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Abstract: A methodology to process radar wind profiler Doppler spectra is presented and imple-
mented for an UHF Degreane PCL1300 system. First, double peak signal detection is conducted
at each height level and, then, vertical continuity checks for each radar beam ensure physically
consistent measurements. Second, horizontal and vertical wind, kinetic energy flux components,
Doppler moments, and different precipitation-related variables are computed. The latter include a
new precipitation type estimate, which considers rain, snow, and mixed types, and, finally, specific
variables for liquid precipitation, including drop size distribution parameters, liquid water content
and rainfall rate. The methodology is illustrated with a 48 h precipitation event, recorded during
the Cerdanya-2017 field campaign, carried out in the Eastern Pyrenees. Verification is performed
with a previously existing process for wind profiler data regarding wind components, plus precipita-
tion estimates derived from Micro Rain Radar and disdrometer observations. The results indicated
that the new methodology produced comparable estimates of wind components to the previous
methodology (Bias < 0.1 m/s, RMSE ≈ 1.1 m/s), and was skilled in determining precipitation type
when comparing the lowest estimate of disdrometer data for snow and rain, but did not correctly
identify mixed precipitation cases. The proposed methodology, called UBWPP, is available at the
GitHub repository.

Keywords: hydrometeor type estimation; Doppler; wind profiler; pulsed radar

1. Introduction

Radar wind profilers (hereafter RWPs) are designed to retrieve the vertical profile
of the wind, through processing Doppler spectra, typically using wavelengths between
20 cm to 6 m, where attenuation by rain can be considered negligible. Bragg and Rayleigh
backscattering at these wavelengths, respectively, allows detection of atmospheric echoes
caused by both clear air and hydrometeor particles, respectively [1,2]. Depending on the
operating frequency, RWPs are often classified as Very High Frequency (VHF band, from
30 MHz to 300 MHz) and Ultra-high frequency (UHF band, from 300 MHz to 3 GHz). In
recent decades, RWP networks have been deployed, and routinely operated, in different
countries and regions, such as the USA (NOAA Profiler Network, [3]), Europe (COST-76
Action Program) [4], Japan (WINDAS) [5], Korea (KMA) [6] and China (CMA) [7].

The use of RWP includes a wide range of applications, such as evaluation of boundary
layer conditions [8,9] diagnostic studies of convective clouds [10,11], windshear and turbu-
lence in complex terrain [12,13] or, in recent years, assimilation into NWP models [14–17].
One key aspect of RWP data processing is the effect of precipitation particles in the sampled
volume [18–20], which needs to be taken into account; particularly, to obtain the vertical
component of the wind. In fact, previous studies, based on vertical wind components
observed by RWP, estimated height of snow or precipitation rate [21,22], but, to our best
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knowledge, very limited attention has been devoted so far to the use of RWP observations
in retrieval of explicit precipitation types. To fill this gap, the objective of this paper is
to describe a new processing methodology for RWP data, addressing, specifically, the
detection of precipitation particles and their classification into a simplified precipitation
type classification, including rain, snow, and mixed classes. While other instruments, such
as conventional polarimetric weather radars, may provide a more complete description
of hydrometeor types [23–25], we illustrate the benefits of a simplified classification with
RWP data with data sets recorded during the Cerdanya-2017 field campaign in the Eastern
Pyrenees mountains.

The verification of results is performed in two stages. First, results of the new method
(vertical and horizontal wind) are compared with an already existing processing for RWP.
Then, we use Micro Rain Radar (providing profiles of estimated precipitation type) and
disdrometer observations (with ground level automatic observations of precipitation type)
to produce verification statistics of rain, snow, and mixed precipitation estimates.

The structure of the rest of the paper is as follows. Section 2 describes briefly the
Cerdanya-2017 field campaign instruments used in this study. Then, the new processing
of RWP data is described in Section 3 and results are compared with other instruments
in Section 4. A discussion is provided in Section 5 and conclusions and final remarks are
presented in Section 6.

2. Field Campaign and Instrumentation

This section provides, first, a brief overview of the field campaign, region and period
of study, and, then, a description of the instruments used in the study.

2.1. Cerdanya-2017 Field Campaign

The datasets used in this study were recorded during the Cerdanya-2017 field cam-
paign, carried out during the 2016–2017 winter season in the Eastern Pyrenees, close to the
Spanish, French and Andorra borders (Figure 1). The purpose of the campaign was to study
different cold season meteorological phenomena influenced by complex terrain, including
cold-pools, mountain waves, and orographic precipitation [13,26]. Instruments used were
an UHF RWP, a Micro Rain Radar (MRR2), a disdrometer, and two automatic weather
stations (AWSs). The MRR2, disdrometer, and AWS SO were installed in the Das aerodrome
(see Table 1), or in the vicinity of about 2.6 km from the MRR2 (Wind Profiler and AWS
S8). The instruments were around 1100 m above sea level, surrounded by mountains, with
some peaks slightly exceeding 2900 m. One key difference between the RWP and the MRR
is the sensitivity, which is much higher for the RWP. Sensitivities were calculated following
the method described by [27], as shown in Table 2, along other characteristics explained in
more detail in the following subsections.

Table 1. Location of instruments used.

Instrument (Institution) Longitude
(◦)

Latitude
(◦)

Height ASL
(m)

RWP (Météo-France) 1.83759 E 42.39688 N 1079
MRR2 (University of Barcelona) 1.86650 E 42.38643 N 1099

Disdrometer (University of Barcelona) 1.86655 E 42.38643 N 1101
AWS S0 (Meteorological Service of Catalonia) 1.86640 E 42.38605 N 1097

AWS S8 (Météo-France) 1.82980 E 42.39340 N 1088
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Figure 1. Topography of the Eastern Pyrenees region of study showing the location of the 
aerodrome (A) with most of the instrumentation: Micro Rain Radar (MRR2), Disdrometer and AWS 
from the Meteorological Service of Catalonia. Location of an additional Météo-France AWS (number 
S8) and the Ultra-High Frequency wind profiler (UHF RWP). The main mountain peaks of Carlit 
(2921 m ASL), Puigpedrós (2914 m ASL) and Puigmal (2913 m ASL) are also labelled, as well as 
Andorra, France and Spain and their borders. 

