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We report on the multicaloric response of the Fe49Rh51 alloy under the combined application of hydrostatic
pressure and magnetic field. Experimental data are complemented by a mean field model that takes into account
the interplay between structural and magnetic degrees of freedom. A large multicaloric strength has been found
for this alloy, and it is shown that a suitable combination of pressure and magnetic field enables the sign of the
entropy change to be reversed and thus the multicaloric effect can be tuned from conventional to inverse. It is also
shown that an extended temperature window for the multicaloric effect can be achieved by taking advantage of
the coupling between structure and magnetism which enables a cross response of the alloy under the application
of different external fields. Mean field calculations remarkably reproduce experimental results.
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I. INTRODUCTION

Interest in the study of materials with giant caloric effects
has experienced an enormous increase in the last decade owing
to the fact that this category of materials features excellent
candidates for the development of solid-state cooling devices.
They can replace or augment current refrigerators and cooling
systems which are based on the compression and expansion of
environmentally harmful fluids. Realization of these systems
will result in a more efficient and environmentally friendly
cooling technology.

Significant caloric effects typically occur in materials un-
dergoing a ferroic phase transition [1–3], and particularly large
(giant) effects are observed when the ferroic transition is first
order in nature. In this scenario the latent heat that accompanies
the first-order transition gives rise to large temperature or
entropy changes, induced by the application and removal of
the external field thermodynamically conjugated to the ferroic
property under adiabatic or isothermal conditions. At present, a
variety of materials have been reported to exhibit giant caloric
effects, which are classified by the nature of the applied field
(and hence by the ferroic property) as magnetocaloric [4],
electrocaloric [5], and mechanocaloric [6] (which includes
elastocaloric and barocaloric) effects, for magnetic, electric,
and mechanical (uniaxial stress and hydrostatic pressure)
fields, respectively.

Many giant caloric materials exhibit strong coupling be-
tween different degrees of freedom and therefore the ferroic
transition involves the spontaneous development of more than
one ferroic property. Hence, changes in magnetization and
in electric polarization at the phase transition are typically
accompanied by structural changes (with an associated lattice
strain), allowing the ferroic transition to be induced by the
application of more than one external field. This cross response
implies that changes in magnetization (or in polarization) can
be induced by mechanical fields while structural changes can
also be induced by magnetic (or electric) fields thus giving rise

to a multiferroic behavior. From the point of view of caloric
effects, the simultaneous or sequential application of more
than one external field can give rise to multicaloric effects [3].

While single caloric effects have received a great deal
of attention and advancement to date [7], until now little
research effort has been devoted to the study of multicaloric
effects, despite the belief that these effects can improve
caloric performance and overcome some drawbacks such as
irreversibilities due to hysteresis, limited operational range,
etc. Although theoretical frameworks to study multicaloric
effects have been developed with sufficient detail [8–11], at
present there is only a very limited number of experimental
studies on such systems [12–17], these experimental reports
typically focus on the effect of hydrostatic pressure on the
magnetocaloric effect. In the present work, we combine
experiments and modeling to obtain a complete description of
the multicaloric response of a representative model material
Fe49Rh51. We provide quantitative data of the entropy change
associated with the combined effect of pressure and magnetic
field. It is shown that the temperature range and magnitude of
the resultant entropy changes of this system may be tailored
to defined values through coordinated application of pressure
and magnetic field.

FeRh has received considerable attention in recent years
[18–22], and it is a representative material ideal to investigate
the fundamentals of multicaloric effects. This compound
crystallizes in the CsCl cubic structure and, for compositions
close to the stoichiometric composition Fe50Rh50, it undergoes
a magnetostructural transition from a low-temperature antifer-
romagnetic (AFM) phase to a high-temperature ferromagnetic
(FM) phase. In the FM state, Fe atoms have a ∼3 μB moment
and Rh atoms ∼1 μB , while in the AFM state there is no
appreciable magnetic moment on the Rh atoms and the Fe
atoms have ∼3 μB moment with opposite sign on successive
layers of (111) iron planes [23]. At the phase transition
there is no change in the crystal symmetry but the lattice
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isotropically expands and the volume of the FM unit cell is
∼1% larger than that of the AFM phase. Giant magnetocaloric
[24], elastocaloric [25], and barocaloric [26] effects have been
reported for this compound. Moreover, magnetocaloric and
barocaloric strengths of FeRh have been found to be among
the highest reported values for magnetocaloric and barocaloric
materials, and both effects exhibit a good reproducibility upon
magnetic field and pressure cycling [27,28].

This paper is organized as follows: Experimental details
are given in Sec. II. Useful thermodynamic considerations are
provided in Sec. III, and they are expanded in Appendix A.
A mean field model is presented in Sec. IV, and a more
detailed description of it is given in Appendix B. Results are
presented and discussed in Secs. V–VIII where both data from
experiments and from the model are presented in a comparative
way. Finally, we provide a brief summary of our work
in Sec. IX.

