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Observational studies have shown higher folate consumption to be associated with lower risk of 
colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could 
further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in 
set‑based variant testing has higher power to detect gene–environment (G × E) interactions and may 
provide information on the underlying biological pathway. We investigated interactions between 
folate consumption and predicted gene expression on colorectal cancer risk across the genome. We 
used variant weights from the PrediXcan models of colon tissue‑specific gene expression as a priori 
variant information for a set‑based G × E approach. We harmonized total folate intake (mcg/day) based 
on dietary intake and supplemental use across cohort and case–control studies and calculated sex and 
study specific quantiles. Analyses were performed using a mixed effects score tests for interactions 
between folate and genetically predicted expression of 4839 genes with available genetically 
predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal 
tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify 
genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with 
folate intake on CRC risk for genes including glutathione S‑Transferase Alpha 1 (GSTA1; p = 4.3E−4), 
Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E−4), and Aspartylglucosaminidase (AGA : 
p = 4.5E−4). We identified three genes involved in preventing or repairing DNA damage that may 
interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular 
damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part 
of a complex that functions in the recovery of double strand breaks and AGA  plays a role in lysosomal 
breakdown of glycoprotein.

Folate is a naturally occurring, water-soluble B vitamin that cannot be produced by the human body and plays 
a key role in DNA formation and is necessary for cellular division and tissue differentiation. It is found abun-
dantly in green leafy vegetables, legumes, fruits, and its more potent form, folic acid, is found in supplements 
and fortified  foods1. Supplementary folic acid is routinely prescribed during pregnancy as an evidence-based 
intervention to prevent neural tube defects in  utero2,3. Dietary deficiency is typically found in persons subsist-
ing on inadequate diets, as well as chronic alcoholics with diminished  absorption4. Fortification of grains with 
folic acid began in the early 1990s to prevent nutritional  deficiencies5,6. To date, 71 countries have legislative 
mandates for including folate in the fortification of milled  grains5. Results pre- and post-fortification and risk of 
CRC have been somewhat  inconsistent7–13, suggesting that folate might play a more complex role in colorectal 
carcinogenesis through various  interactions14–16. Given the complexity of the relationship between CRC and 
folate, there is a need to elucidate the underlying biological mechanisms and possible differential risk based on 
individual  genetics15.

Increased folic acid consumption is known to lower circulating levels of homocysteine, a common amino acid 
that has been associated with numerous  diseases6,17,18. The absence of folic acid leads to impaired DNA synthesis 
and disturbances in red blood cell  maturation19. Due to its role as a carrier of one-carbon groups and in folate-
mediated one-carbon metabolism (FOCM), insufficient folate consumption has been implicated as a possible 
cause of  cancer12,20–23. Consistent with this hypothesis previous studies have shown evidence that greater folate 
intake is associated with a reduced risk of colorectal adenomas and cancers (CRC)11,21,24. A pooled analysis of 
13 prospective studies in 2010 observed a modest effect, estimating a 2% risk reduction for CRC per 100 μg/day 
increase in total folate  consumption25.

Candidate gene approaches targeting FOCM-related genes have shown associations with CRC  risk24,26,27. This 
has raised interest in studying interactions between folate and genetic  variants23,28. As such, it has been hypoth-
esized that germline mutations to the enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) would be a 
driver of the effects on folate on CRC  risk11,29,30. A common mutation, 677TT in MTHFR has been associated with 
a greater decreased risk of CRC in high consumers of folate and low alcohol  consumption27,29,31,32 compared to 
lower folate consumers. However, such analyses have relied on the assumption that FOCM-related genes are the 
driving genetic force on the pathway from folate consumption to CRC development. A genome-wide approach 
has the potential to identify novel genes that may modify the folate–CRC association.

To this end, we conducted a novel set-based genome-wide analysis to test interactions between genes and total 
folate intake on CRC risk. By using a set-based approach we may increase the power to detect associations, which 
is a common issue in traditional gene–environment interaction studies. We incorporate functional annotation 
based weights from PrediXcan, a transcriptome prediction  tool33.

