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a b s t r a c t

We consider a one parameter family of 2-DOF Hamiltonian systems having an equi-
librium point that undergoes a Hamiltonian-Hopf bifurcation. We briefly review the
well-established normal form theory in this case. Then we focus on the invariant
manifolds when there are homoclinic orbits to the complex-saddle equilibrium point,
and we study the behavior of the splitting of the 2D invariant manifolds. The symmetries
of the normal form are used to reduce the dynamics around the invariant manifolds
to the dynamics of a family of area-preserving near-identity Poincaré maps that can
be extended analytically to a suitable neighborhood of the separatrices. This allows, in
particular, to use well-known results for area-preserving maps and derive an explicit
upper bound of the splitting of separatrices for the Poincaré map. We illustrate the
results in a concrete example. Different Poincaré sections are used to visualize the
dynamics near the 2D invariant manifolds. Last section deals with the derivation of a
separatrix map to study the chaotic dynamics near the 2D invariant manifolds.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper we study a one-parameter family of real analytic two degrees of freedom (2-DOF) Hamiltonian systems
ν(ψ1, ψ2, J1, J2), ν ∈ R, having an equilibrium point (assumed to be at the origin for all parameter values) that undergoes

a Hamiltonian-Hopf bifurcation [1,2]. At this bifurcation the equilibrium point loses its linear stability as a consequence
of a collision of the pure imaginary eigenvalues of the linearized vector field. Concretely, we deal with the following
bifurcation scenario:

1. For ν > 0 the matrix associated to the linear system at the origin has two pairs of purely imaginary eigenvalues:
±ω1i , ±ω2i , ω1, ω2 > 0.

2. At ν = 0 the two pairs of eigenvalues meet in a double pair ±ωi , ω > 0.
3. For ν < 0 the eigenvalues become a hyperbolic quartet ±α ± ωi , α, ω > 0.

Then, for ν < 0, the Hamiltonian system has an equilibrium point which is a complex-saddle point (CS from now on) and
it possesses a 2D stable and a 2D unstable invariant manifold. We consider the case for which these invariant manifolds
have a transversal intersection. We are interested in the geometry of the invariant manifolds and the dynamics around
them.
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More concretely, we deal with the 2-DOF Hamiltonian system

H(ψ1, ψ2, J1, J2) =
J21
2

+ a2J1J2 + a3
J22
2

− cosψ1 − ϵ cosψ2, (1)

defined on the symplectic manifold (T2
×R2,Ω), where T2

≃ R2/(2πZ2) and Ω = dψ1 ∧dJ1 +dψ2 ∧dJ2. For fixed values
of a2 and a3, (1) is a one-parameter family of Hamiltonian systems.

The main motivation to consider Hamiltonian system (1) comes from the fact that it models the dynamics near a
double resonance close to a totally elliptic equilibrium point of a 4D symplectic map. In this setting |ϵ| is related to the
ratio of the orders of the two interacting resonances [3]. In Section 2 we summarize some of these ideas, adapted to the
case considered here. It turns out that for values of a2 and a3 such that d = a3 − a22 < 0 there is a (negative) critical value
ϵ = ϵc for which the origin undergoes a Hamiltonian-Hopf bifurcation. Taking ν = ϵ − ϵc as the parameter, the family of
Hamiltonian systems Hν(ψ1, ψ2, J1, J2) shows up the bifurcation scenario described above.

The aim of this paper is to perform a numerical exploration of some of the properties of the system (1) when a CS
point is born as a byproduct of the Hamiltonian-Hopf bifurcation. The paper is organized as follows.

In Section 2 we explain our motivation to study the model (1) and the role of the parameters involved. The numerical
investigations start in Section 3 where we compute the 2D stable and unstable invariant manifolds of the complex-saddle
point at the origin and their splitting for different values of ϵ.

Section 4 provides the theoretical framework to explain the results of Section 3. We summarize the main properties
of the normal form (NF) analysis of the 2-DOF Hamiltonian-Hopf bifurcation and we derive an (exponentially small in ν)
upper bound for the asymptotic behavior of the splitting of separatrices. The main result in Section 4.2 states that the
splitting of the invariant manifolds can be reduced to a standard statement concerning the splitting of separatrices for an
auxiliary 2D area-preserving map, and the corresponding upper bound easily follows from the results in [4].

In Section 5 we use a suitable Poincaré map with the aim of visualizing the dynamics near the separatrices and of
providing some intuition about the topology of different orbits. In particular, we show that the numerical results about
the splitting of separatrices included in Section 3 agree with the asymptotic behavior that the obtained upper bound
describes.

Finally, Section 6 discusses the derivation of a return map adapted to this setting. We show that the dynamics around
the invariant manifolds can be analyzed through a family of separatrix maps depending on the energy. To this end we
consider the integrable system that provides the truncation of the NF given in Section 4. We fix a 3D Poincaré section in
the 4D phase space and we investigate the time that orbits spend near the complex-saddle point before coming back to
the 3D Poincaré section. Introducing suitable coordinates a 3D integrable return map is obtained. Such a map preserves
the two (formal) first integrals provided by the NF. Next, the effect of the splitting is added to obtain a non-integrable
3D separatrix map. When restricted to an energy level, the obtained return map gives a 2D return map and in fact, under
some further simplifications we recover the usual Chirikov separatrix map, see [5,6].

