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Abstract 

The aim of this research is to study the implementation of segmentation in bonus-malus 
systems that base its analysis in the random variable number of claims. To this end, the 
theoretical framework proposed by Norberg for the construction of this a posteriori 
pricing method, for both not segmented and segmented case, is presented. This 
formulation has allowed the computation of the relative pure premiums and the premiums 
when unitary claim amount is assumed under different examples and scenarios. Then the 
different paths of premiums for certain insureds from simulated datasets are assessed. It 
is also evaluated this framework to surcharge premiums. 

Keywords: Bonus-malus system, segmentation, Norberg’s formula, a posteriori pricing, 
pure premium, motor insurance. 
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1. Introduction

An insurance contract is the specific product that allows the coverage of risks. It allows 
the transformation of the uncertain events that could happen to the goods or persons into 
probabilities and expected values that could be hold by a firm (Antonio Alegre et al., 
2017). All insurance products require an insurance pricing system that ensures that the 
pure premium of the period, that is the quantity that the policyholder must pay for its 
risk, matches with the claim amounts that the insurer must satisfy. This premium, the 
pure premium, is not the same as the total premium, that is the one that the insured 
finally pay. To obtain the total premium it must be added to the pure premium the 
corresponding expenses, the taxes, the margin of benefit and other surcharges (Gómez, 
2020). Indeed, according to the risk theory, insurance companies should always add a 
security surcharge to the pure premium to be solvent.  

Moreover, in some insurance branch it may be important that the used pricing system 
has the capacity of classifying the policyholders into homogeneous risk groups. 
These insurance contracts are the ones that have the particularity that the insurer could 
access to some of the information that partly defines the policyholders when it is 
underwritten, remaining unknown other characteristics of the individuals. In case 
that an insurance company does a priori segmentation, it must ensure that all the 
policyholders with the same initial risk characteristics pay the same quantity at the 
beginning. Then, when the other part of the information that defines the insured is 
revealed, it is important that the pricing system could update the premium according 
to the risk that represents each individual. 

The pure premium calculated through a specific pricing system must satisfy 
three principles, that are described in Boj et al. (2020). Firstly, the premiums must be 
equitable, which happens when the premium paid corresponds with the quantity of 
risk related to the individual. Also, the amounts paid by the insurers must allow the 
stability of the insurance company in the long run, what happens when the premiums 
are sufficient. That is, they must satisfy the solvency principle. The third one is the 
solidarity principle, which states that the less risky policyholders should pay a higher 
premium than the one that corresponds to their risk to compensate the lower 
premium paid by the insureds with higher risk. Nevertheless, the equity and 
solidarity principles could be contradictory. While the first one states that everyone 
must pay the quantity that reflects their risk, the second suggest that for an optimal 
distribution of the risk and the premiums, the insurers should not always pay exactly 
what corresponds to their risk. 

For a non-life insurance company and specifically if it issues motor insurance contracts, 
it would be ideal to know the exact distribution of the claims and the associated risk 
parameter (𝛿𝛿 ) for each insured in the portfolio at every period. If this information were 
available, the company would be able to compute the exact premium that an insured 
should pay to make equitable premiums. Unfortunately, in practice it is not possible to 
obtain the exact value of it. Hence, usually insurers determine what is the theoretical 
distribution that best fits the number of claims of the policyholders, according to certain 
variables. When the insured holds a policy, these variables could be the age of the 
insured, his wealth, the job position… and allow the calculation of a pure premium for 
those policyholders for which no data about the number or severity of claims was 
gathered (Boj et al., 2020). This gives rise to a priori pricing, under which the same 
premium is assigned 
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to the insureds within a risk group, that is, those who have identical characteristics when 
they underwrite the insurance product.  
 
However, the individuals allocated in a risk group generally have differentiable 
characteristics that cannot be known when they access the portfolio, or the observation of 
which could be very expensive. These specific characteristics of each individual modify 
the initially assumed probabilities of having an accident and its severity. Examples of 
these are the driving skills, driving habits, as the propension to over speeding, the 
consumptions of alcohol and drugs, etc. Hence, it exists heterogeneity between 
policyholders initially allocated in risk groups that were considered homogeneous at the 
beginning. Therefore, the price that the insured drivers must pay initially should be 
updated as the information about the number of accidents, the cost of it or other variables 
is reveled. This premium requires a posteriori pricing process for its computation, being 
this aspect the principal issue under study in this research. 
 
 
1.1. A priori pricing 
 
A current practice for the obtention of the a priori premium is to fit a distribution from 
the Generalized Linear Model (GLM) to detect the influence of the initial observable 
factors in explaining the level of a priori risk. That is, how the different values that these 
variables could take, determine the future number of claims and its severity. The GLM 
constitute an extension of the Linear Regression Models (LRM) where the conditioned 
dependent variable does not necessarily follow a normal distribution. The most common 
GLM distributions applicated in insurance a priori pricing are the Poisson and the 
negative binomial. However, some extensions of them as the quasi-Poisson, zero-inflated 
Poisson and zero-inflated negative binomial fits better the data in some contexts (Kleiber 
& Zeileis, 2008). The insurance company could have data about the annual number of 
claims within a similar portfolio as the one where the new policyholders would be 
included. Alternatively, it might be the case that the portfolio under study already exists 
before the new insureds entered and the data in it would be able. Hence, with either of 
these two data sources, the significant risk factors, and its influence in the level of risk of 
a new policyholder in the portfolio, can be identified. Once the significant risk factors are 
computed, they could be used to segment the sample of the new insureds into different 
risk groups.  
 
Factor variables, also known as categorical variables, are those that can only take a finite 
number of values. Some of these variables as the type of vehicle or the age of the 
individual have as realization qualitative levels. If it is observed that there exist significant 
differences in the number of claims, depending on the class that exhibits the individuals 
in a specific factor variable, the dataset could be split. Thus, each policyholder should be 
classified in a different group depending on the value that it takes in the categorical 
variable. Moreover, if there exist more than one factor variable with significant difference 
across their categories, the interaction of the different factor that can take each of these 
variables, define the risk groups. Then, the insurance company could determine the 
expected claim frequency of a risk group, 𝜆𝜆𝑘𝑘, as the mean of the risk groups obtained 
from the experience. This 𝜆𝜆𝑘𝑘 could be used as the a priori pure premium that the insureds 
must pay in each class. 
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1.2. A posteriori pricing 
 
In a posteriori pricing system, the initial premium obtained a priori is updated 
periodically considering the claim experience of the individuals, of the portfolio or a 
combination of both sources of data. Following Boj et al. (2020) some of the models that 
face with this requirement are: 
 
 Return of benefits for low claim frequency. 

 
 Limited fluctuation credibility theory. 

 
 Maximum precision credibility theory: 

- Exact credibility 
- Credibility of free distribution 

 
 Markovian Bonus-Malus System (BMS). 

 
The most widely used methodology in motor insurance pricing is the last one. In essence, 
a BMS is a system of classes or levels, that considering the Markov theory updates the 
premiums when the information about the a priori unknown risk factors is revealed. 
Indeed, the aim of this research is to assess the impact in the a posteriori premiums of 
taking into account or not the segmentation, initially performed to obtain the a priori 
premiums, in the construction of the BMS. This supposes a greater exploitation of the 
information that the insurance company has a priori. Moreover, the consideration of the 
existence of multiple risk groups within a portfolio is performed in some credibility 
methods. Therefore, the developed methodology in this project could also be useful for 
the comparison of these two types of a posteriori pricing systems. 
 
The obtention of a segmented BMS could be carried out under the framework purposed 
by Norberg (1976). This author proposes a methodology that allows the introduction of 
segmentation in this a posteriori ratemaking to obtain the Relative Pure Premium (RPP), 
associated with each level of the scale (𝑟𝑟𝑖𝑖), that accomplish a condition of optimality.  
Denuit & Charpentier (2009) developed the procedure to obtain these RPPs, both 
considering and not segmentation, through conditional probabilities and the Bayes rule. 
Moreover, he demonstrates that the developed methodology leads to the same results as 
the Norberg’s formula. 
 
This thesis is structured in 7 sections. After the introductory explanation of the project, 
Section 2, provides a brief introduction to the BMS with the principal characteristics of 
the methodology. In Section 3, the hypothesis and the procedure for the obtention of the 
conditional probabilities and the Norberg’s formula is explained for the not segmented 
case. The same is done Section 4 but for the segmented case. The RPPs obtained under 
different assumptions, through both the segmented and not segmented case, are compered 
in Section 5. In Section 6, the segmented BMSs are implemented to a simulated dataset 
composed by the number of claims of random individuals. These results are compared 
with those obtained when segmentation is not considered. Finally, in Section 7, the 
conclusions, some limitations of the analysis and future lines of research are provided. 
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2. Brief explanation of the Markovian Bonus-Malus System  
 
According to Lemaire (1995) a BMS is a mechanism in which the insurers who do not 
report any claim during the year are regarded with a reduction in the premium to pay, 
while those that declare accidents are penalized with an increase in the amount to pay to 
be covered in the next period. Thus, following the equitable principle, a BMS must 
achieve the objective of making each insurer pay the amount that correspond with their 
risk (Gil et al., 2003). The BMS is a flexible a posteriori pricing system, that could 
present a variety of different structures and different hypothesis and methodologies could 
be applied for its construction.  
 
 
2.1. Notation and assumptions 
 
Once presented the context in which the BMS is used for and its basic working 
mechanism, in this section it is going to be identified the principal assumptions and 
notation that will be used in the thesis. Following Gil et al. (2003), let 𝛥𝛥 be a random 
variable called structural variable and 𝛿𝛿 the possible values that could take 𝛥𝛥. Hence, δ is 
considered the risk parameter of a randomly taken insured in the portfolio. The 
distribution of the random variable 𝛥𝛥 is designed as the structure function, 𝑈𝑈(∆). 
 
Let 𝑁𝑁𝑡𝑡 denote the stochastic process number of claims of the policyholder in the different 
periods (normally years). The random variables that constitute 𝑁𝑁𝑡𝑡 are considered 
independent and identically distributed (iid) between them. Thus, it could be denoted N| 
𝛥𝛥 = 𝛿𝛿 the random variable number of claims per insured for a specific period. Also, the 
claim amount per insured {𝕏𝕏𝑖𝑖}𝑖𝑖=1∞  are assumed to be iid random variables, so we express 
them by simply 𝕏𝕏. What is more, N and 𝕏𝕏 are also independent of each other.  
 
In practice the insurance companies do not consider the claim amount in the construction 
of a BMS. The main reason is the long period of time required, after the accident take 
place, to compute the cost of the claim. Therefore, insurance companies are used to only 
contemplate the number of claims, leaving the BMS that consider the claim amount to 
the theoretical field (Boj et al., 2020). In this research, in accordance to the most extended 
practice in the industry, will be also evaluated the number of claims. Specifically, a BMS 
considers only the number of guilty claims since the accidents that are not fault of the 
driver do not define its risk. 1 This aspect gives rise to a widely covered dilemma by the 
actuarial literature called Bonus Hunger, for which the insureds have incentives to not 
report to the company the occurrence of a claim if its amount is relatively small (Park et 
al., 2018). 
  
The required conditions for the existence of a BMS are defined in Lemaire (1995) and 
these are: 
 
• All the policies within a portfolio could be classified in a finite number of classes. 

Each insured is allocated to a unique level of the scale during a certain period (usually 
one year). Normally, the larger premiums are assigned to the higher numbered classes 
and the smaller to the lower ones. 

 
1 Whenever is mentioned in this thesis that an insured report or have a claim, it refers to the fact that the 
insured driver has notified to the insurance company a guilty claim.  
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• The class in which the policyholder stays define the premium that an insured must 
pay in a particular period. Thus, the worst drivers would be placed in the higher 
classes. 
 

• Following the Markovian Condition, the class currently occupied by an insured 
depends only on the number of claims during the recent period and the class where he 
was allocated in the previous one. 
 

A BMS is usually presented in a tabular form named “system table” that allows the easy 
visualization of all the components of the BMS. The premiums are sorted in it in 
descending order. Table 1 illustrates the structure of a BMS.  

 
Table 1: Scheme of system table of a BMS 

 
Class 

 
i 

Relative Pure Premiums 
 

ri 

Classes after n claims 

 
0 

 
1 

 
2 

 
3 or more 

s rs  

  

e re 

  

1 r1 
 

Source: Own elaboration 
 
The elements that define a BMS that are placed in the “system table” are: 
 

• A quantity of classes s. 
 

• The entry class, e. That is, the class where the new policyholders of the portfolio are 
initially assigned. Under the Norberg (1976) criteria the entry class is determined 
arbitrarily. 
 

• A scale of RPPs 𝑟𝑟𝑖𝑖 i=1, …, s where (𝑟𝑟1,…, 𝑟𝑟𝑠𝑠) correspond with the percentage of the 
Base Premium (BP) that the insureds in each class 𝑖𝑖 must pay. This is the magnitude 
to compute with the framework under study. 2 

 
• The transition rules are the laws that determine the transition from one class, 𝑖𝑖, to a 

different one, 𝑗𝑗, after a period depending on the claims that are reported in the term. 
These transition rules are defined under third and further columns of the “system 

 
2 The system table sometimes presents the level of premiums, 𝑏𝑏𝑖𝑖, instead of the relative pure premiums, 
𝑟𝑟𝑖𝑖. The 𝑏𝑏𝑖𝑖 is obtained from the product of 𝑟𝑟𝑖𝑖 and BP.    

…
 

…
 

…
 

…
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table” and are also contained in the transition matrix, M, which is a 𝑠𝑠𝑠𝑠𝑠𝑠 square matrix. 
These rules sometimes could be represented with a simple law of the form - B/+M 
where -B is the reduction in the class number occupied by the insured in the next 
period if he communicates 0 claims in current season and +M the increment in the 
number of classes for each reported claim in the period 3. Some examples of these 
BMS are -1/+1, -1/+2, -1/+3, etc. For instance, these kind of BMS are applied in Iran 
or Brazil. However, this does not happen in a classical BMS of United Kingdom or a 
BMS of Ireland (Boj et al., 2020). Both, cannot be described in this form.  

 
Table 2: United Kingdom classical BMS (e=7) 

 

Class Relative Pure 
Premiums 

Classes after n 
claims 

i 𝑟𝑟𝑖𝑖  0 1 2 3+ 
7 100 6 7 7 7 
6 75 5 7 7 7 
5 65 4 6 7 7 
4 55 3 5 7 7 
3 45 2 5 7 7 
2 40 1 4 6 7 
1 35 1 4 6 7 

 
Source: Own elaboration from Lemaire (1995) 

 
As it could be appreciated in Table 2, the transition rules of this United Kingdom classical 
BMS could not be described with a simple law. This is due to the fact that depending on 
the level of the scale that the individual occupies, the increase in the number of classes 
for reporting claims and the reduction in it for not declaring any accident will be different. 
 
Hence, considering the nomenclature defined above a BMS could be expressed in short 
form as 𝐵𝐵𝐵𝐵𝐵𝐵 = (𝑀𝑀, 𝑟𝑟𝑖𝑖, 𝑒𝑒) (Norberg, 1976). 
 
 
2.2. Markov finite chains 
 
The BMSs are constructed considering the Markov condition. A Markov Process can be 
defined as a stochastic process in which its future development is determined by its 
present state, rather than the history or the way that it was reached the current state 
(Lemaire, 1995). If this typology of process is applied in the context of the methodology 
under study, the class occupied by a policyholder for the next period does not depend 
directly on his historical claims and only considers the claims of the current period and 
the class of the recent period. 
 
Furthermore, a Markov chain is said to be finite if, being (𝑋𝑋𝑡𝑡)𝑡𝑡∈𝑁𝑁 a process in discrete 
time, the set of states is a finite part 𝕀𝕀 of ℕ (Naturals numbers). That is, a finite Markov 
chain, (𝑋𝑋𝑡𝑡)𝑡𝑡∈𝑁𝑁, must satisfy the following expression:  
 

 
3 In some academic research it can be found that +M = Top. In this case it expresses that when a claim is 
reported during the period, the insured is assigned directly to the most penalized class. 
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Pr(𝑋𝑋𝑛𝑛+1 = 𝑖𝑖|𝑋𝑋0 = 𝑖𝑖0, … ,𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) = Pr(𝑋𝑋𝑛𝑛+1 = 𝑖𝑖| 𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) 
 

for n ∈ ℕ ; (𝑖𝑖0, 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛, 𝑖𝑖) ∈ 𝕀𝕀𝑛𝑛+2. 
 

This formula contains the transition probabilities, that could be defined as the probability 
that the chain is at state 𝑖𝑖 after 𝑛𝑛 + 1 periods if at period 𝑛𝑛 it was in the state 𝑖𝑖𝑛𝑛. In addition, 
if these probabilities are the same for all the periods 𝑛𝑛 = 1,2, … it is said that the Markov 
chain has stationary transition probabilities, noted as 𝜋𝜋𝑖𝑖  (García, 2002), a concept that 
will be defined below. Thus, when the stationary condition is achieved gives rise to the 
expression 
 

𝑃𝑃𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑖𝑖| 𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) = 𝜋𝜋𝑖𝑖        ∀𝑛𝑛. 
 

Moreover, if 𝑃𝑃𝑃𝑃(𝑋𝑋𝑚𝑚+𝑛𝑛 = 𝑗𝑗| 𝑋𝑋𝑚𝑚 = 𝑖𝑖) is independent of 𝑚𝑚 then (𝑋𝑋𝑡𝑡)𝑡𝑡∈𝑁𝑁 is said to be 
homogeneous. If this condition is met, the probability of being at the state 𝑗𝑗 at period 𝑚𝑚 +
𝑛𝑛 only depends on the among of time between 𝑚𝑚 and 𝑚𝑚 + 𝑛𝑛 and not on which is the 
current period (𝑚𝑚). 
 
Taking into account the Markov theory, it is going to be stated the most important 
concepts of the bonus-malus experience rating system: 
 

• The probabilities 𝑃𝑃𝑖𝑖𝑖𝑖  of an insured being changed from one class 𝑖𝑖 to another level 
of the scale 𝑗𝑗 in one period are collected in a 𝑠𝑠𝑠𝑠𝑠𝑠 transition matrix, 𝑀𝑀 =  (𝑃𝑃𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝕀𝕀.  
 

• The initial probabilities are �𝑃𝑃𝑗𝑗
(0)�

𝑗𝑗∈𝕀𝕀
. They are contained in a vector of dimension 

𝑠𝑠, called vector of initial probabilities, 𝑃𝑃(0), where all positions contain a 0 except 
the one that corresponds with the entry class, that has a 1. 
 

The transition matrix and the initial probabilities can be used to calculate the law of the 
process (𝑋𝑋𝑡𝑡)𝑡𝑡∈𝑁𝑁 in the following way: 
 

𝑃𝑃𝑃𝑃(𝑋𝑋0 = 𝑖𝑖0,𝑋𝑋1 = 𝑖𝑖1, … ,𝑋𝑋𝑛𝑛 = 𝑖𝑖𝑛𝑛) =  𝑃𝑃𝑖𝑖0
(0) · 𝑃𝑃𝑖𝑖0,𝑖𝑖1 · … ·  𝑃𝑃𝑖𝑖𝑛𝑛−1,𝑖𝑖𝑛𝑛 , 

 
where 𝑃𝑃𝑖𝑖0,𝑖𝑖1 is the probability of being transferred from class 𝑖𝑖0 to 𝑖𝑖1 in one period. 
 

• The probabilities of being moved from class 𝑖𝑖 to class 𝑗𝑗 in 𝑚𝑚 + 𝑛𝑛 periods are 
obtained from 
 

𝑃𝑃𝑖𝑖𝑖𝑖
(𝑚𝑚+𝑛𝑛) =  � 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚

∀𝑘𝑘∈𝐸𝐸

· 𝑃𝑃𝑘𝑘𝑘𝑘 
𝑛𝑛 , 

 
 
where 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 is the probability of being transferred from the class 𝑖𝑖 to the 𝑘𝑘 in 𝑚𝑚 
periods and 𝑃𝑃𝑘𝑘𝑘𝑘𝑛𝑛  contains the probability of being transferred from class 𝑘𝑘 to class 
𝑗𝑗 in 𝑛𝑛 periods. This expression is known as Chapman-Kolmogorov equation 
(Karush, 1961). 
 