Methods
Study participants. We used epidemiological and genetic data from studies included in three international 
CRC consortia: the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal 
Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry (CCFR). Full details have been pub-
lished  previously34,35, and the demographic characteristics of study participants are summarized in Table 1. We 
describe the study designs in Supplementary Table 1A and present results for the study design specific effects of 
total folate on CRC for study designs in Supplementary Table 1B. In case–control study designs, included cases 
were ascertained using population-based sampling and age-matched controls. In prospective cohorts, cases were 
identified through linkage to cancer registries. Participants with non-European ancestry were excluded due to 
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small sample sizes among those with genetic data. Informed consent was given by all participants, and studies 
were approved by their respective Institutional Review Boards and complies with all relevant ethical regulations.

Genotype data. Details on genotyping and imputation have been reported  previously36. In brief, DNA was 
mostly obtained from blood samples, with some from buccal swabs. Several platforms (the Illumina Human-
Hap 300k, 240k, 550k and OncoArray 610k BeadChip Array system, or Affymetrix platform) were used for 
 genotyping37,38. Samples were excluded on the basis of sample call rate ≤ 97%, heterozygosity, unexpected dupli-
cates or relative pairs, gender discrepancy and principal component analysis (PCA) outlier of HapMap2 CEU 
cluster. SNPs were excluded on the basis of inconsistency across platforms, call rate < 98%, and out of Hardy–
Weinberg equilibrium (HWE) in controls (p < 0.0001)37. SNPs were imputed to the CEU population in Haplo-
type Reference Consortium (HRC version r1.0) if not directly  genotyped39, and restricted by imputation accu-
racy  (R2 > 0.3).

Genetically predicted gene expression. The sets of genetic variants and weights for predicting gene 
expression were downloaded from the publicly available PredictDB Repository (https:// hakyi mlab. org/ resou 
rce/ predi xcan/). The weights for the predicted gene expression were obtained by an elastic net penalized regres-
sion approach using the genome-wide variant data and transcriptome data from 169 colon tissue samples from 
the GTEx project (GTEx v6)40 (Supplementary material). We restricted GTEx data to the transverse colon as it 
included the entire colonic wall and as such the epithelial layer in the mucosa most relevant to CC development 
while the GTEx sigmoid colon data only included the muscle layer. Genes for which SNPs explained at least 1% 
of the variation in CRC risk were selected for interaction analyses. A total of 4839 genes were included.

Exposure assessment. Basic demographics and environmental risk factors were collected using in-per-
son interviews and/or structured  questionnaires35,41–49. For these data, we carried out a multi-step data har-
monization procedure, reconciling each study’s unique protocols and data-collection instruments as discussed 
 previously34. Folate and folic acid intake were assessed at the reference time using food frequency questionnaires 
(FFQs). For cohort studies, the reference time was time of enrollment or blood collection. Folate and folic acid 
intake in each study were determined based on micrograms per day (mcg/day) of folate from foods (i.e., dietary 
folate) and mcg/day of folic acid from supplements (single or multivitamins) when available. Only two of the 23 
studies with dietary folate intake did not capture information regarding supplemental folate. To account for the 
higher bioavailability of synthetic folic acid vs. natural folate in foods, we calculated total folate intake as dietary 
folate equivalents (total mcg DFE = mcg of dietary folate + 1.7 × mcg folic acid from supplements)50. Because 
the time of enrollment for some studies overlapped or followed the period of folic acid fortification (1996–

Table 1.  Characteristics of participants from all studies by colorectal cancer case/control status and Chi-
square p-values for statistical differences. Continuous variables were presented as mean and standard deviation 
(SD) and p-values were calculated using Student’s t test for difference in means; categorical variables were 
presented as n (%) and p-values were calculated using Pearson Chi-square test. *Statistically significant 
difference between cases and controls.