Four appendices complete this work. In Appendix A we give details on how the reduction to Sokolskii NF is carried out
numerically. In Appendix B the set of parameters a2, a3 of the system (1) corresponding to bounded/unbounded invariant
manifolds is investigated. In Appendix C we explore the possibility of using a different Poincaré section, given by the
passage by the maximum distance from the complex-saddle (CS) point, that was used in [7] to study the Hamiltonian-
Hopf bifurcation under a periodic forcing. Finally, Appendix D summarizes the results of direct simulations of the return
time to the suggested Poincaré sections.

The computations related to the splitting of the 2D invariant manifolds of the CS point require the systematic use of
multi-precision arithmetic. The package PARI/GP [8] has been very useful to that end.

2. The model and double resonances of a 4D symplectic map

Let F be a real analytic 4D symplectic map with a totally elliptic doubly resonant equilibrium point at the origin.
The (versal) unfolding of F (within the universe of symplectic maps) gives rise to a two parameter family of maps
Fδ1,δ2 , δ1, δ2 ∈ R, such that F0,0 = F . The normal form reduction provides a 2-DOF Hamiltonian system describing the
dynamics (at a formal level) of Fδ1,δ2 in a neighborhood of the origin. Assume that for concrete values of δ1 and δ2, with
0 < |δ1| + |δ2| ≪ 1, the phase space exhibits a structure (expected to be similar to the Cartesian product of two pendula
in the simplest situations) related to the double resonance. Then, as usual, the dynamics around such a doubly resonant
structure can be studied by the lift of the Hamiltonian to the corresponding covering space. As shown in [3], after some
rescaling of variables and assuming that the order of the two (primary) resonances is similar but different (quantitative
estimates of the admissible orders are given in the mentioned reference), the dynamics near their intersection can be
approximately described by the dynamics of system (1). We remark that the variables J1, J2 ∈ R and ψ1, ψ2 ∈ S1 are
local action–angle variables in a suitable (q1, q2)-covering space (concretely, qi are related to the multipliers of the elliptic
point, which are assumed to be 2πpi/qi + δi, pi, qi ∈ Z, δi ∈ R, i = 1, 2). The parameters a2, a3, ϵ in (1) are related to the
unfolding parameters δ1, δ2 above. Moreover, the parameter ϵ is related to the difference of order of the two involved
resonances. Thus, ϵ is a small parameter whenever the two resonances have different order. This fact simplifies the study
of the model (1). Note that for ϵ = 0 (and also for a = 0) system (1) is (Liouville) integrable.
2
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Let d = a3 − a22 so that the determinant of the matrix associated with the bilinear form that defines the quadratic
art in the actions (J1, J2) of (1) is d/4. We assume, without loss of generality, that ϵd > 0 (consider ϵ ↦→ −ϵ and
ψ2 ↦→ ψ2−π otherwise). The Hamiltonian flow (1) has four equilibria: p1 = (0, 0, 0, 0), p2 = (π, 0, 0, 0), p3 = (0, π, 0, 0)
and p4 = (π, π, 0, 0). For |ϵ| ≪ 1 the point p1 is totally elliptic, p2 is hyperbolic–elliptic, p3 is elliptic–hyperbolic and p4
is hyperbolic–hyperbolic.

Remark 2.1. The (non-symplectic) change of coordinates J̃1 = J1 + a2J2, J̃2 = a2J1 + a3J2, ψ̃1 = ψ1, ψ̃2 = ψ2 reduces (1)
to the so-called two-pendulum system ψ̈1 = A sinψ1 + B sinψ2, ψ̈2 = C sinψ1 + D sinψ2, being A = 1, B = a2ϵ, C = a2
nd D = a3ϵ (see [9]). The corresponding stability analysis (in terms of the A, B, C,D parameters) was carried out in, for

example, [10].

For larger values of |ϵ| the linear stability of the fixed points changes. We focus on p1 and look for its possible transition
from totally elliptic to CS. If XH denotes the vector field associated to (1), then the characteristic polynomial of DXH (p1)
is p(x) = x4 + (1 + ϵa3)x2 + ϵd. Hence the eigenvalues leave the imaginary axis if

∆ = (1 + a3ϵ)2 − 4dϵ < 0, (2)

and, in this case, the point p1 becomes a CS point. At∆ = 0 there is a Krein collision of eigenvalues. Since we are assuming
that ϵd > 0 the following holds:

• For d > 0, since a3 = d + a22 ≥ d > 0, one has ∆ ≥ (1 + dϵ)2 − 4dϵ = (1 − dϵ)2 > 0 and therefore the CS transition
of p1 never takes place because there is no Krein collision.

• If d < 0 (it requires ϵ < 0), the point p1 suffers a Krein collision when

ϵ =

(
−(2a3 − 4d) ±

√
(2a3 − 4d)2 − 4a23

)
/(2a23). (3)

Note that in this case, (3) provides real values of ϵ.

3. Invariant manifolds and their splitting

As follows from (2), a collision of the eigenvalues at the equilibrium point p1 at the origin takes place when ∆ = 0.
This gives two negative critical values ϵc1 and ϵc2 . For ϵ ∈ (ϵc1, ϵ

c
2) the origin is a CS point. In this section we start our study

f system (1) by computing the invariant manifolds W u/s(0), for ϵ in the previous range, and describing the asymptotic
ehavior of their splitting along a homoclinic trajectory when ϵ approaches the critical value ϵc2 .
The equations of motion corresponding to (1) are

ψ̇1 = J1 + a2J2, J̇1 = − sin(ψ1),
ψ̇2 = a2J1 + a3J2, J̇2 = −ϵ sin(ψ2).