II. EXPERIMENTAL DETAILS

A polycrystalline sample of nominal composition Fe49Rh51

was prepared by arc melting. Details on sample preparation and
heat treatment are given in Ref. [26]. From the prepared button,
a sample with the shape of a needle (28.9 mg) was cut using
a diamond saw. Magnetization measurements at hydrostatic
pressure (from ambient up to 5.1 kbar) were performed using
a superconducting quantum interference device (Quantum
Design, SQUID) magnetometer in magnetic fields up to 5 T
and in the temperature range 220 < T < 390 K. Hydrostatic
pressure was applied to the sample using a CuBe piston clamp
pressure cell (Mcell 10 manufactured by Almax EasyLab).
To minimize errors due to differential thermal contraction
between the metallic components of the pressure cell and
the pressure transmitting medium, the temperature sweep rate
during measurement was set at 1 K/min. The pressure inside
the cell was calibrated in situ by measurement of the shift of
the superconducting transition temperature of a Sn standard.

III. THERMODYNAMIC CONSIDERATIONS

The multicaloric effect refers to the isothermal entropy
change (or adiabatic temperature change) resulting from the
combined application of two external fields. From a thermo-
dynamic point of view in equilibrium there is no distinction
on whether the two fields are applied simultaneously or
sequentially.

In the particular case of magnetic field and hydrostatic
pressure as the external stimuli, the resulting multicaloric
entropy change is

�S(T ,0 → H,0 → p)

= �S(T ,0,0 → p) + �S(T ,0 → H,p), (1)

where for simplicity we take atmospheric pressure as our zero
pressure state.

It is worth noting that while the first term in Eq. (1)
represents the standard barocaloric effect (in the absence of
magnetic field), the second term differs from the standard
magnetocaloric effect (which is computed from magnetization
data measured at atmospheric pressure). It is given by (see

Appendix A)

�S(T ,0 → H,p)

= �S(T ,0 → H,0) +
∫ p

0

∫ H

0

∂

∂T

(
∂M

∂p

)
T ,H

dpdH,

(2)

where �S(T ,0 → H,0) quantifies the standard magne-
tocaloric effect, and the second term is a consequence of the
interplay between magnetic and structural degrees of freedom.
Only in the absence of interplay �S(T ,0 → H,0 → p) is the
sum of the standard magnetocaloric and standard barocaloric
effects.

In principle, computation of the barocaloric entropy change
would require data on the pressure and temperature dependen-
cies of the specific volume. However, it can also be computed
from magnetization data as a function of temperature, pressure,
and magnetic field. Therefore the total multicaloric entropy
change can be computed (indirect method) from the knowledge
of M(T ,H,p) as follows (see Appendix A):

�S(T ,0 → H,0 → p)

=
∫ p

0

(
∂M
∂p

)
T ,H(

∂M
∂H

)
T ,p

(
∂M

∂T

)
p,H

dp +
∫ H

0

(
∂M

∂T

)
p,H

dH

+
∫ p

0

∫ H

0

∂

∂T

(
∂M

∂p

)
T ,H

dpdH, (3)

where for convenience we have used expression (A16) for the
standard barocaloric effect.

It must be mentioned that Eqs. (1)–(3) demonstrate that
knowledge of the standard magnetocaloric and barocaloric
effects in a given material are not sufficient to determine its
multicaloric behavior, and information on the cross response
of the material to the fields that are nonconjugated to the
order parameter are required (either the volume dependence on
magnetic field or the magnetization dependence on pressure).

IV. MEAN FIELD MODELING

In order to interpret the experimental behavior and to
gain better insight into the FeRh multicaloric response, we
have developed a mean field model for the free energy of
the system that describes the AFM-FM phase transition. The
model includes a magnetovolumic coupling term to account
for the unit cell volume change at the transition. This coupling
term is restricted to the minimum order allowed by symmetry
and the effect of external fields such as hydrostatic pressure p

and magnetic field H are included. The procedure, explained in
detail in Appendix B, renders the following variational Gibbs
energy function per magnetic atom:

g∗ = g

zJ
(1)
FeRh

= −1

2
mFemRh − J ∗

4

(
m2

Fe − η2
Fe

)

+ T ∗

8
[(1 + mFe + ηFe) ln(1 + mFe + ηFe)

+ (1 − mFe − ηFe) ln(1 − mFe − ηFe)

+ (1 + mFe − ηFe) ln(1 + mFe − ηFe)
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+ (1 − mFe + ηFe) ln(1 − mFe + ηFe)

+ 2(1 + mRh) ln(1 + mRh) + 2(1 − mRh) ln(1 − mRh)

− 8 ln 2] + 1

2
α∗

0w
2 − α∗

1w(mFe + mRh)2 − α∗
2wηFe

2

−H ∗(mFe + mRh) + P�∗
0w, (4)

where mFe and mRh are the order parameters that describe
the ferromagnetism of the sublattices of Fe and Rh, and
ηFe is the antiferromagnetic order parameter of Fe; ω is the
relative volume change (with respect to a reference volume
�0); α1 and α2 are magnetostriction coefficients, and α0 is
the inverse of the compressibility. J is an effective exchange
interaction parameter and z refers to the coordination number
for first neighbors. The thermodynamic Gibbs free energy is
then obtained by replacing the order parameters by those that
minimize the above variational function.