Cases Controls p-value

N 13,498 13,918

Male (%) 6190 (45.9%) 6014 (43.2%) < 0.001*

Mean reference age (SD) 65.0 (10.5) 65.0 (9.9) 0.971

BMI in kg/m2 (%)

 Normal (18.5–24.9) 4415 (34.0%) 5260 (39.0%)

< 0.001* Overweight (25–30) 5355 (41.2%) 5451 (40.4%)

 Obese (≥ 30) 3215 (24.8%) 2782 (20.6%)

Mean total energy consumption in kcal/day (SD) 1938.3 (769.1) 1911.3 (718.7) 0.003*

Sex-study specific quantile of total folate consumption in mcg/day (%)

 First quantile 3399 (25.2%) 3176 (22.8%)

< 0.001*
 Second quantile 3089 (22.9%) 3235 (23.2%)

 Third quantile 4120 (30.5%) 4162 (29.9%)

 Fourth quantile 2890 (21.4%) 3345 (24.0%)

Alcohol consumption in g/day (%)

< 0.001*
 Nondrinker 7031 (56.2%) 6852 (52.6%)

 1–28 g/day 4464 (35.7%) 5250 (40.3%)

 > 28 g/day 1017 (8.1%) 924 (7.1%)

Smoking status

0.626
 Never smoker 6452 (48.6%) 6736 (49.4%)

 Former smoker 5271 (39.8%) 5328 (39.1%)

 Smoker 1530 (11.5%) 1560 (11.5%)

https://hakyimlab.org/resource/predixcan/
https://hakyimlab.org/resource/predixcan/
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1998), these studies accounted for folic acid fortification when calculating dietary folate intake and entered 
dietary folate intake as mcg of natural food folate + 1.7 × mcg folic acid from fortified food (see Supplementary 
Table  1A). Two studies (OFCCR, DALS) entered supplement data as regular user vs. nonuser; for these, we 
assumed regular use was 400 mcg/day or 400 mcg/tablet (for multivitamins), which corresponds to the generic 
dose in  supplements25,51. The primary analysis used sex-study specific quartiles of total folate using controls 
based on the calculated daily dietary and supplemental intake, if available. By using categorical sex-study specific 
quartiles we reduce the influence of outliers and skewed distributions and is consistent with the Cancer Cohort 
Pooling  Project52. To further explore the differences in bioavailability, secondary analyses we explored sex-study 
specific quartiles of dietary folate and binary (yes/no) supplemental folate separately.

Statistical analysis. We used the Mixed effects Score Tests for interaction (MiSTi)53, a mixed effects score 
test for gene-based interaction test with folate consumption on CRC risk, to conduct a pooled analysis across all 
studies. MiSTi modeled the gene–environmental interaction effect by two components. The fixed effects compo-
nent incorporates variant functional information from PrediXcan as weights with our genotype data to calculate 
the genetically predicted gene expression and then assess its interaction with folate consumption. The random 
effects component involves residual interaction effects that have not been accounted for by the fixed effects. We 
used sex- and study-specific quantiles of folate consumption. p-values were calculated separately for fixed and 
random effects interaction terms, after adjusting for age, sex, study, sex-study specific quartiles of total energy 
consumption in kcal, and principal components to account for population stratification. We used the MiSTi 
data-adaptive weighted combination approach to combine the fixed and random effects components.

Genes with p-values less than the Bonferroni correction (0.05/4839 = 1.03E−5) were considered genome-wide 
statistically significant for an interaction with folate. p-values that reached false discovery rate (FDR) at 20% 
were considered having suggestive evidence of interaction as it is less stringent than a Bonferroni threshold. 
We conducted follow-up analyses based on the fixed and random effects p-values. For associations driven by 
the fixed effects, we investigated the direction and magnitude of these interactions using the generalized linear 
model, which included all covariates in the original model, folate, standardized predicted gene expression, and an 
interaction term for folate and predicted gene expression. Genes for which the signal was driven by the random 
effects component were further investigated to identify individual variants of the gene set as drivers using the 
same approach with interactions for individual variants and folate while adjusting for all other variants in the 
gene set. Due to some of the variants having high collinearity, we pruned variants by  R2 < 0.9.

All analyses were performed using R version 4.0.154.
We performed these additional follow-up analyses for MTHFR, as prior candidate gene studies have shown 

variants, specifically the C677T mutation, alter the association between folate and CRC 31,32,55–58. We additionally 
include the results of the gene–environment interaction between rs1801133 (C677T mutation) per additional 
effect allele with sex-study specific quantiles of total folate consumption on colorectal cancer.

