TEST (2022) 31:1082-1099
https://doi.org/10.1007/511749-022-00814-1

ORIGINAL PAPER

®

Check for
updates

Copula-based bivariate finite mixture regression models
with an application for insurance claim count data

Lluis Bermudez' ® - Dimitris Karlis2

Received: 23 July 2021 / Accepted: 8 April 2022 / Published online: 4 May 2022
© The Author(s) 2022

Abstract

Modeling bivariate (or multivariate) count data has received increased interest in recent
years. The aim is to model the number of different but correlated counts taking into
account covariate information. Bivariate Poisson regression models based on the shock
model approach are widely used because of their simple form and interpretation.
However, these models do not allow for overdispersion or negative correlation, and
thus, other models have been proposed in the literature to avoid these limitations. The
present paper proposes copula-based bivariate finite mixture of regression models.
These models offer some advantages since they have all the benefits of a finite mixture,
allowing for unobserved heterogeneity and clustering effects, while the copula-based
derivation can produce more flexible structures, including negative correlations and
regressors. In this paper, the new approach is defined, estimation through an EM
algorithm is presented, and then different models are applied to a Spanish insurance
claim count database.
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1 Introduction

Bivariate count data regression models are appropriate in situations where paired
counts are correlated and joint estimation is required. In this paper, in the application
section, an insurance claim count dataset is used to model the number of claims for
two different types of claim.

The starting point in the literature for modeling bivariate count data is the
bivariate Poisson regression model. We denote this bivariate Poisson distribution as
BP (A1, A2, A3), where A1 + A3 and Ay + A3 are the marginal means and X3 is the
covariance parameter. Based on this distribution, there are many applications in eco-
nomics and related fields. However, this distribution has two limitations: It does not
allow for overdispersion (marginal distributions follow a Poisson distribution and thus
the conditional mean of each count variable equals the conditional variance) or a neg-
ative correlation (the model only accommodates for nonnegative correlation between
the counts).

As in the univariate case, when using mixed Poisson models, bivariate count models
can be generalized in different ways to allow for overdispersion. Mixtures of bivariate
Poisson distribution can be considered in at least two different ways. In the first, we start
witha B P (a)1, aky, ai3) distribution where a follows some distribution. Munkin and
Trivedi (1999) described multivariate mixed Poisson regression models based on this
type of mixing and a gamma mixing distribution. Gurmu and Elder (2000) used an
extended gamma density as a mixing distribution. Ghitany et al. (2012) proposed a
general EM algorithm to facilitate estimation for the multivariate negative binomial,
Poisson inverse Gaussian and Poisson lognormal regression models. The second way
starts with a BP(ajr1, axAa, azAz) distribution, but now assuming that the vector
(a1, ar, a3)T follows a trivariate (or bivariate if we assume that A3 = 0) distribution.
The case when A3 = 0 has received attention primarily because of its simplicity. Steyn
(1976) proposed the use of a bivariate normal distribution as the mixing distribution.
Later on, Aitchison and Ho (1989) proposed using the bivariate lognormal distribution
instead of the simple bivariate normal distribution.

In both of the above models, the specification of the random-effects distribution is
continuous although it may be a discrete or a finite distribution. Karlis and Meligkot-
sidou (2007) considered the latter case assuming that the joint distribution for the
random effects is a finite distribution, i.e., the case in which only a finite number of
points have positive probabilities. Such an assumption gives rise to a finite mixture
of multivariate Poisson distributions. In Bermudez and Karlis (2012), a finite mixture
of bivariate Poisson regression models was proposed to allow for overdispersion. The
novelty of this approach lies in the fact that it is assumed that the data consist of
subpopulations with different regression structures. A potential use of such a model
is for examining the clustering of observations. The model can also be used to model
negative correlation and embraces zero-inflated bivariate Poisson regression models.

In parallel, there are other models that are designed to allow for negative cor-
relations. A bivariate Poisson distribution that allows for negative, zero or positive
correlations was introduced by Lakshminarayana et al. (1999) with a distribution
defined as the product of Poisson marginals with a multiplicative factor parameter.
Extension to other marginal are also possible (Famoye 2010; Zamani et al. 2016).
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1084 L. Bermudez and D. Karlis

Berkhout and Plug (2004) derived an alternative count data model using conditional
probabilities. More recently, Genest et al. (2018) proposed an alternative model extend-
ing the trivariate reduction to achieve negative correlation.

