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Abstract: A new original procedure based on k-means clustering is designed to find the most
appropriate clinical variables able to efficiently separate into groups similar patients diagnosed with
diabetes mellitus type 2 (DMT2) and underlying diseases (arterial hypertonia (AH), ischemic heart
disease (CHD), diabetic polyneuropathy (DPNP), and diabetic microangiopathy (DMA)). Clustering
is a machine learning tool for discovering structures in datasets. Clustering has been proven to be
efficient for pattern recognition based on clinical records. The considered combinatorial k-means
procedure explores all possible k-means clustering with a determined number of descriptors and
groups. The predetermined conditions for the partitioning were as follows: every single group of
patients included patients with DMT2 and one of the underlying diseases; each subgroup formed in
such a way was subject to partitioning into three patterns (good health status, medium health status,
and degenerated health status); optimal descriptors for each disease and groups. The selection of
the best clustering is obtained through the parameter called global variance, defined as the sum of
all variance values of all clinical variables of all the clusters. The best clinical parameters are found
by minimizing this global variance. This methodology has to identify a set of variables that are
assumed to separate each underlying disease efficiently in three different subgroups of patients. The
hierarchical clustering obtained for these four underlying diseases could be used to build groups
of patients with correlated clinical data. The proposed methodology gives surmised results from
complex data based on a relationship with the health status of the group and draws a picture of the
prediction rate of the ongoing health status.

Keywords: diabetes mellitus type 2; underlying diseases; multivariate statistics; k-means; classifica-
tion; descriptors

1. Introduction

K-means (partitioning clustering) is a method of clustering that is used to classify
objects into k groups (clusters). This method needs to specify the initial number of the
supervised k groups.

Each group is normally centered around their mean, and the iterative algorithm is
used to minimize the distance between each observation and their corresponding mean.
The main objective of the exploratory data analyses for the diabetes data was to reveal the
pattern from the data set and build a model based on k-means and hierarchical clustering
analyses. The objective was to discover the effects of a group diagnosed with diabetes and
assembled by age and evaluating the survival ratio in an efficient manner.

Machine learning (ML) techniques have been used to reveal the predictive patterns
for diabetes disease in the last years. The growing density of this problematic topic has
provoked researchers to discover robust models based on deep learning (DL) algorithms.
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However, the application of ML algorithms was applied in solving and mitigating the
effect on the society of this problem. The article by Marie-Sainte [1] graphed all the ML and
DL techniques based on efforts for diabetes predictions published in the last years. The
endorsement is to use these proper classification and prediction models in diabetes disease
and improve the robustness of them by developing more complex applicable models.

Similar research has been developed for diabetes estimation created on various algo-
rithms and methods. The work of Anuja et al. [2] offered a diabetes disease classification
using a support vector machine (SVM). The methodology was based on k-means clustering
in order to find the most appropriate descriptors that are able to separate a predefined
number of cases. Rajesh et al. [3] proposed a scheme for diabetes classification based on
using C4.5 algorithms. The authors achieved a classification rate of 91% by evaluating the
training data through data feature relevance analysis. Aiswarya et al. [4] used decision
tree and naive Bayes classifiers for classifying the diabetes diagnosis. Harleen et al. [5]
suggested a structure analysis based on a technique for data mining for diabetes disease
prediction. The proposed structure includes three main steps which are: pre-processing,
feature extraction, and parameter evaluation. In the pre-processing step, the case of lack
of data or data with a detected irregularity in the sets were excluded. The patterns that
are hidden and the interactions within the data set are tracked in the step for the feature
extraction in order to increase the level of the decision making from the obtained results.

Furthermore, the proposed system was evaluated using J48 and naive Bayes, and the
achieved rates were 73.8% and 76.3%, respectively. Haq et al. [6] have proposed a study
in the frame of machine learning methods for the detection of diabetes. The proposed
method has been tested on the diabetes data set, which is a clinical data set designed from
the patient’s clinical history. The model validation methods, known as hold out and K-fold,
leave one subject out, and performance evaluation metrics including accuracy, specificity,
sensitivity, F1-score, receiver operating characteristic curve, and execution time have been
used for the validity of the proposed scheme. The decision tree classifier has been used
for the classification of the groups of healthy and diabetic subjects. A suitable correlation
with experimentally obtained results for the feature selection and a positive effect on the
classification performance of the predictive model was observed. The capability of the
performed method is due to the fact of the multilevel approach of the selected features set.
Krishnaveni et al. [7] proposed six various techniques for the diabetic disease prediction
model. The used techniques are discriminant analysis, KNN algorithm, naive Bayes, SVM
with linear kernel function, and SVM with RBF kernel function. The results of the study
based on the above technique were 76.3% using discriminant analysis, 71.1% using the
KNN algorithm, 76.1% using naive Bayes, 74.1% using SVM with linear kernel function,
74.1% using SVM with RBF kernel function. However, several authors [8–10] have used
various methods in order to obtain the best prediction rate.