(4)

he right-hand part of Eqs. (4) define a vector field X on T2
×R2. We denote by Rψ and RJ the reversors Rψ (ψ1, ψ2, J1, J2) =

−ψ1,−ψ2, J1, J2) and RJ (ψ1, ψ2, J1, J2) = (ψ1, ψ2,−J1,−J2). The vector field X satisfies

R(X(ψ1, ψ2, J1, J2)) = −X(R(ψ1, ψ2, J1, J2)), (5)

where R stands for either Rψ or RJ .
For numerical illustrations we integrate (4) with

a2 = 1/2 and a3 = −3/4, (6)

hence ϵc1 = −4 and ϵc2 = −4/9. Below we denote by ϵc the value ϵc2 , and we focus on the Hamiltonian-Hopf bifurcation
aking place at this value of the parameter.

.1. Numerical computation of the invariant manifolds

Consider ϵ ∈ (ϵc1, ϵ
c
2) so that the origin is a CS point which lies on the 3D energy level {H = h} with h = −1 − ϵ.

e recall that ν = ϵ − ϵc where ϵc = ϵc2 . Assume that there is a primary intersection of the 2-dimensional invariant
anifolds W u(0) and W s(0) such that the extension of the invariant manifolds up to this intersection is contained within
n O(

√
ν)-neighborhood of the origin. This happens under a suitable condition on a coefficient of degree four of the

normal form of the Hamiltonian, see Section 4.1. In particular, such a condition is fulfilled for the parameters (6), see also
Appendix B.

In such a case, the homoclinic set W u(0)∩W s(0) ⊂ {H = h} is generically 1D. From the Rψ -reversibility relation (5) it
follows that if (ψ1, ψ2, J1, J2) ∈ W u(0) then (−ψ1,−ψ2, J1, J2) ∈ W s(0). This suggests to consider Σ = {ψ1 = 0, ψ2 = 0}
nd to look for homoclinic points in Σ . Generically {H = h} ∩ Σ ⊂ R4 is a 1D submanifold and the points in the

intersection W u(0)∩Σ are homoclinic points. We compute below a homoclinic point p ∈ Σ with J > 0, see Fig. 1. The
h 1
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corresponding homoclinic orbit will be denoted as γ (t). The RJ -reversibility implies that if (0, 0, J1, J2) ∈ W u(0) ∩Σ then
(0, 0,−J1,−J2) ∈ W s(0) ∩Σ , hence one obtains by symmetry another homoclinic trajectory.

The methodology to compute the homoclinic point ph onΣ is quite standard. To compute the local invariant manifolds,
e use the parameterization method, see [11,12] and references therein. The following items summarize the main steps:

1. Computation of the local parameterization of the 2D unstable manifold by imposing the conjugation of the dynamics
of the equation restricted to W u(0) to the linear dynamics on it, see [3]. If s1, s2 ∈ R denote the local parameters
on W u(0), we represent the manifold as a series in the complex parameters z1 = s1 + i s2, z2 = z̄1.

2. Truncation of the series to a suitable order N (depending on the parameters) and estimate the largest radius r∗ (in
the s1, s2 parameter space) such that the invariance equation is verified up to a tolerance tol inside the ball of
radius r∗ (tol and Err below are chosen according the required precision). The points on the circle of radius r∗
can be parameterized by an angle β ∈ [0, 2π ).

3. Computation of β such that parameterizes a point on Σ . We proceed as follows:

(a) We consider the discretization of β given by the equidistributed values {βi}i=1,...,1000. Each value of βi gives
an initial condition that can be numerically integrated (we use a Taylor method with a local error Err).

(b) We consider the Poincaré section ψ2 = 0 (see Remark 3.1 below). For each i = 1, . . . , 1000, we integrate
the vector field taking as initial condition the point on the circle of radius r∗ associated to the angle βi. The
integration is performed up to the Poincaré section ψ2 = 0. Note that the Poincaré section ψ2 = 0 might be
crossed many times before we get the homoclinic point on Σ . We proceed as follows:

i. We fix a small initial number m of crossings and we integrate the vector field up to finding the m
crossing with ψ2 = 0. In this way, for each i we obtain a point on ψ2 = 0. Denote by ψ1,i the
corresponding coordinate of this point.

ii. If for a concrete i one has ψ1,iψ1,i−1 < 0 then we look for β ∈ (βi−1, βi) such that ψ1 = 0 (for simplicity,
we use a secant method at this step). The parameter β obtained is hence related to a point ph ∈ Σ .
Otherwise, if there is no i verifying this last condition, we increase m.