A different approach involves modeling dependence through copula functions to
allow for greater flexibility for the dependence structure. As an example, Cameron
et al. (2004) defined bivariate count distributions from copula functions. Shi and
Valdez (2014) proposed different multivariate negative binomial regression models
using copulas to model insurance claim counts.

Finally, it is worth mentioning that count data often display more zero outcomes
than would be expected with the Poisson regression model. Indeed, the zero-inflation
phenomenon is a very specific type of overdispersion, and zero-inflated Poisson regres-
sion models have been used to handle zero-inflated count data (Li et al. 1999; Wang
et al. 2003).

The present paper proposes copula-based bivariate finite mixture regression models,
extending the knowledge gained from the papers above, particularly from Bermuidez
and Karlis (2012) and Shi and Valdez (2014). First, using a finite mixture, the proposed
model allows for overdispersion (embracing zero-inflation) and, simultaneously, for
an elegant interpretation based on the typical clustering application of finite mixture
models. Second, by using copula functions, it allows for a more flexible dependence
structure, including negative correlations.

Finite mixtures with copulas were introduced in Kosmidis and Karlis (2016), and the
current paper follows their main ideas. Here, for each cluster, a bivariate distribution
defined through copulas is used, extending the previous reference by allowing for
regressors as well. In particular, a bivariate distribution is used for each cluster, with
marginals defined as having any discrete distribution where their means are related to
covariates while the two marginals are joined via some copula function.

This new approach, using copulas, offers a series of improvements such as allo-
wing a bivariate regression to be used for each cluster that can also have a negative
correlation, allowing for a wide range of marginal distributions that means not neces-
sarily restricting ourselves to simple bivariate Poisson distributions, and allowing for
different dependence structures via the selection of copulas. In parallel, using a finite
mixture, this approach allows for cluster analysis, and hence, for a better interpretation
of count data analysis.

We describe our approach in Sect. 2 and provide an estimation with an EM algorithm
in Sect. 3. In order to show the aforementioned improvements, a real data application
is given in Sect. 4. Finally, Sect. 5 presents our concluding remarks.

2 The proposed model

We base our model on copulas. Copulas are quite common for continuous data but not
widely used for discrete data (see, e.g., Nikoloulopoulos 2013, for a discussion of the
challenges in applying copulas to multivariate counts). In the present paper, we follow
the approach in Kosmidis and Karlis (2016) where the multivariate distribution in the
finite mixture is constructed via copulas. As a novelty, we assume a finite mixture of
such distributions but also allowing for covariates in order to consider heterogeneity.
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Our approach generalizes the work in Bermuidez and Karlis (2012) where mixtures of
bivariate Poisson regressions were assumed by considering a less flexible dependence
structure. In order to expand the applicability of this model, our new approach can allow
for different marginal distributions for each type of claim and different dependence
structures via the selection of copulas.

2.1 Copulas

A copula is a function C(-) that can “couple” the marginals to model the dependence
structure. A p-dimensional copula C(u1, ..., u) is a distribution function with uni-
form marginals. The importance of copulas in statistical modeling stems from Sklar’s
theorem (see Nelsen 1997, §2.3), which shows that every multivariate distribution can
be represented via the choice of an appropriate copula and, more importantly, that a
copula provides a general mechanism for constructing new multivariate models in a
straightforward manner. Note that for continuous distributions the copula is unique,
but for the discrete case the copula is not unique, which is generally not a problem in
applications (see the discussion in Genest and Neslehova (2007)).