In a recent study, Ruy et al. [11] applied a new screening model for estimating undi-
agnosed diabetes mellitus (UDM) as vital for early medical care. The proposed screening
model for estimating UDM among people with a family history of diabetes enabled its vali-
dation. The screening model for UDM used data for separated male, female, and combined
groups by applying backward stepwise logistic regression analysis. The screening models
were established as well as confirmed. In another recent study, Ryu et al. [12] recruited
participants with a screening model for undiagnosed diabetes mellitus. Toward undiag-
nosed DM, the screening model by machine learning methods was applied. The data for
11,456 participants were designated, and the model was evaluated with 4444 participants.
The machine learning model displayed a correlation with previous screening models. As
explored by the authors, a deep learning model for patients with undiagnosed diabetes
could aid in decreasing the effect on the national economic and social effects of the disease.

In this study, we were able to identify an application of a new method that was not
only focused on the identification of best descriptors but also the procedure was able to
deal effectively with missing data. Extensive research could be found studying the issue of
missing data. It has to be noted that the unsuitable treatment of missing data could lead
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to biased results, as in the case of multiple imputations. Alternatively, we designed an
original methodology that does not attempt to fill in the missing data. The calculations
with simulated data were performed to address the ability of the method to identify the
best descriptors. Additionally, hierarchical cluster analysis was applied to confirm the
separation of patients into three clusters. The main purpose of the present study was to
check the usefulness of the proposed combinatorial k-means method to accurately classify
type-2 diabetic patients diagnosed with underlying diseases with the most appropriate
clinical descriptors.

2. Materials and Methods
2.1. Clinical DMT2 Data with Four Underlying Diseases

Clinical information of 52 objects (diabetes mellitus type 2 (DMT2) patients) having
at least one of four underlying diseases (arterial hypertonia (AH), ischemic heart disease
(CHD), diabetic polyneuropathy (DPNP), and diabetic microangiopathy (DMA)) was used
in this study. From the total of 52 patients, 51 had AH, 48 had CHD, 51 had DPNP, and
47 had DMA. The patients were characterized with some of the following clinical variables:
age, height, weight, waist, BMI (body mass index), sysRR, diaRR (systolic and diastolic
blood pressure), Hgb (hemoglobin), Er (erythrocytes), Leu (leucocytes), Tro (thrombocytes),
creatinine, ALAT, GGT (enzymes alanine aminotransferase, gamma glutamyl transferase),
chol (cholesterol), HDL (high-density lipoproteins), TG (triglycerides), HbA1c (hemoglobin
A1c), EAG (estimated average glucose), SUE (saturation rate), UA (uric acid), Na, K, Cl, Ca,
and P (concentrations of sodium, potassium, chloride, calcium, phosphorus).

Some of the clinical variables are available for all the patients, such as age, but in
general, there is some missing information about some values of variables for some of
the patients. On average, the patient’s description relies on the information of 23 out of
26 clinical variables having on average two missing values.

2.2. Combinatorial K-Means Clustering Analysis Tools

A python tool, named combinatorial k-means clustering analysis tool, was developed
to find the separation of cases by k-means clustering using only a small number of de-
scriptors (variables) selected from a large set of descriptors. The combinatorial k-means
clustering program was developed under the Python Notebook platform using the fol-
lowing python modules: NumPy, Pandas, Matplotlib, SciPy, and Itertools. The NumPy
module was used for efficient numerical calculation of data. The Pandas module was
used to read spreadsheet files, having the data of the patients for each underlying disease.
Graphical representation of data was performed using the Matplotlib module. The submod-
ule hierarchy of the submodule cluster of SciPy was used to perform k-means clustering.
The module Itertools was used to perform all possible combinations of descriptors. The
program took all the information from an Excel file chosen by the user. Then, the data were
normalized, dividing by the standard deviation of each property. The k-means clustering
could be performed by different methods of linkage, as average, centroid, or Ward’s. In
this study, the centroid method was selected for all calculations. As a default, the program
performed k-means clustering, making all the combinations of three descriptors taken from
all properties of the spreadsheet indicated as input data. Optionally, combinations with two
descriptors could also be selected. In this study, all possible clustering of three variables
into three groups was performed automatically. In order to rank all possible clustering, a
property defined as the global variance was computed for each of the k-mean clusterings:

varGlobal = ∑ ∑ vari,k (1)

where vari,k is the variance of the descriptor i in the cluster k. In this study, Equation (1)
is computed having nine terms corresponding to the three descriptors for each of the
three clusters.

In order to select a valid clustering, some restrictions were also applied. The random
generation of clustering could generate systems having clusters with a non-balanced
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number of elements. This would generate clusters with one or two elements giving a low
variance for their corresponding group. In order to avoid this phenomenon, it is defined
that a valid clustering is the case when at least three elements for any of the clusters are
involved. The program performed clustering using the combination of three descriptors.
For each combination, the appropriate number of cases with available data for the three
descriptors under study were selected. In that way, for each clustering, the maximum data
available was always used.

The workflow design diagram of the algorithm is depicted below (Figure 1), and the
code is available at https://github.com/smadurga/Combinatorial-K-means-clustering
(Accessed on 5 February 2021).
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2.3. Hierarchical Cluster Analysis (HCA)

The hierarchical clustering analysis (HCA) method is a non-supervised multivariate
statistical procedure looking for groups of similar patterns (clusters) within a data set.
This method of data exploration consents to the study of the structure of data by the
similarities pattern between the objects in the parameter space and between the parameters
in the object space. HCA methods vary in terms of the similarity measure applied and
the way of clustering. The most commonly applied similarity measure is the Euclidean
distance. The applied methods of clustering of objects and variables are well known and
widely applied as a valuable algorithm. The common use algorithms are as follows: single
linkage method, complete linkage method, average linkage method, and centroid linkage.
Ward’s linkage method was applied in achieving the goals in our study. The method
requires standardization (normalization) of the raw data (usually by z-standardization),
determination of the similarity measures (usually by Euclidean distances), selection of
appropriate linkage option and plotting the clusters on a tree-like diagram (dendrogram),
and determination of the number of statistically significant clusters by specific test (usually
Sneath’s criterion) [13,14]. For clustering, the software product STATISTICA 8.0 was used.

3. Results and Discussion
3.1. Combinatorial K-Means Clustering with Data Test Values

In order to test the ability of the program to find the most appropriate descriptors for
classification, test values having three descriptors that are able to define three clusters and
other sets of descriptors having random values were generated.

First, the program generates three clusters with different central values of named X,
Y and Z descriptors. After that, a collection of values corresponding to non-correlated
descriptors are also generated. For each run of the combinatorial k-means clustering
algorithm, the program should identify the X, Y and Z descriptors as those defining three
clusters. Different runs were performed with different separations of the central values of
the three clusters of X, Y and Z descriptors. It is expected that when the separation among
three groups is large, the X, Y and Z descriptors are well identified by the combinatorial
k-means clustering. However, when the dispersion of the values of the groups is of the
order of the separation of central values, these descriptors are probably not identified. To
perform this test, a matrix of 30 columns (descriptors) by 45 cases was built. 37 columns
were built with random numbers following a normal distribution centered at 1 with a σ

of 1. The other three columns (X, Y, Z) were used to define three groups. In particular,
15 cases were randomly generated with a normal distribution centered at point (p,0,0) with
a dispersion given by σ of 1 for X, Y and Z descriptors. Another 15 cases of X, Y, and Z
descriptors were randomly generated with a normal distribution centered at point (0,p,0)
using σ of 1, and the last 15 cases were centered at (0,0,p) using σ of 1. In this set of values,
the separation among the three groups in the space of X, Y and Z descriptors is performed
using a single value of p. It has to be noted that the separation among pairs of groups is
only because of the difference in one of the descriptors. The separation of the centroid
could be obtained in terms of the parameter p being

√
2 p.