• The transition matrix in 𝑛𝑛 periods is 𝑀𝑀(𝑛𝑛) = 𝑀𝑀𝑛𝑛. 
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• The probability of a policyholder being in the state 𝑗𝑗 at period 𝑛𝑛 could be derived 
from 
 

𝑃𝑃𝑗𝑗
(𝑛𝑛) = �𝑃𝑃𝑖𝑖

(0)

𝑖𝑖∈𝐸𝐸

· 𝑃𝑃𝑖𝑖𝑖𝑖
(𝑛𝑛)      𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑠𝑠. 

 
• Finally, the probability that the individual will be in the different classes after 𝑛𝑛 

periods are contained in a vector of dimension 𝑠𝑠 that could be obtained from 
 

𝑃𝑃(𝑛𝑛) = 𝑀𝑀𝑇𝑇 · 𝑃𝑃(𝑛𝑛−1) = (𝑀𝑀𝑛𝑛)𝑇𝑇 · 𝑃𝑃(0), 
 
where the superscript T denote the transposed matrix. 

 
Following Gil et al. (2003), the chain theory of Markov ensures that a BMS has a 
stationary distribution (𝜋𝜋𝑖𝑖)𝑖𝑖=1,…𝑠𝑠 if the chain (𝑋𝑋𝑡𝑡)𝑡𝑡∈𝑛𝑛 is ergodic. That is, when it is always 
possible to come to class 𝑗𝑗 from a concrete state 𝑖𝑖 after a finite number of periods 𝑛𝑛. 
Therefore, the BMSs under study will be finite, homogeneous and ergodic. Furthermore, 
the stationary distribution contains the probabilities, 𝜋𝜋𝑖𝑖, of being at each one of the levels 
of the system after a sufficiently large number of periods that ensure that the probabilities 
will not change for the next periods. The period in which the stationary distribution is 
achieved is the steady state. The idea of stationary probabilities is summarized in (2), 
 

𝜋𝜋𝑖𝑖 = lim
𝑛𝑛→∞

𝑃𝑃𝑖𝑖
(𝑛𝑛), 𝑖𝑖 = 1, … , 𝑠𝑠. 

 
The computation of the stationary probabilities could be executed in different ways: 
 

• Directly applying the definition of stationary probabilities. That is, considering 
the expression 𝑃𝑃(𝑛𝑛) = (𝑀𝑀𝑛𝑛)𝑇𝑇 · 𝑃𝑃(0) for 𝑛𝑛 such that the probabilities remain 
constant. This leads to the calculation of the 𝑛𝑛𝑛𝑛ℎ power of 𝑀𝑀 and selecting the 
row that coincides with the number of the entry class. 
  

• Let 𝜋𝜋 be the vector of dimension 𝑠𝑠 that contains the stationary probabilities 𝜋𝜋𝑖𝑖. 
Then, from (1) and (2), 
 

𝜋𝜋 = 𝑀𝑀𝑇𝑇 ·  𝜋𝜋.  
 

Therefore, 𝜋𝜋 is the eigen vector of the 𝑀𝑀𝑇𝑇 associated with the eigen value 1. 
Moreover, it is straightforward that ∑ 𝜋𝜋𝑖𝑖𝑠𝑠

𝑖𝑖=1 = 1. Hence, the stationary 
probabilities in the vector 𝜋𝜋 could be obtained from the following equation system 
with 𝑠𝑠 unknown variables and 𝑠𝑠 + 1 equations (Boj et al., 2020), 
 

𝜋𝜋 = 𝑀𝑀𝑇𝑇 ·  𝜋𝜋 
1 =  𝜀𝜀𝑇𝑇 ·  𝜋𝜋, 

 
where 𝜀𝜀 is 𝑠𝑠𝑠𝑠1 vector in which all its components are 1. Normally, the above 
equation system must be solved numerically. 
 

(1) 

(3) 

(2) 
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• To avoid the calculation using numerical methods it is deduced from (3), the eigen 
vector of eigen value 1 of the transpose of the transition matrix. From it, is 
computed the real part standardized at sum one, that results in the stationary 
probabilities. 
 

• Rolsky et. al. (1999) proposes  𝜋𝜋𝑇𝑇 =  𝜀𝜀𝑡𝑡 · (𝑰𝑰 − 𝑀𝑀 + 𝑬𝑬)−1 as an explicit expression 
to obtain 𝜋𝜋. Where 𝐼𝐼 is the identity matrix and 𝑬𝑬 is an 𝑠𝑠𝑠𝑠𝑠𝑠 matrix in which all its 
components are 1. 

 
• Simulation could also be applied to approximate the stationary distribution. For 

its implementation, in first place it is assumed an entry class. Then, it must be 
simulated the number of claims from a large enough sample of insureds 
throughout a sufficient number of periods. Finally, it is obtained an approximation 
of the stationary distribution by simply calculating the proportion of policyholders 
in each class 4.This method only provides an approximation and requires more 
computational time.  

 

3. Construction of a not segmented BMS 
 
An insurer commonly does not know the value that will take the risk parameter of each 
policyholder, δ. This is because the observable and obtainable variables about the drivers, 
when the underwriting take place, do not collect all the risk of these insureds. Hence, for 
a risk collective that display the same results on the a priori observable variables, the total 
claim frequency could be defined by δ = 𝜆𝜆𝜆𝜆. The 𝜆𝜆 coefficient collects the part of the 
risk of having an accident that could be defined through the information obtained a priori. 
For the moment, it is considered that this parameter is equal for all members of the a 
priori homogeneous collective. Nevertheless, this assumption will be modified in the 
following section and some aggrupation of the collective are going to be made. 
Furthermore, 𝜃𝜃 contains the specific risk of each insured that could not be detected when 
the policyholder enters in the portfolio. Under this research the risk parameters are going 
to consider only the risk of having a claim rather than its amount, in accordance with the 
current practice within the insurance sector. 
 
When the expected value of a count variable as the number of claims is equal to its 
variance the Poisson distribution fits well the data. Indeed, Denuit & Charpentier (2009) 
assume that the random variable number of claims N is distributed as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜆𝜆,𝛩𝛩)5 being 
𝛩𝛩 an unknown continuous random variable whose realizations are 𝜃𝜃. Thus, it is going to 
be considered this hypothesis for the construction of all the BMSs under study in this 
research. Poisson regression assumes that the mean and variance coincide. However, in 
modeling the number of claims as well as in other contexts this equality is not always in 
evidence. When the variance is lower than the mean it is said that there is infradispersion 
in the regression and if it is larger exist overdispersion, being this last the most common 
situation. To deal with overdispersion alternative count data distributions might be 
applied as the negative binomial or the quasi-Poisson. However, the distributions of 𝜆𝜆 or 
𝛩𝛩 can be stated in a way that assume that there exist infradispersion or overdispersion in 

 
4 For the analysis performed in next sections for this simulation is considered 100,000 insureds and 50 
periods. 
5 This is the abbreviation of the Poisson mixture distribution. 
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the data. Another aspect that can be considered is when the data has many zeros. In that 
case a zero-inflate Poisson or a zero-inflate negative binomial, if there is also 
overdispersion, might be the best option (Kleiber & Zeileis, 2008).  
 
Taking into account the assumption performed by Denuit & Charpentier about the 
distribution of N, the probabilities defined in the previous section for the construction of 
the BMSs, can be derived. The conditional probability of being transferred from class 𝑖𝑖 
to class 𝑗𝑗 in one period could be expressed as 
 

𝑃𝑃𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆)= Pr(In+1=j|In=i, 𝜆𝜆𝜆𝜆). 
 
Where 𝐼𝐼𝑛𝑛 contains the class where the policyholder is allocated after 𝑛𝑛 terms. These 
probabilities could be easily derived from the probability density function (pdf) of a 
Poisson distribution. 
  
With these probabilities the transition matrix 𝑀𝑀 can be built 
 

𝑀𝑀 = P(𝜆𝜆𝜆𝜆)  = �
𝑃𝑃00(𝜆𝜆𝜆𝜆) ⋯ 𝑃𝑃0𝑠𝑠(𝜆𝜆𝜆𝜆)

⋮ ⋱ ⋮
𝑃𝑃𝑠𝑠0(𝜆𝜆𝜆𝜆) ⋯ 𝑃𝑃𝑠𝑠𝑠𝑠(𝜆𝜆𝜆𝜆)

�. 

 
Moreover, the conditional probability that an insured will be changed from class 𝑖𝑖 to class 
𝑗𝑗 after 𝑚𝑚 periods is given by 
 

 𝑃𝑃𝑖𝑖𝑖𝑖
(𝑚𝑚)(𝜆𝜆𝜆𝜆)= Pr(In+m=j|In=i, 𝜆𝜆𝜆𝜆). 

 
And the conditional probability that this policyholder will be in class 𝑗𝑗 after 𝑛𝑛 terms now 
is 
 

𝑃𝑃𝑗𝑗
(𝑛𝑛)(𝜆𝜆𝜆𝜆)= Pr(In=j| 𝜆𝜆𝜆𝜆). 

 
Therefore, the vector 𝑃𝑃(𝑛𝑛)(𝜆𝜆𝜆𝜆), that contains the above probabilities �𝑃𝑃𝑗𝑗

(𝑛𝑛)(𝜆𝜆𝜆𝜆)�
𝑗𝑗=1,…,𝑠𝑠

 , 

can be defined. This vector can be computed from 
 

𝑃𝑃(𝑛𝑛)(𝜆𝜆𝜆𝜆) = 𝑷𝑷𝑇𝑇(𝜆𝜆𝜆𝜆) · 𝑃𝑃(𝑛𝑛−1)(𝜆𝜆𝜆𝜆) = (𝑷𝑷(𝜆𝜆𝜆𝜆)𝑛𝑛)𝑇𝑇 · 𝑃𝑃(0)(𝜆𝜆𝜆𝜆). 
 

Then, considering expression (2) under this framework, that is, 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑃𝑃𝑖𝑖
(𝑛𝑛)(𝜆𝜆𝜆𝜆), 

in both sides of the former equation, the stationary probabilities could be derived. 
 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑃𝑃(𝑛𝑛)(𝜆𝜆𝜆𝜆) = 𝑷𝑷𝑇𝑇(𝜆𝜆𝜆𝜆) · 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

𝑃𝑃(𝑛𝑛−1)(𝜆𝜆𝜆𝜆) 
𝜋𝜋(𝜆𝜆𝜆𝜆) = 𝑷𝑷𝑇𝑇(𝜆𝜆𝜆𝜆) · 𝜋𝜋(𝜆𝜆𝜆𝜆). 

 
Moreover, if it is denoted I the level occupied when the steady state has been reached, the 
conditional probability of being in a specific class 𝑖𝑖 at that period is  
 

𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖|𝜆𝜆𝜆𝜆]  =  𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆)       𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =  1, … , 𝑠𝑠. 
 



 11 

3.1. Norberg method in a not segmented case 
 
The specific structure of a BMS could be due to many different reasons. The decision of 
choosing particular transition rules and the premium paid at each class could be made 
considering commercial reasons but also as consequence of finding the condition of 
optimality. In this sense, Norberg (1976) proposes a framework for the obtention of 
optimal BMSs in the steady state. He assumes that the number of claims declared by a 
random insured during a year is distributed as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜆𝜆,𝛩𝛩), where 𝐸𝐸[𝛩𝛩] = 1. Then the 
RPP to pay in each class (𝑟𝑟𝑖𝑖)  must be computed as to minimize 𝑄𝑄 = 𝐸𝐸[(𝛩𝛩 − 𝑟𝑟𝑖𝑖)2]. This 
implies computing 𝑟𝑟𝑖𝑖, as the estimator of 𝛩𝛩 that minimizes the least square error. 6 
 
Firstly, the expression of 𝑄𝑄 must be expanded 

  

𝑄𝑄 = �𝐸𝐸[(𝛩𝛩 − 𝑟𝑟𝑖𝑖)2|𝐼𝐼 = 𝑖𝑖]
𝑠𝑠

𝐼𝐼=0

 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖] = �� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 · 𝑢𝑢(𝜃𝜃|𝑖𝑖) 𝑑𝑑𝑑𝑑 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]
𝜃𝜃>0

𝑠𝑠

𝐼𝐼=0

(4) 

 
where 𝑢𝑢(𝜃𝜃|𝑖𝑖) = 𝑃𝑃𝑃𝑃[𝛩𝛩 = 𝜃𝜃|𝐼𝐼 = 𝑖𝑖] is the pdf of 𝛩𝛩 given that 𝐼𝐼 = 𝑖𝑖. The 𝑢𝑢(𝜃𝜃|𝑖𝑖) can be 
found applying the Bayes rule 
 

𝑢𝑢(𝜃𝜃|𝑖𝑖) = 𝑃𝑃𝑃𝑃[𝛩𝛩 = 𝜃𝜃|𝐼𝐼 = 𝑖𝑖] =  𝑃𝑃𝑃𝑃 [𝐼𝐼=𝑖𝑖|𝛩𝛩=𝜃𝜃]·𝑃𝑃𝑃𝑃[𝛩𝛩=𝜃𝜃]
𝑃𝑃𝑃𝑃[𝐼𝐼=𝑖𝑖]

=  𝑃𝑃𝑃𝑃 [𝐼𝐼=𝑖𝑖|𝛩𝛩=𝜃𝜃]·𝑢𝑢(𝜃𝜃)
𝑃𝑃𝑃𝑃[𝐼𝐼=𝑖𝑖]

.  (5) 
 
Thus, by substituting (5) in (4),  𝑄𝑄  is obtained 
 

𝑄𝑄 = �� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 ·
𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖|𝛩𝛩 = 𝜃𝜃] · 𝑢𝑢(𝜃𝜃)

𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]
 𝑑𝑑𝑑𝑑 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]

𝜃𝜃>0

𝑠𝑠

𝐼𝐼=0

=  

= �� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖|𝛩𝛩 = 𝜃𝜃] · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑
𝜃𝜃>0

𝑠𝑠

𝐼𝐼=0

= �� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 · 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑.
𝜃𝜃>0

𝑠𝑠

𝐼𝐼=0

 

 
The RPP that minimizes 𝑄𝑄 must satisfy 7 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟𝑖𝑖
= 0. Hence,  

0 = ∫ (𝜃𝜃 − 𝑟𝑟𝑖𝑖) · 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0 . 
 
Finally, by isolating 𝑟𝑟𝑖𝑖, the optimal RPP that Norberg proposes for the not segmented case 
arises 
 

𝑟𝑟𝑖𝑖∗ =
∫ 𝜃𝜃 · 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

∫ 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

.       (5) 

 
6 Remember that the random variable 𝛩𝛩 define the part of the risk that remains unobservable when the 
policy is underwritten. This variable is continuous, however for the practical implementation of the 
framework under study it is going to be discretized in following sections.  
7 It is not necessary to compute the second derivative since the only optimal in a quadratic distribution, as 
the once under study, is a minimum. 
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It is straightforward to verify that 𝑟𝑟𝑖𝑖∗ = E[𝛩𝛩|𝐼𝐼 = 𝑖𝑖], 
 

𝐸𝐸[𝛩𝛩|𝐼𝐼 = 𝑖𝑖] = � 𝜃𝜃 · 𝑢𝑢(𝜃𝜃|𝑖𝑖)  𝑑𝑑𝑑𝑑
𝜃𝜃>0

= � 𝜃𝜃 ·
𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖|𝛩𝛩 = 𝜃𝜃] · 𝑢𝑢(𝜃𝜃)

𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]
  𝑑𝑑𝑑𝑑

𝜃𝜃>0

=
∫ 𝜃𝜃 · 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]
=
∫ 𝜃𝜃 · 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

∫ 𝜋𝜋𝑖𝑖(𝜆𝜆𝜆𝜆) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

.  

 
Therefore, by computing the expectation of 𝛩𝛩 knowing that the policyholder is in class 
𝑖𝑖, 𝑟𝑟𝑖𝑖∗ is also obtained and coincides with the optimal premium level deduced from the 
Norberg’s formula. Hence, this expected value provides the optimal premium. 
 
An important quality of 𝑟𝑟𝑖𝑖∗ is that it meets the property of financial equilibrium, ensuring 
that the collection remains constant over time (Denuit & Charpentier, 2009). Thus, the 
pure premiums that the insurance company obtains from each individual change over 
time, but the total amount collected from the policyholders, in terms of pure premium, 
remains constant, 

𝐸𝐸[𝑟𝑟𝑖𝑖∗] =  �𝑟𝑟𝑖𝑖∗ ·
𝑠𝑠

𝑖𝑖=0

𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖] = �𝐸𝐸[𝛩𝛩|𝐼𝐼 = 𝑖𝑖] ·
𝑠𝑠

𝑖𝑖=0

𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖] = 𝐸𝐸�𝐸𝐸[𝛩𝛩|𝐼𝐼 = 𝑖𝑖]� = 𝐸𝐸[𝛩𝛩] = 1. 

 

4. Construction of a segmented BMS 
 
In Section 3 it has been assumed that the number of claims of a randomly taken insured 
is distributed as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜆𝜆,𝛩𝛩). In a BMS without segmentation it is considered that 𝜆𝜆 is the 
same for all the individuals within a portfolio. However, when the a priori data suggest 
that the individuals could be classified in different risk groups, it might be convenient to 
correspond a different value of 𝜆𝜆 to each group. These are 𝜆𝜆𝑘𝑘 and collect the part of the 
risk that could be deduced from the a priori information of the 𝑘𝑘_𝑡𝑡ℎ risk group. These 
parameters are noted as the claim frequency of the risk group k deduced from the a priori 
information. 
 
Therefore, now it is considered a portfolio that has been partitioned in 𝑘𝑘 different risk sets 
based on the a priori information. The number of claims of an insured in the 𝑘𝑘_𝑡𝑡ℎ risk 
group is now distributed as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜆𝜆𝑘𝑘,𝛩𝛩). Hence, if a random new policyholder is 
selected, his annual expected claim frequency deduced a priori is now represented by a 
discrete random variable 𝛬𝛬, since the class from which this insured comes from is not 
known. Given that the different risk groups may not have the same importance in the 
portfolio, 𝑤𝑤𝑘𝑘 is defined as the weight of the 𝑘𝑘_𝑡𝑡ℎ risk group. Therefore, the value of 𝑤𝑤𝑘𝑘 
could correspond to the relative number of individuals in the group. 
 
 
4.1. Norberg method in a segmented case 
 
As it happens with the not segmented case, Norberg (1976) provides a formula that could 
be applied when different risk groups are computed a priori. If 𝐼𝐼 is the class occupied by 
a random insured in the steady state of the segmented portfolio, then the probability mass 
function of 𝐼𝐼 is given by 
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𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖] = �𝑤𝑤𝑘𝑘 ·
∀𝑘𝑘

� 𝜋𝜋𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑
𝜃𝜃>0

. 

 
Again, by computing the mean square deviation between 𝛩𝛩 and 𝑟𝑟𝑖𝑖, the optimal RPP 
could be obtained. Firstly, the expression of Q must be developed, 
 

𝑄𝑄 = 𝐸𝐸[(𝛩𝛩 − 𝑟𝑟𝑖𝑖)2] = �𝐸𝐸[(𝛩𝛩 − 𝑟𝑟𝑖𝑖)2|𝐼𝐼 = 𝑖𝑖]
𝑠𝑠

𝐼𝐼=0

 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]

= �� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 · 𝑢𝑢(𝜃𝜃|𝑖𝑖) 𝑑𝑑𝑑𝑑 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖]
𝜃𝜃>0

𝑠𝑠

𝐼𝐼=0

 𝑑𝑑𝑑𝑑

=  �� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 · 𝑃𝑃𝑃𝑃[𝐼𝐼 = 𝑖𝑖|𝛩𝛩 = 𝜃𝜃] · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑
𝜃𝜃>0

𝑠𝑠

𝐼𝐼=0

= �𝑤𝑤𝑘𝑘� (𝜃𝜃 − 𝑟𝑟𝑖𝑖)2 · 𝜋𝜋𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑.
𝜃𝜃>0∀𝑘𝑘

 

 
Then, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟𝑖𝑖
= 0 must be calculated to find the minimum 

 

0 = �𝑤𝑤𝑘𝑘
∀𝑘𝑘

� (𝜃𝜃 − 𝑟𝑟𝑖𝑖) · 𝜋𝜋𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑,
𝜃𝜃>0

 

 
isolating 𝑟𝑟𝑖𝑖 from this expression it is obtained 
 

𝑟𝑟𝑖𝑖∗ =
∑ 𝑤𝑤𝑘𝑘∀𝑘𝑘 ∫ 𝜃𝜃 · 𝜋𝜋𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

∑ 𝑤𝑤𝑘𝑘∀𝑘𝑘 ∫ 𝜋𝜋𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃) · 𝑢𝑢(𝜃𝜃)  𝑑𝑑𝑑𝑑𝜃𝜃>0

.       (6) 

 
As it has happened with the not segmented case it is straightforward to show that 𝑟𝑟𝑖𝑖∗ and 
𝐸𝐸[𝛩𝛩|𝐼𝐼 = 𝑖𝑖] are equivalent. 
 