Table 2. Main features of the RWP and MRR2 used in this study. 

Feature RWP MRR2 
Manufacturer, model Degreane, PCL1300 Metek, MRR2 

Frequency (GHz) 1.247 24.23 
Radio band UHF K 

Number of range gates 45 32 
Number of Doppler bins 128 64 

Peak power (W) 2500 0.05 
Pulse width (µs) 1 --- 

Maximum height (km) 6.5 3.1 
Minimum reflectivity at 1 km (dBZ) -15.0 -4.7 

The data used in this paper were recorded during a 48 h period, from the 24th to 25th 
of March 2017. This period was selected because it contained different regimes of 
precipitation (stratiform and convective), alternating also at different ground level 
hydrometeor types (with snow and rain transitions). Total precipitation recorded at AWS 

Figure 1. Topography of the Eastern Pyrenees region of study showing the location of the aerodrome
(A) with most of the instrumentation: Micro Rain Radar (MRR2), Disdrometer and AWS from the
Meteorological Service of Catalonia. Location of an additional Météo-France AWS (number S8) and
the Ultra-High Frequency wind profiler (UHF RWP). The main mountain peaks of Carlit (2921 m
ASL), Puigpedrós (2914 m ASL) and Puigmal (2913 m ASL) are also labelled, as well as Andorra,
France and Spain and their borders.

Table 2. Main features of the RWP and MRR2 used in this study.

Feature RWP MRR2

Manufacturer, model Degreane, PCL1300 Metek, MRR2
Frequency (GHz) 1.247 24.23

Radio band UHF K
Number of range gates 45 32

Number of Doppler bins 128 64
Peak power (W) 2500 0.05
Pulse width (µs) 1 —

Maximum height (km) 6.5 3.1
Minimum reflectivity at 1 km (dBZ) −15.0 −4.7

The data used in this paper were recorded during a 48 h period, from the 24th to 25th of
March 2017. This period was selected because it contained different regimes of precipitation
(stratiform and convective), alternating also at different ground level hydrometeor types
(with snow and rain transitions). Total precipitation recorded at AWS S0 during the
event was 30 mm. Complementarily, a second three-day event (3 to 5 February 2017) also
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containing different precipitation types at ground level, was examined, and can be found
in the Supplementary Materials.

2.2. UHF Wind Profiler

We used a RWP model PCL1300, manufactured by the French company Degreane (see
Table 2 for technical details), configured with five fixed antennas and two operating modes,
depending on the pulse length used, high and low. In high mode, the range gate length
was 187.5 m and the first gate was at 102 m above ground level (AGL), reaching 9102 m
AGL. In low mode, the gate length was 150 m and the first gate was at 96 m AGL, reaching
6696 m AGL. In order to have the maximum vertical resolution possible, RWP data used
here corresponded only to low mode. The complete update cycle of measurements was
about 3 min, but, as mentioned below, the verification of precipitation type was performed
averaging measurements into 5-min resolution data.

The five-beam configuration of the unit is illustrated in Figure 2. One beam was
oriented vertically, and the other four were tilted towards the cardinal directions, each with
the same zenithal angle (17◦, i.e., with an elevation angle of 73◦ over the local horizontal
plane). The vertical beam is numbered as beam 1 and the four beams in the cardinal
directions (North, South, East and West) are numbered 2, 3, 4 and 5, respectively. Each
beam has an angular width of 8.5◦.
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data included a flag named Pluie (rain flag, in this paper). 
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the Laboratoire d’Aérologie of the Université Paul Sabatier, the Aerologie Laboratory Wind 
Profiler Processing (ALWPP), including signal peak detection and spectrum filtering, as 
described in [28]. The output files were processed by Météo-France and stored in netcdf 

Figure 2. Scheme of wind profiler five-beam configuration with a vertical beam (blue) and four tilted
beams oriented towards the four cardinal directions with constant zenithal angle (17◦, not to scale).
Each beam is numbered according to the labels shown (1, 2, . . . ).

The manufacturer data acquisition software applied rain detection on vertical speed
and reflectivity criteria to avoid speed aliasing and receiver saturation. In particular, when
an abrupt increase in vertical speed was detected, the system increased the Nyquist velocity
and changed speed spectra resolution from 0.18 m/s to 0.30 m/s, and the output data
included a flag named Pluie (rain flag, in this paper).

RWP Doppler spectra of each beam were stored in raw data files (so-called .dat
Degreane files). Typically, these files were processed with a methodology developed at the
Laboratoire d’Aérologie of the Université Paul Sabatier, the Aerologie Laboratory Wind Profiler
Processing (ALWPP), including signal peak detection and spectrum filtering, as described
in [28]. The output files were processed by Météo-France and stored in netcdf files. These
data are referred to, hereafter, as Method1, and contain, among other variables, horizontal
and vertical wind components.
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It should be noted that ALWPP was developed to retrieve wind profiles (horizontal
and vertical components) plus additional rainfall variables, such as kinetic energy fluxes
used for erosion studies. However, ALWPP does not contain a hydrometeor classification,
unlike the proposed UBWPP. For this reason, a comparison between ALWPP and UBWPP
was performed covering only wind components, but no other variables were compared
with other instruments, as described below.

