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The identification of key components 
relevant to sensory perception of quality 
from commercial chocolate samples was 
accomplished after chemometric processing 
of GC×GC-MS (Comprehensive Two-
dimensional Gas Chromatography with 
Mass Spectrometric Detection) profiles 
corresponding to HS-SPME (Headspace 
Solid Phase Microextraction) extracts of the 
samples. Descriptive sensory evaluation of 
samples was carried out using Optimized 
Descriptive Profile (ODP) procedures, 
where sensory attributes of 24 commercial 
chocolate samples were used to classify 

them in two classes (low and high chocolate flavor). 2D Fisher Ratio analysis was applied to four-way 
chromatographic data tensors (1st dimension retention time 1tR × 2nd dimension retention time 2tR × m/z × 
sample), to identify the crucial areas on the chromatograms that resulted on ODP class separation on 
Principal Component Analysis (PCA) scores plot. Comparing the relevant sections of the chromatograms 
to the analysis of  the corresponding mass spectra, it was possible to assess that most of the information 
regarding the sample main sensory attributes can be related to only 14 compounds (2,5-dimethylpyrazine, 
2,6-dimethyl-4-heptanol, 1-octen-3-ol, trimethylpyrazine, β-pinene, o-cimene, 2-ethyl-3,5-dimethylpyrazine, 
tetramethylpyrazine, benzaldehyde, 1,3,5-trimethylbenzene, 6-methyl-5-hepten-2-one, limonene, 
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benzeneethanol and 1,1-dimethylbutylbenzene) among the complex blend of volatiles found on these 
extremely complex samples.

Keywords: chocolate flavor; sensorial analysis; GC×GC-MS, Fisher ratio; principal component analysis

INTRODUCTION 
Chocolate is a complex matrix, exhibiting a volatile fraction with more than 500 different chemical 

components [1]. Several analytical tools have been used for identification of chocolate chemical 
constituents, mainly based on gas chromatography with mass spectrometry identification [2–4]. However, 
due to the high complexity of this matrix, in last years the use of comprehensive two-dimensional gas 
chromatography (GC×GC) [5] is becoming popular: compounds that could co-eluate in the first dimension 
chromatographic column could be separated in the second dimension column [6]. Described in 1991 [7], 
GC×GC technique is being constantly improved: e.g. with the introduction of new modulation devices [8,9] 
and data processing strategies (due to the complexity and large size of the chromatographic data sets) 
[10–12]. Consequently, the number of successful applications of GC×GC has increased in the literature, 
specially for complex samples such as petroleum [13,14], food [15–17], biological fluidics [18], among 
others.

Many components from the volatile fraction of chocolates are relatable to sensorial quality parameters 
assessable by procedures such as Quantitative Descriptive Analysis (QDA) [19,20]. QDA is the most 
complete and popular tool in food science, but requires long-term training of the panelists, being relatively 
slow and expensive [22]. In terms of time and cost, there are some more appropriate alternatives for QDA 
[20] such as Optimized Descriptive Profile (ODP) analysis [21]. ODP is based on semi-trained panelists, 
who evaluate the products using an unstructured anchored scale corresponding to the extremes (weak 
and strong) of the range of the sensorial property being assessed. Samples representing the extremes of 
the attribute scale (weak and strong standard) and samples being tested should be offered to panelists in 
the same tasting session; consequently, people with limited training will be able to consistently evaluate 
the samples. In this approach, on each tasting session just a single sensorial attribute should be evaluated, 
since the samples and the references are presented simultaneously [21,23,24].

The combination of volatile profile characterization by GC×GC and sensory analysis can be a powerful 
tool to study chocolate. If sensory analysis results could be objectively correlated to GC×GC data, it 
would be possible to pinpoint volatile chemical components responsible for specific quality features of 
the samples. The modelling of quantitative sensory data correlation to GC×GC chromatograms should be 
made using multivariate chemometric tools [10,25,26] such as Principal Component Analysis (PCA), Partial 
Least Squares regression (PLS) [27] as well as neural network modelling [28] have been successfully 
applied in these studies. Among them, PLS [29] is by far the most useful when chromatographic data 
has to be correlated to some macroscopic parameter of the samples; however, it has some limitations for 
large and complex data structures [30] such as GC×GC chromatograms. In these situations, preliminary 
selection of sections of the chromatograms potentially related to the sensory property being assessed 
before multivariate modelling can be crucial. Fisher Ratio analysis (FR) has been successfully applied 
as pre-processing strategy to filter non-relevant section from large GC×GC data sets and improve the 
quality of subsequent multivariate analysis [31–33]. Essentially, FR analysis locates regions of the 
chromatograms were extra-class variations (pertinent to the distinction of samples of different sample 
classes) are significantly larger than intra-class variations (that does not contain useful information 
regarding sample categorization). Only the relevant regions of the chromatographic data sets are feed to 
multivariate data analysis algorithms, improving the quality of the chemometric processing and demanding 
less computational power and resources [34].