The model can be used to study multicaloric effects in FeRh.
Indeed, the entropy S of the system can be directly computed
from Eq. (4) by employing the thermodynamic definition of S,

S(MFe,mRh,ηFe) = −
[

∂g∗

∂T ∗

]
P,H

= SFe(mFe,ηFe) + SRh(mRh), (5)

where mFe(T ,H,p), mRh(T ,H,p), and ηFe(T ,H,p) are the
equilibrium order parameters obtained after minimization of
the variational free energy function (4). The isothermal entropy
change for the multicaloric effect can be calculated from

�ST (T ,0 → H,0 → p)

= S(T ,H,p) − S(T ,H = 0,p = 0). (6)

The experimental data used to fit the model parameters are
the relative volume change at the magnetostructural transition
[29], the transition temperatures at atmospheric pressure [30],
and at the pressure where the FM phase disappears [31,32].
With only these experimental input data, the model is able
to reproduce the phase transformation features of the FeRh
CsCl-type compound and its multicaloric behavior.

From the model it is possible to compute the phase diagram
in an extended range of parameters. Figure 1 shows the
theoretical results (dashed lines) for the phase diagram of
Fe50Rh50 and Fe49Rh51 as a function of the pressure (a) and the
magnetic field (b), compared with available experimental data
[26,30–32]. It is apparent that the model nicely reproduces the
experimental data of the FeRh system over a broad range of
p, H , and T .

V. MAGNETIZATION AS A FUNCTION OF PRESSURE
AND MAGNETIC FIELD

Figure 2 shows illustrative examples of the magnetization
curves recorded during cooling and heating the sample at
selected (constant) values of applied magnetic field H and
hydrostatic pressure p. On cooling, the sample undergoes the
forward transition from a saturated FM state to an AFM state;
the reverse transition takes place on heating with a thermal
hysteresis of ∼10 K. The inflection point of the M vs T curves
is taken as the characteristic transition temperature Tt . A small
increase in the magnetization of both FM and AFM phases with

FIG. 1. Phase diagram of FeRh. Transition temperature as a
function of pressure p (a) and magnetic field H (b) for Fe50Rh50

and Fe49Rh51. Results from the mean field model are denoted by
dashed lines while symbols correspond to experimental data.

increasing magnetic field is measured, which results in a small
increase in the magnetization change (�Mt ) at the FM-AFM
phase transition. On the other hand, �Mt slightly decreases
with increasing pressure (∼2% decrease for p = 5 kbar).
The FM-AFM transition shifts to lower temperatures with
increasing magnetic field H while it moves to higher T with
increasing applied pressure p. This behavior is consistent
with the scenario that H stabilizes the high-magnetization
FM phase, while p stabilizes the low-volume AFM phase. The
measured pressure dependence of Tt determined in the absence
of magnetic field [Tt (p,H = 0)], and the measured magnetic
field dependence at atmospheric pressure [Tt (p = 0,H )] are in
perfect agreement with previous reports [26,27] (for simplicity
atmospheric pressure is referred here as p = 0).

FIG. 2. Examples of magnetization curves as a function of
temperature at selected values of magnetic field H and hydrostatic
pressure p. Solid lines correspond to experimental data and dotted
lines correspond to the fitted curves. The arrows indicate cooling and
heating runs.
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FIG. 3. Isothermal magnetization as a function of applied mag-
netic field of Fe49Rh51 at selected values of pressure p, at 300 K (a)
and at 320 K (c). Isothermal magnetization as a function of pressure
at selected values of magnetic field H , at 300 K (b) and 320 K (d).

Since experimental magnetization values are only known
for given values of magnetic field and hydrostatic pressure,
for numerical analysis of caloric and multicaloric effects it is
convenient to fit an analytical function M(T ,H,p) to obtain
magnetization over the entire (T ,H,p) thermodynamic phase
space. We assume that the transition extends in temperature
from Tt − δT up to Tt + δT (where Tt is the transition
temperature and the best fit is obtained for δT = 0.6 K). The
experimental data have been fitted as follows:

(i) An hyperbolic tangent function has been used for
temperatures T within the transition region Tt − δT � T �
Tt + δT :

M = 1

2
[MAFM + MFM]

+1

2

[
(MAFM − MFM) tanh

(
T − Tt

W

)]
, (7)

where MAFM and MFM are, respectively, the magnetization of
the AFM and FM phases, and W is a parameter that accounts
for the temperature spread of the transition.

(ii) Beyond the transition region, an exponential function
has been used to describe the temperature dependence of the
magnetization in both the AFM and FM phases, as follows:

M = MAFM + [M(Tt − δT ) − MAFM]

× exp [k1(T − Tt + δT )], T < Tt − δT , (8)

M = MFM + [M(Tt + δT ) − MFM]

× exp [k2(Tt − T + δT )], T > Tt + δT , (9)

where k1 and k2 are positive constants.
Examples for the comparison between the fitted curves and

the experimental data are shown in Fig. 2.
Figure 3 shows examples of the magnetic field dependence

of the isothermal magnetization [Figs. 3(a) and 3(c)] at selected
values of hydrostatic pressure, and of the pressure dependence
of the isothermal magnetization [Figs. 3(b) and 3(d)], at
selected values of magnetic field. Figure 4 shows the combined
dependence of the isothermal magnetization upon hydrostatic
pressure and magnetic field, for selected values of temperature.

FIG. 4. Isothermal magnetization as a function of magnetic field
and pressure for Fe49Rh51. Data correspond to 340 K (red), 320 K
(orange), 300 K (green), and 280 K (blue). For each temperature the
surfaces on the left side of the figure correspond to application of field
and removal of pressure (AFM to FM transition), while the surfaces
on the right correspond to removal of field and application of pressure
(FM to AFM transition).

