 1: Research wearable prototype device used in this study.
The device was developed by Stichting imec the Netherlands.
The device is attached to the chest of the patient by adhesive
stickers and it was worn around the neck.

causing minimal discomfort. The device is illustrated in Fig. 1.
The device is equipped with cables that allow the acquisition
of physiological signals such as bioimpedance. Technical
information on the device and on the system-on-a-chip for
biomedical signal acquisition can be found in [23] and [24],
respectively.

In the current study, bioimmpedance was measured using a
tetrapolar electrode configuration on the midaxillary line and
symmetrical from the midesternal line (Ag/AgCl electrodes,
Kendall H92SG, Covidien Inc., MA, USA), as previously
reported in [11]. The injection current was 110 µA P-P at
80 kHz and the sampling frequency was 16 Hz. The setup
used in this study was previously tested having a high signal-
to-noise ratio (SNR) and showing the linear behavior of the
recorded bioimpedance signal [7], [11].

C. Breathing pattern analysis

Pre-processing: We followed the conclusions of our pre-
vious studies [20], [21] to preprocess bioimpedance signals.
These previous studies focused on the evaluation of different
preprocessing steps in the estimation of respiratory parameters.

In this study, the bioimpedance signal was linearly in-
terpolated to 100 Hz to increase the time resolution. The
interpolated signals were band-pass filtered with a high-pass
filter (zero-phase 4th order Butterworth, fc= 0.1 Hz) and a
low-pass filter (zero-phase 4th order Butterworth, fc= 2.5 Hz).
A moving average filter of 250 ms was applied to the filtered
signals. We followed the conclusions of our previous study
[20] except for the high-pass filter which cut-off frequency
was higher. This modification was made because we observed
that the baseline of the signals had slightly higher frequency
content compared to the ones in [20]. We think that this
difference is most probably because of the differences between
protocols in both studies. In [20] the signals were acquired
during a static protocol in which the patients only focused on
breathing following the examiner guidance, i.e. a inspiratory
threshold loading protocol. However, in the current study the
protocol was different and the patients walked and were seated
on a wheelchair. These activities could induce movements
that make the signals baseline different compared to the one
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Fig. 2: Bioimpedance signal during the 6MWT. (a) power
spectral density (PSD) estimation of the bioimpedance signals
and (b) 20 s segment of the signals in the time domain.
The grey lines correspond to the signals before the additional
filtering of the walking part, whereas the bold black lines are
the signals after the preprocessing.

observed in [20]. Furthermore, the selection of 0.1 Hz as low
cut-off frequency is supported by previous studies [6], [19].

Walking interference removal: During the 6MWT, the
bioimpedance signal also captured the walking interference,
which clearly contains frequency components above the respi-
ratory information, as Fig. 2 shows. We included an additional
preprocessing for the walking part, in particular the one
found as the best in [21] for the interference removal. This
preprocessing consists of, firstly, a low-pass filter, (zero-phase
4th order Butterworth, fc= 1 Hz), and secondly, a moving
average filter of 1 s [19]. An example of the signal before and
after the filtering can be observed in Fig. 2.

Respiratory cycles detection: The derivative of the entire
bioimpedance signal was computed using Savitzky-Golay dif-
ferentiation of 250 ms followed by a moving average filter of
750 ms [6], [20].

We detected the respiratory cycles, inspiration phase and
expiration phase using an algorithm based on the work pre-
sented in [20]. A representation of the algorithm is shown in
Fig. 3a. It uses the derivative of the bioimpedance signal to
detect the local extrema. The respiratory phases correspond to
the segments between extrema longer than 0.2 s. Inspiratory
phases are the segments between consecutive minimum and
maximum extrema, whereas, the expiratory phases are the
segments between maximum and its corresponding minimum.
This definitions are based on the normal waveform of thoracic
bioimpedance, as it can be observed in Fig. 3b. Note that
the time restriction of 0.2 s is connected to the minimum
respiratory phase duration used in previous studies [25]. After
detecting the respiratory phases, the algorithm aims to reject
false detections by verifying the presence of a zero-crossing
within the phase. The conventional waveform of bioimpedance
after the DC filtering suggests that the respiratory phase
detection should include at least a zero-crossing. However, the
baseline of the bioimpedance signals used in this study was
not as stable compared to the signals of [20], [21] in which