Remark 3.1. For a3 < 0 the hypersurface {ψ2 = 0} is transversal to the flow whenever a2J1 + a3J2 ̸= 0, that is, the set
f non-transversal points is given by NT = {J2 = −a2J1/a3}. Then, if h = H(0) = −1 − ϵ,

{H = h} ∩ NT =

{
1
2

(
1 −

a22
a3

)
J21 − cos(ψ1) − ϵ cos(ψ2) + 1 + ϵ = 0

}
,

and the intersection of the non-transversal points inside the origin energy level and ψ2 = 0 is

{H = h} ∩ NT ∩ {ψ2 = 0} =

{
1
2

(
1 −

a22
a3

)
J21 − cos(ψ1) + 1 = 0

}
,

which can be interpreted as the zero energy level of a pendulum Hamiltonian system, expressed in (ψ1, J1)-coordinates.
This energy level contains the center point (stable equilibrium of the pendulum corresponding to the global minimum of
the energy level set). In particular, {ψ2 = 0} defines a transversal Poincaré section outside the origin.

For ϵ = −0.5 we have found that the primary homoclinic point at W u(0) ∩ Σ with J1 > 0 is (J1, J2) ≈

(1.3651453,−0.9100969), see Remark 3.2 below. The invariant manifolds of the origin together with the homoclinic
trajectory γ (t) are shown in Fig. 1. We have not displayed the homoclinic orbit near the origin, it simply spirals around
in the corresponding plane governed by the linear approximation.

Remark 3.2. One can numerically check that, for the range of ϵ used in the computations in this manuscript, there is
only one primary homoclinic orbit that intersectsΣ with J1 > 0. We check this fact for ϵ = −0.5 as follows. We propagate
the initial conditions associated to the angles βk = 2πk/100, 1 ≤ k ≤ 100, on the circle of radius r∗ = 0.078572125 until
the 9th crossing with {ψ2 = 0, J1 > 0} (computations are done with 200 digits, using a parameterization of order 80 and
requiring precision 10−106 in the invariance equation). In Fig. 2 left we display the ranges of ψ1 at the successive crossings
with {ψ2 = 0, J1 ≥ 0}. In particular, we see that at the 5th crossing there are homoclinic points in Σ ∩ {J1 > 0}. The right
plot in Fig. 2 shows that there is only one primary homoclinic point in Σ ∩ {J1 > 0}.

3.2. The splitting of the 2D invariant manifolds

It is well-known [1,13,14] that the Sokolskii NF of (1) provides, at least for small enough values of the parameter
ν = ϵ − ϵc , an integrable approximation of the dynamics around the CS point at the origin (in Section 4.1 we review
the Hamiltonian-Hopf NF analysis). On the other hand, generically the vector field (4) is not integrable. In particular, for
generic parameters one expects that the 2D invariant manifolds of the CS point do not coincide (see Fig. 1). The fact that
the NF approximation is integrable suggests that their splitting is exponentially small in (some power of) ν according to
the results in [15]. Below, we study the asymptotic behavior of the splitting angle of the 2D invariant manifolds for the
4
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Fig. 1. Top: We represent 3D projections of W u(0) (red) and W s(0) (green), corresponding to the flow of (4), for the parameters (6) and ϵ = −0.5.
ee text for details. The homoclinic trajectory is shown in blue. Bottom left and right: Different projections showing a figure-eight shape of the
anifolds.

Fig. 2. We consider ϵ = −0.5. Left: We display the range of the variable ψ1 in each of the 1 ≤ ncross ≤ 9 first crossings with {ψ2 = 0, J1 > 0}.
The line ψ1 = 0 is shown for reference. Right: We display the propagated initial conditions at the 5th crossing, see text.

parameters given in (6) and illustrate its exponentially small behavior in ν. We note that similar computations have been
already performed in [16] for the Swift–Hohenberg equation.

To measure the splitting of the invariant manifolds (inside the energy level) of the CS point we compute an angle σ
etween tangent vectors to W u(0) and W s(0) at the homoclinic point. We denote by Tp(M) the tangent space to a manifold
at the point p. Similarly as in [3,16], we follow the next scheme to compute σ :

1. Computation of the homoclinic trajectory. Assume that the local parameterization of W u(0) is represented by a
vector series G(s1, s2), G : R2

→ R4. In the last section we explained how to obtain parameters (sh1, s
h
2) (on some

circle of radius r∗ around 0) such that X0
h = (ψh,0

1 , ψ
h,0
2 , Jh,01 , Jh,02 ) = G(sh1, s

h
2) satisfies

φt=th (X
0
h ) ∈ Σ,

where φ denotes the flow associated with (4) and t is the corresponding time to get the plane Σ .
h
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Fig. 3. Angle σ for model (1) with parameters (6). Left: log(σ ) as a function of ϵ − ϵc . Right: Re(λ) log(σ ) as a function of Re(λ), where λ, λ̄ are the
igenvalues corresponding to W u(0).

2. Computation of a basis of TX0
h
(W u

loc(0)). A tangent vector to W u(0) at X0
h can be obtained, for example, by taking

v0t =
∂G
∂s1

(sh1, s
h
2). By construction v0t is not in the direction of the vector field v0vf. The vectors v0t and v0vf form a basis

of TX0
h
(W u

loc(0)).

3. Transportation of the vectors to Σ . Integrating the variational equations along the homoclinic trajectory we
transport v0t to the section Σ . Denote by vΣt the transported vector. This vector together with the vector vΣvf, giving
the direction of the vector field at the homoclinic point h ∈ Σ , form a basis of Th(W u(0)).

4. Computation of σ . We consider w1 to be a unit normal vector to vΣvf within Th(W u(0)). The reversibility RJ , see (5),
allows us to easily compute a vector w2 ∈ Th(W s(0)) orthonormal to vΣvf. We define σ to be the angle between w1
and w2.