VI. THERMODYNAMIC PHASE DIAGRAM

Figure 5(a) shows the thermodynamic phase diagram for
Fe49Rh51 where experimental data are indicated by solid
symbols. The linear pressure and magnetic field dependence of
Tt results in planar surfaces that separate AFM and FM regions,
while the region between the planes represents the two-
phase hysteretic region. The combined p and H dependence
of the transition temperature is quantified as Tt (H,p) =
309.3 − 9.9μoH + 6.3p for the FM to AFM transition and

FIG. 5. (a) Transition temperature as a function of magnetic
field and pressure for Fe49Rh51. Upper red plane corresponds to the
AFM to FM transition, and lower blue plane to the FM to AFM
transition. Solid symbols stand for experimentally measured values.
(b) Transition temperature as a function of pressure for selected values
of magnetic field. Red symbols stand for experimental data for the
AFM to FM transition, and blue symbols stand for experimental data
for the FM to AFM transition. Dashed lines correspond to data derived
from the mean field model.
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Tt (H,p) = 319.5 − 9.5μoH + 6.2p for the AFM to FM
transition. Figure 5(b) compares the pressure dependence (at
fixed magnetic field) of the transition temperature obtained
from experiments with that derived from the mean field model
(dashed lines). In spite of the fact that the model does not
explicitly account for thermal hysteresis, good agreement
exists between the two sets of data for fields up to 2 T.
For larger fields, the model slightly overestimates transition
temperatures. For this reason, in the following discussion we
will restrict our study to the system response for μ0H � 2 T.

VII. HYSTERESIS

As expected for a first-order transition, the magnetostruc-
tural transition in Fe49Rh51 takes place with hysteresis. When
the transition is driven by temperature, hysteresis amounts
∼10 K (see Fig. 2), when it is driven by magnetic field, it
amounts to ∼1.1 T, and in the case of hydrostatic pressure, it
is ∼1.7 kbar (see Fig. 3). It is worth noticing that by taking
into account the obtained values of dTt/dH and dTt/dp both,
the hysteresis in magnetic field and in pressure correspond
to a thermal hysteresis of ∼10 K. This is consistent with the
fact that AFM and FM phases in our sample are separated by
plane surfaces in the thermodynamic phase diagram [Fig. 5(a)]
which ensures that the hysteresis magnitude is constant, and
the values given above are independent of T , H , and p.

It has recently been reported that in a metamagnetic
Heusler shape memory alloy, magnetization of the sample at
atmospheric pressure and demagnetization under an applied
hydrostatic pressure of 1.3 kbar resulted in a significant
reduction of hysteresis [16]. This phenomenon is attributed
to the shift of the first-order transition to lower temperatures
with magnetic field, and the shift towards higher temperatures
with hydrostatic pressure. In our Fe49Rh51 specimen magnetic
field and pressure also shift the magnetostructural transition in
a similar way, as discussed in previous sections and therefore
a reduction of hysteresis is also expected from the combined
effect of H and p. This phenomenon is illustrated in Fig. 6(a)
which shows isothermal magnetization loops at atmospheric
pressure and under an applied pressure of 1.7 kbar. It is
seen that the hysteresis is almost suppressed by magnetizing
the sample at atmospheric pressure and demagnetizing it
under 1.7 kbar. However, such a reduction in hysteresis is
only apparent because the reduction in magnetic field occurs
at the expense of hysteresis in pressure. This fact is illus-
trated in Fig. 6(b) which indicates the actual thermodynamic
path followed by the sample in such a combined magnetic
field/pressure cycle.

It is instructive to compare the energy dissipated in a
magnetic field loop (at atmospheric pressure) EH , to that
dissipated in the combined cycle EH,p. These quantities are
computed as

EH = μ0

∮
HdM(T ,H,0) (10)

and

EH,p = EI + EII + EIII + EIV, (11)

where EI, EII, EIII, and EIV correspond, respectively, to the
work associated with trajectories I, II, III, and IV indicated in

FIG. 6. (a) Isothermal magnetization obtained on increasing and
decreasing magnetic field at selected (constant) values of hydrostatic
pressure. (b) Isothermal magnetization surface as a function of
pressure and of magnetic field. The red arrows indicate a complete
loop corresponding to an increase of magnetic field at atmospheric
pressure (path I), application of a 1.7 kbar pressure in the FM phase
(path II), removal of the magnetic field under 1.7 kbar (path III), and
removal of hydrostatic pressure in the AFM phase (path IV).

Fig. 6. Under the assumption that volume compressibilities of
AFM and FM phases are similar (κAFM � κFM), and∫

I
HdM(T ,H,0) �

∫
III

HdM(T ,H,p), (12)

the energy dissipated in the multicaloric cycle is given by

EH,p � �p�v, (13)

where �v is the difference in the atomic volume of the two
phases.

For our Fe49Rh51 sample we obtain EH � 115 J kg−1 and
EH,p � 170 J kg−1. While the energy corresponding to the
multicaloric loop is marginally larger than that corresponding
to the magnetic field loop (at constant pressure), it is worth
noticing that both quantities are much smaller than the latent
heat of the transition (∼3300 J kg−1). With regards to cooling
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applications, it must be taken into account that a reduced
hysteresis enhances the reproducibility of the caloric effects
[33,34], and under certain circumstances it can result very
beneficial to apply both external stimuli even if the energy
dissipated in the multicaloric cycle is slightly larger than that
corresponding to a pure magnetic field cycle.