Fig. 3: (a) Representation of the respiratory phase algorithm
and (b) the calculation of breathing pattern parameters using
bioimpedance signal: inspiratory time (tI ), expiratory time
(tE), respiratory time (tTOT ), and peak-to-peak amplitude of
bioimpedance (∆bioZ).

the subjects were in resting condition and their movement was
limited. In the current study, the patients were free to move
while sitting and they performed the 6MWT causing more
motion artifacts compared to [20]. Therefore, the algorithm
checks if the respiratory phase includes a zero-crossing and if
not, the amplitude of the phase is evaluated, i.e., the maximum
value minus the minimum value during the phase. If the
amplitude is very low (< 5 % of the mean amplitude of
adjacent detections), the phase is combined with the adjacent
respiratory phase. Otherwise, the segment is considered as a
correct respiratory phase detection.

Signal quality index and cycle rejection: The movement
artifacts can influence the detection of the respiratory cycles
producing false detections. To mitigate this effect, we rejected
the low quality segments applying the SQI presented in [26]
in windows of 32 s with 75 % overlap. The original SQI [26]
includes constraints based on the duration and morphology
of the breaths. Some of the constrains on the duration of the
cycles are very restrictive and can have significant effect on
the breathing pattern analysis, in particular in the variability
one. Consequently, we did not include all the constraints and
we marked a window as of good quality if:

- the window included at least 60 % of breathing detection
- the mean correlation between the respiratory cycle wave-

forms and the average of all the cycle waveforms in the
window was higher than 0.75

Additional to the SQI criteria we rejected respiratory cycles
individually when the correlation with the window average was
lower than 0.4. We added this constraint to remove individual
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Fig. 4: Example of respiratory cycle detections from bioimpedance signal (a) during the three parts of the protocol, and the
corresponding estimation of the respiratory time (tTOT ), inspiratory time (tI ) and peak-to-peak amplitude of bioimpedance
(∆bioZ). In the first graph, the bioimpedance signal is represented after applying the preprocessing techniques described in
section II. The green background represents the segments used for the analysis, and the red one represents segments rejected
because of bad signal quality. (b) shows 30 s of bioimpedance signal and the corresponding estimation of breathing parameters
for the sitting parts, resting and recovery respectively. (c) illustrates an example of segments accepted or rejected by signal
quality index (SQI) as well as cycles rejected due to the low correlation with the window average cycle waveform.

cycles with very different waveforms which most probably
were false detections. We observed that using these constraints
on the signals of the present study was sufficient to detect the
good quality segments.

Breathing pattern parameters: In the case of the walking and
recovery part of the 6MWT recordings, we rejected the first
90 s. We chose this time window based on visual inspection.
We observed that it was enough to mitigate the effect of the
noise periods originated by the transition from one protocol
phase to the other.

Common breathing pattern parameters were extracted from
the detected respiratory cycles. In particular, we computed
inspiratory time (tI ), expiratory time (tE), total respiratory
time (tTOT ), duty cycle (tI /tTOT ), and respiratory rate (RR).
The tI and tE were computed as the duration of the inspiratory
and expiratory phases, respectively. tTOT was calculated as
the duration of the complete respiratory cycle (tI + tE), and
respiratory rate (RR) was calculated as the inverse of tTOT

for each respiratory phase detection. We also computed the
peak-to-peak amplitude of bioimpedance (∆bioZ) for each
respiratory cycle as the difference between the value of the
signal at the end and the beginning of each inspiration (see

Fig. 3b). The median of the aforementioned parameters derived
from the last 30 respiratory cycles of each phase of the
experiment was calculated. The variability of each parameter
was also analyzed by computing the coefficient of variation
(CV) of the 30 cycles of each phase, i.e. the standard deviation
over the mean.

Statistical analysis: Significant differences of the anthropo-
metric and pulmonary parameters between the moderate and
severe groups were tested with a Willcoxon test, considering
a p-value < 0.05 as significant.