To provide a concrete illustration we consider again the parameters in (6). We recall that ϵc = −4/9. The results from
the numerical computations are shown in Fig. 3. As expected, σ behaves asymptotically as an exponentially small quantity
in ν = ϵ−ϵc . Section 4.2 is devoted to derive a formula describing the asymptotic behavior of σ (ν) reflected in the figure.

.3. The width of the analyticity strip of the homoclinic trajectory

It is well-known that for 1-DOF Hamiltonian systems having a homoclinic orbit γ (t), the energy level restriction
rovides a 1D differential equation from which one can obtain (estimates of) the position of the complex singularities of
as a function of complex time, see for example [17]. Moreover, in this 1-DOF setting one can prove that the singularity
f the homoclinic trajectory exists and it is located at a finite distance from the real axis of t , see [18]. Note that here it
lays a key role that the extension of the homoclinic trajectory to the complex plane defines an analytic function with
n imaginary period and the existence of the singularity follows from Liouville’s theorem.
However, for 2-DOF systems as the system (1), there is no systematic way to compute the position of the singularities

f γ (t). Moreover, for homoclinic trajectories γ (t) to complex-saddle points the extension to t ∈ C is no longer periodic
and conditions that guarantee the existence of the singularity are not known [19] although, as far as we are aware, there
are no examples of entire homoclinic trajectories.

Here we investigate the width of the analyticity strip of the homoclinic trajectory γ (t) through the homoclinic point
h ∈ Σ of the Hamiltonian system (1). We are interested in the closest (visible from the real time axis) singularity
0 of γ (t). Our motivation is the following. The position of τ0 can determine the width of the analyticity strip of γ (t)
hen studying the splitting of the invariant manifolds under a periodic forcing of the original 2-DOF system. A periodic

orcing in a similar, but more degenerate, situation was studied in [7,20] where the quasi-periodicity of the splitting was
nalyzed. Note, however, that there the unperturbed (integrable) situation was a 2-DOF system having a 2D homoclinic
anifold. Here, the unperturbed system is non-integrable and has a homoclinic orbit γ (t). The splitting in the tangent
nd normal directions to that homoclinic orbit under the effect of periodic forcing and the role of the singularity τ0 of
(t) are important questions that we aim to investigate in future works.
Below, we proceed with a numerical direct investigation. Inspired by similar (1-DOF) settings where the reversibility

f the Hamiltonian system like (5) implies the existence of singularities in the purely imaginary time path we take the
omoclinic point ph ∈ Σ as initial condition and we integrate the vector field along such a time path. In the experiment,
e detect the position of a singularity because the modulus of some of the complex variables ψ1, ψ2, J1, J2 tends to

nfinity (that is, either the values become larger than some threshold, or the time-step of integration becomes too small).
he results are shown in Fig. 4 left. A numerical exploration taking different paths in the complex time space suggests
hat the singularity τ i obtained is the closest to the real axis. This supports that the analyticity strip of the homoclinic
olution γ (t) extends up to τ i . On the other hand, as expected, the numerical computations indicate that τ goes to ∞
6
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Fig. 4. Values of τ corresponding to the closest singularity of the form t = τ i to the real time axis of the homoclinic trajectory of the vector
field generated by the Hamiltonian (1). Left: τ as a function of ϵ. Right: τ |ν| as a function of |ν|. The thin line represents the fit of the form
f (x) = ax log(x) + bx + cx2 log(x) + dx2 , according to (7).

when ϵ → ϵc = −4/9 or, equivalently, when ν = ϵ − ϵc → 0. A fit of the numerical data, performed for |ν| < 0.01,
shows that

τ ≈ −0.612572 log(−ν) + 0.182037 + 1.16972ν log(−ν) − 1.07143ν, (7)

as it is displayed in Fig. 4 right.

4. Analysis of the bifurcation and splitting of separatrices

In this section, following the ideas of [4], we derive an explicit (and generically optimal) upper bound of the splitting
of the 2D invariant manifolds. Before we briefly review the Sokolskii NF for the 2-DOF Hamiltonian-Hopf bifurcation.

4.1. Normal form reduction and global structure of the invariant manifolds

The equilibrium point at the origin of the Hamiltonian family (1) undergoes a Hamiltonian-Hopf bifurcation at ν =

ϵ − ϵc = 0. The NF reduction of a given one-parameter family of (real analytic) Hamiltonian systems Hν(ψ1, ψ2, J1, J2)
having a Hamiltonian-Hopf bifurcation at the origin for ν = 0 was described in [7]. In this section, we briefly summarize
the procedure to obtain the NF for a general case and comment on some computational aspects of this reduction that will
be used in Section 5 for Hamiltonian (1).

Let Hν be a general family of Hamiltonians, expressed in action–angle variables. Denote by XHν the corresponding
Hamiltonian vector field, and assume that 0 is an equilibrium point. We assume that for ν > 0 the differential matrix
DXHν (0) has two pairs of pure imaginary eigenvalues that, for ν = 0, meet in a double pair ±iω, ω > 0, on the imaginary
axis (Krein collision) and that they become a hyperbolic quartet ±α±iω, α, ω > 0, for ν < 0. To reduce Hν to the Sokolskii
NF we follow the next steps.