For instance, consider the probability mass function P (x; ux), where pj denotes
the parameter(s) of each distribution, for k = 1, ..., p. The cumulative distribution
function (cdf) is given by

X
F(x;uk)=ZP(m;Mk), k=1,...,p.

m=0

We can then couple the marginals to add a dependence structure. For example, we
can have a bivariate distribution with marginals F (x1; ;1) and F(x2; u2), given by

F(x1, x2; 1, w2, a) = C(F(x1; w1), F(x2; n2); @), (D

where o now denotes the copula parameter(s) that explain(s) the association between
the two random variables. This is a well-defined distribution function with a depen-
dence structure depending on the chosen copula. However, to describe the joint
probability mass function, we need to calculate finite differences from the cdf shown
above. For the general case, when working with copulas for discrete data, the pro-
bability mass function is given in expression (1.2) in Panagiotelis et al. (2012), and
results from finite differences in the distribution function. In its general form, it is
written as

P(X)=ngn(m)C(Fl(m),--~,Fp(mp)), @)

with m = (my,...,mp) vertices, where each m;, is equal to either x; or x; — 1
t=1,...,p),and

1, if my = x; — 1 for an even number of #’s
—1, if m;y = x;, — 1 for an odd number of ¢’s

sgn(m) = {
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1086 L. Bermudez and D. Karlis

For example, for the bivariate case we have

P(X1 = x1, X3 = x2; 1, p2, @) = F(xp, x5 i, pa, @)
—F(xy — 1, x2; o, 2, @)
—F(xi,x2 — 1 i, po, @)
+F(r = 1,00 — 1 pr, w2, @) 3
where 111, wo refer to marginal parameters and « to the copula parameter(s). In practice,
since copulas are distribution functions, this is a bivariate integral calculated in some

rectangular bivariate space. Depending on the choice of copula, this can be simplified
to avoid the need for integration.

2.2 The finite mixture model

Consider the general case with p variables. We want to model the vector X =

(X1,..., X p)T. The probability mass function of a finite mixture model is defined as
G

P(x;0.m) =) m;Pi(x:0)), &
j=1

where = (0],...,05)T € © x ... x O, and 7r; € (0, 1) with Zlenj = 1.

Appropriate choices of P;(x; ;) can result in flexible and low complexity models.
The book of McNicholas (2016) provide a detailed treatment of the framework of
mixture modeling.

We emphasize that @ ; is a vector containing all the parameters associated with the
Jj-th component. Hence, it contains both the parameters from the marginals and the
association parameters of the copula.

Our novel approach assumes that Pj(x; 6 ;) is a bivariate distribution defined
through a copula. The probability mass function is calculated using (3) with marginal
distributions that are some discrete distribution with a mean A;j; for the i-th obser-
vation, j-th component and k-th variable, not necessarily from the same family. We
assume thati = 1, ..., n (i.e. we have n observations), j = 1,..., G (i.e., G com-
ponents) and k = 1, 2 for the two variables at hand. In addition, we add covariates in
the mean of the k-th marginal distribution and hence

log Ajjk = ,Bkawik,

where B is a vector of regression coefficients. Also note that the covariates in w;x
refer to the k-th variable and they maybe different for different A’s (variables); for
simplicity here we assume that they are the same and drop the second subscript. Note
that the marginal distributions may depend on some other parameter; for example, in
the case of a negative binomial marginal, we can have an overdispersion parameter
s jx for the j-th component of the k-th variable.
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Note that one may also consider covariates on the mixing proportion vector § =
(B1, ..., Bg-1) based on some multinomial regression models. We do not pursue this
on the present paper.

Hence, now we can further define the vector of component specific parameters
as 0; = (Bj1, Bj2,aj, ¢j1, Pj2) where B, k = 1,2, are the regression coefficient
vectors for the j-th component, «; is the copula parameter for the j-th component,
and ¢;’s relate to other parameters associated with the j-th component and each and
depend on the choice of the marginal distributions. They may differ if the marginals
assumed are not the same.

Finally, we need to define the copula function to couple the marginal distributions.
In the present paper, we use three different copulas but we emphasize that the literature
contains several other choices that reflect different types of association between the
marginals. First, we use a Frank copula with a cdf given by

1
Co(u,v) = — (1 +

(exp(—uar) — 1)(exp(—var) — 1)> | )

(exp(—a) — 1)

where 0 < u,v < 1, @ € (—00, 00) — {0}. In fact, « is the copula parameter, and
being negative implies negative correlation. Second, we also use a Gaussian copula
defined as

Caltt,v) = & (97 ), 07 ),

where ® is the N(0,1) cdf, ®~! is the functional inverse of ® and ®,, is the bivariate
standard normal cdf with correlation «. Finally, we use a Gumbel copula defined as

Calut, v) = [(ﬁ“ + ﬁ“)”“] : 6)

with # = —log(u) and u = — log(v).