5. Comparison of the segmented and not segmented BMS 
under different assumptions 
 
In this section the performance of the segmented and not segmented version of different 
BMSs will be compared. Each of these BMSs considers different scenarios and 
assumptions. Hence, it will be detected if there are substantial differences in considering 
or not the risk groups obtained a priori for the construction of the systems under different 
situations. Before performing this analysis, some notes about the concept of pure 
premium should be done for the correct interpretation of the results in this section and the 
next one. 
 
According to equivalence principle (Promislow, 2010) also known as the pure premium 
principle, the pure premium should coincide with the expected value of the risk. Since 
the risk under study is the number of claims, it should be considered the expected number 



 14 

of claims. As stated before, the coefficients that collect the risk of having a claim are 𝜆𝜆𝑘𝑘 
and 𝜃𝜃. Therefore, their values could be considered to determine the pure premium that 
correspond to the individuals of each risk group. When the insured enters to the portfolio 
and the a priori pure premiums must be computed, it is possible to determine the values 
𝜆𝜆𝑘𝑘 but not those of 𝜃𝜃 since they are the realization of the random variable 𝛩𝛩 whose values 
are a priori unknown. However, at this instant, could be assumed or inferred a discrete 
structure function, whose values are 𝜃𝜃𝑙𝑙, from which the expected value of 𝛩𝛩 could be 
calculated. Therefore, the a priori pure premium could be computed as the product of 
𝜆𝜆𝑘𝑘 and 𝐸𝐸[𝛩𝛩]. Moreover, the discrete nature of 𝛩𝛩, under this assumption, leads to a finite 
number of values that could take this random variable denoted 𝜃𝜃𝑙𝑙. 
 
Despite the equivalence principle is justifiable considering the law of the large numbers 
it is not coherent according to the risk theory. This is due to the fact that this theory 
verifies that the use of premiums that are not larger than the pure premium calculated in 
this way lead in the long term to bankrupt with probability 1. To avoid this situation, 
insurance companies usually consider a security surcharge applied to the pure premium.  
 
To address these aspects, it is going to be considered the following:  
 

• The most reasonable scenario of 𝜃𝜃𝑙𝑙 is the one that assumes “normal drivers” a 
posteriori. This means that the a posteriori behavior of the drivers is unknown, 
but it is assumed that in general their future number of claims will not differ much 
in mean from its a priori claim frequency and there will be the same probabilities 
of being a good or bad driver for the company. Hence, the a priori pure premiums 
are going to coincide with the 𝜆𝜆𝑘𝑘 since 𝐸𝐸[𝛩𝛩] = 1. The a posteriori pure premium 
will be the product of RPP (𝑟𝑟𝑖𝑖) assuming normal drivers and the BP. 8 
 

• If it is desired to consider that the insured will exhibit a bad driving behavior and, 
therefore, its future expected number of claims will be larger than 𝜆𝜆𝑘𝑘, the a priori 
pure premium would be the product of 𝜆𝜆𝑘𝑘 and 𝐸𝐸[𝛩𝛩] > 1. The a posteriori one 
will be result of multiplying the 𝑟𝑟𝑖𝑖 assuming “bad drivers” by BP. Therefore, it is 
considered that the relative surcharge applied to the pure premiums a priori 
coincide with the difference between the average of 𝛩𝛩 when it is considered “bad 
drivers” and the expected value of 𝛩𝛩 under the assumption of normal drivers. 
Whilst the 𝑟𝑟𝑖𝑖 under the “bad drivers” assumption will contain the relative 
surcharge considered a posteriori. 

 
It could be also considered that a posteriori the behavior of the drivers will be 
advantageous for the company. In this case the a priori pure premium would be 
the product of 𝜆𝜆𝑘𝑘 and 𝐸𝐸[𝛩𝛩] < 1 and the a posteriori one the result of multiplying 
the 𝑟𝑟𝑖𝑖 assuming good drivers an𝑑𝑑 BP. This could be used to consider a discount in 
the premiums. However, if this is applied, it would be difficult to justifiable since, 
according to the risk theory, this would lead to insolvency. 
 

In this section will be derived the 𝑟𝑟𝑖𝑖 for the different BMSs under the three assumptions 
about the future driving behavior of the policyholders. Furthermore, in Section 6 it is 

 
8 Since the BMS under study only considers the number of claims this quantity must be multiplied by the 
expected value of the claim amount, E[X]. This issue will be discussed further on. 
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going to be assessed the effect of considering a surcharge in the premiums to pay by the 
insureds from two simulated samples about the number of claims. 
 
Moreover, since under the Norberg framework the RPPs are always computed 
considering the discrete structure function of 𝛩𝛩, it is considered not necessary that the BP 
depends on 𝜃𝜃𝑙𝑙 . Thus, for the different risk groups the BP coincide with the 𝜆𝜆𝑘𝑘. 9  
 
 
5.1. Study of the impact of segmentation in a BMS with scale -1/+1 
 
Firstly, it is considered a BMS that does not imply many levels of penalization per claim. 
That is, each claim is going to be penalized with an increase of one class. This BMS will 
be called “Light BMS” and its specific features are: 
 

• The number of classes are 𝑠𝑠 =  6. 
 

• The transition rules of this BMS can be described by the scale -1/+1. Thus, for 
each year without reporting a guilty claim the insured will be regarded with a fall 
of 1 class, while for each reported accident it will be punished with an increase of 
1 class in the scale. These transition rules are also placed in Table 3. 

 
 

Table 3: System table of the “Light BMS” 
 

Class Classes after n claims 
i 0 1 2 3 4 5+ 
6 5 6 6 6 6 6 
5 4 6 6 6 6 6 
4 3 5 6 6 6 6 
3 2 4 5 6 6 6 
2 1 3 4 5 6 6 
1 1 2 3 4 5 6 

 
Source: Own elaboration 

 
• The entrance class, that is the class in which all the policyholders are placed when 

they get into the portfolio, is 𝑒𝑒 = 5. Thus, the vector of initial probabilities is 
obviously 
 

𝑃𝑃(0)(𝜆𝜆𝜆𝜆) =

⎝

⎜⎜
⎛

0
0
0
0
1
0⎠

⎟⎟
⎞

 

 
• Given these transition rules the transition matrix, M, is: 

 
9 This BP will be used in section 6 for the obtention of the pure premium in units of claim amount or 
when the claim amount is 1. 
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𝑀𝑀 = 

⎝

⎜
⎜
⎛

𝑃𝑃𝑃𝑃0 𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 𝑃𝑃𝑃𝑃3 𝑃𝑃𝑃𝑃4 1 − 𝛴𝛴1
𝑃𝑃𝑃𝑃0 0 𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 𝑃𝑃𝑃𝑃3 1 − 𝛴𝛴2

0 𝑃𝑃𝑃𝑃0 0 𝑃𝑃𝑃𝑃1 𝑃𝑃𝑃𝑃2 1 − 𝛴𝛴3
0 0 𝑃𝑃𝑃𝑃0 0 𝑃𝑃𝑃𝑃1 1 − 𝛴𝛴4
0 0 0 𝑃𝑃𝑃𝑃0 0 1 − 𝛴𝛴5
0 0 0 0 𝑃𝑃𝑃𝑃0 1 − 𝛴𝛴6⎠

⎟
⎟
⎞

, 

 
where 𝑃𝑃𝑃𝑃𝑛𝑛, 𝑛𝑛 = 0, … ,4 are the probabilities of reporting n claims during one period and 
Σ𝑠𝑠 = ∑ 𝑃𝑃𝑃𝑃𝑛𝑛𝑁𝑁

𝑛𝑛=0  the sum of the elements of the 𝑠𝑠 row. Since it is assumed that 𝑁𝑁 
~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜆𝜆𝜆𝜆), the 𝑃𝑃𝑃𝑃𝑛𝑛 are obtained through the pdf of the Poisson distribution. 
 

𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑃𝑃[𝑁𝑁 = 𝑛𝑛|𝜆𝜆𝜆𝜆] = (𝜆𝜆𝜆𝜆)𝑛𝑛

𝑛𝑛!
· 𝑒𝑒−(𝜆𝜆𝜆𝜆) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 1, … ,4, 

 
being the parameter 𝜆𝜆 the same for all the individuals in the portfolio in the not segmented 
case, and the realization of the discrete random variable Λ in the segmented. Whether 
segmentation is or not considered, it is assumed that 𝜆𝜆 was obtained based on the 
information a priori able in the databases about claims that the insurance companies had. 
 
With the purpose of applying the methodology purposed by Norberg (1976) in a practical 
context, the author suggests considering 𝛩𝛩 as a discrete random variable, distributed 
according to a specific structure function that approximates adequately the car policies 
under study. With comparative purposes three different assumptions about this 
distribution are made. Although the values that 𝛩𝛩 take under all the scenarios are the 
same, the probability that each realization takes place change depending on the assumed 
distribution. 10 
 

Table 4: Discrete structure function  
 

Values of 𝜽𝜽𝒍𝒍 for all the scenarios 

𝜃𝜃𝑙𝑙  0.25 0.50 0.75 1.25 1.5 1.75 

   
     

Probabilities under the equiprobable case (“Normal drivers”) 

𝑃𝑃𝑃𝑃[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 1/6 1/6 1/6 1/6 1/6 1/6 

             𝐸𝐸[𝛩𝛩] = 1 

Higher probabilities for the large 𝜽𝜽 (“Bad drivers”) 

𝑃𝑃𝑃𝑃[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 1/12 1/12 1/12 1/4 1/4 1/4 

             𝐸𝐸[𝛩𝛩] = 1.25 

Higher probabilities for the lower 𝜽𝜽 (“Good drivers”) 

Pr[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 1/4 1/4 1/4 1/12 1/12 1/12 

               𝐸𝐸[𝛩𝛩] = 0.75 
 

Source: Own elaboration 
 

 
10 Norberg presents a specific discrete structure function according to the characteristics of the Norwegian 
private car insurance policies. 
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As it has been stated, 𝜃𝜃𝑙𝑙 represents the part of the risk of having a claim for a random 
policyholder that cannot be detected with the a priori information. Therefore, for each of 
these three assumptions, the different values of  𝜃𝜃𝑙𝑙 in the discrete structure function of 
Table 4, could be considered as the a priori unknown part of the claim frequency for a 
policyholder with specific driving skills and habits. That is, the higher values of 𝜃𝜃𝑙𝑙 
correspond to the “worst drivers” and the lower once to the “best drivers” 11. Thus, without 
changing the values of this coefficient, it has been assumed that the portfolio has better 
or worse drivers a posteriori by only changing the probabilities of each realization.  
 
With this data and assuming that 𝜆𝜆 = 0.645, it is possible to compute the 𝑟𝑟𝑖𝑖 in the not 
segmented case through the Norberg’s formula. Since, it has been assumed that the a 
posteriori risk parameter, 𝜃𝜃𝑙𝑙 , is the realization of a discrete random variable, (5) now 
could be rewritten as: 
 

𝑟𝑟𝑖𝑖∗ =
∑ ∑ 𝜃𝜃𝑙𝑙 · π𝑖𝑖(λ𝜃𝜃𝑙𝑙) · Pr[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 6

𝑙𝑙=1
6
𝑖𝑖=1

∑ ∑ π𝑖𝑖(λ𝜃𝜃𝑙𝑙) · Pr[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 6
𝑙𝑙=1

6
𝑖𝑖=1

 . 

 
Moreover, the discrete nature of 𝛩𝛩 allows the obtention of the same result also through 
the procedure explained in Denuit & Charpentier (2009). Indeed, both, the Norberg’s 
formula and the framework proposed by Denuit & Charpentier, have been applied in this 
research. The calculations were performed through the software R, which code is able in 
Annex 1. Whatever has been the proceed followed it results in the 𝑟𝑟𝑖𝑖 given in Table 5. 

 
Table 5: “Light BMS” - RPPs in the not segmented case under the three scenarios of the 

discrete structure function 
 

Class Good drivers Normal drivers Bad drivers 
6 1.39 1.48 1.52 
5 1.20 1.37 1.45 
4 0.96 1.18 1.34 
3 0.75 0.92 1.14 
2 0.58 0.67 0.84 
1 0.44 0.47 0.54 

 
Source: Own elaboration 

 
As it could be seen in Table 5 the lowest 𝑟𝑟𝑖𝑖 for all classes are obtained under the “Good 
drivers” assumption, while the higher are in derived in the “Bad drivers” case. Thus, the 
pure premium for an insured in the entry class 5 would be 120% of the BP if he is 
considered a good driver, 137% if he is considered normal driver and 145% if considered 
bad driver. 12 These results are due to the fact that the presumption of high quantity of 

 
11 This notation considers not only the driving skills but also to the other unknown risk factors that affect 
the probability of having a claim that are not observable a priori. Hence, a “Bad driver” refers to that one 
that is less convenient for the company. 
12 Even though this is the not segmented case the values of the premiums in units of average claim amount, 
that is, when it is assumed that the claim amount is 1, depend on the a priori premium associated to the risk 
group of the insured. Hence, when different lambdas are assumed, a policyholder that is classified in risk 
group 4 and is in class 5 must pay 1.2·0.6 = 0.72·E[X] monetary units in the BMS that consider good 
behaved drivers. 
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drivers with more propension to have an accident a posteriori require higher premiums, 
while the opposite happens when the individuals under study are assumed less likely to 
report a claim. Furthermore, whatever the assumption about the behavior of the insureds 
is made the premiums increase with the classes. Hence, it can be stated that this BMS 
satisfy the equitable principle since larger premiums are obtained when it is assumed a 
sample of riskier driver a posteriori and when the insureds are placed in the most 
penalized levels, that are supposed to contain the riskiest drivers. 
 
For the obtention of the 𝑟𝑟𝑖𝑖 under the segmented case it is required the computation of the 
corresponding 𝜆𝜆𝑘𝑘 of each risk group. This segmentation is produced a priori, hence, as it 
has been stated in the introduction, a GLM model could be applied to an old representative 
sample to identify the influence of the a priori observable variables and determine with 
it the different risk groups for the new policyholders. Then, the risk parameter 𝜆𝜆𝑘𝑘 
associated with group k could be computed as the sample mean of the number of claims 
reported by policyholders in group k of the old portfolio, that present the same categories 
in the variables as the individuals in the set 𝑘𝑘 of new portfolio. Moreover, the same 
assumptions about the data and the variables as in the not segmented case are considered, 
but in this case the existence of different a priori risk sets is considered.  
 
Since 𝑤𝑤𝑘𝑘 is the weight or importance of the k_th risk group within the portfolio, it could 
be interpreted as the proportion individuals in group k in comparison to the total portfolio. 
With comparative purposes, two assumptions about the distribution of 𝜆𝜆𝑘𝑘 have been done. 
The supposed values for 𝜆𝜆𝑘𝑘 are placed in Table 6. The first assumption considers that the 
propensity of the risk groups to have an accident is quite different while the second 
reflects lower differences between the groups. In both cases the average weighted mean 
of 𝜆𝜆𝑘𝑘  coincides with the overall value of the claim frequency in the not segmented case, 
that was 𝜆𝜆 = 0.645. The 𝑤𝑤𝑘𝑘 are the same under both assumptions. 
 

Table 6: Assumed distributions of 𝜆𝜆𝑘𝑘  
 

Assumption 1: 𝝀𝝀𝒌𝒌 for different risk groups 

𝜆𝜆𝑘𝑘 0.2 0.3 0.4 0.6 0.7 0.9 

𝑤𝑤𝑘𝑘 0.1 0.1 0.1 0.15 0.15 0.4 

Assumption 2: 𝝀𝝀𝒌𝒌 for similar risk groups 

𝜆𝜆𝑘𝑘  0.35 0.55 0.57  0.62 0.7 0.75 

𝑤𝑤𝑘𝑘  0.1 0.1 0.1 0.15 0.15 0.4 

 
Source: Own elaboration 

 
As in the not segmented case, once the information required for the computation of the 𝑟𝑟𝑖𝑖 
has been collected, the results could be obtained via the segmented version of the 
Norberg’s formula, or the methodology explained by Denuit & Charpentier (2009). The 
code used in both cases is also able in Annex 1. 
 
The segmented version of the Norberg’s formula (6) could be adapted for discrete 𝛩𝛩 
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𝑟𝑟𝑖𝑖∗ =
∑ 𝑤𝑤𝑘𝑘
6
𝑘𝑘=1 ∑ ∑ 𝜃𝜃𝑙𝑙 · π𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃𝑙𝑙) · Pr[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 6

𝑙𝑙=1
6
𝑖𝑖=1

∑ 𝑤𝑤𝑘𝑘
6
𝑘𝑘=1 ∑ ∑ π𝑖𝑖(𝜆𝜆𝑘𝑘𝜃𝜃𝑙𝑙) · Pr[𝛩𝛩 = 𝜃𝜃𝑙𝑙] 6

𝑙𝑙=1
6
𝑖𝑖=1

 

 
 
In the segmented case, since the values of 𝜆𝜆𝑘𝑘 are different under the two assumptions, 
two sets of RPP’s will be obtained, one for each assumed distribution of 𝜆𝜆𝑘𝑘. 
 
 

Table 7: “Light BMS” - RPPs in the segmented case under the three scenarios of the 
discrete structure function 

 
 Assumption 1: Different 𝜆𝜆𝑘𝑘 Assumption 2: Similar 𝜆𝜆𝑘𝑘 

Class Good 
drivers 

Normal 
drivers 

Bad 
drivers 

Good 
drivers 

Normal 
drivers 

Bad 
drivers 

6 1.30 1.44 1.50 1.37 1.47 1.51 
5 1.10 1.30 1.42 1.17 1.35 1.44 
4 0.91 1.13 1.32 0.95 1.17 1.34 
3 0.76 0.96 1.20 0.75 0.94 1.17 
2 0.63 0.80 1.05 0.59 0.71 0.92 
1 0.50 0.62 0.83 0.45 0.50 0.63 

 
Source: Own elaboration 

 
As it happens in the not segmented case, the BMS in Table 7 accomplish the equitable 
principle. It is shown how under the assumption of worst behaved drivers; the premiums 
are higher and there is a monotonic increase of the premiums with the classes for all the 
scenarios.  
 
Furthermore, if these results are compared with the ones obtained in the not segmented 
case, it could be seen that the 𝑟𝑟𝑖𝑖 are always closer to 1 in the normal drivers’ scenario and 
closer to 0.75 and 1.25 under the assumption of good and “bad drivers” respectively (see 
Annex 2). These results ensure that the pure premium that the insured should pay when 
segmentation is considered is going to be always closer to the estimated claim frequency 
that describes him, 𝜆𝜆𝑘𝑘 · 𝐸𝐸[𝛩𝛩]. This aspect is going to be further discussed in Section 6. 
Moreover, it is obtained that the difference between RPPs and the claim frequency of the 
risk groups are smaller when different 𝜆𝜆𝑘𝑘 are assumed. This happens because the 
adjustment that produces segmentation under the Norberg framework is more accurate 
when there are larger differences among the risk groups. 
 
 
5.2. Study of the impact of segmentation in a scale -1/+3 
 
It is also interesting to evaluate what is the effect of segmentation under a BMS that 
penalizes with more classes when a claim is reported. Thus, same scenarios as above will 
be analyzed but for a -1/+3 BMS. This system will be denoted “Strict BMS” and it is 
characterized by: 
 

• The number of classes is 𝑠𝑠 =  6. 
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• The transition rules of this BMS now are described by the scale -1/+3. Thus, for 
each year without reporting a claim the insured is regarded with a fall of 1 class. 
However, if the insured reports a claim a penalization of 3 classes is applied. 
These transition rules are displayed by Table 8. 