(i) We consider the Taylor expansion of Hν in (ψ1, ψ2, J1, J2) and ν around 0. If Pk denotes the set of homogeneous
polynomials of degree k ∈ N in (ψ1, ψ2, J1, J2) variables, one can express Hν as

Hν =

∑
k≥2

∑
j≥0

ν jHk,j, where Hk,j ∈ Pk for all j ≥ 0.

(ii) We look for a linear (symplectic) change of coordinates L(ψ1, ψ2, J1, J2) = (x1, x2, y1, y2) that reduces the quadratic
part H2,0 of Hν to Williamson canonical form [21,22]. In case of two pairs of (double) pure imaginary eigenvalues
the Williamson NF is

H2,0 = −ω(x2y1 − x1y2) +
1
2
(x21 + x22).

An effective algorithm to compute L was described in [23].
(iii) We simplify the higher order terms of Hν by proceeding inductively order by order. At each step we look for a

near-the-identity change generated by the time-1 map of a homogeneous polynomial Hamiltonian G. When trying
to remove as many monomials Hk,j of Hν as possible one has to look for G such that

Hk,j + adH2,0 (G) ∈ Ker ad⊤

H2,0
. (8)

In Appendix A we describe how to compute G numerically at each step in a systematic way.
7
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(iv) The theoretical analysis of the homological Eq. (8) simplifies by introducing the so-called polar Sokolskii coordinates
through the change of coordinates (x1, x2, y1, y2) ↦→ (R,Θ, r, θ ) ∈ R2

× (R \ {0}) × S1, defined by the relations

y1 = r cos(θ ), y2 = r sin(θ ), R = (x1y1 + x2y2)/r, Θ = x2y1 − x1y2. (9)

Note that Ω = dx1 ∧dy1 +dx2 ∧dy2 = dR∧dr +dΘ∧dθ , hence the change of coordinates is symplectic. Using these
coordinates the transpose linear system (with matrix J(D2H2)⊤ where J is the symplectic matrix) simplifies and one
obtains the following expression of the (formal) normalized Hamiltonian

NF(Hν) = −ωΓ1 + Γ2 +

∑
k,l,j≥0

k+l+j≥2

ak,l,j Γ k
1 Γ

l
3 ν

j, (10)

where Γ1 = Θ = x2y1 − x1y2, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2.
(v) One has that Γ1 is a first integral of the system generated by NF(Hν). Writing explicitly the lowest order terms of

NF(Hν) we have

NF(Hν) = −ωΓ1 + Γ2 + ν(a1,0,1Γ1 + a0,1,1Γ3) + a2,0,0Γ 2
1 + a1,1,0Γ1Γ3 + a0,2,0Γ 2

3

+O(ν2(Γ1 + Γ3), ν(Γ1 + Γ3)2, (Γ1 + Γ3)3). (11)

(vi) To have a complex-saddle point for ν < 0 requires a0,1,1 > 0. The rescaling

ν = −δ2, xi = δ2x̃i, ωyi = δỹi, i = 1, 2, ωt = t̃, (12)

reduces (11) to

NF(Hδ) = −Γ̃1 + δ
(
Γ̃2 + aΓ̃3 + ηΓ̃ 2

3

)
+ O(δ2), (13)

where

a = −a0,1,1/ω2 and η = a0,2,0/ω4. (14)

and Γ̃i are as the functions Γi in (10) but depending on the rescaled variables x̃1, x̃2, ỹ1, ỹ2, that is,

Γ1 =
δ3

ω
Γ̃1, Γ2 = δ4Γ̃2 and Γ3 =

δ2

ω2 Γ̃3.

The rescaling (12) is not symplectic but the transformed system is also Hamiltonian. For η > 0 the invariant
manifolds W u/s(0) are bounded while for η < 0 they are unbounded.

Given s ≥ 2 let φ̂s be the change of coordinates, constructed as above in (i)-(iv), that normalizes Hν up to order s
(considering a total order together in ν and (ψ1, ψ2, J1, J2)). Let NFs(H) be the truncation of NF(Hν) to order s ≥ 2. In
articular, NF4(Hν) and Hν ◦ φ̂4 differ in the non-normalized terms of the remainder of order higher than 4.

Remark 4.1. From (11) one checks that the linearization at the origin of system (1) has eigenvalues λ = ±iω ±
√
a0,1,1

√
−ν + O(ν). Then, for ν < 0, one has Re(λ) = ±ω

√
−a

√
−ν + O(ν) and Im(λ) = ±ω + O(ν).

Remark 4.2. The reduction to a NF is achieved by means of successive changes of coordinates to normalize order by order
he full Hamiltonian as detailed in step (iii) above. Each of the changes of the averaging procedure reduces the validity
omain of the truncated NF. For a fixed perturbation parameter ν, there is an optimal order to which the truncation of
he NF gives the largest validity domain. However, the optimal order depends discontinuously on ν. See [15].