So, for example, for the bivariate Poisson based on the Frank copula we need to
evaluate (3) using (5) and the cdf of Poisson distributions for F.

We emphasize that the choice of marginal distributions is a separate task from
the dependence modeling and hence one may choose different marginals that offer
considerable flexibility. Also the copulas need not be the same for each component
of the mixture. For a thorough discussion about such a model, see the discussion in
Kosmidis and Karlis (2016).

3 ML estimation via an EM algorithm

In this section, we describe ML estimation of the model. Being a finite mixture of
regressions type model, estimation is based on an EM algorithm. The additional com-
plexity here is the use of a copula function. As in Kosmidis and Karlis (2016) we can
still apply the EM algorithm with limited additional complexity. The algorithm is as
follows.
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1088 L. Bermudez and D. Karlis

As usual we assume as unobserved data the vectors Z; = (Z;1, ..., Zig) With
values Z;; = 1if the i-th observation belongs to the j-th component and 0 otherwise.
The EM proceeds as usual, by estimating the unobserved component memberships at
the E-step and maximizing the complete likelihood at the M-step. So the E-step is the
typical step that estimate the component memberships. It turns out (see Kosmidis and
Karlis 2016) that the M-step consists of G weighted likelihood steps. Formally, the
algorithm is as follows.

Suppose that a sample of n p-vectors x1, ..., X, is available, which are assumed to
be realizations of independent random variables X1, ..., X, each distributed with a
probability mass function as defined by (4) and (3). The maximization of the likelihood
function based on that sample can be performed using the expectation—maximization
algorithm. At the £-th iteration of the algorithm (¢ =2,...),

— E-step: Calculate

O p (el
([-‘rl) nj PJ(leoj )

= =L...,m;j=1...,G
3
YT Y a0 6,9)
— M-step 1: Set
n (e+1)
e+n) _ i1 Wij 1 G
J - 1) ’
n
— M-step 2: Maximize
G
10:;x,,...,x :ZZ ‘“”1og [Pi(xi:0))) .

with respect to 8 to get an updated value 8 1) for the copula and marginal parame-
ters. Note that this step implies that we have to maximize G weighted likelihoods,
one for each component, using w’s as weights. Hence the complexity and the
difficulty of this step is equivalent to fitting a bivariate copula-based regression
model for the chosen marginal distributions. Also since we maximize in parallel
G weighted likelihoods, efficient evaluations by parallel computing are feasible.

In the above P;(-) can be any bivariate discrete distribution suitable to model
bivariate count data. In our case, we use bivariate Poisson and negative binomial
distributions defined through copulas. Note that to allow for covariates we fit negative
binomial distributions with mean A and variance A + A2/s, which implies that s is
the overdispersion parameter. For s — oo, we get the Poisson model as special case,
so in some sense the Poisson model is included. An interesting use of copulas is
that the marginals may be of different type. For example, one may assume a Poisson
distributions for the first marginal and a negative binomial for the second one.

The algorithm iterates between the E-step and the M-step until some convergence
(or lack of progress) criterion is satisfied. For the example in the current paper the
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terminating criterion that is used is that the relative increase of the log-likelihood in
two successive iterations is less than a small positive real € = 1078,

Initial values can be set as described in Kosmidis and Karlis (2016) but also in more
heuristic ways, such as by fitting models sequentially. See also Papastamoulis et al.
(2016) for a relevant model.