The parameter and variability values were statistically an-
alyzed using linear mixed-effect models. We computed two
models per breathing pattern parameter, one using the value
parameter and another one with the CVs. For the ∆bioZ,
only the CV was analyzed because inter-subject comparisons
are not possible. The fixed and random effects were defined
in the same way for each model. We included the group
(moderate and severe), the phase of the protocol (resting,
walking and recovery), and the interaction between group and
phase as fixed-effects for the models. Regarding the subject
random-effect, we defined a random intercept for the model.
We detect and reject outliers using the standardized Pearson
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TABLE I: Demographic and anthropometric data for COPD
patients

Moderate Severe
n = 27 n=28

Male (Female) 17 (10) 24 (4)
Age yr 65.0 (58.8 - 69.8) 65.0 (59.0 - 69.5)
BMI kg/m2 24.6 (23.1 - 29.5) 24.5 (21.5 - 27.6)
MIP cm2H2O 47.0 (32.0 - 62.0) 53.5 (38.0 - 61.0)
FVC % pred 93.7 (83.6 - 118.2)** 74.8 (54.5 - 97.6)**
FEV1 % pred 69.5 (58.0 - 77.8)*** 41.3 (32.8 - 45.5)***
FEV1/FVC % 60.5 (48.0 - 67.9)*** 40.0 (34.3 - 47.5)***
6MWD m 465 (376 - 520) 425 (361 - 492)
The data are presented as median (first - third quartile) values.
BMI: body mass index; MIP: maximum inspiratory pressure; FVC:
forced vital capacity; FEV1: forced expiratory volume in one second.
The p-values were obtained from Willcoxon test. Asterisks denote
statistically significant differences (** for p-value < 0.01 and *** for
p-value < 0.001).

residuals. We applied F-tests to evaluate the statistical signifi-
cance for the fixed-effects. The interactions between group and
phase with statistical significance were tested using a multiple
pairwise F-test with Benjamini-Hochberg-adjusted p-values to
determine group differences across the three protocol phases.
We considered a p-value < 0.05 as significant

We assessed the relationship between the FEV1 and the
breathing parameter values and CV using the Spearman cor-
relation which indicates the monotonic relationship between
two variables.

III. RESULTS

The study included 66 COPD, 48 males and 18 females.
We excluded 11 patients from the final analysis: 3 patients
due to technical device problems, 3 patients because of the
low SNR of bioimpedance signal, and 5 patients because of
the detection of less than 30 respiratory cycles in any of the 3
phases of the protocol. Note that we only used the cycles from
signal segments in which the SQI indicated good quality.

The COPD patients were classified into two groups depend-
ing on their airflow limitation level. We classified the patients
with FEV1 % pred ≥ 50 % as moderate (27 patients) and
the ones with FEV1 % pred < 50 as severe (28 patients).
Table I shows the demographic and anthropometric data of the
patients. As expected, significant differences were only found
between the groups in parameters related to the pulmonary
function, forced vital capacity (FVC) % pred, FEV1 % pred
and FEV1/FVC %.

The study consisted of three sequential phases, 5 minutes
of resting, the 6MWT, and 5 minutes of recovery. During the
three phases, we acquired thoracic bioimpedance which was
used to characterize the breathing pattern of the patients. The
characterization included the estimation of typical temporal
breathing parameters as well as the peak-to-peak amplitude
of bioimpedance computed for each respiratory cycle. The
bioimpedance amplitude parameter is related to respiratory
ventilation because of the relationship between bioimpedance
and respiratory volume [5]–[7], [18], [19]. Fig. 4a illustrates
an example of the detection of the respiratory cycles. Rejected
segments with low signal quality are highlighted in red. Fig. 4

also shows the evolution of the tTOT , tI and ∆bioZ estimated
from the detections. The evolution shown in the figure points
to a lower variability during the walking phase than during the
resting and recovery phases.