Results
The final sample included 13,498 cases and 13,918 controls with both folate and energy consumption meas-
ures available from 23 studies. We present demographic characteristics of all samples and report on measures 
for factors associated with CRC risk for study participants by case–control status in Table 1. Cases were more 
likely to be male, have higher BMI, and report consuming less folate daily and more calories daily compared to 
controls. Multivariable logistic regression estimated a reduced risk of CRC per-quartile increase in total folate 
intake, adjusting for sex, age at reference, and total energy intake, and study (OR = 0.91, 95% CI: 0.89, 0.93, 
p-trend < 0.001, Supplementary Table 1B). Sensitivity analyses included further adjustment for smoking and 
alcohol consumption, which had little effect on the estimates for total folate and CRC risk.

We found no suggestion of interaction between predicted gene expression for the MTHFR gene and sex-study 
specific folate on risk of CRC in our analysis. Supplementary Table 2A–C present follow-up analyses conducted 
to test the interaction per standard deviation change in predicted gene expression within sex-study specific quan-
tiles, allowing for a non-linear relationship between folate quantiles, as well as individual variant weights used in 
the modeling of predicted gene expression to capture the C677T mutation. In the snp-environment interaction 
analysis for the rs1801133 variant (C677T mutation), no interaction was show between each additional effect 
allele with sex-study specific quantiles of total folate consumption on risk of CRC (ratio of odds ratio = 1.02; 95% 
CI = 0.98, 1.06; interaction p-value = 0.235).

The median number of SNPs included in the gene sets was 25 (minimum: 1, inter-quartile range [IQR]: 
13–43, maximum: 277). Figure 1 displays the quantile–quantile plot for the G × E test that combined both fixed 
and random effects using adaptive weight. While there was no G × E interaction that reached the Bonferroni 
threshold (0.05/4839), three did surpass the false discover rate (FDR) of 0.2.

We present the findings with p-values that surpassed the FDR threshold for gene interactions with total folate 
consumption and CRC risk in Table 2. We observed suggestive evidence of interactions between total folate 
intake and 3 independent gene sets on risk of CRC at FDR < 0.2, including Glutathione S-Transferase Alpha 1 
(GSTA1; p = 4.3E−4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E−4), and Aspartylglucosaminidase 
(AGA ; p = 4.5E−4). In follow-up analyses for these three genes we observed positive interactions for GST1A and 
AGA , showing greater risk for CRC associated with higher gene expression and increasing folate consumption 
(Table 3). As the signal for TONSL primarily came from the random effects, indicating one or a few variants were 
drivers of the association, we investigated the individual interactions of variants with sex-study specific folate. 
We see two variants as possible drivers of the signal in our main analysis, 8:144964455_T/C and 8:144965104, 
as shown in Table 4.
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Figure 1.  MiSTi results for Adaptive Weight test of predicted gene expression interactions with total folate 
intake. Dashed line is the Bonferroni corrected threshold, solid is the false discovery rate < 0.2 threshold for 
p-value significance.

Table 2.  Top genes from MiSTi for gene-based interactions with total folate for colorectal cancer based 
on Adaptive Weight Test p-values with FDR < 0.2. Models were adjusted for age, sex, study, sex-study 
specific quartiles of total energy consumption in kcal, and principal components to account for population 
stratification.

Gene Chromosome R2 Number of SNPs Fixed effects Random effects Adaptive weight P

GSTA1 6 0.17 20 1.6E−4 0.11 4.3E−4

TONSL 8 0.06 28 0.048 1.3E−3 4.3E−4

AGA 4 0.37 39 1.2E−4 0.65 4.5E−4

Table 3.  Estimated odds ratios (ORs) and 95% confidence intervals (CIs) of colorectal cancer risk per 
standard deviation change in predicted gene expression stratified by sex-study specific quantiles of total folate 
consumption. Models were adjusted for age, sex, study, sex-study specific quartiles of total energy consumption 
in kcal, and principal components to account for population stratification. *p-value tests for difference in 
quantile specific OR estimate for per standard deviation change in predicted gene expression and the lowest 
sex-study specific quantile of total folate quantile on colorectal cancer risk.