4 Application
4.1 The data

We used the same automobile insurance claims dataset as used in Bermidez and Karlis
(2012). The data refer to a sample from an automobile portfolio of a major insurance
company operating in Spain in which only cars categorized as being for private use
were considered. For our purpose here, we selected policyholders with full coverage,
i.e., policies including third-party liability (claimed and counted as N type), a set of
basic guarantees such as emergency roadside assistance or legal and medical assistance
(claimed and counted as N type) and, finally, comprehensive coverage (damage to
one’s vehicle caused by any unknown party, for example, damage resulting from theft,
flood or fire) and collision coverage (damage resulting from a collision with another
vehicle or object when the policyholder is at fault), also claimed and counted as N>
type. The cross-tabulation for the number of claims for third-party liability (N1) and
number of claims for the rest of the guarantees (N>) is shown in Table 1.

The data contain information from 28,590 policyholders. For each policy, the initial
information and the total number of claims (for the two types of claim) from policy-
holders at fault were reported on an annual basis. Nine exogenous variables were
considered for ratemaking purposes. The exogenous variables are described in Table
2. For the vectors (N1, Nj2), we assume the finite mixture model defined through
copulas that include covariates.

Table 1 Cross-tabulation of data

Ny Ny

0 1 2 3 4 5 6
0 24408 1916 296 69 12 6 0
1 1068 317 61 21 6 2 2
2 203 71 18 6 2 1 1
3 49 14 8 3 3 1 0
4 11 6 2 0 1 0 0
5 2 0 0 0 0 0 1
6 1 0 0 1 0 0 0
8 0 0 1 0 0 0 0

N7 : number of claims for third-party liability. N> : number of claims
for the rest of the guarantees
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1090 L. Bermudez and D. Karlis

Table 2 Explanatory variables used in the models

Variable Definition

GEN Equals 1 for women and 0 for men

URB Equals 1 when driving in urban area, O otherwise

ZON1 Equals 1 when zone is medium risk (Madrid and Catalonia)
ZON2 Equals 1 when zone is high risk (Northern Spain)

LIC1 Equals 1 if the driving license is between 4 and 14 years old
LIC2 Equals 1 if the driving license is 15 or more years old

LOY Equals 1 if the client has been with the company for more than 5 years
AGE Equals 1 if the insured is 30 years old or younger

POW Equals 1 if horsepower is greater than or equal to 5500cc
4.2 Results

We fitted several different models ranging from simple Poisson regression with-
out dependence to different copula-based finite mixture regression models. Table 3
presents a summary of the models of increasing complexity together with their AIC
and BIC values. We started from two independent Poisson regressions (Double Pois-
son) and two independent negative binomial regressions (Double Neg. Bin.), and then
we added some covariance between the two types of claim (bivariate Poisson and
bivariate negative binomial). The improvement in the loglikelihood was large when
we added zero inflation for the (0, 0) cell (zero-inflated bivariate Poisson). To account
for overdispersion, caused by unobserved heterogeneity as discussed in Bermudez and
Karlis (2012) and here, later on, when discussing clustering effects, the next model was
the 2-finite mixture bivariate Poisson model which also improved our fit. Finally, fol-
lowing our copula-based approach and a Frank copula, we obtained the copula-based
finite mixture of a bivariate Poisson and a negative binomial. The improvement from
the Poisson marginals to the negative binomial marginals was limited but indicated
that the additional effort and complexity of a negative binomial may be needed. Two
additional copula-based finite mixtures of negative binomials, coupled with Gumbel
and Gaussian copulas, were fitted without obtaining improvement with respect to the
Frank copula model.

In sum, copula-based models provide the best AIC/BIC, indicating that they can
capture the features of the data more accurately. Finite mixture models with more than
two components (j > 2) were also fitted, but no improvement in terms of AIC or BIC
was achieved, demonstrating that for the data at hand two components are sufficient
and that the portfolio is comprised of two groups of policyholders. Note also that for
all models all the available covariates were used, and no variable selection was carried
out, i.e., the presented model is the one with all available information. We would like to
point out that we have used all variable in all components and marginal distributions.
Hence the significance need not to be judged from the standard errors along, as we
shall see in Table 4.
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Table 3 Various models fitted to the data