2.3. Micro Rain Radar

A Micro Rain Radar [29], model MRR2 (hereafter MRR2), manufactured by the German
company Metek GmbH, was used. It is a frequency modulated continuous wave, vertically
pointing, Doppler radar operating at K band, suitable for precipitation measurements [30].
The unit has 32 range gates and was configured with a range gate vertical resolution of
100 m, starting at 100 m AGL and reaching 3.2 km AGL–see Table 2 for a summary of
technical details. Doppler spectra of each range gate were processed with the methodology
described in [10], which included the computation of Doppler fall speed, equivalent radar
reflectivity, and precipitation type (drizzle, rain, snow, mixed, and hail), among other
variables. Vertical MRR2 profiles were available with 1-min resolution.

2.4. Disdrometer

A laser disdrometer. manufactured by the German company OTT GmbH, model
Parsivel2 [31], was also used in this study. It provided particle size and fall speed spectra
at ground level, and a number of derived variables, which included precipitating hy-
drometeor type, coded according to the World Meteorological Organization (WMO) Table
4677 specifications (WMO 2018 [32]). Disdrometer hydrometeor types were available with
1-min resolution.

2.5. Automatic Weather Stations

Two automatic weather stations (hereafter AWSs) from Météo-France and the Me-
teorological Service of Catalonia were also used. They provided, with 1-min temporal
resolution, temperature and relative humidity measurements. These two variables were
used to compute the probability of snow (assuming precipitation was present), based
on the empirical formula proposed by [33], and the thresholds determined by [34,35] to
distinguish rain, mixed, and snow cases. The ranges of probabilities were 0.00 to 0.39 (rain),
0.40 to 0.58 (mixed), and 0.59 to 1.00 (snow).

3. Data Processing

This section describes the new processing methodology, the University of Barcelona
Wind Profiler Processing (UBWPP). Input data are the raw Doppler spectra power encoded
in the so-called RWP .dat Degreane files. Further technical details about the file format
are available in the Supplementary Materials, such as the RWP parameters, the automatic
configuration of the RWP and signal decoding.

The main processing steps of UBWPP are detailed in Figure 3, including Signal Peak
Detection, Vertical Continuity Check and Parameter Calculation. Note that the first two
steps were applied to all five RWP beams, as previous methods used in radar wind profiler
processing, have done [36,37].

3.1. Signal Peak Detection

The detection of signal peaks was performed for each range of height beam at a given
time instant, where the signal was examined as a function of the Doppler spectrum. With
the method used, at most, two maximum values were detected. A maximum value followed
the definition of the signal adjusted with the convolution method [38] with smoothing
filter, where the signal was adjusted to a smoother signal, but with well-defined maxima.
It is important to note that at this point the rate of fall and its moments were calculated,
so the value of the signal was not relevant (see Supplementary Materials). As illustrated
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in Figure 4, starting from the original signal (Figure 4a) a convolution was performed
(marked in red in Figure 4b), and, based on this, two modes at most were identified. The
inflection points of these modes were used to identify the velocity interval of the signal
identified. The resulting signal identified is shown in red in Figure 4c (the blue part of the
signal was rejected). Note that the area below the identified signal was used to compute the
equivalent reflectivity.
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Figure 4. Signal peak detection on a vertical beam: (a) original signal, (b) convolution (in red)
and original signal (in blue) (c) result, where part of the original signal was refused (in blue) and
the rest (in red) was the corrected signal. At most two peaks were kept from the original sig-
nal. Data corresponds to Beam number 1 (vertical incidence, positive values corresponding to
downward movement).

Despite this scheme considering a maximum of two peaks, which, in principle, could
allow finding the true terminal velocity of hydrometeor particles in convective updrafts by
simple subtraction, this was finally not implemented. The reason was that a wide variety
of situations were found for both precipitation and non-precipitation Doppler spectra,
for example, rain with one peak or clear-air with two peaks. Therefore, the peak spectra
allowed more precise calculations (for example, of Doppler moments) but they were not
used to attempt to compute true terminal speeds of hydrometeors. The process of signal
peak detection illustrated in Figure 4 was not only applied to Beam 1 (vertical velocities)
but to all other beams (Beams 2, 3, 4, and 5).

Considering the noise level as the minimum value from the backscattered signal, and
the signal-to-noise ratio (SNR) as the ratio between the maximum signal detected by the
noise detected, then:

SNR = 10· log10
Signalmax

Noise
, (1)
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3.2. Vertical Continuity Check

A check on the vertical continuity of the peak found on the previous step was per-
formed to avoid jumps in the vertical velocity profile. These variations might be due to a
malfunction, or the detection of non-meteorological targets (birds or insects). A threshold
value was detailed to give physical meaning to the profile, where the speed found at one
height could not exceed the limit of 5 m/s at the adjacent height. The height range in high
mode was 187 m and in low mode 150 m, so, assuming this limit was deemed reasonable.
An example of this process is illustrated in Figure 5, showing first the original signal (with
amplitude normalized) at each height, then the peak detection, and, finally, the vertical
continuity test applying the threshold mentioned above. Despite the vertical continuity
test having been described explicitly for Beam 1, it was also applied to all other beams.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 24 

 

 

Considering the noise level as the minimum value from the backscattered signal, and 
the signal-to-noise ratio (SNR) as the ratio between the maximum signal detected by the 
noise detected, then: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 ∙ log10
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁

, (1) 

3.2. Vertical Continuity Check 
A check on the vertical continuity of the peak found on the previous step was per-

formed to avoid jumps in the vertical velocity profile. These variations might be due to a 
malfunction, or the detection of non-meteorological targets (birds or insects). A threshold 
value was detailed to give physical meaning to the profile, where the speed found at one 
height could not exceed the limit of 5 m/s at the adjacent height. The height range in high 
mode was 187 m and in low mode 150 m, so, assuming this limit was deemed reasonable. 
An example of this process is illustrated in Figure 5, showing first the original signal (with 
amplitude normalized) at each height, then the peak detection, and, finally, the vertical 
continuity test applying the threshold mentioned above. Despite the vertical continuity 
test having been described explicitly for Beam 1, it was also applied to all other beams. 