For each signal point in the 1tR×2tR×m/z chromatographic space, Fisher Ratio is defined as a scalar 
value calculated as:
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	 where	 	 and	

In these equations, ni is the number of measurements in the ith class, xi is the mean of the ith class, 
x is the overall mean, k is the number of classes, xij is the ith measurement of the jth class and N is the 
total number of sample profiles. Sections of the chromatogram with values for FR significantly larger than 
1 are relevant to the distinction of sample classes; points where FR ~ 1 correspond to sections of the 
chromatograms where intra- and extra-class variations of the signal are similar and are not relevant to 
sample qualification. To select regions of the chromatographic space for multivariate analysis, data points 
with FR smaller than a user-defined threshold FRcut are excluded without loss of information.

In this work, the volatile fraction of commercial chocolate samples was isolated by headspace Solid 
Phase Microextraction (HS-SPME) an analyzed by GC×GC-MS; the so-called “chocolate flavor” sensorial 
attribute of these samples was previously determined by ODP, which were split in two classes according 
to the corresponding chocolate flavor values (low and high). After preliminary selection of potentially 
relevant areas of the chromatograms using 2D Fisher Ratio analysis, the data tensors were subject to 
exploratory inspection by Principal Component Analysis. The loadings from PCA were compared to the 
chromatograms, and the mass spectra and retention indexes of the peaks appearing on the relevant 
regions allowed identification of the key chemical compounds responsible for class separation.

MATERIALS AND METHODS
Samples and Sample Preparation

Twenty-four chocolate samples of different suppliers and with nominal cocoa content from 45 to 90% 
were obtained at the local market. The volatile fraction of the samples was isolated by Headspace Solid 
Phase Microextraction (HS-SPME) using a previously described procedure [35]. Aliquots of (1.000 ± 0.005) 
g of sample were exposed to N2-frozen and then grounded manually and then the grounded samples were 
weighed in 15 mL septum-sealed extraction vials. After a 5 min period for sample/headspace equilibration 
at 60 °C a 50/30 μm Divinylbenzene / Carboxen / Polydimethylsiloxane (DVB/CAR/PDMS) SPME fiber 
(Supelco, Bellefont – PA, USA) was exposed for 50 min to the sample headspace and then immediately 
inserted into the GC×GC system injector for 5 min. Before the extractions, the fiber was conditioned for 2 h 
at 250 ºC according to the supplier instructions. 

GC×GC-MS analysis
GC×GC-MS analysis was performed using a prototype based on a Shimadzu (Tokyo, Japan) QP2010+ 

GC-MS [36]. The column set consisted on a 30 m × 0.25 mm × 0.25 µm HP-5 column (Agilent Technologies, 
Wilmington, DE) connected to a 0.80 m × 0.1 mm × 0.1 µm Solgel Wax column (SGE Analytical Science, 
Ringwood - Victoria, Australia). The injector was operated on splitless mode at 260 ºC. The column oven 
temperature was programmed as: 40 ºC to 110 ºC at 3 ºC min-1 and 110 ºC to 240 ºC at 10 ºC min-1; the 
modulation period was set to 6.0 s and a cryogenic modulator was used. The interface temperature was 
260 ºC. MS detector photomultiplier high voltage was programmed from 0.8 kV up to 10 min and then 
increased to 0.9 kV until final of the chromatographic run. Data was collected at an acquisition rate of 
25 scan s-1 with scanned mass range set from m/z = 40 D to 340 D. The determination 1st dimension 
linear temperature programming retention indexes (LTPRI) of relevant peaks was performed after analysis 
of selected samples spiked with n-alkane mixture (C8 to C20). Detection of chromatographic peaks on 
the chromatograms was performed using GCImage software (Zoex, Houston – TX, USA) and analyte 
identification achieved by matching their mass spectra and LTPRI with literature data and spectra on NIST 
2010 library. 
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Optimized Descriptive Profile (ODP) 
ODP of samples was performed according to the methodology described by Silva et al. [21,23]. 

Triangular tests were applied in 20 judges using two samples from the same supplier but with different 
cocoa content (50% and 75% cocoa). The triangular test was performed in triplicate and the judges that 
have at least two right answers were selected for the ODP tests. In this case, 75% of the judges were 
approved in the triangular test. 