Model Log-lik Parameters AIC BIC

Double Poisson —20328.6 20 40697.2 40862.4
Double Neg. Bin. —19199.1 22 384422 38623,9
Bivariate Poisson (BP) —19983.0 21 40008.0 40181.5
Bivariate Neg. Bin. —18985.6 21 38013.2 38186.6
Zero-inflated BP —19104.4 22 38252.8 38434.5
2-Finite Mixture BP —18934.5 43 37955.0 38310.2
Copula Frank 2-FM BP —18877.4 43 37840.8 38196.0
Copula Frank 2-FM NBIN —18853.9 47 37801.8 38190.1
Copula Gumbel 2-FM NBIN —18859.3 47 37812.6 38200.9
Copula Gaussian 2-FM NBIN —18855.2 47 37804.4 38192.7

From Table 3, we can see that the best fit was obtained with the copula-based 2-
finite mixture model with negative binomial marginals coupled with a Frank copula.
For negative binomial components, we assumed a parametrization that leads to a
dispersion parameter s. However the improvement over the same model with Poisson
marginals was rather small. Table 4 shows the estimated regression coefficients for the
negative binomial model. If we look at the parameter s, we note that for the second
component and the first marginal, the estimated value is too large, implying that the
negative binomial tends to a Poisson distribution. Note that the construction of our
model through copulas allows the use of different marginal distributions.

The copula-based models also allow a more flexible structure (i.e., negative cor-
relation for the Poisson distribution). For the present application, we used different
copulas. The Frank copula allows for both positive and negative dependence and is
computationally easier since it does not involve integrals. We also ran Gaussian copulas
which also allow both positive and negative dependence at the cost of computational
burden as they evaluate the bivariate normal integral many times, as well as a Gumbel
copula to allow and check for tail dependence. The Frank copula provided the best
results with the lowest computational cost.

Table 4 shows the results obtained by fitting the 2-finite mixture of bivariate ne-
gative binomial marginals coupled with the Frank copula. Coefficient regressors and
their standard errors are provided for each component and type of claim. The standard
errors reported were obtained from the Hessian matrix. The dispersion parameters (s)
of the negative binomial marginals, mixing proportion (;r) and copula parameter (c¢) of
each component are also shown. The last column refers to the p-value for a likelihood
ratio test for testing whether the entire variable can be removed from the model. Such
a test checks whether the variables has any merit for the model or not.

In parallel, Fig. 1 shows the estimated means for this model for all the clients
for the two components. Clients were assigned to groups based on their maximum a
posteriori probability, i.e., using the w;;’s and assigning to the group with larger pro-
bability for each client i. One can see that the two components are clearly separated.
The group separation is characterized by a low mean with low variance (hereinafter
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Fig. 1 Scatterplot of the fitted components

policyholders considered as “good" drivers) and a high mean with high variance (poli-
cyholders considered as “bad" drivers).

Focusing on the mixing proportion, one can see that most policyholders belong to the
second component (that is, most of them are “good" drivers). Without going back over
aspects related to dispersion parameters that have already been discussed, we would
like to point out that the negative binomial model allows for larger variance within
each component. This is appropriate for the first component (“bad drivers") which
has large variance for the two types of claim. However, for the second component
(“‘good drivers"), especially for the N; claims, the overdispersion parameter of the
negative binomial was too large, implying a Poisson marginal. Finally, from the copula
parameter, we can see that the first component (“bad drivers") shows a lower correlation
between type of claims than the second component (“good drivers").

Itis worth giving careful consideration to this separation between “good" and “bad"
drivers. In the context of car insurance, the Poisson regression model is usually rejected
because of the presence of overdispersion and an excess of zeros. According to liter-
ature, these features of the data may be caused by differences in driving habits and
behavior among policyholders that cannot be observed or measured a priori by the
insurer. This phenomena is known as the problem of unobserved heterogeneity. For
example, at the moment of signing a policy, the insurer ignores the driving ability, driv-
ing aggressiveness or the degree of obeying traffic regulations of a new client. Through
the use of finite mixtures of regression models, we intend to address the problem of
unobserved heterogeneity assuming that group separation can be explained by these
hidden driving characteristics. In this case, we may consider those policyholders with
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1094 L. Bermudez and D. Karlis

a safer driving behavior to belong to the second component and, hence, may be consid-
ered as a “good” drivers, while policyholders with a more dangerous driving behavior
can be considered as a “bad” drivers and belong to the first component.