 
Figure 5. Example of Doppler speed profile corrected with the RWP vertical continuity test: (a) 
original signal, normalized, at each height; (b) signal after the peak detection was performed; (c) 
mean vertical speed for each height after applying the vertical continuity test. Data corresponds to 
Beam number 1 (vertical incidence, positive values corresponding to downward movement) 
recorded on the 25th of March 2017 3:01:44 UTC. 

3.3. Parameters Calculation 
Several derived parameters, including three-dimensional Wind Components, Radar 

Reflectivity, Drop Size Distribution, Liquid Water Content, Kinetic Energy flux, and 

Figure 5. Example of Doppler speed profile corrected with the RWP vertical continuity test:
(a) original signal, normalized, at each height; (b) signal after the peak detection was performed;
(c) mean vertical speed for each height after applying the vertical continuity test. Data corresponds to
Beam number 1 (vertical incidence, positive values corresponding to downward movement) recorded
on the 25th of March 2017 3:01:44 UTC.

3.3. Parameters Calculation

Several derived parameters, including three-dimensional Wind Components, Radar
Reflectivity, Drop Size Distribution, Liquid Water Content, Kinetic Energy flux, and Hy-
drometeor Type were calculated. Additional information about the formulae used for
Doppler moments are provided in the Supplementary Materials.
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3.3.1. Wind Components

In this process the radial speed was calculated for each beam, assuming the wind was
constant at a given altitude during the measurement period. The relation between zonal
(u), meridional (v), and vertical (w) velocity components are given by:

vr,1 = w, (2)

vr,2 = − cos α2·v + sin α2w (3)

vr,3 = cos α3·v + sin α3w (4)

vr,4 = − cos α4·u + sin α4w (5)

vr,5 = cos α5·u + sin α5w (6)

where αi is the angle between the vertical and the beam i, with i = 1, . . . 5 according to the
beam numbering described in Section 2.2., and downward vertical velocity was defined
as positive.

Note that if the angle for all beams was the same, then:

v =
v3 − v2

2· cos α
(7)

u =
v5 − v4

2· cos α
(8)

w = v1 =
v2 + v3

2· sin α
=

v4 + v5

2· sin α
(9)

According to the last equations, the vertical speed w could be obtained 3 different
ways; although UBWPP only used the direct measurement from Beam 1.

3.3.2. Radar Reflectivity

The frequency of the WPR was 1274 MHz so the wavelength was around 0.23 m and
the Rayleigh scattering regime was valid for cloud droplets and raindrops. The radar
reflectivity was calculated from the power received, once filtered. Equation (10) shows the
radar reflectivity Z from Beam 1 (vertically pointing):

Z(dBZ) = 10· log10 Pr − Ct + 20· log10 h, (10)

where Pr is the received power, Ct is related to the radar constant RC (Ct = 10log10(RC))
previously known, and h is the height above ground level, assuming the antenna height
is negligible.

3.3.3. Precipitation Type

Prior to estimating the precipitation type it was necessary to distinguish clear air
echoes from precipitation echoes. Therefore, a precipitation detection procedure was
applied, consisting of the verification of at least one of the two following conditions: (i) the
rain flag; (ii) the signal to noise ratio of the peak detected (see Section 3.1) exceeding 10 dB.

Once a precipitation echo was detected we proposed two approaches for the evalua-
tion of the precipitation type, considering in both the following simplified classes, based o
thermodynamic phase: rain (including liquid precipitation), snow (including solid precip-
itation) and mixed (including both solid and liquid precipitation), and unknown (when
none of the former classes was detected).

The first approach was based on Atlas et al. (1973) [39] (hereafter A73) and it classifies
precipitation considering the observed vertical velocity w and spectral width σ given
for each hydrometeor type, according to the expected terminal velocity values for rain
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vrain and snow vsnow particles obtained from the reflectivity, as described in [39]. The
equations are:

vrain = 2.65·Z0.114 (11)

vsnow = 0.817·Z0.063 (12)

where velocities are expressed in m s−1 and Z in mm6 m−3. The method is modified to
include the mixed case, containing both solid and liquid precipitation.

The second approach was based on the threshold values for different hydrometeors
reported in Ralph et al. 1995 [40] (hereafter R95) where the values were modified to include
the mixed case. The thresholds are detailed in Table 3.

Table 3. Precipitation type adapted from A73 and R95.

Approach Type Condition

A73

Rain |vrain − w|< 2·σ and |vsnow − w| > 2·σ

Mixed
|vrain − w| < 2·σ and |vsnow − w| < 2·σ

and
vrain ≥ w ≥ vsnow

Snow |vrain − w| > 2·σ and |vsnow − w| < 2·σ
Unknown None of the above

R95

Rain w ≥ 3 m s−1 and σ2 ≥ 1 m2 s−2

Mixed 2 m s−1 ≤ w ≤ 3 m s−1

Snow
0.5 m s−1 < w < 2 m s−1

and
σ2 < 1 m2 s−2

Unknown None of the above

Despite both A73 and R95 echo precipitation classifications originally using different
initial variables and final precipitation classes they both rely on comparing the Doppler
velocity spectrum measured at vertical incidence with terminal velocity of precipitation
particles. With our proposal we tried to adapt this approach considering also a mixed
precipitation class, including solid and liquid precipitation.

3.3.4. Drop Size Distribution

For precipitation echoes classified as rain, the drop size distribution N(D) was com-
puted assuming a gamma distribution [41]:

N(D) = N0·Dµ·e−Λ·D (13)

where D is the drop diameter (in m), N0 is the intercept (in m−(µ+4)) that can be interpreted
as the number density per unit drop diameter, Λ is the slope (in m−1) associated with the
gradient of the distribution, and µ the shape parameter (dimensionless). This last parameter
follows the quadratic expression derived by [42] as explained in [28]:

Λ = 50.0·µ2 + 1200.0·µ + 3390.0 (14)

As the shape parameter µ has no analytical equation, it must be solved using the
vertical speed, expressed in terms of ai (from i = 1, 2 and 3) coefficients [43].