VIII. CALORIC AND MULTICALORIC
ENTROPY CHANGES

Knowledge of M(T ,H,p) enables us to compute the
isothermal entropy changes associated with the caloric and
multicaloric effects of Fe49Rh51, as described in Sec. III.
Entropy changes determined for standard magnetocaloric
[�S(T ,0 → H,p = 0)] and standard barocaloric [�S(T ,H =
0,0 → p)] effects are in excellent agreement with those
previously obtained by quasidirect and direct calorimetric
measurements [26]. This good agreement provides high confi-
dence in the computation of entropy changes at arbitrary values
of pressure and magnetic field that quantify the multicaloric
response of the material.

In computing multicaloric effects in Fe49Rh51 from experi-
mental data, attention must be paid to the fact that application
of magnetic field stabilizes the FM phase, whereas application
of pressure stabilizes the AFM phase. Also, the noted hystere-
sis of the transition implies that simultaneous (or subsequent)
application of both magnetic field and pressure will take the
sample through a minor loop within the two-phase coexistence
region (i.e., the region bounded by the two planes in Fig. 5,
and between two magnetization surfaces in Fig. 4). As detailed
trajectories of these minor loops are not accessible from
present experimental data, study of the Fe49Rh51 multicaloric
response will be restricted to experimental values obtained
from application of the magnetic field and the removal of
hydrostatic pressure (i.e., trajectories on the AFM to FM
surface, see Fig. 4). In the phase diagram of Fig. 5, they
correspond to trajectories from below the red plane to above
the red plane. An equivalent analysis could be done for the
application of pressure and removal of magnetic field (FM
to AFM transition, trajectories from above the blue plane to
below the blue plane, Fig. 5), but for the sake of conciseness
this case will not be considered here.

The multicaloric isothermal entropy change has been
computed from experimental data according to Eq. (3) where
the limits for the integrals in pressure are computed from an
arbitrary p value to zero.

Examples for the multicaloric entropy change computed
at two selected values of temperature are plotted in Fig. 7 as
colored contour maps. The plotted values correspond to the
(simultaneous or sequential) application of a magnetic field
from a value of zero to a given magnetic field, indicated
by the vertical scale, and to the removal of hydrostatic
pressure from a value of 5 kbar down to an arbitrary pressure
given by the horizontal scale (pressure drop), i.e., �S(T ,0 →
H,5 kbar → p). It is seen that �S increases with increasing
magnetic field and increasing pressure drop, up to a saturation
value around 11 J kg−1 K−1 which coincides with the reported
transition entropy change for the magnetostructural transition
in Fe49Rh51. It is noted that the material exhibits a large entropy
change over a broad range of magnetic field and pressure

FIG. 7. Colored contour maps of the multicaloric entropy change
of the Fe49Rh51 corresponding to the application of a magnetic field H

(0 → H ) and to the removal of a pressure p from an initial pressure
of 5 kbar (5 kbar → p).

values. Importantly, the larger the pressure drop, the smaller
the magnetic field required to achieve the saturation value;
conversely, the larger the magnetic field applied, the smaller
the pressure drop required. It is also remarkable that the region
where �S increases from zero to the maximum value (the
multicolored band in Fig. 7) is rather narrow, indicative of a
very large multicaloric strength. The small decrease in �S

observed at T = 335 K for large values of pressure drop is a
consequence of the previously mentioned small decrease in the
transition magnetization change (�Mt ). Indeed, application of
magnetic field slightly increases the values for the pressure
induced entropy change.

We have computed the temperature dependence of the
multicaloric entropy change corresponding to the application
of a 2 T magnetic field and a pressure drop from 5 kbar to 0.
Results are shown in Fig. 8(a), with solid lines corresponding

FIG. 8. (a) Temperature dependence of the multicaloric entropy
change in Fe49Rh51 corresponding to the isothermal application of a
2 T magnetic field and the removal of 5 kbar pressure. (b) Temperature
dependence of the isothermal entropy change corresponding to the
magnetocaloric effect (green lines), to the barocaloric effect (blue
lines), and to the interplay between magnetism and structure (orange
line). In all panels, solid lines correspond to values computed from
experiments and dashed lines correspond to values computed from
the mean field model.
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FIG. 9. Temperature dependence of the multicaloric isothermal
entropy change, �S(T ,0 → H,0 → p) for selected values of applied
magnetic field and applied hydrostatic pressure.

to experimental data and dashed lines to the data obtained from
the mean field model. Good coincidence is noted between the
two sets of data except for a tiny region at high temperatures.
In Fig. 8(b) we have emphasized the different contributions
to the multicaloric entropy change where the green curve
indicates the entropy change resulting from the application
of a 2 T magnetic field under a pressure of 5 kbar [�S(T ,0 →
2T ,5 kbar)] and the blue curve indicates the entropy change
resulting from the removal of a 5 kbar pressure in the absence
of magnetic field [�S(T ,0,5 kbar → 0)]. The value for the
cross-response contribution [last term in Eq. (3)] is plotted in
orange lines.

From Fig. 8 it is seen that a suitable combination of mag-
netic field and pressure significantly expands the temperature
range where large (giant) values of the entropy change are
obtained. It is apparent that magnetocaloric and barocaloric
effects are restricted to a narrow temperature window, and
the large �S values obtained at the low temperature region
arise from the cross-response coupling between magnetic and
structural degrees of freedom. It is worth noting that a large
temperature window for the entropy change not only results
in a larger operational range in potential refrigeration devices,
but also increases the reproducibility of these large entropy
values upon pressure and magnetic field cycling.