A common assumption in all the models used in the literature to address the problem
of unobserved heterogeneity (compound frequency models and their zero-inflated or
hurdle versions) is that all policyholders behave in the same way with regard to the
observed (or a priori) variables, and thus they all have the same regression structure.
The models proposed in this paper account for unobserved heterogeneity by choosing
afinite number of subpopulations and allowing each component in the discrete mixture
to have its own score, i.e., each group of policyholders can have a different regression
structure with regard to the observed variables. To sum up, by applying finite mixtures
of regression models, we aim to examine whether unobserved risk variables, such as
a driver’s reflexes, aggressiveness, or compliance with Highway Code, establish the
existence of subpopulations of policyholders with different a priori behavior.

As discussed above, here we may assume the existence of two groups of policy-
holders, “good" and “bad" drivers, defined by their respective driving behavior. From
Table 4, one can also see that each group of policyholders exhibits a different regres-
sion structure. This is particularly noticeable for the variable ZON2 with regard to
the number of claims for the rest of guarantees (N3 ). For policyholders considered to
be “bad” drivers, driving in a higher risk zone (basically due to climate conditions)
increases the probability of making a claim; whereas it decreases for “good” drivers.
This is reasonable if we focus on their driving habits: “bad” drivers are more likely to
make a claim in a zone with bad climate conditions because they drive aggressively
and ignoring traffic conditions; while “good” drivers are even more careful with such
a climate conditions and so they are less likely to have a claim. It is worth emphasizing
that using simpler models, i.e., with one component, this covariate may not be signif-
icant as they only estimate one coefficient and the effect is canceled out, estimating
an average effect that is close to zero.

Figure 2 shows the average posterior probabilities conditional on observed values
of the two claims. Namely, each cell refers to a pair of the type (N1, N2), N1, Np =
0, 1, 2, 3, 4 and shows the posterior probability that such an observation belongs to the
group 1 or 2 averaged over the different observations with such values. One can see
that, as expected, the second component (“good drivers") is more likely for those cells
with less claims for both types, while the 1st component (“bad drivers") corresponds
to those cells with a growing number of claims. Indeed, we may observe that “good
drivers" are more likely to have a claim for the rest of guarantees than having a
third liability claim. As a classification rule observation, policyholders with very few
counts (specially for third liability claims) are more probable to come from second
component, while for large counts we are almost certain that they belong to the first
component.

4.3 Prediction

In order to see the predictive ability of the model, but also to discuss about the added
value offered by the proposed models, we have run a prediction experiment with
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Fig. 2 Posterior probabilities conditional on observed values of the two claims. Rows refer to Ny and
columns to Np. Each cell refers to a pair of the type (N1, N3), N1, No = 0, 1,2,3,4 and shows the
posterior probability that such an observation belongs to the component (group) 1 or 2, “bad" and “good"
drivers respectively

the data. Namely, we kept randomly 20% of the data as a test set, then we fitted
models to the rest (80%) and we predicted the ones in the test set based on the models
derived. This firstly can show the predictive ability of the model out-of-sample but
also reveals the different features of the data. In Table 5, we present results for some
of the models used in Table 3. Particularly, we have fitted a double Poisson model
and a double negative binomial model as baseline models; the second one captures
the overdispersion we have seen in the data. Then, we fitted a 2-finite mixture of
bivariate Poisson distributions, this can recover part of the correlation but also the
overdispersion. Finally, from those models based on copulas we selected one with a
Frank copula and negative binomial marginals.

Table 5 shows the observed frequencies and the expected frequencies for the mo-
dels. It is obvious that the double Poisson fails a lot, the double negative binomial
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Table5 Observed and predicted frequencies for out-of-sample predictions for the 20% of the observations
(n = 5, 718) for a series of models

Observed data

Ny N>: 0 1 2 3 4

0 4918 378 41 19 2

1 201 65 8 4 3

2 45 11 2 1 0

3 11 2 2 0 0

4 2 1 0 0 0

Double Poisson Double Neg. Bin.
Ny N: 0 1 2 3 4 0 1 2 3 4
0 4629 578 38 2 0 4803 430 80 18 4
1 397 50 3 0 0 269 24 5 1 0
2 17 0 0 0 54 5 1 0 0
3 1 0 0 0 0 14 1 0 0 0
4 0 0 0 0 0 4 0 0 0 0
2FM of Biv. Poisson Frank - 2FM Neg. Bin.