2D Fisher ratio for four-way data 
In order to simplify further data processing, Fisher Ratio Analysis was used to select areas on the 

1tR×2tR×m/z chromatographic space generated by GC×GC-MS that really contained pertinent information 
related to the sample differentiation. The main algorithm used to calculate the variance inside one class, 
between two classes and the Fisher Ratios is described elsewhere [37]; this procedure was later extended 
to be applied directly in four-way data [34] such as the case here. Fisher Ratio analysis applied in four-
way chromatograms allows both pixel-based (direct application to the raw Signal = f(1tR, 2tR, m/z) tensors 
without peak detection and integration) and peak-level (where input data are peak area tables obtained 
after conventional detection and integration) [31,38].

Figure 1 shows the general scheme of 2D Fisher ratio calculation in the four-way space. Samples 
with highest and lowest values for the chocolate flavor attribute obtained in ODP analyses were chosen 
to define the two classes and (Sample × 1tR × 2tR × m/z) data cubes for these samples were generated 
for each mass channel (Figure 1-A). These cubes were unfolded by concatenating the second and third 
dimensions (retentions times), resulting in matrices where each line corresponds to a sample and retention 
times are in columns for each mass channel (Figure 1-B). Fisher Ratios for all matrices were calculated, 
resulting in a vector with dimensions equal of the number of retention times for each mass channel (Figure 
1-C). Finally, a new matrix was formed with Fisher Ratios for all mass channels (Figure 1-D); this matrix 
was folded back, resulting in a data cube with (Fisher Ratios × 1tR × 2tR) (Figure 1-E). Each signal point in 
this cube is obtained as the sum of all individual m/z signals (Figure 1-F) [31,34]. All operations here were 
performed in MATLAB R2016b (MathWorks, USA) using self-made routines for 2D Fisher ratio calculation.

Figure 1. General scheme of 2D Fisher ratio calculation in GC×GC-MS. N is the 
number of samples, M is the number of mass (m/z) channels, tR1 is the retention time 
in the first column and tR2 is the retention time in the second column.
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Identification of volatile components essential to predict chocolate flavor sensory attribute
The identification of the set of key volatile compounds that need to be assessed to model the evaluated 

sensory attribute (chocolate flavor) from GC×GC-MS chromatograms was performed through an iterative 
process. After calculation of the tensor of Fisher Ratio values, selection of potentially relevant sections of the 
chromatograms for differentiation between sample classes (high and low chocolate flavor) was performed 
using an initial tentative value for FRcut. Data sets containing only the selected areas of the GC×GC-MS 
were unfolded, and the mass spectra channel was summed obtaining the TIC chromatograms and 
after that the data were submitted to Principal Component Analysis, using MatLab PLS Toolbox v. 7.3.1 
(Eigenvector, USA) with pareto scaling as pre-processing method and the resulting scores plots inspected 
to check for distinction between sample classes. This process was repeated, at each time using larger 
FRcut values (and therefore smaller input data sets on PCA) until clear separation of sample classes (low 
and high chocolate flavor) appears in the scores plots.

After definition of the maximum Fisher Ratio threshold for PCA class separation – and therefore 
isolating only the absolutely essential parts of the chromatograms that contain information regarding class 
differentiation, the correspondent loadings matrixes were matched to GC×GC chromatograms to point the 
location on the 1tR × 2tR plane of compounds relevant to characterization of these categories. 

RESULTS AND DISCUSSION
Figure 2 shows the average values of panelist responses for chocolate flavor attribute for the studied 

samples studied. Samples with intermediary sensory parameter values between the classes were marked 
as “undefined”; Samples with chocolate flavor attribute defined as “low” and “high” are indicated in the 
figure.

Figure 2. Chocolate flavor values of all commercial chocolates studied. Samples 
indicated with a circle were considering as ‘low chocolate flavor’ class and samples 
with an arrow were considered as ‘high chocolate flavor’ class.

Figure 3 shows the chromatogram parts selected as relevant to sensory classification of samples using 
the final threshold value of FRcut = 2×107 overlapped with a typical chromatogram. The spots selected by 
Fisher Ratio analysis were fed as input data for PCA modelling.
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Figure 3. Spots selected by 2D Fisher ratio (in red) overlapped in a typical 
chromatogram (black color).

Figure 4 compares PCA scores plots obtained after modelling using the raw, whole chromatographic 
data sets without variable selection and scores plots of PCA using partial chromatographic data selected 
after FR preliminary analysis. In the former, it is quite clear that samples group in two distinct regions of 
the plane - confirming that this value of threshold was adequate for sample classification; as for the PCA 
scores plot resulting after using the whole, unfiltered data no class separation is observable.