Taking into account that results derived from the mean
field model do not include hysteresis, we can gain insight
on the multicaloric behavior obtained upon application (or
removal) of the two fields by computing �S(T ,0 → H,0 → p)
from the model. In Fig. 9 the temperature dependence of the
multicaloric isothermal entropy change �S(T ,0 → H,0 → p)
is plotted for selected values of the applied magnetic field and

FIG. 10. Isothermal contour lines where multicaloric entropy
reverses its sign.

hydrostatic pressure, obtained as

�S(T ,0 → H,0 → p) = S(T ,H,p) − S(T ,H = 0,p = 0).
(14)

The inverse nature of the magnetocaloric effect combined
with the conventional barocaloric effect results in a peculiar
multicaloric response in Fe49Rh51. At low values of magnetic
field (top panels in Fig. 9), the barocaloric effect dominates
and application of pressure reduces the total entropy. As
the magnetic field magnitude is increased, the inverse effect
gains significance as evident by the expanded temperature
window where the entropy change is positive. Interestingly,
the multicaloric �S reverses sign for particular combinations
of pressure and magnetic field. This effect is described in
more detail in Fig. 10 which depicts the isothermal lines on
a (H,p) plane where the multicaloric �S reverses its sign.
These lines are projections of the phase diagram [see Fig. 5(a)]
onto the (H,p) (horizontal) plane. For H and p values to the
right of each isothermal line, the multicaloric entropy change
�S(T ,0 → H,0 → p) > 0, while for values on the left-hand
side, �S(T ,0 → H,0 → p) < 0. It is therefore demonstrated
that very fine tuning of the caloric and multicaloric response
can be achieved by simultaneous (or sequential) application of
magnetic field and pressure to this FeRh system.

IX. SUMMARY AND CONCLUSIONS

To summarize, we have presented a comprehensive study
of the multicaloric behavior of Fe49Rh51 where the mechanical
and magnetic contributions have been determined, as well
as the contributions due to the cross response of the alloy
arising from the interplay between magnetism and structure.
The present work also exhibits how a mean field model can
be useful in computing the multicaloric effect in a complex
system such as Fe49Rh51. In Fe49Rh51 application of a magnetic
field results in just a small increase of the pressure-induced
entropy change because the magnetostructural transition oc-
curs well below the Curie point, but for materials with a
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magnetostructural transition close to the Curie point it is ex-
pected that the combined effect of pressure and magnetic field
can result in a significant enhancement of the entropy change
corresponding to standard barocaloric and magnetocaloric
effects. It has been shown that the combined effect of two
external stimuli leads to interesting multicaloric properties: it is
possible to enlarge the temperature window where giant effects
are observed, and also, the caloric response can be turned from
conventional to inverse by proper combinations of pressure
and magnetic field. In particular, when p and H are close to
the values that reverse the sign of the multicaloric entropy
change, a fine tuning of one of these two parameters results
in a completely different caloric response of the material that
can shift the material from heating to cooling. This switching
in the multicaloric response opens up a new field of potential
applications in which devices can be brought from heating to
cooling by suitable small changes in the control parameters.
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APPENDIX A: THERMODYNAMICS
OF MULTICALORIC EFFECTS

In this Appendix we summarize the thermodynamics
of multicaloric effects [10] in the particular case systems
with baromagnetic coupling. The fundamental thermodynamic
identity is given in this case by

dU = T dS − pdV + HdM, (A1)

and the generalized Helmholtz and Gibbs potentials are given
respectively by

dF = −SdT − pdV + HdM,

dG = −SdT + V dp − MdH, (A2)

rendering the following Maxwell relations

(
∂S

∂V

)
T ,M

=
(

∂p

∂T

)
V,M

, (A3)(
∂S

∂M

)
T ,M

= −
(

∂H

∂T

)
V,M

, (A4)(
∂S

∂p

)
T ,M

= −
(

∂V

∂T

)
p,H

, (A5)(
∂S

∂H

)
T ,p

=
(

∂M

∂T

)
p,H

, (A6)(
∂V

∂H

)
T ,p

= −
(

∂M

∂p

)
T ,H

. (A7)

Notice that the last Maxwell relation (A7) establishes that
the two cross susceptibilities are equal.

The change of entropy induced by an applied magnetic field
at zero pressure that quantifies the standard magnetocaloric

effect is given by

�SMCE = �S(T ,0 → H,p = 0)

=
∫ H

0

(
∂S

∂H

)
T ,p

dH =
∫ H

0

(
∂M

∂T

)
p,H

dH, (A8)

where we have assumed S = S(T ,p,H ) and we have used
the Maxwell relation (A6). Similarly, the standard barocaloric
effect is given by

�SBCE = �S(T ,H = 0,0 → p)

=
∫ p

0

(
∂S

∂p

)
T ,H

dp = −
∫ p

0

(
∂V

∂T

)
p,H

dp, (A9)

where we have used the appropriate Maxwell relation (A5). In
the case of combined application of both external fields, the
multicaloric effect is given by

�S(T ,0 → H,0 → p)

= �S(T ,H = 0,0 → p) + �S(T ,0 → H,p)

= �SBCE + �SMCE

+
∫ p

0

∂

∂p′ [�S(T ,0 → H,p′)]T ,H dp′. (A10)