Ny Ny: 0 1 2 3 4 0 1 2 3 4

0 4881 388 46 9 2 4882 380 60 12 3

1 213 72 23 6 1 216 62 14 4 1

2 31 21 7 2 0 39 14 4 2 1

3 6 4 2 0 0 10 4 1 0

4 1 1 0 0 3 0 0

corrects this in a certain extend but it cannot capture all the features of the data. Note
that the marginals are closer to the observed ones but the model fails a lot for the
bivariate distribution. The 2-finite mixture of bivariate enhances a lot and accounts
for the overdispersion but it is still far from the observed ones. Finally, the copula
model with negative binomial marginals is closer to the observations. Overall the
copula-based model predicts quite well the observed data. A further important aspect
is that while the observed correlation for the test set is 0.15, the double Poisson and
the double negative binomial, as expected, predict a value almost zero, while the 2-
finite mixture of bivariate Poisson overestimates the correlation giving a number close
to 0.22. The copula model is closer from all other models with a correlation equal
to 0.16. Summarizing, the copula-based model predicts quite well the cases because
it can provide characteristics of the observed data closer to the real ones due to the
inherent flexibility that it offers.
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5 Concluding remarks

We have presented a new approach for modeling bivariate claim data based on a finite
mixture of bivariate discrete distributions defined through a copula, also allowing for
covariates. In our opinion, this approach offers several advantages. On the one hand,
allowing for a more flexible dependence structure we can obtain a better fit and a better
predictive capacity. On the other hand, through the use of finite mixture, the model
further allows for a clustering analysis that tries to address the problem of unobserved
heterogeneity.

The extension of this approach to higher dimensions is more demanding. The prob-
lem is that not all the copulas can be extended in a rigorous way to higher dimensions,
at least not in such a way as to allow for a fully flexible dependence structure. For
example, in the case of the Frank copula, while it is possible to expand it to multidi-
mensional cases, it may involve only one common dependence parameter, which is
more restrictive. The Gaussian copula is more suitable for such generalization at the
additional computational cost required to evaluate many multidimensional integrals.
A possible solution would be to create an approximate pairwise model and to estimate
the parameters with some other method like composite likelihood. Such an approach
is being considered in ongoing research.

In terms of the actuarial implications, the above model may allow premiums to
be extracted in the same way as in Bermtidez and Karlis (2012) which would help
to account correctly for the dependencies between the claims. Moreover, there might
be a substantive interest in classifying new clients into “good" and “bad" risks and,
hence, estimating premiums according to their specific regression structure derived
from the finite mixture. However, current approaches are limited by the fact that it
is rather impossible to classify new clients. This may be the goal for future research.
Finally, note that such an approach, while applied to count claims in this paper, can
also be extended to the severities of different types of claim, by considering bivariate
models with copulas and continuous marginals.

A final remark relates to identifiability issues about the model. Issues related to
identifiability of finite mixtures defined with copulas have been discussed in Kos-
midis and Karlis (2016). In general, it is very hard to derive theoretical results due
to the complicated nature of the copulas. A natural assumption is to enforce some
lexicographical ordering in the components so as to ensure that we avoid the case
when interchanging the order of the components we end up with the same mixture.
An additional identifiability issue in our case relates to the identifiability of mixtures
of GLM regression models. Conditions for identifiability for such finite mixtures of
regression and GLM models are given in Hennig (2000) and Griin and Leisch (2008).
Since theoretical results are hard to establish in general, from a practical perspective,
we have worked with several initial values to examine whether we became trapped
with different solutions. A lexicographical ordering of the components has been used.
We have not found solutions that differ substantially on the regression coefficients
giving similar likelihood, adding to our belief that our model is identifiable.
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