 
Table 8: Scheme of the system table of the “Strict BMS” 

 
Class Classes after n claims 

i 0 1 2 
6 5 6 6 
5 4 6 6 
4 3 6 6 
3 2 6 6 
2 1 5 6 
1 1 4 6 

 
Source: Own elaboration 

 
• The entrance class is also 𝑒𝑒 = 5. Hence, the obtentions of the vector of initial 

probabilities is straightforward 
 

𝑃𝑃(0)(𝜆𝜆𝜆𝜆) =

⎝

⎜⎜
⎛

0
0
0
0
1
0⎠

⎟⎟
⎞

 

 
• Given the defined transition rules the transition matrix, 𝑀𝑀, is: 

 

𝑀𝑀 =

⎝

⎜
⎜
⎛

𝑃𝑃𝑃𝑃0 0 0
𝑃𝑃𝑃𝑃0 0 0

0 𝑃𝑃𝑃𝑃0 0

𝑃𝑃𝑃𝑃1 0 1 − 𝛴𝛴1
0 𝑃𝑃𝑃𝑃1 1 − 𝛴𝛴2
0 0 1 − 𝛴𝛴3

0 0 𝑃𝑃𝑃𝑃0
0 0 0
0 0 0

0 0 1 − 𝛴𝛴4
𝑃𝑃𝑃𝑃0 0 1 − 𝛴𝛴5

0 𝑃𝑃𝑃𝑃0 1 − 𝛴𝛴6⎠

⎟
⎟
⎞

 

 
 
The assumptions in this example are the same as in Subsection 5.1: 
 

• 𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑃𝑃[𝑁𝑁 = 𝑛𝑛|𝜆𝜆𝜆𝜆] = (𝜆𝜆𝜆𝜆)𝑗𝑗

𝑗𝑗!
· 𝑒𝑒−(𝜆𝜆𝜆𝜆) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 1, … ,2 

• The three scenarios in Table 4 will be considered for 𝛩𝛩. 
• The same two assumptions in Table 6 are made about the values of 𝜆𝜆𝑘𝑘 for each 

risk group in the segmented case. 
 

Therefore, if the Norberg’s formulas or the formulation proposed by Denuit & 
Charpentier are applied, the results for the segmented and not segmented case are derived. 
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Table 9: “Strict BMS” - RPPs under the three scenarios of the discrete structure 
function 

 
 Not Segmented Assumption 1: Different 𝝀𝝀𝒌𝒌 Assumption 2: Similar 𝝀𝝀𝒌𝒌 

Class Good Normal Bad Good Normal Bad Good Normal Bad 

6 1.07 1.30 1.43 1.05 1.28 1.42 1.07 1.29 1.43 

5 0.90 1.14 1.33 0.88 1.12 1.32 0.89 1.13 1.33 

4 0.68 0.87 1.12 0.69 0.91 1.16 0.68 0.88 1.13 

3 0.59 0.73 0.96 0.63 0.81 1.06 0.60 0.75 0.99 

2 0.52 0.61 0.80 0.58 0.73 0.98 0.54 0.64 0.85 

1 0.39 0.41 0.47 0.46 0.54 0.73 0.40 0.44 0.53 

 
Source: Own elaboration 

 
The figures in Table 9 display how under all the scenarios and assumptions and for all 
classes, the premiums in the “Strict BMS” are smaller than those obtained in the “Light 
BMS”, Tables 5 and 7. This is due to the fact that a BMS should ensure that each insured 
pays the quantity that corresponds to its risk. Therefore, if for each claim the BMS is 
penalized with more levels in the scale, it does not require such as larger RPPs. 
 
Likewise, in this case and for all scenarios, as in the “Light BMS”, there exist a monotonic 
increase in the premiums with classes and the premiums charged to the insureds increase 
if the BMS is calculated under the assumption of worse drivers. It is straightforward, that 
again the scope of corrections that the segmented BMS does with respect the not 
segmented ones are smaller for lower differences on 𝜆𝜆𝑘𝑘 between risks groups. Thus, as in 
the -1/+1, the 𝑟𝑟𝑖𝑖 are always closer to the expected value of 𝜆𝜆𝑘𝑘 · E[𝛩𝛩] when the differences 
of the claim frequencies of the risk groups are larger. 
 

6. Analysis of the paths of premiums of the policyholders in 
the not segmented and segmented cases 
 
In Section 5, the different 𝑟𝑟𝑖𝑖; obtained under the “strict” and “light” BMS considering 
different scenarios about the information known a priori, collected by 𝜆𝜆𝑘𝑘, and a 
posteriori, represented by 𝜃𝜃𝑙𝑙; are compared.  
 
In this section, the different premiums derived from the segmented and not segmented 
case are going to be assessed for some individuals in two simulated portfolios, according 
to the annual number of claims that they declare during a period of 5 years. That is, it will 
be assessed how the premiums to pay, in units of E[X], by some randomly taken insureds 
from different risk group change over the periods under different assumptions. Firstly, 
the paths of posteriori pure premiums obtained from the four different combinations of 
assumptions are going to be used but only under the assumption of normal drivers. 13 Then 
the differences premiums derived from the “normal drivers” and “bad drivers” scenarios 

 
13 The four combinations of assumptions and its reduced denotation in brackets are: Strict BMS and 
Different 𝜆𝜆𝑘𝑘 [SandD], Strict BMS and Similar 𝜆𝜆𝑘𝑘 [SandS], Light BMS and Different 𝜆𝜆𝑘𝑘 [LandD], Light 
BMS and Similar 𝜆𝜆𝑘𝑘 [LandS].     
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about 𝜃𝜃𝑙𝑙 will be compared. This last, is analyzed to provide a purpose of surcharge in the 
pure premium through the Norberg’s framework. 
 
 
6.1. Simulation of the sample 
 
The two simulated samples correspond to the two assumptions about 𝜆𝜆𝑘𝑘. Both contain the 
annual number of claims per insured for a period of 5 years, being the sample size of 
10,000 policyholders. Moreover, the random values were obtained under the assumption 
about the distribution of the number of claims and the parameters proposed by Norberg. 
That is, the data of each risk group is randomly generated applying a Poisson distribution 
of parameter 𝜆𝜆𝑘𝑘. This could be done in the software R via the function rpois(n,lambda). 
In the case under analysis n is the number of individuals in each risk set and results from 
the product of 𝑤𝑤𝑘𝑘 by the 10,000 insureds of the total portfolio. On the other hand, lambda 
is the 𝜆𝜆𝑘𝑘. That is, 
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(10000𝑤𝑤𝑘𝑘 , 𝜆𝜆𝑘𝑘)       𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1, … ,6 
 

Table 10: Parameters required for the simulation of the number of claims 
 

Risk 
group k 𝝀𝝀𝒌𝒌 Assumption 1 𝝀𝝀𝒌𝒌 Assumption 2 𝒘𝒘𝒌𝒌 

1 0.9 0.7 0.4 
2 0.7 0.6 0.15 
3 0.6 0.55 0.15 
4 0.4 0.45 0.1 
5 0.3 0.4 0.1 
6 0.2 0.3 0.1 

 
Source: Own elaboration 

 
Table 10 presents the values to consider in the simulations. It could be observed that the 
only thing that changes are the values of the parameter, being the same the weights. The 
simulated values and the code used for its obtention are included in Annex 1. 
 
 
6.2. Obtention of the premium in units of average claim severity 
 
Let 𝑆𝑆 be the total risk of a driver, considering the number of claims and the amount of 
each one. Then, considering the aforementioned equivalence principle, the pure premium 
that an insured must pay in a period for its total risk, S, is 𝐸𝐸[𝑆𝑆]. The independence between 
N and X and the fact that {𝕏𝕏𝑖𝑖}𝑖𝑖=1∞  are iid ensures that the E[S] results from the product of 
the expected value of the number of claims, E[N], and the expected value of the claim 
amount, E[X] (Denuit & Charpentier, 2004). 
 
Moreover, the RPP (𝑟𝑟𝑖𝑖) in the BMSs under study, provide the percentage of the BP of 
each risk group (𝐵𝐵𝐵𝐵𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1, … ,6) that the insureds of a specific risk set must pay in 
the different classes, considering only his number of claims. That is, 𝐸𝐸[𝑁𝑁]  =  𝑟𝑟𝑖𝑖  · 𝐵𝐵𝐵𝐵𝑘𝑘 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 =  1, … ,6 is a vector that contains the part of the pure premiums that corresponds 
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to the number of claims, that an insured of risk group k must pay when occupies the 
different classes.  
 
Therefore, to evaluate how the pure premium evolve over the years it is going to assume 
a unitary expected claim severity which enables the obtention of the pure premium in 
units of 𝐸𝐸[𝑋𝑋]. Moreover, taking into account that the 𝐵𝐵𝐵𝐵𝑘𝑘 could be considered equal to 
𝜆𝜆𝑘𝑘, the pure premium under unitary 𝐸𝐸[𝑋𝑋] for an insured in risk group k in each BMS 
class, are 
 
 Pure pre. = E[S] = E[N]·E[X] = 𝑟𝑟𝑖𝑖 · 𝐵𝐵𝐵𝐵𝑘𝑘· E[X] = {𝐸𝐸[𝑋𝑋] = 1; 𝐵𝐵𝐵𝐵𝑘𝑘 = 𝜆𝜆𝑘𝑘} = 𝑟𝑟𝑖𝑖 · 𝜆𝜆𝑘𝑘. 
 
Twelve BMSs are derived from the different combinations of assumptions about 𝜆𝜆𝑘𝑘, the 
classes penalized and the scenarios of 𝜃𝜃𝑙𝑙. Thus, in all BMS are obtained six vectors, each 
of which associated with one risk group. All these vectors will have six components that 
correspond to the premium to pay in each class (see Annex 2).  
 
 
6.3. Comparison of the paths in the segmented and not segmented case 
 
Once the simulation of the portfolio and the computation of the pure premiums in units 
of 𝐸𝐸[𝑋𝑋] has been done, the evolution of the premiums from some policyholders in the 
sample will be analyzed. Hence, the path of premiums described in the 5 simulated 
periods by policyholders from different risk groups, will be assessed to identify the 
different behaviors of the segmented and not segmented case.  
 
Following the Markov theory, in which the BMS is based, the RPP that the policyholder 
must pay each year only depend on the number of claims of the current year and the class 
of the past year. Nevertheless, under the framework under study the pure premium that 
the insured finally pays depends on the risk group where he was initially allocated. Thus, 
the quantity that he finally pays in concept of pure premium under a specific BMS, is 
always taken from the vector of pure premiums in units of E[X] that corresponds to its 
risk group. Then, the class occupied by the insured in a specific year will determine the 
component of its associated vector that contains the premium to pay. For the moment, 
only the “normal drivers” scenario of 𝜃𝜃𝑙𝑙 is analyzed. Hence, the premiums under analysis 
are the pure premiums without surcharge. 
 

Figure 1: Evolution of the premiums for a random insured of risk group 1(λk = 0.9 
different or λk = 0.7 similar) when his claims are concordant with his a priori risk 

 
 

 
 

 
 
 
 
 
 
 

Different Similar 

Source: Own elaboration 
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Figure 1 displays the premiums for unitary claim amount that an insured in risk group 1 
must pay under the different assumptions about 𝜆𝜆𝑘𝑘 and the number of classes that are 
punished by each claim. Furthermore, the number of claims per year and the occupied 
class by this policyholder are placed above the graphs. The left-hand plot describes the 
evolution of the premiums when large differences in the values of  𝜆𝜆𝑘𝑘 are considered, 
whereas the graph on the right contains the premium to pay when similar 𝜆𝜆𝑘𝑘 are assumed. 
Since it has been obtained one random sample for each assumption of 𝜆𝜆𝑘𝑘 one insured of 
each simulated portfolio must be chosen. The individuals selected correspond with the 
observation 3,889 in the first sample and 3,972 in the second.  Both have 4 claims in the 
five years period, that it is quite concordant with its a priori claim frequency. 14What is 
more the claims are equally distributed over the years. However, the classes occupied by 
each policyholder differ in some periods depending on the BMS under analysis.  
 
The graphs show that the a posteriori premiums are always closer to the ones a priori in 
the segmented case being the differences when segmentation is or not considered quite 
little, specially under similar a priori claim frequencies assumption. This also implies that 
the insureds in the higher levels of the scale, that are those who have more risk and for 
that a higher premium, pay less in the segmented case than in the not segmented. 
Furthermore, the premium to pay by the insureds in the less risky classes are lower in the 
segmented case. Therefore, this suggest that segmentation introduces some solidarity with 
respect the case in which segmentation is not considered. 
 
Moreover, in this particular example the premiums are larger in the BMSs that punish 
with less levels. The differences between the “Strict” and the “Light” BMSs become 
smaller when the class of the policyholders decreases. Furthermore, the premiums are 
larger under the assumption about 𝜆𝜆𝑘𝑘 of more distinguishable risk groups, even in the 
segmented case.  
The 𝑟𝑟𝑖𝑖 in the not segmented case do not depend on the assumption about 𝜆𝜆𝑘𝑘. However, 
when the premiums in units of E[X] are derived, the BP that coincides with the 𝜆𝜆𝑘𝑘 of the 
group must be used. Thus, the premiums of this insured are lower when similar 𝜆𝜆𝑘𝑘 are 
considered, even in the segmented case, because the value of this coefficient associated 
with risk group 1 is lower under this assumption. 
 

Figure 2: Evolution of the premiums for a random insured of risk group 1 (λk = 0.9 
different λk = 0.7 similar) when his claims are not concordant with his a priori risk  

 
 
 
 
 
 
 
 
 
 
 

 
14 It is straightforward that the mean number of claims in the period is 0.8, that is very close to the claim 
frequency of the risk group where the insured was allocated a priori. This were 0.9 and 0.75 under 
assumption 1 and 2 about 𝜆𝜆𝑘𝑘 respectively. 

Different Similar 

Source: Own elaboration 
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It is also relevant to analyze what occurs when the claims reported by an insured are not 
concordant with its a priori characteristics. Therefore, Figure 2 displays the paths with 
the a posteriori premiums that an insured in risk group 1 from each randomly obtained 
sample should pay when they have less claims than expected, according to the features 
observed a priori. 15 The observation number of the drivers taken in this case are 725 and 
2,774 from sample 1 and 2 respectively. 
 
Since in this case the insured reports no claims in the first four years, all BMSs under 
study exhibits a decrease in the premiums as the levels occupied in the scale reduces. 
Then, the claim in year 5 make the premiums raise. Again, the property of computing 
closer premiums to the ones a priori is shown in this graph. However, now larger 
differences between the premiums obtained with and without segmentation arose. This 
happens when the classes in which the insured is allocated are not very concordant to its 
high claim frequency obtained a priori. This is due to the fact that the segmented case 
does not allow such a large decrease in the premium thanks to its capacity of still 
considering that the insured was classified with a high claim frequency a priori. For 
instance, in the BMS that considers larger punished classes and different 𝜆𝜆𝑘𝑘 (SandD), 
when the insured moves from class 4 to class 3 the bonification with respect the previous 
premium is 21.8% in the segmented case and 19.6% when segmentation is not considered. 
 
This example shows how segmentation has a larger corrective effect when the insured is 
allocated in far lower classes than expected. 
Moreover, this effect of segmentation is more evident under the assumption of different 
𝜆𝜆𝑘𝑘 because the risk groups are more distinguishable. Despite the fact that in this case the 
premiums are not always larger under the “Light BMSs”, this only occurs in year five as 
a consequence of the larger differences in the position of the scale occupied under both 
assumptions. Whilst in the “Strict BMSs” the insured is placed in class 4, in the BMSs 
that punish only one level per claim he occupies class 2. 
 
Even though it is also important to evaluate the paths for the insureds from the different 
risk groups, this would require repeating the above analysis five more times. Instead of 
this, the path of premiums will be assessed for insureds in risk group 5. This kind of 
drivers in contrast with the one above, have a smaller claim frequency. 
 

Figure 3: Evolution of the premiums for a random insured of risk group 5 (λk = 0.3 
different or λk = 0.55 similar) when his claims are concordant with his a priori risk 

 
 

 
 
 
 
 
 
 
 
 
 

 
15 The randomly taken insureds have a mean number of claims in the period of 0.2 that is far from the 
claim frequency of 0.9 computed for risk group 1.  

Different Similar 

Source: Own elaboration 
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As in the previous case, firstly, the premiums for a policyholder in each simulated sample 
when they have a reasonable number of claims in the period, are analyzed. With respect 
the premiums assessed in Figure 1, these ones seem to display changes of lower 
magnitude from one year to the next. This happens because the BP, that multiplies the 𝑟𝑟𝑖𝑖, 
are in this case smaller than for an insured in risk group 1. Again, the premiums derived 
from the segmented method are closer to the a priori computed claim frequency in all 
methods. 
 
Another relevant aspect is that now the premiums are not always higher for the BMSs 
that punish with less classes. Moreover, during the first three years in which the classes 
coincide in both variants of BMSs the premiums are higher under the light versions. 
Nevertheless, when the drivers report claims, the higher penalization in terms of levels 
that implies the “Strict BMSs” leads to larger premiums than under the other assumption. 
 

Figure 4: Evolution of the premiums for a random insured of risk group 5 (λk = 0.3 
different or λk = 0.55 similar) when his claims are not concordant with his a priori risk  

 
 
 
 
 
 
 
 
 

 
 

Source: Own elaboration 
 
Now, as it has been done for the first individuals, the paths of premiums described by an 
insured in risk group 5 from each sample which have an unexpected number of claims, 
are displayed in Figure 4. Since the claim frequency of this group is quite low, it is 
interesting to analyze when the mean number of claims in the sample period is larger than 
expected.  
 
In contrast with the paths described for an insured in risk group 1, now, comparing Figures 
3 and 4, the corrections in the premiums that implies segmentation are generally lower 
when the insured has an unexpected number of claims. This could seem strange since 
segmentation is expected to imply larger differences with the not segmented case when 
the insured is allocated in classes that are not expected for him according to its a priori 
claim frequency. Nevertheless, this stems from the structure of the Norberg’s formula and 
specifically from the stationary distribution and the weights, that are the two components 
of the formula that change when segmentation is considered. Therefore, under the 
assumption of larger proportion of insureds in the riskiest classes and this stationary 
probabilities, larger differences between the segmented and not segmented case are 
obtained when the insured is in the lowest levels of the scale. In these particular examples 
assessed, this effect is concordant with the composition of the portfolio. Indeed, the large 
number of insureds in the riskiest groups suggest that is more serious if the insured is 
allocated in a lower class than the ones expected. Hence, larger corrections with the 
introduction of segmentation are required for the lower classes. 

Different Similar 
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           PP no surcharge not segmented 
             PP no surcharge segmented 
             PP surcharge not segmented 
             PP surcharge segmented 
 
         
 
                

6.4. Impact of implementing a surcharge in the pure premium through the 
Norberg’s framework 
 
In Subsection 6.3 the different paths of pure premium that provide the segmented and not 
segmented case were evaluated and compared only for the “normal drivers” scenario and 
for some random insureds.   
 
In this section, the oscillation in the pure premiums produced by the introduction of the 
surcharge through the “bad drivers” assumption will be assessed. The surcharged a priori 
premiums are computed with the product of 𝜆𝜆𝑘𝑘 and E[𝛩𝛩] under the “bad drivers” 
assumption.  
 

Table 11: A priori pure premium without and with surcharge 
 Assumption 1: different 𝜆𝜆𝑘𝑘 Assumption 1: similar 𝜆𝜆𝑘𝑘 
 Without surcharge With surcharge Without surcharge With surcharge 

Risk group 1 0.9 1.125 0.75 0.9375 
Risk group 2 0.7 0.875 0.7 0.875 
Risk group 3 0.6 0.75 0.62 0.775 
Risk group 4 0.4 0.5 0.57 0.7125 
Risk group 5 0.3 0.375 0.55 0.6875 
Risk group 6 0.2 0.25 0.35 0.4375 

Source: Own elaboration 
 
In Table 11 are provided the a priori pure premiums with and without the surcharge for 
the insureds of the different risk groups. Since the E[𝛩𝛩] under the “bad drivers” 
assumptions is 1.25 the surcharge is of 25% of the a priori pure premium. This aspect 
leads to an increase in the amounts to pay by the insureds between 0.05 and 0.225 times 
the average claim amount. 
 
To obtain the a posteriori pure premiums surcharged it must be taken the 𝑟𝑟𝑖𝑖 under the 
assumption of bad drivers and multiply it by the BP that coincides with 𝜆𝜆𝑘𝑘. This will be 
done for all the levels in the scale and for an individual of each risk group. 
 