Table II shows the mean and CV of the breathing pattern
parameters for the moderate and severe groups during the three
phases. The distributions of these values for the three phases of
the protocol are shown in Fig. 5. We computed linear mixed-
effect models to test the statistical differences between severity
level and phase, and the interaction between these factors.
Regarding the severity level, we found significant differences
in tI in both the parameter and the CV values, in tI /tTOT

values and in the CV of ∆bioZ. These differences were only
significant for the static measures, i.e. the resting and recovery
phases. Both, tI and tI /tTOT values were significantly lower
for the severe group than for the moderate. On the other hand,
we observed lower variability for the tI and ∆bioZ in the
severe patients compared to the moderate ones. Furthermore,
we found significantly lower variability of RR for the group of
severe patients compared to the moderate one across the three
phases of the protocol but not in the interaction between group
and phase (Fig. 5b). We analyzed the relationships between the
parameters and airflow limitation of the patients (by means
of FEV1 % pred). Fig. 6 demonstrates these relationships,
but only for the parameters that showed statistical significant
differences between severity groups. The correlation coeffi-
cients between FEV1 % pred and tI , CV tI and CV ∆bioZ
were moderate. The relationship between CV ∆bioZ and
FEV1 % pred showed the strongest correlation. All correlation
coefficients were statistically significant, p < 0.05.

We analyzed the evolution of the parameters and the vari-
ability between the three phases of the protocol for each
group of severity, the results are shown in Table II. In the
moderate group, we observed significant differences in all the
parameters between the resting and walking phases. These
differences were maintained between the walking and the
recovery phases except for the tE and RR. Particularly, tI ,
tTOT and tI /tTOT were significantly lower during the sitting
phases, whereas RR was higher. On the other hand, the severe
group only showed significant differences in tTOT between
the sitting and walking phases. Regarding the variability of
the parameters, the CV was significantly lower during the
walking compared to the resting and recovery phases. This
behavior was observed for all the parameters and for the two
severity groups. About the sitting phases, we noticed that for
the severe group the variability was lower during the recovery
phase compared to the resting phase for all the parameters,
except tI . The moderate patients showed significant differences
in fewer parameters, specifically, lower variability for tI , RR
and ∆bioZ during the recovery than during the resting phase.

IV. DISCUSSION

The main objective of the present study was to evaluate
the breathing patterns of COPD patients obtained using only
wearable bioimpedance. Breathing is constantly adapting, e.g.,
by rhythm and depth, to the activities being carried out.
Therefore, the variability of breathing patterns and its char-
acterization is important since it reflects how the respiratory
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Fig. 5: Breathing pattern characterization during the six-minute walk test measured by (a) the median of 30 respiratory cycles
and (b) the coefficient of variation (CV) of the parameters. The peak-to-peak amplitude of bioimpedance (∆bioZ) magnitude
is only used in the analysis of the variability since its values are not comparable inter-subject. Asterisks denote statistically
significant differences between moderate and severe groups (* for p-value < 0.05, ** for p-value < 0.01 and *** for p-value
< 0.001). The statistical analysis was performed using linear mixed-effect models. The significant differences are shown in the
protocol phases when the interaction between phase and severity resulted significant (inspiratory time (tI ), duty cycle (tI /tTOT ),
CV tI and CV ∆bioZ), or across the protocol when only the differences were significant for severity (CV respiratory rate
(RR)).

TABLE II: Breathing pattern characterization during resting, walking and recovery

Moderate Severe
n=27 n=28

resting walking recovery resting walking recovery

µ CV µ CV µ CV µ CV µ CV µ CV

tI s 1.12* 0.41*† 0.92*# 0.13*# 1.06# 0.34†# 1.03 0.30* 0.93 0.10*# 0.98 0.22#
tE s 1.32* 0.40* 1.27* 0.16*# 1.24 0.37# 1.42 0.42*† 1.37 0.15*# 1.34 0.35†#
tTOT s 2.48* 0.31* 2.21*# 0.14*# 2.36# 0.29# 2.47* 0.30*† 2.30*# 0.12*# 2.35# 0.25†#
tI /tTOT 0.46*† 0.25* 0.42*# 0.08*# 0.47†# 0.23# 0.43 0.26*† 0.41 0.09*# 0.40* 0.22†#
RR breaths/min 24.74* 0.31*† 27.76* 0.13*# 26.03 0.26†# 24.98 0.29*† 27.44 0.11*# 26.77 0.23†#
∆bioZ - 0.71*† - 0.26*# - 0.51†# - 0.53*† - 0.25*# - 0.41†#
tI : inspiratory time; tE : expiratory time; tTOT : respiratory time; tI /tTOT : duty cycle; RR: respiratory rate; ∆bioZ: peak-to-peak amplitude
of bioimpedance. The statistical analysis was performed using linear mixed-effect models. The * denote the statistical significant differences
between resting and walking phases, the † between resting and recovery phases, and the # between walking and recovery phases. No significance
levels are shown, only p < 0.05.