Figure 4. PCA scores plot. (a) all variables included in the model, (b) only variables with 
Fisher ratio above 2x107. ▼ samples of “low chocolate flavor” class and ● samples of “high 
chocolate flavor” class.

By using the loadings of the first PC of the data set formed by the selected variables, it is possible to 
point the areas in the GC×GC chromatograms where compounds responsible for class separation elute. 
Those compounds were tentatively identified from their retention indexes and mass spectra. Figure 5 
shows the positive (Figure 5a) and negative loadings (Figure 5b), where is possible to note a reduced 
number of spots with significant loading values. These results indicated that for the class separation (low 
and high chocolate flavor) a reduced number of variables were selected by the 2D Fisher ratio (only 5% of 
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the total of variables). Positive loadings were related to samples with high chocolate flavor and negative 
loadings with samples with low values for this attribute. 

Figure 5. Plot of the loadings of the first PC. (a) positive loadings. (b) negative loadings.

As a reduced number of spots in GC×GC chromatograms were selected, the number of identified 
components was also low. The identified compounds are listed in Table I. The compounds with positive 
loadings were mostly pyrazines (tetramethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, trimethylpyrazine 
and 2,5-dimethylpyrazine) which are known to be related to the chocolate flavor [39,40]. Also, Counet 
et al. [41] described in their work that the tetramethylpyrazine was the most abundant pyrazine found in 
dark chocolates evaluated and that this compound could have a reasonable influence in the final odor of 
chocolates. Besides the recognized influence of pyrazines in the chocolate odor 1-octen-3-ol was also 
observed as important compound by Nightingale et al. [2] when evaluating the changes in the headspace 
of dark chocolates during different storage times. 

Table I. Compounds identified as significant for classes separation

Positive loadings Negative loadings

2,5-dimethylpyrazine benzaldehyde

2,6-dimethyl-4-heptanol 1,3,5-trimethylbenzene

1-octen-3-ol 6-methyl-5-hepten-2-one

trimethylpyrazine limonene

β-pinene benzeneethanol

 o-cimene 1,1-dimethylbutylbenzene

2-ethyl-3,5-dimethylpyrazine

tetramethylpyrazine

The opposite can be understood for the negative loadings. Samples with low chocolate flavor values 
show this behavior due to the compounds indicated in the negative loadings. Among them, the compounds 
were benzaldehyde, 1,3,5-trimethylbenzene, 6-methyl-5-hepten-2-one and limonene.

Among the identified compounds limonene was already described for being a important compound in 
chocolates related with the crystallization process, physical properties and the aroma [42–44]. Furthermore, 
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benzaldehyde was previously related with the bitter sensorial attribute [45] and leads to confirm the 
obtained results in this work, since chocolates described as low chocolate flavor present more bitterness 
flavor (benzaldehyde). Here is important to know that Brazilian chocolate consumers are more used to 
consume milk chocolate (that present more sugar than dark chocolates used in this study) [46] and for this 
reason describe chocolates with less chocolate flavor as chocolates with more bitterness. 

Finally, the threshold value stipulated by the Fisher ratio was applied for all 24 samples studied. A 
new data set was formed with all samples, and the PCA was calculated. The plot of the scores of the 
first three PCs for this new data is presented in Figure 6. We can verify that the samples were again 
separated into high and low chocolate flavor values (red and black samples), and between them, samples 
with intermediate values ​​of this attribute (in blue). This is an additional indication of the correct variable 
selection by Fisher ratio, showing that samples with intermediate chocolate flavor attribute have also 
intermediate content of the chemical constituents.

Figure 6. Plot of the scores of the PCA model using all samples studied. 
▼ low values of chocolate flavor attribute ♦ intermediate values of 
chocolate flavor attribute and ● high values of the chocolate flavor 
attribute.

CONCLUSIONS
In this work we demonstrated a strategy for identification of the essential set of volatile components 

related to the sensory parameter “chocolate flavor” from GC×GC-MS data in tandem with sensory analysis 
PCA combined to variable selection using Fisher Ratio analysis. The 2D Fisher ratio was able to point the 
sections of chromatograms where key compounds that separate the predefined classes (low and high 
chocolate flavor) in the PCA scores plot were located. It is important to emphasize that the separation was 
accomplished using a reduced number of variables and consequently only 14 chemical components were 
identified. This result does not mean that only these compounds are related to the differentiation of the 
chocolate flavor – several other minor components can contribute with this attribute, but they certainly are 
associated with this feature; also, this approach does not account for synergistic effects that could appear 
on compounds which are on non-selected areas of the chromatographic space. The compounds identified 
for positive loadings, and with high chocolate flavor attribute, are mostly pyrazines that are recognized for 
the characterization of chocolate flavor. 
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