Figure 5: Pure premium and pure premiums surcharged for an insured in risk group 1 by 

classes 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 

Source: Own elaboration 
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The premiums to pay in each one of the levels of the scale, under the four combinations 
of assumptions and only for the individual in risk group 1 are displayed in Figure 4. The 
graphs that correspond to the other risk groups are available in Annex 3. From Figure 4 
could be noticed that the differences between the paths of premiums under the not 
segmented case tend to be reduce considerably for the extreme classes specially for the 
lowest. However, when segmentation is considered, this convergence between the 
premiums is not as sharp as when it is not considered. This suggests that the segmented 
case provide more stable surcharges and therefore more stability for the margin of security 
that the insurance company receive. These conclusions are also robust with the other five 
risk groups, since this behavior is present for all of them.  
 
Moreover, the security margin increases with the claim frequency of the risk groups since 
larger BPs are assigned to riskiest sets. That is, being the surcharge 𝑟𝑟𝑖𝑖 and the not 
surcharge 𝑟𝑟𝑖𝑖 the same for all the risk groups, when they are multiplied by larger BP the 
differences between both premiums, and thus the surcharge, become bigger. Additionally, 
the graphs in Figure 4 and Annex 3 also display how the differences in the premiums 
between the segmented and not segmented case are wider for the lowest classes.  
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7. Conclusions 
 
The BMSs treated as Markov Chains are widely applied in motor insurance contracts. 
That is because they provide a method to update the premiums from the insured when the 
specific information that describe them is a posteriori revealed. This methodology is 
widely applied because is relatively easy to understand. In contrast with other methods, 
as the ones under the credibility theory, the classical or not segmented BMS updates the 
premiums without considering the information of previous years to the recent one.  
 
Insurers are normally large companies with long experience in the market who have 
enormous databases of useful past information about policyholders. Hence, the 
coefficients that rely on the a priori observable characteristics of the driver are calculated 
with large amount of data that gives statistical reliability to them. Therefore, forgetting 
this information in the a posteriori pricing might not be the best alternative. Even though 
a not segmented BMS in which is chosen as BP the a priori claim frequency, provides a 
posteriori premiums that depend indirectly of the initially obtained features of the driver, 
the relativities, 𝑟𝑟𝑖𝑖, do not consider this information a priori. However, segmentation 
enables considering the initial features of the drivers, directly for the obtention of the 𝑟𝑟𝑖𝑖  
in the construction of a BMS.  
 
It may happen that the number of claims reported by the insured in a certain period do not 
reflect his real risk. While the classical BMS do not consider this aspect the segmented 
determines the premium considering this deviation from the risk stated a priori. For 
instance, it has been proved that the segmented BMS provide lower premiums than in the 
not segmented case, for the insureds that being in a class with an associated large premium 
they have a priori risk parameter 𝜆𝜆𝑘𝑘 that is relatively small. In the same way, when an 
insured is in a lower level than the expected according to its a priori risk, the premiums 
that he should pay are larger if segmentation is considered. Therefore, the segmented pure 
premiums will always be closer to the a priori determined risk of the driver reflected by 
𝜆𝜆𝑘𝑘 · 𝐸𝐸[𝛩𝛩]. 
 
The analysis of the RPPs has shown that under the considered assumptions, the premiums 
increase with the levels of the system. Therefore, in accordance with the equitable 
principle, the riskiest insureds pay a larger quantity of money. However, to ensure that 
the premiums are always closer to the a priori obtained claim frequency, segmentation 
provides lower amounts to be paid by the drivers in the higher classes and larger 
premiums for those in the lower levels of the system compared with the classical BMS. 
Therefore, segmentation introduces in some way some solidarity to the system.  
Moreover, it has been assessed how the premiums change when the probabilities in the 
discrete structure function about 𝛩𝛩 are modified. The parameter 𝜃𝜃𝑙𝑙 considers the part of 
the risk that remain a priori unknown. Thus, assuming different probabilities for each 
realization when no source of information to infer them is able, is not advisable. However, 
it has been seen that assuming higher probabilities for the larger realizations of 𝛩𝛩 allows 
the insurance companies to surcharge the pure premiums, something necessary according 
to the risk theory. 
 
It has been proved how a BMS that penalizes with more classes and could seem that 
provide worst premiums for the drivers, supply lower RPPs than a system that penalizes 
with less levels in the scale, as a way of compensation. The results also suggest that the 
degree of differentiation of the risk groups is important for an appropriate implementation 
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of segmentation. Hence, the a posteriori calculated premiums will be closer to the 
obtained a priori risk of each group when the 𝜆𝜆𝑘𝑘 exhibits large differences. 
 
The implementation of the Norberg’s framework in practice with a simulated dataset, has 
allowed the analysis of what would be the real premiums to pay. This has been done under 
the assumption of unitary claim severity with the different scenarios studied before. 
Furthermore, it allowed a clear evaluation of the directly analyzed aspects performed with 
the RPPs and to identify additional particularities. For instance, in both segmented and 
not segmented cases, it was seen that the premiums are larger for the riskiest groups under 
the assumption of different 𝜆𝜆𝑘𝑘. This happens because the BP depends on 𝜆𝜆𝑘𝑘 and the larger 
risk groups have a larger value in this parameter under this assumption. The opposite 
happens for the groups with lowest risk.  
 
The analysis of the paths also has shown that for an insured classified in a highly risky 
group, the correction in the premiums that segmentation introduces are larger when its 
behavior does not reflect the expected a priori derived risk. The opposite happens with 
the less risky groups that exhibit larger differences between the segmented and not 
segmented case when the individual is allocated in a concordant class with its risk a 
priori. This is due to the weights and stationary probabilities considered in the segmented 
version of the Norberg’s formula. Indeed, in the cases under study the formula allows 
considering that a larger quantity of drivers are allocated in the riskiest groups. Therefore, 
the corrections that imply the segmented case with respect to the not segmented are larger 
when the insureds exhibit lower number of claims than it is expected. 
 
The paths also have shown that, even though the RPPs are larger for the “Light BMSs”, 
the different levels in the scale in which an insured could be allocated, depending on how 
many classes are penalized for each claim, allow for higher premiums in the “Strict” case. 
The comparison of the premiums in the studied examples has also revealed that less 
differences appear in the unitary claim severity premiums, obtained under the different 
assumptions, when the risk of the individual is small. That happens because these insureds 
have a lower BP. 
 
The implementation of surcharged pure premiums through the framework under study 
has also been studied. Indeed, this aspect was evaluated for the a priori premiums and the 
a posteriori ones under the different assumptions and for all the levels in the scale. It was 
identified that the surcharge derived from the implementation of the bad driver’s 
assumption remains more stable when segmentation is considered. This is more 
concordant with the solvency principle than in the classical systems. This aspect could be 
relevant, especially if insurers are interested in more stability to improve the solvency of 
the company. It was also appreciated that this security surcharge is affected by the BP 
and therefore by the claim frequency of the risk groups. Furthermore, this evaluation has 
enabled an easier visualization of the higher corrections of segmentation for the lower 
classes mentioned above. 
 
It is important to highlight some limitations of this research that could be assessed in 
future research lines. The principal one is that the Norberg’s method is an asymptotic 
criterion which assumes that the premiums have been in the portfolio during infinite 
periods, what is not accomplished in practice. Thus, to compute the premiums of the 
insureds over the first years in the portfolio with the methodology under study it may not 
be the best choice. 
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In order to settle this issue, Borgan et al. (1981) proposed the definition of some weights 
that allows to consider the temporality of the analysis. Furthermore, the framework 
proposed by these three authors provide a way of computing an optimal entrance class in 
terms of efficiency, that could also be introduced in further analysis. Hence, in future 
studies the derivation of segmented BMS through this methodology should be studied. 
 
Another aspect to consider is that the formula provided by Norberg and even the 
improvement suggested by Borgan et. al. (1981) often result in very irregular premiums 
that could not be desirable for commercial reasons. For instance, Gilde & Sundt (1989) 
provide a framework that allows the premiums to increase linearly. Therefore, in future 
research the implementation of this alternative framework for the obtention of BMS 
assuming segmentation should be analyzed. 
 
It would also be desirable that extensive research that treated segmentation in BMSs, 
made use of measures as the coefficient of variation, the Loimaranta efficiency 
(Loimaranta, 1972) or the relative stationary average level to assess and compare  
different BMSs. It would be worthwhile to implement the methodology under study to an 
overdispersed dataset via the negative binomial or another distribution for count data. 
What is more, the distributions of 𝜆𝜆𝑘𝑘 and 𝛩𝛩 can be set in a way that allows the 
consideration of overdispersion in the construction of a BMS.  
 
This research bases its analysis in the number of claims, nevertheless, other authors 
consider a multivariate discrete distribution to include in the analysis the claim size 
(Gómez-Déniz & Calderín-Ojeda, 2018). Hence, analyzing the performance of the 
Norberg’s framework considering claim severity as well, may be interesting. Moreover, 
comparing the methodology developed with other models that segmentate the data as the 
credibility models could provide relevant results. For instance, the premiums calculated 
in the segmented BMS might be compared with the ones obtained with Bülhmann-Straub 
calculated with the Empirical Bayes method or with premiums derived from the Bayesian 
Approach (Tse, 2009) 
 
This research has been an excellent opportunity to go further in the knowledge about the 
widely used BMSs, assessing a way of considering segmentation and the implementation 
of an optimal condition in the construction of them. Moreover, segmentation has provided 
a framework to compute the premiums considering the past information beyond the last 
year without renouncing to the capacity of penalizing or regarding the insured with a 
simple system of classes. 
 
It is worth mentioning that there exist other methodologies different than the one in this 
thesis that introduce an optimal condition in these systems, for example the 
aforementioned methodologies purposed by Borgan or Gilde & Sundt and also the so-
called optimal BMS treated in Lemaire (1995). The implementation in practice of the 
methods under study in this research has been done through the software R (R 
Development Core Team, 2022), which code is included in Annex 1, and Excel. 
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Annexes 
 
Annex 1: R code 
 
The R code used for the obtention of the different results obtained in this research are 
the following: 
 
STRICT BMS:  
 
Calculation of the RPP 
 
Not Segmented case: 
 
Note: The not segmented case is common under both assumptions of lambda of the risk 
groups because they do not affect in this part. 
 
#Lambda of all the portfolio 
nmed<-0.645 
 
lambda<-nmed 
 
# Values of thita 
cita1<-0.25    
cita2<-0.5     
cita3<-0.75    
cita4<-1.25    
cita5<-1.5     
cita6<-1.75    
 
 
#Total claim frequency 
cf1<-lambda*cita1;cf1  
cf2<-lambda*cita2;cf2 
cf3<-lambda*cita3;cf3  
cf4<-lambda*cita4;cf4 
cf5<-lambda*cita5;cf5  
cf6<-lambda*cita6;cf6 
 
#For cita1 
 
#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
            p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6);P 
 
#Transpose the transition matrix 
Pt<-t(P) 
 
#Vector of initial probabilities 
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p0<-c(0,0,0,0,1,0) 
 
 
#Obtention of the stationary probabilities 
 
### 1) Limits 
 
Plim <- P 
for (k in 1:10) Plim <- Plim %*% Plim ## i.e., Mlim <- Mlim?(2?10) 
Plim 
pilim <- Plim[5,]; pilim  
 
### 2) Rolki Formula 
lim.distr = 
  function(matrix) { 
    et = matrix(nrow=1, ncol=dim(matrix)[2], data=1) 
    E = matrix(nrow=dim(matrix)[1], ncol=dim(matrix)[2], data=1) 
    mat = diag(dim(matrix)[1]) - matrix + E 
    inverse.mat = solve(mat) 
    p = et %*% inverse.mat 
    return(p)} 
pi = lim.distr(P) ; pi 
 
### 3) Eigen values and eigen vectors 
 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
 
# 4) Simulation method 
Next<-
matrix(c(1,4,6,6,6,6,1,5,6,6,6,6,2,6,6,6,6,6,3,6,6,6,6,6,4,6,6,6,6,6,5,6,6,6,6,6),nrow=6,nc
ol=6);Next 
TMax <- 50; NSim <- 100000; FinalBM <- numeric(NSim) 
for (n in 1:NSim) 
{ cn1 <- rpois(TMax,cf1); cn1 <- pmin(cn1, 2) + 1 
BM <- 5; for (i in 1:TMax) BM <- Next[cn1[i],BM] 
FinalBM[n] <- BM 
} 
pi <- 
c(sum(FinalBM==1)/NSim,sum(FinalBM==2)/NSim,sum(FinalBM==3)/NSim,sum(Fin
alBM==4)/NSim,sum(FinalBM==5)/NSim,sum(FinalBM==6)/NSim); pi 
 
 
pst1<-pivep 
 
 
#For cita2 
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#Transition matrix 
p0<-dpois(0, cf2);p0 
p1<-dpois(1, cf2);p1 
#p2<-dpois(2, cf2);p2 
P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
            p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst2<-pivep 
 
 
#For cita3 
 
#Transition matrix 
p0<-dpois(0, cf3);p0 
p1<-dpois(1, cf3);p1 
#p2<-dpois(2, cf3);p2 
P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
            p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst3<-pivep 
 
 
#For cita4 
 
#Transition matrix 
p0<-dpois(0, cf4);p0 
p1<-dpois(1, cf4);p1 
#p2<-dpois(2, cf4);p2 
P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
            p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst4<-pivep 
 
 
#For cita5 
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#Transition matrix 
p0<-dpois(0, cf5);p0 
p1<-dpois(1, cf5);p1 
#p2<-dpois(2, cf5);p2 
P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
            p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst5<-pivep 
 
 
 
#For cita6 
 
#Transition matrix 
p0<-dpois(0, cf6);p0 
p1<-dpois(1, cf6);p1 
#p2<-dpois(2, cf6);p2 
P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
            p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst6<-pivep 
 
 
Deriving the Not Segmented RPP through   Denuit & Charpentier formulation (cita 
normal drivers) 
 
# Probability of being a cita i driver if the policyholder is in class L=l  
 
pst<-rbind(pst1,pst2,pst3,pst4,pst5,pst6) 
 
Pc1l1<-
pst[1,1]*(1/6)/(pst[1,1]*(1/6)+pst[2,1]*(1/6)+pst[3,1]*(1/6)+pst[4,1]*(1/6)+pst[5,1]*(1/
6)+pst[6,1]*(1/6)) 
 
 
 
Pcl<-matrix(0,6,6) 
 
for(i in 1:6){ 
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  for(j in 1:6){ 
    Pcl[i,j]<-
pst[i,j]*(1/6)/(pst[1,j]*(1/6)+pst[2,j]*(1/6)+pst[3,j]*(1/6)+pst[4,j]*(1/6)+pst[5,j]*(1/6)+
pst[6,j]*(1/6)) 
  } 
} 
 
colnames(Pcl)<-c("l1","l2","l3","l4","l5","l6") 
rownames(Pcl)<-c("cita 1","cita 2","cita 3","cita 4","cita 5","cita 6") 
 
 
#Relative pure premium a posteriori not segmented case 
 
# Pr[theta|L=1] 
 
PP1<-
Pcl[1,1]*cita1+Pcl[2,1]*cita2+Pcl[3,1]*cita3+Pcl[4,1]*cita4+Pcl[5,1]*cita5+Pcl[6,1]*ci
ta6 
 
# Pr[theta|L=2] 
 
PP2<-
Pcl[1,2]*cita1+Pcl[2,2]*cita2+Pcl[3,2]*cita3+Pcl[4,2]*cita4+Pcl[5,2]*cita5+Pcl[6,2]*ci
ta6 
 
# Pr[theta|L=3] 
 
PP3<-
Pcl[1,3]*cita1+Pcl[2,3]*cita2+Pcl[3,3]*cita3+Pcl[4,3]*cita4+Pcl[5,3]*cita5+Pcl[6,3]*ci
ta6 
 
# Pr[theta|L=4] 
 
PP4<-
Pcl[1,4]*cita1+Pcl[2,4]*cita2+Pcl[3,4]*cita3+Pcl[4,4]*cita4+Pcl[5,4]*cita5+Pcl[6,4]*ci
ta6 
 
# Pr[theta|L=5] 
 
PP5<-
Pcl[1,5]*cita1+Pcl[2,5]*cita2+Pcl[3,5]*cita3+Pcl[4,5]*cita4+Pcl[5,5]*cita5+Pcl[6,5]*ci
ta6 
 
# Pr[theta|L=6] 
 
PP6<-
Pcl[1,6]*cita1+Pcl[2,6]*cita2+Pcl[3,6]*cita3+Pcl[4,6]*cita4+Pcl[5,6]*cita5+Pcl[6,6]*ci
ta6 
 
RPPPNS<-c(PP1,PP2,PP3,PP4,PP5,PP6) 
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Obtention of the Not segmented RPP with the Normberg’s formula 
 
Cita normal drivers  
 
RPPPNSnorb<-c(0,0,0,0,0,0) 
for(i in 1:6){ 
RPPPNSnorb[i]<-
(cita1*pst[1,i]*(1/6)+cita2*pst[2,i]*(1/6)+cita3*pst[3,i]*(1/6)+cita4*pst[4,i]*(1/6)+cita
5*pst[5,i]*(1/6)+cita6*pst[6,i]*(1/6))/ 
(pst[1,i]*(1/6)+pst[2,i]*(1/6)+pst[3,i]*(1/6)+pst[4,i]*(1/6)+pst[5,i]*(1/6)+pst[6,i]*(1/6)) 
} 
 
RPPPNSnorb 
 
Cita bad drivers  
 
RPPPNSbad<-c(0,0,0,0,0,0) 
for(i in 1:6){ 
  RPPPNSbad[i]<-
(cita1*pst[1,i]*(1/12)+cita2*pst[2,i]*(1/12)+cita3*pst[3,i]*(1/12)+cita4*pst[4,i]*(1/4)+
cita5*pst[5,i]*(1/4)+cita6*pst[6,i]*(1/4))/ 
(pst[1,i]*(1/12)+pst[2,i]*(1/12)+pst[3,i]*(1/12)+pst[4,i]*(1/4)+pst[5,i]*(1/4)+pst[6,i]*(1
/4)) 
} 
 
Cita good drivers  
 
RPPPNSgood<-c(0,0,0,0,0,0) 
for(i in 1:6){ 
  RPPPNSgood[i]<-
(cita1*pst[1,i]*(1/4)+cita2*pst[2,i]*(1/4)+cita3*pst[3,i]*(1/4)+cita4*pst[4,i]*(1/12)+cit
a5*pst[5,i]*(1/12)+cita6*pst[6,i]*(1/12))/ 
    
(pst[1,i]*(1/4)+pst[2,i]*(1/4)+pst[3,i]*(1/4)+pst[4,i]*(1/12)+pst[5,i]*(1/12)+pst[6,i]*(1/
12)) 
} 
 
RPPPNSgood 
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Segmented case 
 
 
Depending on the assumption about 𝜆𝜆𝑘𝑘 that is desired for the obtention of the BMS it 
must be executed one of the following chunks of code, before proceeding to run the script 
below. 
 