Gene Sex-study specific quantile of total folate OR 95% CI Interaction p-value*

GSTA1

1 1.29 0.86, 1.92

2 1.32 0.88, 1.98 0.48

3 1.40 0.93, 2.10 0.01

4 1.45 0.97, 2.17 6.5E−4

AGA 

1 1.06 0.79, 1.43

2 1.16 0.85, 1.58 0.01

3 1.15 0.85, 1.56 0.02

4 1.21 0.89, 1.64 3.6E−4
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Discussion
In this sizable analysis including a large number of studies we harmonized data on folate consumption and 
genome-wide genetic data to investigate interactions between folate intake and variants in genes on CRC risk. We 
observed an inverse association between folate intake and CRC risk across 23 studies. Using our novel statistical 
set-based G × E mixed effects score tests, MiSTi, we identified 3 genes with suggestive interactive effects with 
total folate consumption on CRC risk: GSTA1, TONSL, and AGA .

We observed a positive interaction between the predicted gene expression of GSTA1 and folate for CRC 
risk. GSTA1 located at 6p12.2 encodes for an enzyme that functions in cellular detoxification of electrophilic 
compounds through glutathione metabolism. Electrophilic compounds include carcinogens, therapeutic drugs, 
environmental toxins, and products of oxidative stress. Glutathione is a product of homocysteine metabolism, a 
key amino acid correlated with folate intake, and is bound to free radicals by GSTA159. Our results suggest that 
folate consumption may increase remethylation of homocysteine to methionine, thus reducing the production 
of glutathione need for DNA repair. Mutations in GSTA1 could feasibly alter the binding affinity of glutathione 
to carcinogenic compounds, leading to variation in cancer susceptibility. Of the 20 SNPs included in our analy-
ses of GSTA1, three of the alternative alleles result in missense mutations to the  gene60. Compromised function 
of glutathione as an antioxidant due to mutations in GSTA1 in conjunction with depleted levels of glutathione 
due to lower homocysteine levels may be a pathway to  tumorigenesis6,22. Candidate gene studies have shown no 
association between GSTA1 and colorectal cancer or adenoma  risk61,62. However, previous studies have shown 
interactions between diet, such as cruciferous vegetable consumption, and GSTA1 genotypes, supporting that 
associations between this gene and CRC are likely driven by dietary  exposures63–65.

TONSL in the 8q24.3 region codes for a 1378 amino acid protein component of the MMS22L-TONSL com-
plex, which functions in recovery of damaged replication  forks66. Numerous mutations in TONSL are considered 
 pathogenic60. Low levels of the MMS22L-TONSL complex result in increased frequency of DNA double-strand 
breaks and compromised DNA  integrity66. In combination with increased DNA damage due to deficiencies in 
folic acid, impaired functionality of the MMS22L-TONSL due to functional mutations may be a pathway to 
increase tumorigenesis. Follow-up analyses further suggested that possible associations may be primarily driven 
by a small subset of variants included in our gene set in the main analysis.

We observed increasing risk of CRC per standard deviation increase in predicted gene expression of AGA  with 
increasing folate consumption. The AGA  gene is in the 4q34.3 region and codes for a 346 amino acid protein that 
functions in pathways related to the innate immune system and asparagine  degradation67. Once the protein is 
processed into the mature enzyme it takes part in the catabolism of N-linked oligosaccharides, cleaving aspara-
gine from N-acetylglucosamines in one of the final steps in the lysosomal breakdown of glycoproteins. Mutations 
in the AGA  gene are known to cause the lysosomal storage disease aspartylglycosaminuria, eventually resulting 
in neurodegeneration. Previous research has not indicated a link to cancer for this gene.

While we have many strengths in performing the largest investigation of gene–folate interactions to date 
using a powerful set-based approach that allows to account for functional prediction, some limitations should 
be considered when interpreting these findings. Approximately half of the studies in our consortium ascertained 
cases using a cohort study design which may have resulted in earlier and more frequent detection of tumors. 
Most cohort studies in our consortium used population-based registries for case ascertain. However, one study, 
The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, was a randomized trial to determine the 
effectiveness of screening. While we have adjusted for study in our approach there may be unknown residual 
effects of this design. Our study population was limited to those of European descent. As gene expression levels 
may differ across populations of different ancestry, our results may not be generalizable to populations of non-
European ancestry. The studies included in our analysis occurred over a range of time and geographic locations. 
Fortification with folate occurred in different places at different times and we used adjusted dietary equivalents 

Table 4.  Variant specific ratio of odds ratios associated with per quantile increase in sex-study specific 
quantiles of total folate consumption on colorectal cancer risk for variants included in TONSL*. Models were 
adjusted for age, sex, study, sex-study specific quartiles of total energy consumption in kcal, and principal 
components to account for population stratification. *Filtering to uncorrelated variants in TONSL  (r2 < 0.9). 
**Chromosomal position and reference/alternative alleles.