The combinatorial k-means clustering study was carried out with different random
test set values generated with different values of p. For each calculation, three sets of
descriptors were selected as the most appropriate for classification using the criterion of
the minimum global variance. In each case, it is evaluated if the X, Y and Z descriptors are
correctly selected. To obtain a probability of identification of the appropriated descriptors,
500 calculations with different random values were performed. In Table 1, the probability to
obtain the X, Y and Z descriptors ranked first from all possible combinations of descriptors
(30 × 29 × 28 = 24,360) as a function of the separation of the groups is indicated. It could
be seen in Table 1 that when the separation of the groups is small compared to the value of
σ, the probability to correctly identify X, Y and Z descriptors is low. At low values of p, the
randomly generated clusters are so overlapped that they are difficult to be identified from
other randomly generated data. When the parameter p is three times the value of σ, the
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75% of cases are obtained with the X, Y and Z descriptors as the best ones for classification.
The success increases to 99% if the separation of the groups is 3.5 times the value of σ.
Thus, the separation of the groups with respect to the dispersion of the values in each of
the clusters could be an indicator if the selection of the descriptors is appropriate.

Table 1. Probability to identify properly the X, Y, and Z descriptors from all 24,360 combinations as a
function of the p parameter used for cluster separation.

p Probability to Rank X, Y, and Z in First Position

2.2 3%
2.3 5%
2.4 10%
2.5 15%
2.6 21%
2.7 39%
2.8 45%
2.9 60%
3.0 75%
3.1 81%
3.2 87%
3.3 95%
3.4 96%
3.5 99%

All normal distributions have been performed with a σ = 1. The total number of descriptors is 26. Probability is
calculated with 500 different repetitions of the combinatorial k-means clustering procedure.

3.2. Combinatorial K-Means Clustering with Underlying Diseases of DMT2 Patients

The selected group of 51 patients with arterial hypertonia underlying disease were
selected for combinatorial k-means analysis. The clinical variables that were ranked in
the first position with the minimum global variance criteria were BMI, HbA1c, and EAG
(Table 2). The non-standardized values with the corresponding standard deviations are
also shown in Table 2. It could be seen that cluster 1 has patients with low values of BMI,
HbA1c, and EAG. Cluster 2 has high values of BMI and intermediate values of HbA1c
and EAG, and cluster 3 has intermediate values of BMI and low values of HbA1c and
EAG (Table 2 and Figure 2). The three clusters are better separated attending to the BMI
factor. In order to quantify the descriptors that are able to better separate the clusters, a
new parameter is defined taking into account the separation of the centroids relative to the
dispersion of the data with:

p′i = max
(∣∣∣(xk1

i − xk2
i

)∣∣∣/σ12
i ,
∣∣∣(xk1

i − xk3
i

)∣∣∣/σ13
i ,
∣∣∣(xk2

i − xk3
i

)∣∣∣/σ23
i

)
(2)

where xi is the value of the property of descriptor i in the cluster k, and σi
AB is calculated

from the standard deviation in each cluster σi.

σAB
i =

√(
σA

i
)2

+
(
σB

i
)2 (3)

It could be demonstrated that the parameter allows to compare the results with the
test case study and allows to identify the descriptors that are more statistically different
from the others. It is worth noting that the p’ parameter will provide the parameter p with
the data of the test case.

In Table 2, the results for the BMI descriptor were depicted as applicable for clustering
parting. The lowest value of p’ for the HbA1c and EAG descriptors specifies that these
descriptors are less relevant for cluster separation.



Int. J. Environ. Res. Public Health 2021, 18, 1919 7 of 10

Table 2. Variables of the best k-means clustering for arterial hypertonia underlying disease.

Descriptor Cluster 1 Cluster 2 Cluster 3 p’

BMI 28 (1.2) 32 (1.6) 29 (1.3) 3.4
HbA1c 9.4 (0.8) 8.9 (0.7) 7.2 (0.6) 2.2
EAG 12.4 (1.3) 11.5 (1.1) 8.9 (0.9) 2.3
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Figure 2. Hierarchical dendrogram for clustering of 15 occasionally selected patients with diabetes
mellitus type 2 (DMT2) and arterial hypertonia (AH) as an underlying disease.

Therefore, to illustrate the ability of the optimally selected new methodology, k-means
partitioning descriptors for AH underlying disease hierarchical clustering was performed.
Indeed, three well-defined clusters were obtained. They matched to the predefined groups
of similarity (good health status (cluster 1), intermediate health status (cluster 2), and
worsened health status (cluster 3) mainly with respect to the most optimal descriptor BMI;
the other two descriptors reflect the glucose level, and they do not fit entirely into the
separation of the health status mentioned above, but their discriminating probability (p’)
is lower). It could be accepted that two major impacts determine the health status in this
case–metabolic syndrome (dominant) and glucose level (less significant).