The last term in the above expression, which accounts
for the interplay between magnetism and volume, can be
expressed as∫ p

0

∂

∂p′ [�S(T ,0 → H,p′)]T ,H dp′

=
∫ p

0

∂

∂p′

[∫ H

0

(
∂M

∂T

)
H,p′

dH

]
T ,H

dp′

=
∫ p

0

∫ H

0

∂

∂T

(
∂M

∂p

)
T ,H

dpdH. (A11)

Given the relation (A7) it is possible to see that∫ p

0

∂

∂p′ [�S(T ,0 → H,p′)]T ,H dp′

=
∫ H

0

∂

∂H ′ [�S(T ,H ′,0 → p)]T ,pdH ′, (A12)

consistently with the fact that, from a thermodynamic point of
view, there is no distinction on whether both fields are applied
simultaneously or sequentially.

In some cases, it can be convenient to consider the entropy
as a function of the extensive variables instead of the conju-
gated fields. That is, we now assume that S = S(T ,M,V ). In
that case, the standard barocaloric effect can be expressed as

�SBCE =
∫ M(p)

M(p=0)

(
∂S

∂M

)
T ,V

dM

= −
∫ M(p)

M(p=0)

(
∂H

∂T

)
V,M

dM, (A13)

where we have assumed that magnetization effects are domi-
nant and we have used the relation (A4). The differential inside

104424-8



GIANT MULTICALORIC RESPONSE OF BULK Fe49Rh . . . PHYSICAL REVIEW B 95, 104424 (2017)

the integral can be expressed as

dM =
(

∂M

∂p

)
T ,H=0

dp (A14)

and (
∂H

∂T

)
M

= −
(

∂M

∂T

)
H

(
∂H

∂M

)
T

. (A15)

Introducing (A14) and (A15) into (A13) we obtain the
following expression for the barocaloric effect:

�SBCE �
∫ p

0

(
∂M
∂p

)
T ,H(

∂M
∂H

)
T ,p

(
∂M

∂T

)
p,H

dp. (A16)

APPENDIX B: THE MEAN FIELD MODEL

We start by dividing the CsCl structure of the equiatomic
FeRh alloy into four sublattices, two (labeled α and γ )
occupied by Fe atoms and two (labeled β and δ) occupied
by Rh atoms. Next, we define the following magnetic order
parameters in terms of the sublattice magnetizations:

mFe = mα + mγ

2
, mRh = mβ + mδ

2
, (B1)

and

ηFe = mα − mγ

2
. (B2)

Where mFe and mRh represent the ferromagnetic order param-
eters of Fe and Rh, respectively, while ηFe is the antiferromag-
netic order parameter of Fe. Thus, the total magnetization is
given by M = mFe + mRh.

The energy of the system in terms of the occupation
probabilities {π} for the different sublattices can be written
as

〈H 〉 = NzJ
(1)
Fe-Rh

∑
μ=α,γ ;ν=β,δ

(π+
μ π−

ν + π−
μ π+

ν )

+Ny

2
J

(2)
Fe-Fe(π+

α π−
γ + π−

α π+
γ )

+Ny

2
J

(2)
Rh-Rh(π+

β π−
δ + π−

β π+
δ ) + E0, (B3)

with the constant E0 given by

E0 = −N

(
z

2
J

(1)
Fe-Rh + y

4
J

(2)
Fe-Fe + y

4
J

(2)
Rh-Rh

)
. (B4)

Superscripts (1) and (2) in the effective interaction param-
eters (J ) denote first and second neighbor pairs, respectively,
N is the number of magnetic atoms, and z and y are the coor-
dination numbers for first and second neighbors, respectively.
The variables π+

σ and π−
σ represent the probabilities that a

σ site (σ = α,β,γ,δ) be occupied by an atom with magnetic
moment up (+) and down (−), respectively. Moreover, the
occupation probabilities π+

σ and π−
σ depend on the sublattice

magnetization mσ . That is,

π±
σ = (1 ± mσ )

2
. (B5)

Introducing (B5) into (B3), and using the definitions in
Eqs. (B1) and (B2), we obtain the following expression for the

energy of the magnetic alloy in terms of the order parameters
of the two components:

〈H 〉 = −Nz

2
J

(1)
Fe-RhmFemRh

−Ny

4
J

(2)
Fe-Fe

(
m2

Fe − η2
Fe

) − Ny

4
J

(2)
Rh-Rhm

2
Rh, (B6)

where J
(1)
Fe-Rh is taken to be positive. To obtain the free energy,

we need the expression of the model entropy that in terms of
the occupation probabilities can be written as

S = −NkB

2

∑
σ=α,β,γ δ

(π+
σ ln π+

σ + π−
σ ln π−

σ ). (B7)

Finally, the magnetic free energy per magnetic atom can be
written as

fmag(T ,mFe,mRh,ηFe)

= 〈H 〉
N

− T
S

N
= − z

2
J

(1)
Fe-RhmFemRh

− y

4
J

(2)
Fe-Fe

(
m2

Fe − η2
Fe

) − y

4
J

(2)
Rh-Rhm

2
Rh

+ kBT

8
[(1 + mFe + ηFe) ln(1 + mFe + ηFe)

+ (1 − mFe − ηFe) ln(1 − mFe − ηFe)