Variant** Ratio of odds ratio Standard error Interaction p-value

8:144757296_A/G 1.04 0.22 0.86

8:144801243_C/T 1.03 0.02 0.09

8:144801593_C/A 0.93 0.04 0.10

8:144856443_G/T 0.82 0.13 0.13

8:144964455_T/C 0.95 0.02 7.0E−3

8:144965104_G/A 0.95 0.02 5.1E−3

8:145651888_G/A 1.00 0.02 0.78

8:145653006_G/A 1.00 0.02 0.76

8:145668042_G/A 1.01 0.02 0.76

8:146216936_A/G 0.96 0.02 0.03

8:146280802_C/T 1.03 0.02 0.19
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to account for these differences (see Supplementary Table 1A). Study designs also varied. We looked at the effect 
size of folate on CRC by case/control versus cohort study designs and did not find a substantive difference to 
justify stratified analyses (see Supplementary Table 1B). Lastly, studies in our consortium generally ascertained 
folate consumption through standard questionnaires. However, previous work has shown self-reported measures 
of folate intake to be positively and moderately correlated with plasma levels of folate, particularly when dietary 
supplement use was included as was generally the case in studies included in our  analyses68.

We utilized colon-specific gene expression data, specifically transverse colon tissue captured by the GTex 
 Project40. One limitation of this data is the diversity of cell types aside from epithelial cells of the mucosa of the 
colon, from which CRC derives given that the entire colonic wall was sampled. The impact of this would cause a 
dilution of gene expression for the tissue most relevant for CRC. However, we expect this to be an improvement 
over alternative tissue types including blood or sigmoid colon tissues in GTEx, which were collected from muscle 
tissues only and would not represent the gene expression profile of interest.

Although MiSTi is a powerful statistical tool, which accounts for both fixed- and random-effects of the 
gene–folate interaction, none of our findings reached the Bonferroni corrected threshold, which can be overly 
conservative as many genes are co-expressed. We did not perform independent replication and thus follow-up 
investigations are warranted, as a FDR of 0.2 should be considered  liberal53. The previously suggested MTHFR 
gene was not identified in our  analysis27. However, in using the penalized elastic net to create our predicted gene 
expression the C677T was not included in the variant weights due to the insignificant contribution to regulation 
of gene expression. While it was also not seen in the gene–environment interaction analysis either, we believe 
these results to be representative of an agnostic approach which has not been shown before, as opposed to can-
didate gene studies.

Our analysis was conducted in the largest pooled analysis of a well characterized and harmonized consor-
tium of CRC with comprehensive genetic data which enabled a hypothesis-free genome-wide investigation of 
interactions with folate consumption on CRC risk. An extensive number of genes evaluated in prior candidate 
gene–folate interaction studies, including MTHFR, were included among the 4839 genes examined. However, 
none of those previously hypothesized genes were found to interact with folate consumption in our  analysis31,57,69. 
We conducted additional follow-up analysis for MTHFR using indicator terms for sex-study-specific folate 
quantiles and interaction terms for all quantiles with predicted gene expression were null (see Supplementary 
Table 2A–C). No previous study has agnostically tested for genetic interactions with folate for cancer. Our sta-
tistical approach was potentially improved by incorporating functional variant weights and testing gene-sets 
rather than individual SNPs reducing the penalty for multiple testing. In the end, we found three genes that were 
suggestive of interacting with folate consumption on risk of CRC, supporting the hypothesis that associations of 
folate with CRC may be modified by common genetic variation.

The biological functions of our top genes serve to primarily prevent or repair DNA damage. The combined 
effects of increased DNA damage due to folate deficiencies and compromised functionality of these genes may 
be an important pathway in CRC tumorigenesis. These findings, particularly for GSTA1, warrant follow-up in 
future studies with comprehensive genetic and data on folate intake in order to confirm the potential role of 
these genes in interacting with folate on CRC risk.

Data availability
Data will be made available upon request and approval by contacting Dr. Ulrike Peters.
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