W(D) = a1 − a2·e−a3·D (15)

and the mean vertical speed obtained after integration over all diameter from 0 to infinity.
In this analysis the vertical air speed is considered negligible.

< W > = a1 − a2·
(

1 +
a3

Λ

)−(µ+7)
(16)
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Thus, the value of µ is calculated using the intersection of two functions (f 1, and f 2),
derived from Equation (16). The analytical solution is obtained giving values to µ between
−6.9 to 30 with a resolution of 0.01.

f1 =
−1

µ + 7
· ln

(
a1 − w

a2

)
(17)

f2 = ln
(

1 +
a3

Λ

)
(18)

where the units of a1 and a2 are m s−1, and for a3 are m−1. These parameters are function
of the density, except a3:

a1 = 9.65·ρ0

ρ

0.4
, (19)

α2 = 10.3·ρ0

ρ

0.4
, (20)

a3 = 600, (21)

The rain rate R is computed assuming that the mean drop size distribution N(D),
follows a gamma function and integrating over all diameters [39]:

R = N0·Γ(µ + 4)·π
6
·
(

a1·Λ−(µ+4) − a2·(Λ + a3)
−(µ+4)

)
, (22)

3.3.5. Liquid Water Content

The liquid water content (LWC) is the liquid water amount contained in a unit volume,
which is proportional to the third moment of the DSD. Supposing a spherical shape, the
density is ρw equal to 106 in g m−3, the LWC units are g m−3, and is given by:

LWC = ρw·
π

6
·N0·

Γ(µ + 4)
Λµ+4 (23)

3.3.6. Kinetic Energy Flux

The rain kinetic energy flux crossing a horizontal surface of unit area during a unit of
time is decomposed in vertical and horizontal components. The horizontal kinetic energy
flux HKEF is a function of the horizontal wind speed:

HKEF = ρw·V2·R
2

(24)

where V is the module of the horizontal wind and R is the rain rate. The unit of HKEF
is g s−3. The vertical kinetic energy flux VKEF (also in g s−3) is a function of the
vertical speed:
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These equations were derived and used in [28] to estimate rainfall kinetic energy with
radar data, complementing previous studies of soil erosion effects of rainfall made with
disdrometric measurements [44].

4. Results

The results of the new methodology are illustrated for the Cerdanya-2017 field cam-
paign precipitation case recorded from March 24 to 25th March 2017 [26], where the passage
of a warm and a cold front produced several hydrometeor type transitions at ground level
alternating with stratiform and shallow convective precipitation.
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The verification is described in two distinct parts: wind components and precipitation type.
Wind components were computed with the Aerologie Laboratory Wind Profiler Pro-

cessing (ALWPP) [28] (Method1), and compared with the new proposed methodology
named University of Barcelona Wind Profiler Processing (UBWPP), hereafter Method2.
MRR2 data is also used to compare the vertical wind estimates. The purpose of this com-
parison is to ensure that Method2 is able to properly compute wind components, using
Method1 as a benchmark.

Then a comparison of Hydrometeor type obtained with Method2 is performed with
MRR2 (profiles), and disdrometer and AWS data (at ground level).

4.1. Vertical Speed

The vertical speed wind component is an essential variable to perform the estimation
of precipitation type; therefore, here we compared the average estimates performed with
RWP (Method1 and Method2) and MRR2, processed according to [10] and homogenizing
both the temporal and spatial resolution to Method1 (Figure 6). Some differences are
expected between RWP and MRR2 estimates, due to the different frequencies of operation
(UHF vs. K band) and, to a lesser extent in this case, to the siting of the two instruments,
given the mostly stratiform character of the event. MRR2 can only observe precipitation
particles while RWP detects both precipitation and clear air wind.
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Figure 6. Vertical speed (downward defined positive) estimates for 24th to 25th March 2017.
(a) MRR2, (b) RWP (Method1) and (c) RWP (Method2).

Figure 6 shows clear similarities between the estimates of the two instruments and
between Method1 and Method2. An overall agreement was found in the pattern distribu-
tion, with a clear sharp gradient, indicating a melting layer signature, around 1 km AGL at
00 UTC (more evident for the MRR2, Figure 6a), and also negative speeds (updrafts, in
blueish colors) around 00 UTC, much more clearly (in intensity in duration) in both RWP
estimates. The better ability of the RWP to observe updrafts was expected for UHF mea-
surements able to measure Bragg backscattering caused by air molecules unlike K band
measurements, which only detect updrafts if precipitation particles are present.

A more detailed comparison between Method1 and Method2 is shown in the scatter
plot and frequency distributions of Figure 7, distinguishing RWP echoes labelled with
the rain flag from the rest. Distribution patterns of rainy and non-rainy conditions for
Method1 and Method2 are very similar, unimodal and wider vs bimodal with the main
mode centered at 0 m/s, respectively. The global analysis of 29820 points indicated a
Mean Error (ME) (Method2–Method1) of −0.04 m/s, a Root Mean Square Error (RMSE) of
0.39 m/s, and a correlation coefficient of 0.86.
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Figure 7. Vertical speed from ALWPP (Method1) vs UBWPP (Method2) showing wind profiler
echoes in rainy (20127 samples, in blue) and non-rainy (9693 samples, in orange) conditions, the
corresponding linear regression (also in blue and orange) and the diagonal (dashed) line. The top
and right panels show the normalized distributions of rainy and non-rainy conditions for Method1
and Method2, respectively.