system works in different scenarios. Accordingly, we evaluated
the changes in breathing parameters during common activities,
like sitting and walking. The objective is to investigate if the
differences in breathing pattern are related to COPD severity.
The protocol consisted of three consecutive phases, namely,
a resting phase, a 6MWT, and a recovery phase. During the
entire protocol thoracic bioimpedance was acquired using a
wearable device. The bioimpedance signals were used to detect
the respiratory cycles and extract breathing parameters for two
severity groups. Our results showed that breathing pattern was
different depending on the COPD severity and the evolution
during the protocol was also different.

In this study we used thoracic bioimpedance to measure res-
piration due to its linear relationship with respiratory volume
[5]–[7] and thus, its capability to provide respiratory venti-

lation information [6], [27]. Accordingly, bioimpedance has
been suggested as a tool to evaluate respiratory status during
different activities such as sitting or walking, by extracting
different breathing parameters from those [18], [19], [21].
Recent studies reported an accurate detection of respiratory
cycles and estimation of breathing parameters using wearable
bioimpedance during resting and walking conditions [19]–
[21]. We applied the methods and conclusions of previous
studies to analyze the breathing pattern of COPD patients.
Thus, we expected similar performances as in [20], [21]. In
these studies, the accuracy was above 93 % and we reported
errors of 2.8 % and 3.2 % for the estimation of RR and
errors of 8.7 % and 15.5 % for tI estimations, for sitting
and walking measurements, respectively [21]. Note that the
aim of the current work is focused only on the evaluation
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of breathing pattern which differs from the previous studies.
The main novelty of the presented approach is the analysis of
breathing parameters depending on COPD severity using only
wearable bioimpedance.

Breathing pattern characterization

Walking and resting conditions: The control of respiration
is a mechanism that helps to deal with metabolic needs
by regulating breathing. Therefore, breathing is constantly
fluctuating in frequency and depth [28], [29] which results in
variations in breathing parameters like RR, respiratory times
and volumes. The present study characterized breathing pat-
terns during the three phases of the protocol as a representation
of activities with different metabolic demands. Our results
showed statistically significant differences between the sitting
parts and the walking in both, moderate and severe patients.
These differences were conclusive in terms of CV, showing
significantly lower variability during the walking phase in all
parameters under study. These results agree with a recent
study from Yentes et al. who compared breathing patterns
of COPD patients and controls while they were seated and
while performing the 6MWT [30]. Yentes et al. reported lower
variability during walking compared to sitting in both groups.
Moreover, they reported lower variability in COPD patients
compared to healthy controls. In the current work, we analyzed
breathing pattern for moderate and severe COPD patients and
we did not observe differences during walking. The lack of
differences during the walking suggests that the regulation of
breathing during an increase in metabolic need did not depend
on COPD severity.

For sitting phases, both severity groups showed lower
variability during recovery compared to the resting phase.
However, the differences were more conclusive in the more
severe patients showing differences in more breathing param-
eters compared to the moderate ones. These findings suggest
that 5 minutes of recovery after the walking was not enough
for the respiratory system to return to baseline, especially for
the more severe patients.

COPD severity levels: We observed statistically significant
differences in respiratory timings between the two severity
groups only during the sitting phases (i.e., resting and recov-
ery). Particularly, we observed lower inspiratory time in the
severe group compared to the moderate one. This decrease
in inspiratory time may indicate more breathing work which
is related to the demand of increased ventilation commonly
suffered by COPD patients [31]. Furthermore, the airflow
limitation in COPD patients causes longer expiratory times
[32], which is reflected in the duty cycle that was significantly
lower in the severe group. Accordingly, these findings suggest
that significant differences found in tI and duty cycle are
related to the airflow limitation and the need of ventilation of
COPD patients. However, these differences were not observed
in the walking phase, which may mean that the ventilation
needs are comparable between the two COPD groups during
walking.