+ (1 + mFe − ηFe) ln(1 + mFe − ηFe)

+ (1 − mFe + ηFe) ln(1 − mFe + ηFe)

+ 2(1 + mRh) ln(1 + mRh)

+ 2(1 − mRh) ln(1 − mRh) − 8 ln 2], (B8)

where, consistently with the fact that Rh does not exhibit
antiferromagnetic order, we have required that sublattices β

and δ to be equivalent, that is mβ = mδ . A characteristic
of FeRh alloys is that its unit cell volume changes at the
magnetostructural transition. To account for this feature, we
incorporate the following (magnetovolumic) coupling terms
between the magnetic order parameters and the volume change
w (relative to a reference volume �0), restricted to the
minimum order allowed by symmetry:

fcoupling = 1
2α0w

2 − α1w(mFe + mRh)2 − α2wη2
Fe, (B9)

with α1 and α2 as magnetostriction coefficients and α0 as
the inverse of the compressibility. Indeed, expression (B9)
preserves the reverse sign fundamental symmetry of the
magnetic order parameters present in Eq. (B8). Therefore, the
lowest-order term for (isotropic) magnetovolumic coupling
has to be linear in the volume and quadratic in the magnetic
order parameters. We now proceed by simply appending the
coupling term (B9) to the expression (B8) so that the total free
energy of the system is f = fmag + fcoupling. Furthermore, it
is convenient to include the effect of external magnetic and
hydrostatic fields which yields the following expression for
the total Gibbs free energy of the system in reduced units:

g∗ = g

zJ
(1)
FeRh

= −1

2
mFemRh − J ∗

4

(
m2

Fe − η2
Fe

)

+ T ∗

8
[(1 + mFe + ηFe) ln(1 + mFe + ηFe)
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+ (1 − mFe − ηFe) ln(1 − mFe − ηFe)

+ (1 + mFe − ηFe) ln(1 + mFe − ηFe)

+ (1 − mFe + ηFe) ln(1 − mFe + ηFe)

+ 2(1 + mRh) ln(1 + mRh) + 2(1 − mRh) ln(1 − mRh)

− 8 ln 2] + 1

2
α∗

0w
2 − α∗

1w(mFe + mRh)2 − α∗
2wη2

Fe

−H ∗(mFe + mRh) + P�∗
0w, (B10)

where for the sake of simplicity we have set JRh-Rh = 0
and the superscript (*) indicates that the corresponding term
magnitude is given in units of (zJ (1)

Fe-Rh). We stress that the
previous equation corresponds to a variational function. The
thermodynamic free energy which is a Legendre transform of
the internal energy is a function of g∗(T ,p,H ) and corresponds
to substitute the order parameters for those that, at a given
T , minimize the function (B10). The entropy can then be
computed directly by taking into account that

S(MFe,mRh,ηFe)

= −
[

∂g∗

∂T ∗

]
P,H

= 1

8
[(1 + mFe + ηFe) ln(1 + mFe + ηFe)

+ (1 − mFe − ηFe) ln(1 − mFe − ηFe)

+ (1 + mFe − ηFe) ln(1 + mFe − ηFe)

+ (1 − mFe + ηFe) ln(1 − mFe + ηFe)

+ 2(1 + mRh) ln(1 + mRh)

+ 2(1 − mRh) ln(1 − mRh) − 8 ln 2]

= SFe(mFe,ηFe) + SRh(mRh). (B11)

In the present work, the expression for the total Gibbs free
energy of the model (B10) has been solved for α∗

1 = 0.30, α∗
2 =

−0.4241, and J ∗ = −0.96. It is worth mentioning that the
equilibrium magnetic order configurations have been obtained
by requiring the Rh magnetic moment in the AFM phase to
be μRh = 0. Accordingly, we have considered that the number
of magnetic atoms in the FM phase is twice that of the AFM
phase. Moreover, the model has been fitted to experimental
data for the transition temperatures of equiatomic and nearly
equiatomic FeRh both at atmospheric pressure and at the
applied pressure where the FM disappears [26,30–32], and to
the relative volume change at the FM-AFM magnetostructural
transition. The obtained estimates for the effective exchange
constant J

(1)
Fe-Rh = 10.2 meV and for the unit cell volume

�0 = 17.9 × 10−30 m3 are in good agreement with previously
reported values [35–37].

[1] S. Fähler et al., Adv. Eng. Mater. 14, 10 (2012).
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L. H. Lewis, J. Alloys Compd. 689, 1044 (2016).

[18] L. H. Lewis, C. H. Marrows, and S. Langridge, J. Phys. D: Appl.
Phys. 49, 323002 (2016).

[19] R. Witte, R. Kruk, M. E. Gruner, R. A. Brand, D. Wang, S.
Schlabach, A. Beck, V. Provenzano, R. Pentcheva, H. Wende,
and H. Hahn, Phys. Rev. B 93, 104416 (2016).

[20] S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Mohr-
Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S.
Moyerman, E. E. Fullerton, R. Feidenhansl, C. H. Back, and C.
Quitmann, Phys. Rev. Lett. 108, 087201 (2012).

[21] D. W. Cooke, F. Hellman, C. Baldasseroni, C. Bordel, S.
Moyerman, and E. E. Fullerton, Phys. Rev. Lett. 109, 255901
(2012).

[22] Y. Liu, L. C. Phillips, R. Mattana, M. Bibes, A. Barthélémy, and
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