The analysis of CHD cases with combinatorial k-means clustering finding the mini-
mum global variance is presented in Table 3 with BMI, creatinine, and cholesterol as the
most appropriate descriptors.

Table 3. Variables of the best k-means clustering for ischemic heart disease underlying disease.

Descriptor Cluster 1 Cluster 2 Cluster 3 p’

BMI 30 (1.4) 31 (1.3) 29 (1.2) 1.8
Creatinine 62 (7) 135 (9) 83 (16) 6.2
Cholesterol 6 (0.6) 4.2 (0.4) 4.1 (0.9) 2.5

A similar control chart using hierarchical clustering with the descriptors for patients
with DMT2 and ischemic heart disease (CHD) as an underlying problem is shown in
Figure 3.
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Figure 3. Hierarchical dendrogram for clustering of 15 occasionally selected patients with DMT2 and
CHD as underlying diseases.

As readily seen, the separation of 15 randomly selected patients with DMT2 and CHD
into three clusters is achieved and depicted in Figure 4 In this case, the optimal descriptor
is the creatinine parameter (kidney function impact) since BMI and cholesterol (metabolic
syndrome impact) are less discriminative parameters among all three chosen as optimal.
Cluster 1 resembles good health status, cluster 2 resembles severe health status, and cluster
3 resembles intermediate health status. The combinatorial k-means analysis for patients
with DPNP underlying disease contributes to the best parting of groups for BMI, HbA1c,
and EAG parameters.
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The separation into three clusters is well depicted by hierarchical clustering. The
linkage resembles that of the case with AH underlying disease. BMI is the optimal descrip-
tor (metabolic syndrome) since the glucose level parameters are of secondary importance.
However, the health status for all three clusters is very similar (see the descriptor values
in Table 4), and the subdivision into the three health status categories is quite conditional
(especially cluster 1 and cluster 2). Cluster 3 includes the randomly selected patients with
good health status. The combinatorial k-means analysis for DMT2 patients with DMA
underlying disease gives the best separation of groups for k-means clustering of BMI,
creatinine, and cholesterol descriptors (Table 5).

Table 4. Variables of the best k-means clustering for DPNP underlying disease.

Descriptor Cluster 1 Cluster 2 Cluster 3 p’

BMI 32 (1.2) 34 (1.6) 30 (1.1) 3.4
HbA1c 9.4 (0.8) 9.0 (0.7) 7.3 (0.6) 2.1
EAG 12.4 (1.3) 11.7 (1.1) 8.9 (0.9) 2.2

Table 5. Variables of the best k-means clustering for diabetic microangiopathy (DMA) underlying
disease.

Descriptor Cluster 1 Cluster 2 Cluster 3 p’

BMI 30 (1.4) 31 (1.3) 29 (1.2) 2.0
Creatinine 62 (7) 135 (9) 83 (15) 6.2
Cholesterol 6 (0.6) 4.2 (0.4) 4.1 (0.9) 2.5

The last case (patients with DMT2 and DMA as underlying diseases) follows entirely
the pattern of case 2 (patients with DMT2 and CHD as underlying diseases). It is worth
noting that the three clusters with 15 randomly selected objects are obtained with creatinine
as the optimal descriptor.

4. Conclusions

In this work, we investigated the ability of a new original k-means procedure to
identify the descriptors that conduct clustering with the optimal separation between
groups of object similarity. This procedure uses a combinatorial strategy with a selection
of the descriptors that minimize the global variance obtained from the variance of all the
descriptors in all the groups. The prediction separations are a proper method that could be
applied for classifying descriptors and for better separation of the objects into groups. It
was demonstrated that for this procedure, there is no precondition that all the variables
need to be known for all the objects. We have shown that this technique has been applied
to medical clinical data of patients with DMT2 with underlying diseases, where not all the
information of all the variables is available for all the patients.

In summary, hierarchical clustering is confirmed to be efficient and suitable for screen-
ing studies and in combination with the new methodology to separate the objects of
interest into a preliminary given number of clusters using the optimally determined de-
scriptors. This is the first study that investigated the applicability of these models based
on partitioning.
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