Previous studies evaluated breathing patterns of COPD
patients compared to healthy controls during rest and peak

Fig. 6: Relationship between forced expiratory volume in one
second and breathing pattern parameters and coefficient of
variation (CV) during the resting phase. Only the parameters
and CV that showed significant differences between severity
are shown. Spearman correlation was performed for each
relationship, all coefficients showed in this figure resulted
significant.

exercise [33], [34]. These studies reported similar results, that
is significantly lower duty cycle in COPD than in healthy
controls. However, the differences between studies are consid-
erable. Firstly, [33], [34] focused on breathing patterns during
a maximal exercise test, whereas the 6MWT is a sub-maximal
test to evaluate the functional exercise capacity, a case in which
patients rarely reach their exercise limit [22]. Secondly, the
patients of [33], [34] had more severe COPD compared to the
ones in the present study, according to the reported FEV1 %
pred values. These differences may explain why the reported
values were substantially lower than our results. Moreover,
they compared COPD patients with controls, without grouping
them by COPD severity. These results are in line with our
rationale and despite these differences between studies, the
findings in both literature and in the present work suggest a
negative correlation between tI and tI /tTOT with the airflow
limitation (FEV1 % pred) and thus, with COPD disease
severity.

The increase or decrease of the variability of breathing
patterns has been hypothesized to be related to different
pathological conditions such as restrictive lung disease [13],
weaning success in postoperative patients [15], or COPD [16],
[17]. The previous studies focusing on COPD compared the
variability between patients and healthy controls [16], [17],
[30], showing lower breathing pattern variability in the patients
compared to healthy controls. Loveridge et al. explained that
alteration of breathing pattern variability reflected changes in
neural control due to COPD [16]. Similarly, Wrigge et al.
reported in a more recent study a decreased variability in
tidal volume when the subjects breathed with proportional
assist ventilation [17]. They explained this behavior as an
incapacity of the COPD patients to regulate their respiratory
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volume to adapt to different breathing demands. Therefore,
these previous results suggest that COPD has a direct effect
on the mechanism involved in the respiratory control, making
it more difficult for the patients to adapt to different breathing
demands. Jaworski et al. developed a computational model
to evaluate the sources of breathing pattern variability [35].
The model evidenced that the main changes in variability of
breathing pattern were caused by an increase in lung resistance
and impairments in gas exchange, which are known to be com-
monly caused by pulmonary diseases. These results suggested
that pulmonary diseases like COPD affect the patients’ control
of breathing.

The present study focused exclusively on COPD patients
evaluating differences between airflow limitation levels. To the
best of our knowledge, this work is the first study evaluating
breathing patterns between different COPD severity levels. Our
results show significantly lower CV values on the patients with
severe COPD patients compared to the moderate ones using
the tI , ∆bioZ and RR parameters (see Fig. 5 and Table II).
The results of previous studies indicate that COPD patients
had a restricted breathing pattern due to the disease [16], [17],
[35]. This hypothesis together with our results suggest that
the breathing pattern variability decreases with COPD severity,
reflecting the impairment of the breathing control mechanisms.

COPD patients commonly suffer from respiratory muscle
dysfunction [36]–[38], in which a lower mechanical efficiency
in the very severe patients is observed compared to the
severe ones [39]. This muscle weakness contributes to the
feeling of dyspnea in the patients. In a previous study, we
introduced the combination of bioimpedance and myographic
indices for COPD assessment [11]. We found that patients
with more severe COPD needed more levels of inspiratory
muscle activation to get similar ventilation than the mild
subjects. These alterations in muscle activation and efficiency
may contribute to the lower variability of breathing patterns
reported in the present and previous studies.