4.2. Horizontal Wind

Figure 8 shows scatter plots of Method1 vs Method2 for both zonal (U) and meridional
(V) wind components (left column) plus histograms of differences between the two methods
(right column). Note the similar patterns found in the zonal and meridional distributions
and the symmetrical and unbiased (<0.1 m/s) shape of the distributions of differences.
Statistical analysis of 24201 samples indicated ME, RMSE and correlation coefficients for
zonal (meridional) components of −0.034 m/s, 1.089 m/s and 0.99 (0.088 m/s, 1.154 m/s
and 0.96), respectively.

4.3. Precipitation Type

The precipitation type estimation produced with Method2 was evaluated by compar-
ing profiles of equivalent height obtained from MRR2 [10], and ground level disdrometer
and AWS data.

Figure 9 provides an overview of precipitation type estimated by the MRR2 (upper
panel) and Method2 (lower panel), in this case based on the A73 approach - note that the
number of classes was different for each method. The overall pattern was similar, starting
with snow (first as virga, reaching the ground around 12 UTC), later with a brief rain shaft
and more snow, then (beginning sometime between 16 and 17 UTC) with rain below the
melting level and snow above, and finally snow (about 8 UTC). Moreover, a radio-sounding,
launched at the Das aerodrome on the 24th of March at 22.34 UTC (see Supplementary
Material) indicated that the freezing level was about 0.8 km AGL, consistent with results
displayed in Figure 9. The different bin vertical resolution of the two instruments and the
distance between them might partly explain the differences in freezing levels. Moreover,
despite the general pattern of precipitation types estimated from both instruments being
similar, the higher sensitivity of the RWP revealed more precipitation areas, such as those
above 0.5 km AGL, from 16 to 20 UTC 24 March 2017.
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Figure 8. Scatterplots and distributions of differences between ALWPP (Method1) and UBWPP
(Method2) for zonal component U, panels (a,b), and meridional component V, panels (c,d). Scatter
plots show correlation (red) and perfect correlation in diagonal (dashed) lines.
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Figure 9. Precipitation type estimation during the 24 and 25 March 2017 event. (a) MRR2 observations
with 6 classes and (b) RWP Method2, using A73, with 5 classes. Note RWP data has been clipped to
the MRR2 maximum height. White areas indicate clear air echoes.

A quantitative comparison was performed with disdrometer data and AWS estimates.
As Method2 detected five types of precipitation (rain, mixed, snow, no data and unknown)
and the disdrometer provided a more complete list of hydrometeor types (WMO Table
4677), the latter had to be properly grouped to perform the comparison. Table 4 lists the
WMO codes selected to match the Method2 precipitation types. Note that the Unknown
class was assigned to hail, despite this hydrometeor mpt being observed in the datasets
examined, so this class should be further verified.

Table 4. Correspondence between precipitation types observed by the disdrometer (WMO
Table 4677) and precipitation types estimated with Method2.

Disdrometer
Precipitation Type WMO Table 4677 Values Method2 Precipitation Type

Drizzle From 51 to 53
RainDrizzle with rain From 58 to 59

Rain From 61 to 65

Rain, drizzle with snow From 68 to 69 Mixed

Snow From 71 to 75
SnowSnow grains 77

Soft hail From 87 to 88

Hail From 89 to 90 Unknown

The comparison between Method2 and disdrometer and AWS station data also had to
deal with their different temporal resolutions. For practical reasons, Method2 precipitation
type, originally with 3.5-min temporal resolution were transformed into 5-min resolution
data. Then, AWS and disdrometer data, originally with 1-min resolution, were converted
to 5-min resolution with an ad-hoc procedure, described in Appendix A. The number of
resulting cases is listed in Table 5.
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Table 5. Number of each precipitation type cases for Method2 (A73 and R95) and disdrometer
observations after the 5-min time resolution re-binning.

Precipitation Type Method2 with A73 Method2 with R95 Disdrometer

Rain 113 124 158
Mixed 46 60 37
Snow 118 109 85

Unknown 5 2 -

Total 282 295 280

Finally, to interpret the comparison between the different datasets it must be taken
into account that the Das aerodrome (where the MRR2, disdrometer and AWS S0 were) was
about 3 km from the RWP site (see Figure 1). Moreover, the lowest RWP precipitation type
computed with Method2 was about 300 m above ground level (AGL) and the measures
from AWS and disdrometer were about 1.5 m above ground level.

Figure 10 displays the Method2 precipitation type estimated at the lowest range gate
(background colors), disdrometer observations, and AWS derived estimates at S0. It was
apparent that the overall match was reasonably good, capturing the global initial snow,
rain, and final snow periods. AWS S8 provided very similar results (not shown).
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Figure 10. Precipitation type estimated from different sources for the 24 to 25 March 2017 event show-
ing precipitation type estimates from Method2 (vertical, colored stripes), disdrometer observations
(small colored circles), and AWS derived Koistinen-Saltikoff (KS) probability of snow (thick black
line) at AWS S0 with reference lines for values separating the rain and mixed classes (dashed black
line) and the mixed and snow classes (black dotted line). For the sake of simplicity disdrometer
colored circles are shown at fixed KS probabilities within the corresponding class.

A quantitative comparison between precipitation type derived from Method2 and
disdrometer data was performed with verification scores considering categorical events
for the occurrence of the different classes. Scores computed were Probability of Detection
(POD), False Alarm Ratio (FAR), Odds ratio skill score (ORSS) and the True Skill Statistic
(TSS). A complete description of these scores is given by [45] and formulae used here are
detailed in Appendix B.
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The quantitative analysis of Method2 precipitation type was performed for both the
so-called Atlas and Ralph approaches described in Section 3. For both approaches a range
of time windows (additional time before and after the nominal time) were considered in the
evaluation, to handle the effect of possible temporal mismatches accounting for the time
necessary for the precipitation particle to reach the ground, which could be exacerbated
by the presence of strong horizontal wind. Verification scores, considering time windows
with intervals of 0, 5, and 10 min, are shown in Table 6 for Rain, Mixed, Snow, and No
Precipitation cases.