                                 Ass. 1: different 𝜆𝜆𝑘𝑘                     Ass. 2: simmilar 𝜆𝜆𝑘𝑘           
 
 
 
 
 
 
 
 
 
 
wA1<-0.4 
wA2<-0.15 
wA3<-0.15 
wA4<-0.1 
wA5<-0.1 
wA6<-0.1 
 
nmed<-
nmedA1*wA1+nmedA2*wA2+nmedA3*wA3+nmedA4*wA4+nmedA5*wA5+nmedA
6*wA6;nmed 
 
w<-c(wA1,wA2,wA3,wA4,wA5,wA6) 
 
nmed<-c(nmedA1,nmedA2,nmedA3,nmedA4,nmedA5,nmedA6) 
cita<-c(0.25,0.5,0.75,1.25,1.5,1.75) 
 
P<-matrix(0,6,6) 
Pij<-matrix(0,6*6,6) 
 
a<-1 
for(i in 1:6){ 
  for(j in 1:6){ 
    p0<-dpois (0, nmed[i]*cita[j]) 
    p1<-dpois(1, nmed[i]*cita[j]) 
    p2<-dpois(2, nmed[i]*cita[j]) 
    P<-matrix(c(p0,p0,0,0,0,0,0,0,p0,0,0,0,0,0,0,p0,0,0,p1,0,0,0,p0,0,0, 
                p1,0,0,0,p0,1-p0-p1,1-p0-p1,1-p0,1-p0,1-p0,1-p0),nrow=6,ncol=6) 
     
    eigen(t(P)) 
    pi <- eigen(t(P))$vectors[,1] 
    pi <- pi/sum(pi) 

nmedA1<-0.75 
nmedA2<-0.7 
nmedA3<-0.62 
nmedA4<-0.57 
nmedA5<-0.55 
nmedA6<-0.35 
 

nmedA1<-0.9 
nmedA2<-0.7 
nmedA3<-0.6 
nmedA4<-0.4 
nmedA5<-0.3 
nmedA6<-0.2 
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    pivep <- Re(pi) 
     
    Pij[a,]<-pivep 
    a=a+1 
  } 
} 
 
Pij 
wr<-c(rep(wA1,6),rep(wA2,6),rep(wA3,6),rep(wA4,6),rep(wA5,6),rep(wA6,6)) 
 
sum(w) 
sum(wr) 
 
#We change the notation of the formula above: 
 
Pij 
wr 
 
pil<-
c((1/6)*sum(Pij[,1]*wr),(1/6)*sum(Pij[,2]*wr),(1/6)*sum(Pij[,3]*wr),(1/6)*sum(Pij[,4]
*wr),(1/6)*sum(Pij[,5]*wr),(1/6)*sum(Pij[,6]*wr));pil 
sum(pil) 
 
Deriving the Segmented RPP through Denuit & Charpentier formulation (cita normal 
drivers) 
 
#Pr[Θ=0.25|L=l] 
 
P025l<-matrix(0,6,6) 
P025l[1,]<-(1/(6*pil))*(w[1]*Pij[1,]) 
for(i in 2:6){ 
  P025l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+1,]) 
} 
 
P025l<-colSums(P025l) 
 
 
#Pr[Θ=0.5|L=l] 
 
P05l<-matrix(0,6,6) 
P05l[1,]<-(1/(6*pil))*(w[1]*Pij[2,]) 
for(i in 2:6){ 
  P05l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+2,]) 
} 
 
P05l<-colSums(P05l) 
 
 
#Pr[Θ=0.75|L=l] 
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P075l<-matrix(0,6,6) 
P075l[1,]<-(1/(6*pil))*(w[1]*Pij[3,]) 
for(i in 2:6){ 
  P075l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+3,]) 
} 
 
P075l<-colSums(P075l) 
 
#Pr[Θ=1.25|L=l] 
 
P125l<-matrix(0,6,6) 
P125l[1,]<-(1/(6*pil))*(w[1]*Pij[4,]) 
for(i in 2:6){ 
  P125l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+4,]) 
} 
 
P125l<-colSums(P125l) 
 
#Pr[Θ=1.5|L=l] 
 
P15l<-matrix(0,6,6) 
P15l[1,]<-(1/(6*pil))*(w[1]*Pij[5,]) 
for(i in 2:6){ 
  P15l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+5,]) 
} 
 
P15l<-colSums(P15l) 
 
#Pr[Θ=1.75|L=l] 
 
P175l<-matrix(0,6,6) 
P175l[1,]<-(1/(6*pil))*(w[1]*Pij[6,]) 
for(i in 2:6){ 
  P175l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+6,]) 
} 
 
P175l<-colSums(P175l) 
 
 
# Segmented RPP 
 
#E[Θ|L=l]=0.25·Pr[Θ=0.25|L=l]+...+1.75·Pr[Θ=1.75|L=l] 
 
RPPPS<-0.25*P025l+0.5*P05l+0.75*P075l+1.25*P125l+1.5*P15l+1.75*P175l 
 
 
 
 
Obtention of the Not segmented RPP with the Normberg’s formula 
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Cita normal drivers  
 
RPN<-matrix(0,6,6) 
RPD<-matrix(0,6,6) 
for(i in 1:6){ 
  RPN[i,]<-(w[i]*(cita[1]*Pij[6*(i-1)+1,]*(1/6)+cita[2]*Pij[6*(i-
1)+2,]*(1/6)+cita[3]*Pij[6*(i-1)+3,]*(1/6)+cita[4]*Pij[6*(i-
1)+4,]*(1/6)+cita[5]*Pij[6*(i-1)+5,]*(1/6)+cita[6]*Pij[6*(i-1)+6,]*(1/6))) 
  RPD[i,]<-(w[i]*(Pij[6*(i-1)+1,]*(1/6)+Pij[6*(i-1)+2,]*(1/6)+Pij[6*(i-
1)+3,]*(1/6)+Pij[6*(i-1)+4,]*(1/6)+Pij[6*(i-1)+5,]*(1/6)+Pij[6*(i-1)+6,]*(1/6))) 
} 
 
PN<-colSums(RPN) 
PD<-colSums(RPD) 
 
RPPPSnorb<-PN/PD 
 
 
Cita bad drivers  
 
RPN<-matrix(0,6,6) 
RPD<-matrix(0,6,6) 
for(i in 1:6){ 
  RPN[i,]<-(w[i]*(cita[1]*Pij[6*(i-1)+1,]*(1/12)+cita[2]*Pij[6*(i-
1)+2,]*(1/12)+cita[3]*Pij[6*(i-1)+3,]*(1/12)+cita[4]*Pij[6*(i-
1)+4,]*(1/4)+cita[5]*Pij[6*(i-1)+5,]*(1/4)+cita[6]*Pij[6*(i-1)+6,]*(1/4))) 
  RPD[i,]<-(w[i]*(Pij[6*(i-1)+1,]*(1/12)+Pij[6*(i-1)+2,]*(1/12)+Pij[6*(i-
1)+3,]*(1/12)+Pij[6*(i-1)+4,]*(1/4)+Pij[6*(i-1)+5,]*(1/4)+Pij[6*(i-1)+6,]*(1/4))) 
} 
 
PN<-colSums(RPN) 
PD<-colSums(RPD) 
 
RPPPSbad<-PN/PD 
 
Cita good drivers  
 
RPN<-matrix(0,6,6) 
RPD<-matrix(0,6,6) 
for(i in 1:6){ 
  RPN[i,]<-(w[i]*(cita[1]*Pij[6*(i-1)+1,]*(1/4)+cita[2]*Pij[6*(i-
1)+2,]*(1/4)+cita[3]*Pij[6*(i-1)+3,]*(1/4)+cita[4]*Pij[6*(i-
1)+4,]*(1/12)+cita[5]*Pij[6*(i-1)+5,]*(1/12)+cita[6]*Pij[6*(i-1)+6,]*(1/12))) 
  RPD[i,]<-(w[i]*(Pij[6*(i-1)+1,]*(1/4)+Pij[6*(i-1)+2,]*(1/4)+Pij[6*(i-
1)+3,]*(1/4)+Pij[6*(i-1)+4,]*(1/12)+Pij[6*(i-1)+5,]*(1/12)+Pij[6*(i-1)+6,]*(1/12))) 
} 
 
PN<-colSums(RPN) 
PD<-colSums(RPD) 
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RPPPSgood<-PN/PD 
 
Note: If it has been executed the Ass .1 the RPPPS and RPPPSnor would be the 
segmented RPP for a strict BMS when the 𝜆𝜆𝑘𝑘 are assumed different otherwise it would 
be the RPP for a strict BMS but for 𝜆𝜆𝑘𝑘 that are considered similar.  
 
 
Pure premium for unitary claim amount 
 
Not segmented case 
 
PBrg<-rep(0,6) 
PPEXnormalNS<-matrix(0,6,6) 
PPEXbadNS<-matrix(0,6,6) 
PPEXgoodNS<-matrix(0,6,6) 
for(i in 1:6){ 
  PBrg[i]<-nmed[i] 
   
  PPEXnormalNS[i,]<-RPPPNS*PBrg[i] 
  PPEXbadNS[i,]<-RPPPNSbad*PBrg[i] 
  PPEXgoodNS[i,]<-RPPPNSgood*PBrg[i] 
} 
 
rownames(PPEXnormalNS)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXbadNS)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXgoodNS)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
 
PPEXnormalNS 
PPEXbadNS 
PPEXgoodNS 
 
 
Segmented case 
 
PBrg<-rep(0,6) 
PPEXnormal<-matrix(0,6,6) 
PPEXbad<-matrix(0,6,6) 
PPEXgood<-matrix(0,6,6) 
for(i in 1:6){ 
  PBrg[i]<-nmed[i] 
   
  PPEXnormal[i,]<-RPPPS*PBrg[i] 
  PPEXbad[i,]<-RPPPSbad*PBrg[i] 
  PPEXgood[i,]<-RPPPSgood*PBrg[i] 
} 
 
rownames(PPEXnormal)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXbad)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXgood)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
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PPEXnormal 
PPEXbad 
PPEXgood 
 
Note: If it has been executed the Ass .1 all the PPEX and PPEXNS would correspond 
with the Strict and different case while if the Ass. 2 was the once excited  they would 
made reference to the Strict and similar case. 
 
From the following chunk of code it must be executed the once that correspond with the 
assumption considered above: 
 
                         Ass. 1: different 𝜆𝜆𝑘𝑘                                              Ass. 2: simmilar 𝜆𝜆𝑘𝑘 
 
 
 
 
 
 
 
 
 
 
 
Light BMS:  
 
Calculation of the RPP 
 
Not Segmented case: 
 
Note: The not segmented case is common under both assumptions of lambda of the risk 
groups because they do not affect in this part. 
 
#Lambda of all the portfolio 
nmed<-0.645 
 
lambda<-nmed 
 
# Values of thita 
cita1<-0.25    
cita2<-0.5     
cita3<-0.75    
cita4<-1.25    
cita5<-1.5     
cita6<-1.75    
 
 
#Total claim frequency 
cf1<-lambda*cita1;cf1  
cf2<-lambda*cita2;cf2 
cf3<-lambda*cita3;cf3  

SDPPEXnormalNS<-PPEXnormalNS 
SDPPEXnormal<-PPEXnormal 
SDPPEXbadNS<-PPEXbadNS 
SDPPEXbad<-PPEXbad 
SDPPEXgoodNS<-PPEXgoodNS 
SDPPEXgood<-PPEXgood 
 

SSPPEXnormalNS<-PPEXnormalNS 
SSPPEXnormal<-PPEXnormal 
SSPPEXbadNS<-PPEXbadNS 
SSPPEXbad<-PPEXbad 
SSPPEXgoodNS<-PPEXgoodNS 
SSPPEXgood<-PPEXgood 
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cf4<-lambda*cita4;cf4 
cf5<-lambda*cita5;cf5  
cf6<-lambda*cita6;cf6 
 
#For cita1 
 
#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
p2<-dpois(2, cf1);p2 
p3<-dpois(3, cf1);p3 
p4<-dpois(4, cf1);p4 
P<-matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4, 
p3,p2,p1,0,p0,1-p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-
p0),nrow=6,ncol=6);P 
 
#Transpose the transition matrix 
Pt<-t(P) 
 
#Vector of initial probabilities 
p0<-c(0,0,0,0,1,0) 
 
 
#Obtention of the stationary probabilities 
 
### 1) Límites 
 
Plim <- P 
for (k in 1:10) Plim <- Plim %*% Plim ## i.e., Mlim <- Mlim?(2?10) 
Plim 
pilim <- Plim[5,]; pilim  
 
### 2) Fórmula Rolski 
lim.distr = 
  function(matrix) { 
    et = matrix(nrow=1, ncol=dim(matrix)[2], data=1) 
    E = matrix(nrow=dim(matrix)[1], ncol=dim(matrix)[2], data=1) 
    mat = diag(dim(matrix)[1]) - matrix + E 
    inverse.mat = solve(mat) 
    p = et %*% inverse.mat 
    return(p)} 
pi = lim.distr(P) ; pi 
 
### 3) Valores y vectores propios 
 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
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# 4) Método simulación 
Next<-
matrix(c(1,2,3,4,5,6,1,3,4,5,6,6,2,4,5,6,6,6,3,5,6,6,6,6,4,6,6,6,6,6,5,6,6,6,6,6),nrow=6,nc
ol=6);Next 
TMax <- 50; NSim <- 100000; FinalBM <- numeric(NSim) 
for (n in 1:NSim) 
{ cn1 <- rpois(TMax,cf1); cn1 <- pmin(cn1, 2) + 1 
BM <- 5; for (i in 1:TMax) BM <- Next[cn1[i],BM] 
FinalBM[n] <- BM 
} 
pi <- 
c(sum(FinalBM==1)/NSim,sum(FinalBM==2)/NSim,sum(FinalBM==3)/NSim,sum(Fin
alBM==4)/NSim,sum(FinalBM==5)/NSim,sum(FinalBM==6)/NSim); pi 
 
 
pst1<-pivep 
 
#For cita2 
 
#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
p2<-dpois(2, cf1);p2 
p3<-dpois(3, cf1);p3 
p4<-dpois(4, cf1);p4 
P<-matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4, 
p3,p2,p1,0,p0,1-p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-
p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst2<-pivep 
 
 
#For cita3 
 
#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
p2<-dpois(2, cf1);p2 
p3<-dpois(3, cf1);p3 
p4<-dpois(4, cf1);p4 
P<-matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4, 
p3,p2,p1,0,p0,1-p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-
p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
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eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst3<-pivep 
 
 
#For cita4 
 
#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
p2<-dpois(2, cf1);p2 
p3<-dpois(3, cf1);p3 
p4<-dpois(4, cf1);p4 
P<-matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4, 
p3,p2,p1,0,p0,1-p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-
p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst4<-pivep 
 
 
#For cita5 
 
#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
p2<-dpois(2, cf1);p2 
p3<-dpois(3, cf1);p3 
p4<-dpois(4, cf1);p4 
P<-matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4, 
p3,p2,p1,0,p0,1-p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-
p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst5<-pivep 
 
 
 
#For cita6 
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#Transition matrix 
p0<-dpois(0, cf1);p0 
p1<-dpois(1, cf1);p1 
p2<-dpois(2, cf1);p2 
p3<-dpois(3, cf1);p3 
p4<-dpois(4, cf1);p4 
P<-matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4, 
p3,p2,p1,0,p0,1-p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-
p0),nrow=6,ncol=6);P 
 
#Obtention of the stationary probabilities 
eigen(t(P)) 
pi <- eigen(t(P))$vectors[,1]; pi 
pi <- pi/sum(pi); pivep <- Re(pi);pivep 
 
pst6<-pivep 
 
 
Deriving the Not Segmented RPP through Denuit & Charpentier formulation (cita 
normal drivers) 
 
# Probability of being a cita i driver if the policyholder is in class L=l  
 
pst<-rbind(pst1,pst2,pst3,pst4,pst5,pst6) 
 
Pc1l1<-
pst[1,1]*(1/6)/(pst[1,1]*(1/6)+pst[2,1]*(1/6)+pst[3,1]*(1/6)+pst[4,1]*(1/6)+pst[5,1]*(1/
6)+pst[6,1]*(1/6)) 
 
 
 
Pcl<-matrix(0,6,6) 
 
for(i in 1:6){ 
  for(j in 1:6){ 
    Pcl[i,j]<-
pst[i,j]*(1/6)/(pst[1,j]*(1/6)+pst[2,j]*(1/6)+pst[3,j]*(1/6)+pst[4,j]*(1/6)+pst[5,j]*(1/6)+
pst[6,j]*(1/6)) 
  } 
} 
 
colnames(Pcl)<-c("l1","l2","l3","l4","l5","l6") 
rownames(Pcl)<-c("cita 1","cita 2","cita 3","cita 4","cita 5","cita 6") 
 
 
#Relative pure premium a posteriori not segmented case 
 
# Pr[theta|L=1] 
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PP1<-
Pcl[1,1]*cita1+Pcl[2,1]*cita2+Pcl[3,1]*cita3+Pcl[4,1]*cita4+Pcl[5,1]*cita5+Pcl[6,1]*ci
ta6 
 
# Pr[theta|L=2] 
 
PP2<-
Pcl[1,2]*cita1+Pcl[2,2]*cita2+Pcl[3,2]*cita3+Pcl[4,2]*cita4+Pcl[5,2]*cita5+Pcl[6,2]*ci
ta6 
 
# Pr[theta|L=3] 
 
PP3<-
Pcl[1,3]*cita1+Pcl[2,3]*cita2+Pcl[3,3]*cita3+Pcl[4,3]*cita4+Pcl[5,3]*cita5+Pcl[6,3]*ci
ta6 
 
# Pr[theta|L=4] 
 
PP4<-
Pcl[1,4]*cita1+Pcl[2,4]*cita2+Pcl[3,4]*cita3+Pcl[4,4]*cita4+Pcl[5,4]*cita5+Pcl[6,4]*ci
ta6 
 
# Pr[theta|L=5] 
 
PP5<-
Pcl[1,5]*cita1+Pcl[2,5]*cita2+Pcl[3,5]*cita3+Pcl[4,5]*cita4+Pcl[5,5]*cita5+Pcl[6,5]*ci
ta6 
 
# Pr[theta|L=6] 
 
PP6<-
Pcl[1,6]*cita1+Pcl[2,6]*cita2+Pcl[3,6]*cita3+Pcl[4,6]*cita4+Pcl[5,6]*cita5+Pcl[6,6]*ci
ta6 
 
RPPPNS<-c(PP1,PP2,PP3,PP4,PP5,PP6) 
 
 
Obtention of the Not segmented RPP with the Normberg’s formula 
 
Cita normal drivers  
 
RPPPNSnorb<-c(0,0,0,0,0,0) 
for(i in 1:6){ 
RPPPNSnorb[i]<-
(cita1*pst[1,i]*(1/6)+cita2*pst[2,i]*(1/6)+cita3*pst[3,i]*(1/6)+cita4*pst[4,i]*(1/6)+cita
5*pst[5,i]*(1/6)+cita6*pst[6,i]*(1/6))/ 
(pst[1,i]*(1/6)+pst[2,i]*(1/6)+pst[3,i]*(1/6)+pst[4,i]*(1/6)+pst[5,i]*(1/6)+pst[6,i]*(1/6)) 
} 
 
RPPPNSnorb 
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Cita bad drivers  
 
RPPPNSbad<-c(0,0,0,0,0,0) 
for(i in 1:6){ 
  RPPPNSbad[i]<-
(cita1*pst[1,i]*(1/12)+cita2*pst[2,i]*(1/12)+cita3*pst[3,i]*(1/12)+cita4*pst[4,i]*(1/4)+
cita5*pst[5,i]*(1/4)+cita6*pst[6,i]*(1/4))/ 
(pst[1,i]*(1/12)+pst[2,i]*(1/12)+pst[3,i]*(1/12)+pst[4,i]*(1/4)+pst[5,i]*(1/4)+pst[6,i]*(1
/4)) 
} 
 
Cita good drivers  
 
RPPPNSgood<-c(0,0,0,0,0,0) 
for(i in 1:6){ 
  RPPPNSgood[i]<-
(cita1*pst[1,i]*(1/4)+cita2*pst[2,i]*(1/4)+cita3*pst[3,i]*(1/4)+cita4*pst[4,i]*(1/12)+cit
a5*pst[5,i]*(1/12)+cita6*pst[6,i]*(1/12))/ 
    
(pst[1,i]*(1/4)+pst[2,i]*(1/4)+pst[3,i]*(1/4)+pst[4,i]*(1/12)+pst[5,i]*(1/12)+pst[6,i]*(1/
12)) 
} 
 
RPPPNSgood 
 
 
Segmented case 
 
 
Depending on the assumption about 𝜆𝜆𝑘𝑘 that is desired for the obtention of the BMS it 
must be executed one of the following chunks of code, before proceeding to run the script 
below. 
 