To describe the geometry of W u/s(0) it is useful to work with the coordinates (9), now expressed in terms of the
revious coordinates x̃i and ỹi, i = 1, 2, introduced in (12). One has

Γ̃1 = Θ̃, Γ̃2 =
1
2

(
R̃2

+
Θ̃2

r̃2

)
, and Γ̃3 =

r̃2

2
,

where r̃ = ỹ21 + ỹ22 and R̃ = R/δ2. Then, ignoring O(δ2) terms, W u/s(0) are given by

R̃2
+ ar̃2 +

1
2
ηr̃4 = 0,

which corresponds to the zero energy level of a Duffing Hamiltonian system. However, note that here R̃ is a position and
˜ is an action. Hence, the restriction of W u/s(0) to the symplectic plane (R̃, r̃) describes, for a < 0 and η > 0, a figure-eight
ike the one shown in Fig. 5, but only the homoclinic loop with r > 0 makes sense in our framework. On the other hand,
n the invariant manifolds W u/s(0) of the truncated system one has Θ = 0 and θ̇ = 1. Hence, the homoclinic solution

is 2π-periodic in θ and the manifolds rotate around the origin in such a way that we may think that the left loop of the
figure-eight in Fig. 5 corresponds to θ = π .
8
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Fig. 5. The figure-eight form of the manifolds W u/s(0) of NF4(Hν ) restricted to the (r̃, R̃)-plane.

As follows from item (v) above, any truncation NFs(H), s ≥ 2, of NF(Hν) becomes (Liouville) integrable and the pair
(NFs(H),Γ1) of Poisson commuting real analytic Hamiltonian functions induces an energy–momentum map M : R4

→ R2.
The action generated by Γ1 is periodic but it is not free because it vanishes at the origin. The energy–momentum reduction
becomes singular when M(x1, x2, y1, y2) = (0, 0), that is, for the level set of the CS point. In the situation we are interested
in, that is ν < 0 and η > 0, one has that the fiber M−1(0, 0) is diffeomorphic to a pinched torus, that is, a 2D sphere with
two different points identified. The other fibers of the energy–momentum map M are non-singular and, by the Liouville–
rnold theorem, they correspond to 2D tori. We refer to [1] for a complete discussion of the energy–momentum map in
his setting.

The study of the homology group of M , taking closed loops around the singularity at (0, 0), reveals non-trivial
Hamiltonian) monodromy of the fibration [24–27]. This prevents from the existence of global action–angle coordinates in
neighborhood of the singular fiber M−1(0, 0) because they become multi-valued functions. This is reflected in Sokolskii

coordinates in the singularity r = 0 of the R-coordinate in (9).

4.2. A theoretical formula for the splitting of separatrices

In this section we derive an explicit upper bound of the splitting of the 2D invariant manifolds of the origin for the
2-DOF Hamiltonian (1). The result follows from the simple idea of using the normal form (13) to approximate a suitable 2D
area-preserving (isoenergetic) Poincaré map of (1). Then the upper bound is obtained from the results in [4]. It turns out
that the upper bounds obtained in [4] are generic in the sense that they describe the asymptotic behavior of the splitting
when the splitting function, which is a periodic function obtained as the difference of the values of a first integral on the
unstable and the stable manifolds, has a non-zero first Fourier coefficient, see [6,17,28] for details. In Section 5 we show
the agreement of a fit of the asymptotic behavior of the invariant manifolds computed numerically and shown in Fig. 3
with the theoretical expectations given by the upper bounds described here.

To avoid problems with the singularities associated with the polar (Sokolskii) coordinates we consider the Cartesian
coordinates in which we have expressed the NF Hamiltonian (13). Concretely, we consider the non-integrable Hamiltonian
Hν ◦ φ̂4 ◦ Sδ , where φ̂4 is the change to normalize Hν up to order four, Sδ refers to the scaling (12) and ν = −δ2. For
implicity of notation we denote the previous Hamiltonian Hδ . We look at the dynamics within the zero energy level of
Hδ where both W u/s(0) are contained. The discussion in Section 4.1 about the geometry of the invariant manifolds suggests
to consider {θ = 0}∩{Hδ = 0} as a Poincaré section. This means to consider Σ = ({y2 = 0, ẏ2 > 0} \ {y1 = 0})∩{Hδ = 0}
as a Poincaré section and the corresponding family of (isoenergetic) Poincaré maps Tδ : Σ → Σ .

Let H0
δ be the integrable system obtained from Hδ ignoring the O(δ2) terms. For this system, a point p ∈ {y2 =

0} ∩ W u/s(0) is of the form p = (x1, 0, y1, 0) because H0
δ = Γ̃1 = 0 on W u/s(0). The set of points at the intersection of the

invariant manifolds W u/s(0) of H0
δ with y2 = 0 are given by x1 = ±y1

√
−a − ηy21/2, hence they define a figure-eight like

he one shown in Fig. 5 but on the (x1, y1) plane.1 Consequently, the map T 0
δ defined from H0

δ has a homoclinic loop (the
pper loop of the figure-eight in the variables x1, y1, see Fig. 6). The phase portrait of the Poincaré map T 0

δ for the values
= −9/32, η = 5/1024 and δ = 0.01 is shown in Fig. 6. These values correspond to the parameters (6), see details in
ection 5 below. Note the singularity at the axis y1 = 0: only the origin belongs to Σ since y1 = y2 = 0 together with
δ = 0 implies x1 = x2 = 0. Indeed, any truncation of the series in (13) will show up a homoclinic loop (this is due to
he fact that the system is integrable having H0

δ and Γ̃1 as first integrals). If, on the other hand, we consider Hδ then the
omoclinic loop generically splits (the system becomes generically non-integrable because Γ̃1 is no longer a first integral).
onsequently, this splitting is a beyond all orders phenomenon not detected in the series expansion of the Hamiltonian
n δ.