Table 6. Verification scores of Method2 precipitation type at the lowest height bin compared with
disdrometer observations. Time interval windows of 0, 5 and 10 min were considered for both
A73 and R95 precipitation type approaches. Perfect values for each verification score are given
in parentheses.

Approach Parameter
Time

Interval
(min)

POD (1) FAR (0) ORSS (1) TSS (1)

A73

Rain

0

0.78 0.10 0.94 0.68
Mixed 0.19 0.81 0.41 0.10
Snow 0.90 0.40 0.93 0.66

No Precipitation 0.91 0.08 0.98 0.83

Rain

5

0.79 0.10 0.95 0.70
Mixed 0.24 0.76 0.57 0.16
Snow 0.92 0.35 0.95 0.68

No Precipitation 0.92 0.08 0.98 0.84

Rain

10

0.79 0.10 0.95 0.69
Mixed 0.31 0.69 0.68 0.23
Snow 0.93 0.32 0.95 0.97

No Precipitation 0.92 0.08 0.98 0.84

R95

Rain

0

0.88 0.05 0.99 0.83
Mixed 0.33 0.78 0.57 0.21
Snow 0.77 0.44 0.83 0.54

No Precipitation 0.88 0.07 0.98 0.81

Rain

5

0.88 0.05 0.99 0.84
Mixed 0.55 0.52 0.81 0.44
Snow 0.82 0.37 0.88 0.60

No Precipitation 0.89 0.07 0.98 0.82

Rain

10

0.89 0.05 0.99 0.84
Mixed 0.59 0.55 0.84 0.48
Snow 0.83 0.34 0.90 0.62

No Precipitation 0.89 0.07 0.98 0.82

Results for both A73 and R95 showed skilled distinguishing of No Precipitation
echoes, and, therefore, Method2 was able to discriminate between Precipitation and No
Precipitation echoes, yielding the best scores of all classes (POD ≥ 0.88, FAR ≤ 0.07,
ORSS ≥ 0.98, TSS ≥ 0.81). Rain and Snow were reasonably well classified, A73 being better
with Snow and R95 with Rain. Mixed types were generally not well classified, with PODs
systematically lower than FARs and ORSS and TSS well below 1.

5. Discussion

As seen in Section 4.1., the new methodology UBWPP (Method2) provided very sim-
ilar estimates of vertical wind component w to those obtained by the existing ALWPP
methodology (Method1), with a correlation index of 0.86. Small differences were found,
mainly due to signal processing treatment (Method2 being occasionally slightly less sen-
sitive than Method1), and also due to the vertical continuity check (allowing Method2 to
detect vertical speeds greater than 6 m/s, undetected by Method1). An example of the
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latter can be seen around 5 UTC on 25 March (Figure 6). The comparison of horizontal
wind components between Method1 and Method2 also provided very similar results, with
correlation coefficients equal to, or greater than, 0.96.

Regarding precipitation impact upon vertical wind components, a key question in
this study, the comparison between Method1 and Method2, also showed that, in rainy
conditions (Figure 7, rain flag on), the w distribution displayed a double peak, with a main
peak close to zero and a secondary peak close to 1 m/s. In non-rainy conditions (rain flag
off), the two distributions were unimodal with mode close to 1 m/s (Figure 7). This is a
well-known pattern in RWP observations in cases of rain, as air and rain particles exhibit
two distinct peaks, confirming that Method2 was able to detect them.

An additional comparison of Method1 versus Method2 horizontal and vertical wind
components during a three-day period provided similar results to the case examined here
(see Supplementary Materials).

Further insight into the effect of rain on vertical wind estimates is provided by
Figure 11, which shows a contour frequency altitude diagram for rainy and non-rainy
conditions, where frequency is shown in absolute terms (counts) with a common color
scale that allows comparison between the two panels. As expected, in rainy conditions
(Figure 11a) the distribution was asymmetric and the Doppler spectra widened, particularly
at lower levels (<1 km AGL). This was likely due to the presence of raindrops that, as
they approach the ground, increase their size, probably due to collision and coalescence
processes either with other raindrops or with lower-level cloud droplets, reaching higher
speeds (>5 m/s) and tilting the distribution to positive speeds, with the mode of the
distribution (reddish colors) clearly tilted at lower levels (<3 km AGL). On the contrary,
non-rainy conditions (Figure 11b) showed a more symmetrical distribution, in this case
with slightly longer cues to the right at lower levels consistent with shallow convection,
and the distribution mode close to 0 m/s.
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Figure 11. Contour frequency altitude diagram of vertical speed computed with RWP Method2 for
24 to 25 March 2017 considering: (a) rainy conditions (rain flag on), (b). non-rainy conditions (rain
flag off). Frequencies of counts are shown in absolute terms.

The quantitative analysis of Method2 precipitation classification described in
Section 4.3. considering two approaches (A73 and R95), provided mostly satisfactory
results in terms of verification scores. No Precipitation and Snow echoes were very well
identified by A73, with PODs ranging from 0.91 to 0.92 and 0.90 to 0.93, respectively, while
for Rain, PODs were a bit lower, 0.78 to 0.79 from A73, and FARs were generally low, not
exceeding 0.40 for snow echoes. Mixed echoes were poorly classified, despite the visual
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inspection of Figure 9, displaying them in the transition level between snow and rain, as
expected. However, both their POD and FAR were unsatisfactory.

The approach based on R95 also provided good results regarding the identification of
Rain, Snow, and No Precipitation echoes, with PODs ranging from 0.77 to 0.89 and FARs
not exceeding 0.44 for snow echoes. Mixed echoes were better classified than using A73,
with PODs ranging from 0.33 to 0.59 and FARs 0.55 to 0.78.

Based on Table 6 (ORSS and TSS scores), A73 performed best at detecting Snow and
No Precipitation echoes and R95 provided the best results for rain echoes and Mixed
cases, despite the latter still having important deficiencies. Therefore, depending on the
application required, one or the other approach might be more advantageous.