Potential use in clinical application

Thoracic bioimpedance can be easily acquired using wear-
able devices avoiding cumbersome setups, as previous studies
proposed [19], [23], [40]. This feature is a clear advantage
compared to the classical methods to assess breathing. Some
proposed applications of wearable bioimpedance include mon-
itoring of infants [40] or sleep monitoring [23]. Furthermore,
the estimation of breathing pattern parameters and the vari-
ability analysis provide information about several respiratory
conditions, such as COPD [16], [17] as this study and previous
ones have shown. Therefore, the use of bioimpedance to
estimate breathing pattern parameters has a lot of potential
to monitor respiratory conditions.

The novelty of the present study was the analysis of
breathing patterns for different levels of COPD which resulted
in statistically significant differences between severity groups.
Our results reinforce the potential application of wearable
bioimpedance for breathing pattern monitoring and disease
progression. Nevertheless, the objective of the presented anal-
ysis differs from the objective of the spirometry test, which

is to estimate the pulmonary function and is used as the
gold standard for diagnosing and assessing COPD [1]. The
reported results in the current study can potentially be applied
to monitor breathing pattern in home and health center envi-
ronment. In both scenarios the patient will perform different
activities, e.g., sitting and walking, while wearing the device
for bioimpedance measurement. In the health center scenario,
bioimpedance can be recorded during the periodic 6MWT
causing minimal discomfort for the patient and workload for
the clinicians. Accordingly, further studies should focus on
the validation of tracking breathing patterns over time as a
complementary tool to assess and monitor COPD condition
and exacerbation, particularly, the ability of the patients to
control breathing.

Focus and target application domain of the study
The study initially included 66 COPD patients from which

11 were discarded due to technical device problems and low
signal quality. We acknowledge that the sample size is a
limitation in terms of generalization. However, the sample size
was large enough to get conclusive results from the statistical
analysis. Further studies should evaluate the reported results
on broader populations.

There are many parameters to evaluate variability, and the
selection of one of them depends on the data, especially the
length, and the purpose of the study. In our case, we selected
the coefficient of variation because it measures the degree of
variability related to the mean of the values, which is useful
to compare data with different means, as is the case for the
bioimpedance amplitude. Moreover, CV can be used for short-
term variations [41]. The recordings length was at least 5
min for each phase, and we used 30 respiratory cycles to
estimate breathing parameters and compute the corresponding
CV. On the other hand, we acknowledge that the segments we
used in the analysis can include missing respiratory cycles,
e.g., due to the discarded low quality segments. However, the
presence of missing cycles is not expected to influence the
results since we selected cycles from stationary segments for
which the statistical properties were stable. Accordingly, we
consider that the selection of CV and the number of cycles is
enough to get accurate results. Nevertheless, complementary
studies, including longer recordings, can provide other insights
on variability and its relation with daily-life activities and thus,
with different levels of metabolic needs.

The use of bioimpedance for respiratory applications has
been the subject of many research studies in recent years,
however, its application in activities that imply movement has
been limited. In this study we acquired bioimpedance during
walking, and we reduced the interference due to the activity
based on the results of [21]. The specific preprocessing for
the walking part of the recording allowed us to get better
performance in the detection of respiratory cycles and the
estimation of breathing pattern parameters. Nevertheless, we
acknowledge that further studies, including measurements with
movement, are needed to broaden the scope of the application
of bioimpedance for breathing monitoring. Consequently, next
research studies on bioimpedance for respiratory monitoring
should focus on daily-life activities.
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V. CONCLUSIONS

The presented study evaluated the breathing pattern of
COPD patients with different disease severity using only wear-
able bioimpedance. Our results showed that breathing pattern
was different depending on the COPD severity level during
the sitting measurements but not during the walking phase. In
particular, the severe COPD patients showed lower variability
than the moderate ones. However, we found differences in
breathing patterns between the sitting phases and walking.
These findings suggest that the control of breathing has a
relationship with the COPD severity during the sitting phases.
Particularly, we observed an inverse relationship between
breathing pattern variability and the level of airflow limitation.
Both groups showed similar behavior during walking which
may indicate a lack of relation between the regulation of
breathing and COPD severity during an increase in metabolic
need. Consequently, our study reinforces the use of wearable
bioimpedance as a noninvasive tool for assessing and monitor-
ing COPD condition and exacerbation, particularly, the ability
of the patients to control breathing.
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