                                 Ass. 1: different 𝜆𝜆𝑘𝑘                     Ass. 2: simmilar 𝜆𝜆𝑘𝑘           
 
 
 
 
 
 
 
 
 
 
wA1<-0.4 
wA2<-0.15 
wA3<-0.15 
wA4<-0.1 
wA5<-0.1 

nmedA1<-0.75 
nmedA2<-0.7 
nmedA3<-0.62 
nmedA4<-0.57 
nmedA5<-0.55 
nmedA6<-0.35 
 

nmedA1<-0.9 
nmedA2<-0.7 
nmedA3<-0.6 
nmedA4<-0.4 
nmedA5<-0.3 
nmedA6<-0.2 
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wA6<-0.1 
 
nmed<-
nmedA1*wA1+nmedA2*wA2+nmedA3*wA3+nmedA4*wA4+nmedA5*wA5+nmedA
6*wA6;nmed 
 
w<-c(wA1,wA2,wA3,wA4,wA5,wA6) 
 
nmed<-c(nmedA1,nmedA2,nmedA3,nmedA4,nmedA5,nmedA6) 
cita<-c(0.25,0.5,0.75,1.25,1.5,1.75) 
 
P<-matrix(0,6,6) 
Pij<-matrix(0,6*6,6) 
 
a<-1 
for(i in 1:6){ 
  for(j in 1:6){ 
    p0<-dpois(0, nmed[i]*cita[j]);p0 
    p1<-dpois(1, nmed[i]*cita[j]);p1 
    p2<-dpois(2, nmed[i]*cita[j]);p2 
    p3<-dpois(3, nmed[i]*cita[j]);p3 
    p4<-dpois(4, nmed[i]*cita[j]);p4 
     
    P<-   
matrix(c(p0,p0,0,0,0,0,p1,0,p0,0,0,0,p2,p1,0,p0,0,0,p3,p2,p1,0,p0,0,p4,p3,p2,p1,0,p0,1-
p0-p1-p2-p3-p4,1-p0-p1-p2-p3,1-p0-p1-p2,1-p0-p1,1-p0,1-p0),nrow=6,ncol=6);P 
         
    eigen(t(P)) 
    pi <- eigen(t(P))$vectors[,1] 
    pi <- pi/sum(pi) 
    pivep <- Re(pi) 
     
    Pij[a,]<-pivep 
    a=a+1 
  } 
} 
 
Pij 
wr<-c(rep(wA1,6),rep(wA2,6),rep(wA3,6),rep(wA4,6),rep(wA5,6),rep(wA6,6)) 
 
sum(w) 
sum(wr) 
 
#We change the notation of the formula above: 
 
Pij 
wr 
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pil<-
c((1/6)*sum(Pij[,1]*wr),(1/6)*sum(Pij[,2]*wr),(1/6)*sum(Pij[,3]*wr),(1/6)*sum(Pij[,4]
*wr),(1/6)*sum(Pij[,5]*wr),(1/6)*sum(Pij[,6]*wr));pil 
sum(pil) 
 
Deriving the Segmented RPP through Denuit & Charpentier formulation (cita normal 
drivers) 
 
#Pr[Θ=0.25|L=l] 
 
P025l<-matrix(0,6,6) 
P025l[1,]<-(1/(6*pil))*(w[1]*Pij[1,]) 
for(i in 2:6){ 
  P025l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+1,]) 
} 
 
P025l<-colSums(P025l) 
 
 
#Pr[Θ=0.5|L=l] 
 
P05l<-matrix(0,6,6) 
P05l[1,]<-(1/(6*pil))*(w[1]*Pij[2,]) 
for(i in 2:6){ 
  P05l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+2,]) 
} 
 
P05l<-colSums(P05l) 
 
 
#Pr[Θ=0.75|L=l] 
 
P075l<-matrix(0,6,6) 
P075l[1,]<-(1/(6*pil))*(w[1]*Pij[3,]) 
for(i in 2:6){ 
  P075l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+3,]) 
} 
 
P075l<-colSums(P075l) 
 
#Pr[Θ=1.25|L=l] 
 
P125l<-matrix(0,6,6) 
P125l[1,]<-(1/(6*pil))*(w[1]*Pij[4,]) 
for(i in 2:6){ 
  P125l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+4,]) 
} 
 
P125l<-colSums(P125l) 
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#Pr[Θ=1.5|L=l] 
 
P15l<-matrix(0,6,6) 
P15l[1,]<-(1/(6*pil))*(w[1]*Pij[5,]) 
for(i in 2:6){ 
  P15l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+5,]) 
} 
 
P15l<-colSums(P15l) 
 
#Pr[Θ=1.75|L=l] 
 
P175l<-matrix(0,6,6) 
P175l[1,]<-(1/(6*pil))*(w[1]*Pij[6,]) 
for(i in 2:6){ 
  P175l[i,]<-(1/(6*pil))*(w[i]*Pij[6*(i-1)+6,]) 
} 
 
P175l<-colSums(P175l) 
 
 
# Segmented RPP 
 
#E[Θ|L=l]=0.25·Pr[Θ=0.25|L=l]+...+1.75·Pr[Θ=1.75|L=l] 
 
RPPPS<-0.25*P025l+0.5*P05l+0.75*P075l+1.25*P125l+1.5*P15l+1.75*P175l 
 
 
 
 
Obtention of the Not segmented RPP with the Normberg’s formula 
 
Cita normal drivers  
 
RPN<-matrix(0,6,6) 
RPD<-matrix(0,6,6) 
for(i in 1:6){ 
  RPN[i,]<-(w[i]*(cita[1]*Pij[6*(i-1)+1,]*(1/6)+cita[2]*Pij[6*(i-
1)+2,]*(1/6)+cita[3]*Pij[6*(i-1)+3,]*(1/6)+cita[4]*Pij[6*(i-
1)+4,]*(1/6)+cita[5]*Pij[6*(i-1)+5,]*(1/6)+cita[6]*Pij[6*(i-1)+6,]*(1/6))) 
  RPD[i,]<-(w[i]*(Pij[6*(i-1)+1,]*(1/6)+Pij[6*(i-1)+2,]*(1/6)+Pij[6*(i-
1)+3,]*(1/6)+Pij[6*(i-1)+4,]*(1/6)+Pij[6*(i-1)+5,]*(1/6)+Pij[6*(i-1)+6,]*(1/6))) 
} 
 
PN<-colSums(RPN) 
PD<-colSums(RPD) 
 
RPPPSnorb<-PN/PD 
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Cita bad drivers  
 
RPN<-matrix(0,6,6) 
RPD<-matrix(0,6,6) 
for(i in 1:6){ 
  RPN[i,]<-(w[i]*(cita[1]*Pij[6*(i-1)+1,]*(1/12)+cita[2]*Pij[6*(i-
1)+2,]*(1/12)+cita[3]*Pij[6*(i-1)+3,]*(1/12)+cita[4]*Pij[6*(i-
1)+4,]*(1/4)+cita[5]*Pij[6*(i-1)+5,]*(1/4)+cita[6]*Pij[6*(i-1)+6,]*(1/4))) 
  RPD[i,]<-(w[i]*(Pij[6*(i-1)+1,]*(1/12)+Pij[6*(i-1)+2,]*(1/12)+Pij[6*(i-
1)+3,]*(1/12)+Pij[6*(i-1)+4,]*(1/4)+Pij[6*(i-1)+5,]*(1/4)+Pij[6*(i-1)+6,]*(1/4))) 
} 
 
PN<-colSums(RPN) 
PD<-colSums(RPD) 
 
RPPPSbad<-PN/PD 
 
Cita good drivers  
 
RPN<-matrix(0,6,6) 
RPD<-matrix(0,6,6) 
for(i in 1:6){ 
  RPN[i,]<-(w[i]*(cita[1]*Pij[6*(i-1)+1,]*(1/4)+cita[2]*Pij[6*(i-
1)+2,]*(1/4)+cita[3]*Pij[6*(i-1)+3,]*(1/4)+cita[4]*Pij[6*(i-
1)+4,]*(1/12)+cita[5]*Pij[6*(i-1)+5,]*(1/12)+cita[6]*Pij[6*(i-1)+6,]*(1/12))) 
  RPD[i,]<-(w[i]*(Pij[6*(i-1)+1,]*(1/4)+Pij[6*(i-1)+2,]*(1/4)+Pij[6*(i-
1)+3,]*(1/4)+Pij[6*(i-1)+4,]*(1/12)+Pij[6*(i-1)+5,]*(1/12)+Pij[6*(i-1)+6,]*(1/12))) 
} 
 
PN<-colSums(RPN) 
PD<-colSums(RPD) 
 
RPPPSgood<-PN/PD 
 
Note: If it has been executed the Ass .1 the RPPPS and RPPPSnor would be the 
segmented RPP for a light BMS when the 𝜆𝜆𝑘𝑘 are assumed different otherwise it would be 
the RPP for a light BMS but for 𝜆𝜆𝑘𝑘 that are considered similar.  
 
 
Pure premium for unitary claim amount 
 
Not segmented case 
 
PBrg<-rep(0,6) 
PPEXnormalNS<-matrix(0,6,6) 
PPEXbadNS<-matrix(0,6,6) 
PPEXgoodNS<-matrix(0,6,6) 
for(i in 1:6){ 
  PBrg[i]<-nmed[i] 
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  PPEXnormalNS[i,]<-RPPPNS*PBrg[i] 
  PPEXbadNS[i,]<-RPPPNSbad*PBrg[i] 
  PPEXgoodNS[i,]<-RPPPNSgood*PBrg[i] 
} 
 
rownames(PPEXnormalNS)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXbadNS)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXgoodNS)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
 
PPEXnormalNS 
PPEXbadNS 
PPEXgoodNS 
 
 
Segmented case 
 
PBrg<-rep(0,6) 
PPEXnormal<-matrix(0,6,6) 
PPEXbad<-matrix(0,6,6) 
PPEXgood<-matrix(0,6,6) 
for(i in 1:6){ 
  PBrg[i]<-nmed[i] 
   
  PPEXnormal[i,]<-RPPPS*PBrg[i] 
  PPEXbad[i,]<-RPPPSbad*PBrg[i] 
  PPEXgood[i,]<-RPPPSgood*PBrg[i] 
} 
 
rownames(PPEXnormal)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXbad)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
rownames(PPEXgood)<-c("RG1","RG2","RG3","RG4","RG5","RG6") 
 
PPEXnormal 
PPEXbad 
PPEXgood 
 
Note: If it has been executed the Ass .1 all the PPEX and PPEXNS would correspond 
with the light and different case while if the Ass. 2 was the once excited they would made 
reference to the light and similar case. 
 
From the following chunk of code, it must be executed the once that correspond with the 
assumption considered above: 
 
                         Ass. 1: different 𝜆𝜆𝑘𝑘                                              Ass. 2: simmilar 𝜆𝜆𝑘𝑘 
 
 
 
 
 
 

LDPPEXnormalNS<-PPEXnormalNS 
LDPPEXnormal<-PPEXnormal 
LDPPEXbadNS<-PPEXbadNS 
LDPPEXbad<-PPEXbad 
LDPPEXgoodNS<-PPEXgoodNS 
LDPPEXgood<-PPEXgood 
 

LSPPEXnormalNS<-PPEXnormalNS 
LPPEXnormal<-PPEXnormal 
LSPPEXbadNS<-PPEXbadNS 
LSPPEXbad<-PPEXbad 
LSPPEXgoodNS<-PPEXgoodNS 
LSPPEXgood<-PPEXgood 
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SIMULATION AND GRAPHIC OF THE PATHS FOR NORMAL DRIVERS 
 
Note: It is important to first execute the above code for the obtention of the four 
combinations of assumptions of punishment per claim and values of 𝜆𝜆𝑘𝑘: strict and 
different, strict and similar, light and different and light and similar. 
 
Different 𝝀𝝀𝒌𝒌 case 
 
#10,000 insureds 
n<-10000 
 
 
#Simulation for lambda different 
sD<-matrix(0,10000,5) 
 
for(i in 1:5){ 
    set.seed(i) 
    s1<-rpois(n*0.4,0.9) 
    s2<-rpois(n*0.15,0.7) 
    s3<-rpois(n*0.15,0.6) 
    s4<-rpois(n*0.1,0.4) 
    s5<-rpois(n*0.1,0.3) 
    s6<-rpois(n*0.1,0.2) 
  
    sD[,i]<-c(s1,s2,s3,s4,s5,s6) 
} 
 
colnames(sD)<-c("Y1","Y2","Y3","Y4","Y5") 
 
sD 
 
 
#Simulation for lambda similar 
sS<-matrix(0,10000,5) 
 
for(i in 1:5){ 
    set.seed(i+10) 
    s1<-rpois(n*0.4,0.75) 
    s2<-rpois(n*0.15,0.7) 
    s3<-rpois(n*0.15,0.62) 
    s4<-rpois(n*0.1,0.57) 
    s5<-rpois(n*0.1,0.55) 
    s6<-rpois(n*0.1,0.35) 
     
    sS[,i]<-c(s1,s2,s3,s4,s5,s6) 
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} 
 
colnames(sS)<-c("Y1","Y2","Y3","Y4","Y5") 
 
sS 
Selection of random individual RG1 (lambda=0.9 (D) and 0.75 (S))) for the good 
driver’s case 
 
 
#case a: the individual presents a behavior concordant with its claim frequency 
 
options(max.print = 99999) 
sD[1:4000,] 
SA<-sD[1:4000,] 
which(SA[,1]==0 & SA[,2]==1 & SA[,3]==0 & SA[,4]==1 & SA[,5]==2) 
sD[3889,] 
 
 
SB<-sS[1:4000,] 
which(SB[,1]==0 & SB[,2]==1 & SB[,3]==0 & SB[,4]==1 & SB[,5]==2) 
 
sS[3972,] 
 
 
#different lambdas 
classS<-c(4,6,5,6,6) 
 
#simmilar lambdas 
classL<-c(4,5,4,5,6) 
 
 
 
#Generation of the trajectories 
 
PTNSSandD<-
c(SDPPEXnormalNS[1,classS[1]],SDPPEXnormalNS[1,classS[2]],SDPPEXnormalNS[
1,classS[3]],SDPPEXnormalNS[1,classS[4]],SDPPEXnormalNS[1,classS[5]]);PTNSSa
ndD 
 
PTSSandD<-
c(SDPPEXnormal[1,classS[1]],SDPPEXnormal[1,classS[2]],SDPPEXnormal[1,classS[
3]], SDPPEXnormal[1,classS[4]],SDPPEXnormal[1,classS[5]]);PTSSandD 
 
PTNSSandS<-
c(SSPPEXnormalNS[1,classS[1]],SSPPEXnormalNS[1,classS[2]],SSPPEXnormalNS[1
,classS[3]],SSPPEXnormalNS[1,classS[4]],SSPPEXnormalNS[1,classS[5]]);PTNSSa 
ndS 
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PTSSandS<-
c(SSPPEXnormal[1,classS[1]],SSPPEXnormal[1,classS[2]],SSPPEXnormal[1,classS[3]
], SSPPEXnormal[1,classS[4]],SSPPEXnormal[1,classS[5]]);PTSSandS 
 
PTNSLandD<-
c(LDPPEXnormalNS[1,classL[1]],LDPPEXnormalNS[1,classL[2]],LDPPEXnormalNS
[1,classL[3]],LDPPEXnormalNS[1,classL[4]],LDPPEXnormalNS[1,classL[5]]);PTNSL
andD 
 
PTSLandD<-
c(LDPPEXnormal[1,classL[1]],LDPPEXnormal[1,classL[2]],LDPPEXnormal[1,classL[
3]], LDPPEXnormal[1,classL[4]],LDPPEXnormal[1,classL[5]]);PTSLandD 
 
PTNSLandS<-
c(LSPPEXnormalNS[1,classL[1]],LSPPEXnormalNS[1,classL[2]],LSPPEXnormalNS[
1,classL[3]],LSPPEXnormalNS[1,classL[4]],LSPPEXnormalNS[1,classL[5]]);LSPTNS
LandS 
 
PTSLandS<-
c(LSPPEXnormal[1,classL[1]],LSPPEXnormal[1,classL[2]],LSPPEXnormal[1,classL[3
]], LSPPEXnormal[1,classL[4]],LSPPEXnormal[1,classL[5]]);PTSLandS 
 
 
#Plots for the individual in RG1 
 
y<-c(0.9,0.9,0.9,0.9,0.9) 
 
#SandD drivers 
plot(PTNSSandD, type = "l", ylim=c(0.3,1.3), col="red", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandD, type = "l", col="red", lty=2) 
lines(y, type="l")  
 
#LandD drivers 
lines(PTNSLandD, type = "l", col="blue") 
lines(PTSLandD, type = "l", col="blue", lty=2) 
 
legend(4.405, 0.643, legend=c("SandD NS", "SandD S","LandD NS","LandD S"), 
       col=c("red", "red","blue","blue"), lty=1:2, cex=0.6) 
 
 
y<-c(0.75,0.75,0.75,0.75,0.75) 
 
#SandS drivers 
plot(PTNSSandS, type = "l",ylim=c(0.3,1.3), col="orange", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandS, type = "l", col="orange", lty=2) 
lines(y, type="l")  
 
#LandS drivers 
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lines(PTNSLandS, type = "l", col="green") 
lines(PTSLandS, type = "l", col="green", lty=2) 
 
legend(4.405, 0.6431, legend=c("SandS NS", "SandS S","LandS NS","LandS S"), 
       col=c("orange", "orange","green","green"), lty=1:2, cex=0.6) 
 
#case b: the individual does not presents a behavior concordant with its claim frequency 
 
options(max.print = 99999) 
sD[1:4000,] 
SA<-sD[1:4000,] 
which(SA[,1]==0 & SA[,2]==0 & SA[,3]==0 & SA[,4]==0 & SA[,5]==1) 
sD[725,] 
 
 
SB<-sS[1:4000,] 
which(SB[,1]==0 & SB[,2]==0 & SB[,3]==0 & SB[,4]==0 & SB[,5]==1) 
 
sS[2774,] 
 
 
#different lambdas 
 
classS<-c(4,3,2,1,4) 
 
#simmilar lambdas 
 
classL<-c(4,3,2,1,2) 
 
#Generation of the trajectories 
 
PTNSSandD<-
c(SDPPEXnormalNS[1,classS[1]],SDPPEXnormalNS[1,classS[2]],SDPPEXnormalNS[
1,classS[3]],SDPPEXnormalNS[1,classS[4]],SDPPEXnormalNS[1,classS[5]]);PTNSSa
ndD 
 
PTSSandD<-
c(SDPPEXnormal[1,classS[1]],SDPPEXnormal[1,classS[2]],SDPPEXnormal[1,classS[
3]], SDPPEXnormal[1,classS[4]],SDPPEXnormal[1,classS[5]]);PTSSandD 
 
PTNSSandS<-
c(SSPPEXnormalNS[1,classS[1]],SSPPEXnormalNS[1,classS[2]],SSPPEXnormalNS[1
,classS[3]],SSPPEXnormalNS[1,classS[4]],SSPPEXnormalNS[1,classS[5]]);PTNSSand
S 
 
PTSSandS<-
c(SSPPEXnormal[1,classS[1]],SSPPEXnormal[1,classS[2]],SSPPEXnormal[1,classS[3]
], SSPPEXnormal[1,classS[4]],SSPPEXnormal[1,classS[5]]);PTSSandS 
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PTNSLandD<-
c(LDPPEXnormalNS[1,classL[1]],LDPPEXnormalNS[1,classL[2]],LDPPEXnormalNS
[1,classL[3]],LDPPEXnormalNS[1,classL[4]],LDPPEXnormalNS[1,classL[5]]);PTNSL
andD 
 
PTSLandD<-
c(LDPPEXnormal[1,classL[1]],LDPPEXnormal[1,classL[2]],LDPPEXnormal[1,classL[
3]], LDPPEXnormal[1,classL[4]],LDPPEXnormal[1,classL[5]]);PTSLandD 
 
PTNSLandS<-
c(LSPPEXnormalNS[1,classL[1]],LSPPEXnormalNS[1,classL[2]],LSPPEXnormalNS[
1,classL[3]], 
             
LSPPEXnormalNS[1,classL[4]],LSPPEXnormalNS[1,classL[5]]);LSPTNSLandS 
PTSLandS<-
c(LSPPEXnormal[1,classL[1]],LSPPEXnormal[1,classL[2]],LSPPEXnormal[1,classL[3
]], LSPPEXnormal[1,classL[4]],LSPPEXnormal[1,classL[5]]);PTSLandS 
 
 
#Plots for the individual in RG1 
 
y<-c(0.9,0.9,0.9,0.9,0.9) 
 
#SandD drivers 
plot(PTNSSandD, type = "l", ylim=c(0.3,1.3), col="red", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandD, type = "l", col="red", lty=2) 
lines(y, type="l")  
 
#LandD drivers 
lines(PTNSLandD, type = "l", col="blue") 
lines(PTSLandD, type = "l", col="blue", lty=2) 
 
legend(4.405, 1.34, legend=c("SandD NS", "SandD S","LandD NS","LandD S"), 
       col=c("red", "red","blue","blue"), lty=1:2, cex=0.6) 
 
y<-c(0.75,0.75,0.75,0.75,0.75) 
 