The fact that the mixed class at ground level was mostly associated with snow to
rain and rain to snow transitions, and the disdrometer and the RWP were not collocated,
might have influenced this discrepancy. It should be noted that the mixed class definition
based on A73 was successfully tested for MRR2 and the disdrometer collocated during the
Cerdanya-2017 field campaign [10].

To further illustrate the event examined, from 24 to 25 March 2017, a selection of
variables computed with Method2 and the A73 approach are shown in Figure 12 (radar
reflectivity, fall velocity, horizontal wind, and precipitation type). The passage of a warm
front with an associated vortex circulation on 24 March was well captured by the wind
profile (shifting from south to west) and the onset of precipitation, mostly as rain at ground
level. A few hours later, at around 3 UTC 25 March, a cold front brought convective
developments (a reflectivity tower exceeding 5.5 km AGL) and stronger eastern winds at
all levels, shifting later to the south-west, with the arrival of the colder air mass which
implied a transition from rain to snow at ground level. More details of this event can be
found in [26].
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6. Conclusions

A new processing methodology of wind profiler Doppler spectra called UBWPP
(Method 2) has been described, addressing the computation of horizontal and vertical
wind components, and other variables such as radar reflectivity, spectral width, vertical
and horizontal kinetic energy, refractive index, liquid water content, drop size distribution
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parameters, and a simplified precipitation type classification (including rain, snow, and
mixed classes).

The performance of Method2 was assessed using observations of a PCL1300 Degreane
UHF wind profiler plus other datasets recorded during the Cerdanya-2017 field campaign.
A 48h precipitation event was selected for this purpose as it included different ground-level
snow to rain transitions.

Quantitative comparisons with a previously existing methodology to compute hori-
zontal and vertical wind components provided satisfactory results. Nearby disdrometer,
automatic weather stations, and Micro Rain Radar observations were used to evaluate the
Method2 precipitation type. Despite some limitations in the comparison procedure, quali-
tative and quantitative results based on contingency table verification scores indicated an
overall good performance of the estimated precipitation for snow and rain types showing
promise for further application, unlike mixed types, that were not correctly diagnosed.

Future work is planned to review the mixed precipitation class definition and evaluate
Method2 with a larger dataset with co-located instruments such as a disdrometer, a Micro
Rain Radar, or a polarimetric weather radar. A larger observational data set should be
used not only to confirm current results, but also to assess the feasibility of expanding
precipitation types; for example, including hail cases.

A version of Method2 written in Python is publicly available at the GitHub repos-
itory with the name UBWPP (https://github.com/AlbertGBena/UBWPP (accessed on
30 September 2022)).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14195023/s1, Supplementary Material S1: File Header of the Degreane wind profiler
PCL1300; Supplementary Material S2: Calculation of selected parameters contained in the Degreane
file header; Supplementary Material S3: Decoding of Degreane dat files; Supplementary Material
S4: Overview of Radar Wind Profiler Doppler processing; Supplementary Material S5: Moments
description; Supplementary Material S6: Evaluation of additional events; Supplementary Material S7:
Additional information on 24 March 2017 event.
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Appendix A

This appendix details the method to reclassify the hydrometeor type from disdrometer
records, in 1-min resolution, to 5-min resolution, to match the wind-profiler estimates
resolution. Figure A1 shows how the five 1-min resolution (m1 to m5) hydrometeor
types (Type1 to Type5) are transformed into one of the possible five hydrometeor classes:
Rain, Snow, Mixed or No Precipitation. The first possibility considered is that all five
1-min types are the same (“F All Types”) which obviously yields the same hydrometeor
type. The second one considers the number of rain (R) and snow (S) minutes are the
same which produces a Mixed type. The third possibility considers that there are more
than three 1-min types equal to no precipitation which produces a No Precipitation type.
Then two symmetric groups of conditions are considered in case all 1-min types are not
equal to snow or rain, leading to various possibilities. Table A1 lists examples of the
hydrometeor reclassification.
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Figure A1. Flow diagram showing the hydrometeor reclassification from 1-min to 5-min periods.

Table A1. Examples of precipitation type reclassification from 1-min to 5-min resolution.

Case

5-min Interval of
1-min Types Type

Chosen
m1 m2 m3 m4 m5

1 Rain Rain Rain Rain Rain Rain
2 Snow Snow Snow Snow Snow Snow
3 Rain Rain Rain Rain Mixed Rain
4 Snow Snow Snow Snow Mixed Snow
5 Rain Rain NoPrec Snow Snow Mixed
6 Rain Rain Rain Snow Snow Mixed
7 Snow Snow Snow Rain Rain Mixed
8 NoPrec NoPrec NoPrec Rain Rain NoPrec
9 Rain Rain Rain Rain Snow Mixed

10 Snow Snow Snow Snow Rain Mixed
11 Rain Rain Rain Mixed Mixed Mixed

Appendix B

The verification scores used are based on a traditional 2 × 2 contingency table where
“hits” represent the number of events (precipitation types) correctly forecast, “misses” the
number of events not forecast, “false alarms” the number of forecast events that didn’t occur
and “correct negatives” the correctly forecast events that didn’t occur. Scores considered
here are Probability of Detection (POD), False Alarm Ratio (FAR), Odds ratio skill score
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(ORSS) and the True Skill Statistic, also known as Hanssen and Kuipers discriminant or
Peirce’s skill score, (TSS), given by the following equations:

POD =
hits

hits + misses
(A1)

FAR =
f alse alarms

hits + f alse alarms
(A2)

ORSS =
hits·Correct negatives−misses· f alse alarms
hits·Correct negatives + misses· f alse alarms

(A3)

TSS =
hits

hits + misses
− f alse alarms

Correct negatives + f alse alarms
(A4)
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