#SandS drivers 
plot(PTNSSandS, type = "l",ylim=c(0.3,1.3), col="orange", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandS, type = "l", col="orange", lty=2) 
lines(y, type="l")  
 
#LandS drivers 
lines(PTNSLandS, type = "l", col="green") 
lines(PTSLandS, type = "l", col="green", lty=2) 
 
legend(4.41, 1.34, legend=c("SandS NS", "SandS S","LandS NS","LandS S"), 
       col=c("orange", "orange","green","green"), lty=1:2, cex=0.6) 



 62 

 
 
 
 
Selection of random individual RG5 (lambda=0.3 (D) and 0.55 (S)) for the good 
driver’s case 
 
#case a: the individual presents a behavior concordant with its claim frequency 
 
 
options(max.print = 99999) 
sD[8001:9000,] 
SA<-sD[8001:9000,] 
which(SA[,1]==0 & SA[,2]==0 & SA[,3]==1 & SA[,4]==0 & SA[,5]==1) 
sD[8000+10,] 
 
 
SB<-sS[8001:9000,] 
which(SB[,1]==0 & SB[,2]==0 & SB[,3]==1 & SB[,4]==0 & SB[,5]==1) 
 
sS[8000+819,] 
 
#different lambdas 
classS<-c(4,3,6,5,6) 
 
#simmilar lambdas 
classL<-c(4,3,4,3,4) 
 
 
#Generation of the trajectories 
 
PTNSSandD<-
c(SDPPEXnormalNS[5,classS[1]],SDPPEXnormalNS[5,classS[2]],SDPPEXnormalNS[
5,classS[3]],SDPPEXnormalNS[5,classS[4]],SDPPEXnormalNS[5,classS[5]]);PTNSSa
ndD 
 
PTSSandD<-
c(SDPPEXnormal[5,classS[1]],SDPPEXnormal[5,classS[2]],SDPPEXnormal[5,classS[
3]], SDPPEXnormal[5,classS[4]],SDPPEXnormal[5,classS[5]]);PTSSandD 
 
PTNSSandS<-
c(SSPPEXnormalNS[5,classS[1]],SSPPEXnormalNS[5,classS[2]],SSPPEXnormalNS[5
,classS[3]],SSPPEXnormalNS[5,classS[4]],SSPPEXnormalNS[5,classS[5]]);PTNSSand
S 
 
PTSSandS<-
c(SSPPEXnormal[5,classS[1]],SSPPEXnormal[5,classS[2]],SSPPEXnormal[5,classS[3]
], SSPPEXnormal[5,classS[4]],SSPPEXnormal[5,classS[5]]);PTSSandS 
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PTNSLandD<-
c(LDPPEXnormalNS[5,classL[1]],LDPPEXnormalNS[5,classL[2]],LDPPEXnormalNS
[5,classL[3]],LDPPEXnormalNS[5,classL[4]],LDPPEXnormalNS[5,classL[5]]);PTNSL
andD 
PTSLandD<-
c(LDPPEXnormal[5,classL[1]],LDPPEXnormal[5,classL[2]],LDPPEXnormal[5,classL[
3]], LDPPEXnormal[5,classL[4]],LDPPEXnormal[5,classL[5]]);PTSLandD 
 
PTNSLandS<-
c(LSPPEXnormalNS[5,classL[1]],LSPPEXnormalNS[5,classL[2]],LSPPEXnormalNS[
5,classL[3]],LSPPEXnormalNS[5,classL[4]],LSPPEXnormalNS[5,classL[5]]);LSPTNS
LandS 
 
PTSLandS<-
c(LSPPEXnormal[5,classL[1]],LSPPEXnormal[5,classL[2]],LSPPEXnormal[5,classL[3
]], LSPPEXnormal[5,classL[4]],LSPPEXnormal[5,classL[5]]);PTSLandS 
 
 
#Plots for the individual in RG5 
 
y<-c(0.3,0.3,0.3,0.3,0.3) 
 
#SandD drivers 
plot(PTNSSandD, type = "l", ylim=c(0,0.8), col="red", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandD, type = "l", col="red", lty=2) 
lines(y, type="l")  
 
#LandD drivers 
lines(PTNSLandD, type = "l", col="blue") 
lines(PTSLandD, type = "l", col="blue", lty=2) 
 
legend(4.405, 0.273, legend=c("SandD NS", "SandD S","LandD NS","LandD S"), 
       col=c("red", "red","blue","blue"), lty=1:2, cex=0.6) 
 
 
y<-c(0.55,0.55,0.55,0.55,0.55) 
 
#SandS drivers 
plot(PTNSSandS, type = "l",ylim=c(0,0.8), col="orange", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandS, type = "l", col="orange", lty=2) 
lines(y, type="l")  
 
#LandS drivers 
lines(PTNSLandS, type = "l", col="green") 
lines(PTSLandS, type = "l", col="green", lty=2) 
 
legend(4.405, 0.2732, legend=c("SandS NS", "SandS S","LandS NS","LandS S"), 
       col=c("orange", "orange","green","green"), lty=1:2, cex=0.6) 
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#case b: the individual does not presents a behavior concordant with its claim frequency 
 
options(max.print = 99999) 
sD[8001:9000,] 
SA<-sD[8001:9000,] 
which(SA[,1]==0 & SA[,2]==1 & SA[,3]==1 & SA[,4]==0 & SA[,5]==2) 
sD[8000+399,] 
 
 
SB<-sS[8001:9000,] 
which(SB[,1]==0 & SB[,2]==1 & SB[,3]==1 & SB[,4]==0 & SB[,5]==2) 
 
sS[8000+800,] 
 
#different lambdas 
 
classS<-c(4,6,6,5,6) 
 
#simmilar lambdas 
 
classL<-c(4,5,6,5,6) 
 
 
#Generation of the trajectories 
 
PTNSSandD<-
c(SDPPEXnormalNS[5,classS[1]],SDPPEXnormalNS[5,classS[2]],SDPPEXnormalNS[
5,classS[3]],SDPPEXnormalNS[5,classS[4]],SDPPEXnormalNS[5,classS[5]]);PTNSSa
ndD 
 
PTSSandD<-
c(SDPPEXnormal[5,classS[1]],SDPPEXnormal[5,classS[2]],SDPPEXnormal[5,classS[
3]], SDPPEXnormal[5,classS[4]],SDPPEXnormal[5,classS[5]]);PTSSandD 
 
PTNSSandS<-
c(SSPPEXnormalNS[5,classS[1]],SSPPEXnormalNS[5,classS[2]],SSPPEXnormalNS[5
,classS[3]],SSPPEXnormalNS[5,classS[4]],SSPPEXnormalNS[5,classS[5]]);PTNSSand
S 
 
PTSSandS<-
c(SSPPEXnormal[5,classS[1]],SSPPEXnormal[5,classS[2]],SSPPEXnormal[5,classS[3]
], SSPPEXnormal[5,classS[4]],SSPPEXnormal[5,classS[5]]);PTSSandS 
 
PTNSLandD<-
c(LDPPEXnormalNS[5,classL[1]],LDPPEXnormalNS[5,classL[2]],LDPPEXnormalNS
[5,classL[3]],LDPPEXnormalNS[5,classL[4]],LDPPEXnormalNS[5,classL[5]]);PTNSL
andD 
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PTSLandD<-
c(LDPPEXnormal[5,classL[1]],LDPPEXnormal[5,classL[2]],LDPPEXnormal[5,classL[
3]], LDPPEXnormal[5,classL[4]],LDPPEXnormal[5,classL[5]]);PTSLandD 
 
PTNSLandS<-
c(LSPPEXnormalNS[5,classL[1]],LSPPEXnormalNS[5,classL[2]],LSPPEXnormalNS[
5,classL[3]],LSPPEXnormalNS[5,classL[4]],LSPPEXnormalNS[5,classL[5]]);LSPTNS
LandS 
 
PTSLandS<-
c(LSPPEXnormal[5,classL[1]],LSPPEXnormal[5,classL[2]],LSPPEXnormal[5,classL[3
]], LSPPEXnormal[5,classL[4]],LSPPEXnormal[5,classL[5]]);PTSLandS 
 
 
 
y<-c(0.3,0.3,0.3,0.3,0.3) 
 
#SandD drivers 
plot(PTNSSandD, type = "l", ylim=c(0,0.8), col="red", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandD, type = "l", col="red", lty=2) 
lines(y, type="l")  
 
#LandD drivers 
lines(PTNSLandD, type = "l", col="blue") 
lines(PTSLandD, type = "l", col="blue", lty=2) 
 
legend(4.405, 0.2731, legend=c("SandD NS", "SandD S","LandD NS","LandD S"), 
       col=c("red", "red","blue","blue"), lty=1:2, cex=0.6) 
 
#Plots for the individual in RG5 
 
y<-c(0.55,0.55,0.55,0.55,0.55) 
 
#SandS drivers 
plot(PTNSSandS, type = "l",ylim=c(0,0.8), col="orange", xlab = "Year", ylab = "Pure 
premiums") 
lines(PTSSandS, type = "l", col="orange", lty=2) 
lines(y, type="l")  
 
#LandS drivers 
lines(PTNSLandS, type = "l", col="green") 
lines(PTSLandS, type = "l", col="green", lty=2) 
 
legend(4.405, 0.2731, legend=c("SandS NS", "SandS S","LandS NS","LandS S"), 
       col=c("orange", "orange","green","green"), lty=1:2, cex=0.6) 
 
 
 
 



 66 

SIMULATION AND GRAPHIC OF THE PATHS EFECT OF A SURCHARGE 
 
for(i in 1:6){ 
    par(mfrow=c(2,2)) 
 
    #S and D  
    #                Y1 Y2 Y3 Y4 Y5  
    # claims          0  0  0  0  2  
    # class strict    4  3  2  1  4 
     
    y<-c(0.6,0.6,0.6,0.6,0.6) 
    yb<-c(0.6*1.25,0.6*1.25,0.6*1.25,0.6*1.25,0.6*1.25) 
     
    classS<-c(4,3,2,1,4) 
     
    PTNSSandDn<-
c(SDPPEXnormalNS[i,1],SDPPEXnormalNS[i,2],SDPPEXnormalNS[i,3], 
                  
SDPPEXnormalNS[i,4],SDPPEXnormalNS[i,5],SDPPEXnormalNS[i,6]);PTNSSandDn 
    PTSSandDn<-c(SDPPEXnormal[i,1],SDPPEXnormal[i,2],SDPPEXnormal[i,3], 
                 SDPPEXnormal[i,4],SDPPEXnormal[i,5],SDPPEXnormal[i,6]);PTSSandDn 
     
    PTNSSandDb<-c(SDPPEXbadNS[i,1],SDPPEXbadNS[i,2],SDPPEXbadNS[i,3], 
                  
SDPPEXbadNS[i,4],SDPPEXbadNS[i,5],SDPPEXbadNS[i,6]);PTNSSandDb 
    PTSSandDb<-c(SDPPEXbad[i,1],SDPPEXbad[i,2],SDPPEXbad[i,3], 
                 SDPPEXbad[i,4],SDPPEXbad[i,5],SDPPEXbad[i,6]);PTSSandDb 
     
    plot(PTNSSandDn, type = "l", ylim=c(0.1,1.3), col="blue", xlab = "Class", ylab = 
"Pure premiums", main = "Strict and Different") 
    lines(PTSSandDn, type = "l", col="blue", lty=2) 
    lines(PTNSSandDb, type = "l", col="red") 
    lines(PTSSandDb, type = "l", col="red", lty=2) 
     
    #S and S      
    #                Y1 Y2 Y3 Y4 Y5  
    # claims          0  0  0  0  1  
    # class strict    4  3  2  1  2 
     
    y<-c(0.62,0.62,0.62,0.62,0.62) 
    yb<-c(0.62*1.25,0.62*1.25,0.62*1.25,0.62*1.25,0.62*1.25) 
     
    classS<-c(4,3,2,1,2) 
     
    PTNSSandSn<-
c(SSPPEXnormalNS[i,1],SSPPEXnormalNS[i,2],SSPPEXnormalNS[i,3], 
                  
SSPPEXnormalNS[i,4],SSPPEXnormalNS[i,5],SSPPEXnormalNS[i,6]);PTNSSandDn 
    PTSSandSn<-c(SSPPEXnormal[i,1],SSPPEXnormal[i,2],SSPPEXnormal[i,3], 
                 SSPPEXnormal[i,4],SSPPEXnormal[i,5],SSPPEXnormal[i,6]);PTSSandDn 
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    PTNSSandSb<-c(SSPPEXbadNS[i,1],SSPPEXbadNS[i,2],SSPPEXbadNS[i,3], 
                  SSPPEXbadNS[i,4],SSPPEXbadNS[i,5],SSPPEXbadNS[i,6]);PTNSSandDb 
    PTSSandSb<-c(SSPPEXbad[i,1],SSPPEXbad[i,2],SSPPEXbad[i,3], 
                 SSPPEXbad[i,4],SSPPEXbad[i,5],SSPPEXbad[i,6]);PTSSandDb 
     
     
    plot(PTNSSandSn, type = "l", ylim=c(0.1,1.3), col="blue", xlab = "Class", ylab = 
"Pure premiums", main = "Strict and Similar") 
    lines(PTSSandSn, type = "l", col="blue", lty=2) 
    lines(PTNSSandSb, type = "l", col="red") 
    lines(PTSSandSb, type = "l", col="red", lty=2) 
     
    #L and D  
    #                Y1 Y2 Y3 Y4 Y5  
    # claims          1  0  0  0  0  
    # class strict    6  5  4  3  2 
     
    y<-c(0.6,0.6,0.6,0.6,0.6)#Hacer para todos!!!!!!!! 
    yb<-c(0.6*1.25,0.6*1.25,0.6*1.25,0.6*1.25,0.6*1.25) 
     
     
    classS<-c(6,5,4,3,2) 
     
    PTNSLandDn<-
c(LDPPEXnormalNS[i,1],LDPPEXnormalNS[i,2],LDPPEXnormalNS[i,3], 
                  
LDPPEXnormalNS[i,4],LDPPEXnormalNS[i,5],LDPPEXnormalNS[i,6]);PTNSSandD
n 
    PTSLandDn<-c(LDPPEXnormal[i,1],LDPPEXnormal[i,2],LDPPEXnormal[i,3], 
                 LDPPEXnormal[i,4],LDPPEXnormal[i,5],LDPPEXnormal[i,6]);PTSSandDn 
     
    PTNSLandDb<-c(LDPPEXbadNS[i,1],LDPPEXbadNS[i,2],LDPPEXbadNS[i,3], 
                  
LDPPEXbadNS[i,4],LDPPEXbadNS[i,5],LDPPEXbadNS[i,6]);PTNSSandDb 
    PTSLandDb<-c(LDPPEXbad[i,1],LDPPEXbad[i,2],LDPPEXbad[i,3], 
                 LDPPEXbad[i,4],LDPPEXbad[i,5],LDPPEXbad[i,6]);PTSSandDb 
     
     
    plot(PTNSLandDn, type = "l", ylim=c(0.1,1.3), col="blue", xlab = "Class", ylab = 
"Pure premiums", main = "Light and Different") 
    lines(PTSLandDn, type = "l", col="blue", lty=2) 
    lines(PTNSLandDb, type = "l", col="red") 
    lines(PTSLandDb, type = "l", col="red", lty=2) 
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    #L and S  
    #                Y1 Y2 Y3 Y4 Y5  
    # claims          1  0  0  0  0  
    # class strict    6  5  4  3  2 
     
    y<-c(0.62,0.62,0.62,0.62,0.62) 
    yb<-c(0.62*1.25,0.62*1.25,0.62*1.25,0.62*1.25,0.62*1.25) 
     
    #Buscar que exista un individuo así en la muestra y decir su número de 
observación!!! 
     
    classS<-c(6,5,4,3,2) 
     
    PTNSLandSn<-
c(LSPPEXnormalNS[i,1],LSPPEXnormalNS[i,2],LSPPEXnormalNS[i,3], 
                  
LSPPEXnormalNS[i,4],LSPPEXnormalNS[i,5],LSPPEXnormalNS[i,6]);PTNSSandDn 
    PTSLandSn<-c(LSPPEXnormal[i,1],LSPPEXnormal[i,2],LSPPEXnormal[i,3], 
                 LSPPEXnormal[i,4],LSPPEXnormal[i,5],LSPPEXnormal[i,6]);PTSSandDn 
     
    PTNSLandSb<-c(LSPPEXbadNS[i,1],LSPPEXbadNS[i,2],LSPPEXbadNS[i,3], 
                  LSPPEXbadNS[i,4],LSPPEXbadNS[i,5],LSPPEXbadNS[i,6]);PTNSSandDb 
    PTSLandSb<-c(LSPPEXbad[i,1],LSPPEXbad[i,2],LSPPEXbad[i,3], 
                 LSPPEXbad[i,4],LSPPEXbad[i,5],LSPPEXbad[i,6]);PTSSandDb 
     
     
    plot(PTNSLandSn, type = "l", ylim=c(0.1,1.3), col="blue", xlab = "Class", ylab = 
"Pure premiums", main = "Light and Similar") 
    lines(PTSLandSn, type = "l", col="blue", lty=2) 
    lines(PTNSLandSb, type = "l", col="red") 
    lines(PTSLandSb, type = "l", col="red", lty=2) 
    #lines(y, type="l")  
    #lines(yb, type="l", col="green")  
} 
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First observations in the simulation: 

 
 

First observations in the simulation: 
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Annex 2: Verification that the segmented case provides closer premiums to 
the claim frequency 
 
For the RPP: 

 
Formula: 
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For the premiums in units of E[X]: 
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Formula: 

 
 
 
Despite the fact that the not segmented cases exhibit closer premiums to the claim 
frequency of the insureds in the highlighted cases, the differences in this class for both 
methods are very small. This suggest that this estrange behavior is due to the decimals 
that use internally the R and Excel software’s. Moreover, in both cases where that occurs 
is when the paths of premiums cross each other, supporting this reason. 
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Annex 3: Pure Premiums and Pure Premium surcharged in units of E[X] for 
all Risk Groups 
 
   Risk group 1 (𝜆𝜆𝑘𝑘 = 0.9(𝐷𝐷) 𝑜𝑜𝑜𝑜 0.75 (S))         Risk group 2 (𝜆𝜆𝑘𝑘 = 0.7(𝐷𝐷) 𝑜𝑜𝑜𝑜 0.7 (S)) 
 

  
 
  Risk group 3 (𝜆𝜆𝑘𝑘 = 0.6(𝐷𝐷) 𝑜𝑜𝑜𝑜 0.62 (S))         Risk group 4 (𝜆𝜆𝑘𝑘 = 0.4(𝐷𝐷) 𝑜𝑜𝑜𝑜 0.57 (S)) 

  
 
  Risk group 5 (𝜆𝜆𝑘𝑘 = 0.3(𝐷𝐷) 𝑜𝑜𝑜𝑜 0.55 (S))        Risk group 1 (𝜆𝜆𝑘𝑘 = 0.2(𝐷𝐷) 𝑜𝑜𝑜𝑜 0.35 (S)) 

  
 

 
 


	Abstract
	1.Introduction
	1.1. A priori pricing
	1.2. A posteriori pricing

	2. Brief explanation of the Markovian Bonus-Malus System
	2.1. Notation and assumptions
	2.2. Markov finite chains

	3. Construction of a not segmented BMS
	3.1. Norberg method in a not segmented case

	4. Construction of a segmented BMS
	4.1. Norberg method in a segmented case

	5. Comparison of the segmented and not segmented BMS under different assumptions
	5.1. Study of the impact of segmentation in a BMS with scale -1/+1
	5.2. Study of the impact of segmentation in a scale -1/+3

	6. Analysis of the paths of premiums of the policyholders in the not segmented and segmented cases
	6.1. Simulation of the sample
	6.2. Obtention of the premium in units of average claim severity
	6.3. Comparison of the paths in the segmented and not segmented case
	6.4. Impact of implementing a surcharge in the pure premium through the Norberg’s framework

	7. Conclusions
	References
	Annexes
	Annex 1: R code
	Annex 2: Verification that the segmented case provides closer premiums to the claim frequency
	Annex 3: Pure Premiums and Pure Premium surcharged in units of E[X] for all Risk Groups