The following proposition states some properties of the map T 0
δ needed to describe the asymptotic behavior of the

plitting of its separatrices.

1 θ = 0 implies y = 0, hence r = y and R = x .
2 1 1

9
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Fig. 6. Phase portrait of the Poincaré map T 0
δ . On Σ we consider (x1, y1) as coordinates and we show the iterates of the Poincaré map obtained as

a result of integrating the vector field corresponding to the Hamiltonian (13) ignoring the O(δ2) terms. The area-preserving map obtained is then
integrable and possesses a homoclinic separatrix connection. The parameters taken for this figure are a = −9/32, η = 5/1024 and δ = 0.01.

Proposition 4.1. The following properties for the Poincaré map T 0
δ hold.

(1) T 0
δ is an analytic area-preserving map in Σ .

(2) The branches of the invariant manifolds W u/s(0) of T 0
δ coincide along a curve. Such curve can be represented as the

homoclinic connection γ (t) of the vector field

Ṙ = δ
(
ar + ηr3

)
, ṙ = −δR. (15)

Its eigenvalues at the origin are

µ = ±2π
√

−aδ.

When considering t ∈ C, the nearest singularities of γ (t) to the real axis time are located at

t = ±
iπ

2
√

−aδ
.

(3) Let γ (t) = (x1(t), y1(t)). The homoclinic solution of the vector field satisfies

γ (t + 2π ) = ΠΣ (ϕt=2π (p)),

where p = (x1(t), 0, y1(t), 0), ϕt denotes the flow defined by H0
δ and ΠΣ denotes the projection onto Σ .

(4) Let p = (x1, 0, y1, 0) ∈ Σ such that p̄ = ΠΣ (p) ∈ γ (t). Then

T 0
δ (p̄) = T̂ 0

δ ◦ T̂ 0
δ (p̄),

where T̂ 0
δ : Σ̂ → Σ̂ is defined by T̂ 0

δ (p̄) = ϕt=π (p), and Σ̂ = {y2 = 0} ∩ {H0
δ = 0}.

Proof. By construction T 0
δ is the Poincaré map associated with an analytic Hamiltonian vector field defined on an analytic

Poincaré section Σ , hence (1) holds. To obtain the other properties it is enough to write down the equations of motion
in Sokolskii coordinates. One has,

Ṙ = δ

(
−
Θ2

r3
+ ar + ηr3

)
, ṙ = −δR, Θ̇ = 0, θ̇ = 1 − δ

Θ

r2
. (16)

Recall that Θ is a formal constant of motion and that Θ = 0 on W u/s. The reduction of the system to W u/s becomes
π periodic in θ . The Poincaré section Σ becomes θ = 0. The restriction of T 0

δ to W u/s(0) coincides with the Poincaré
troboscopic map ϕθ=2π where ϕ denotes the flow of the vector field (16)) (the name stroboscopic comes from the fact
hat the variable θ can be considered as a new time of the system). In other words, the vector field (15) defines a vector
ield such that, given q ∈ W u/s

∩Σ , T 0
δ restricted to W u/s has the form

T 0
δ (X) =

⎛⎝φt=2π (qRr )
Θ

θ (mod 2π )

⎞⎠+ O(δ2),

here φ denotes the flow of (15) and qRr denotes the R and r components of the point q. This implies (3). Moreover, the
igenvalues of (15) at (0, 0) are µ = ±δ

√
−a. Let γ (t) be the homoclinic orbit of the limit vector field (15). This is an

analytic function in t ∈ R that can be extended for t ∈ C to the complex strip |Im t| ≤ Im τ , where τ ∈ C \ R denotes
10
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the nearest singularity to the real axis of time of γ (t). The change of variables

u =

√
η

a
R, v =

√
η

√
−a

r, t̃ =
√

−a δ t,

educes (15) to the Duffing system

u̇ = v − v3, v̇ = u,

ith Hamiltonian H = u2/2 − v2/2 + v4/4. On the homoclinic solution γ (t) the following relation holds

v̇ = v
√
1 − v2/2.

This permits to obtain an analytic expression of γ (t) and get that the nearest singularities of γ to the real time axis are
= ±iπ/2. Undoing the rescaling we obtain (2).
Finally, (4) follows from the fact that y2 = 0 if, and only if, either θ = 0 or θ = π . Note that the map T̂ 0

δ shows up a
omoclinic figure-eight loop as depicted in Fig. 5. □

Our next goal is to apply the results in [4] to obtain an upper bound of the splitting of the separatrices of Tδ , sharp
enough to describe the asymptotic behavior of the splitting. Note that, from the derivation of the NF Hamiltonian described
previously, any Hamiltonian Hν that undergoes a Hamiltonian-Hopf bifurcation is expected to have the same splitting as
Tδ , hence the same asymptotic behavior.

First we need to rescale time to have the motion along the separatrices of Tδ approximated by the flow time-µ map
f a limit vector field. It is enough to consider the limit vector field as considered in Proposition 4.1 and rescale time by
−aδ. This implies that the imaginary part of the closest singularities move to Im τ = ±π/2.
In the following we assume that Tδ can be extended analytically to a neighborhood of {γ (t), |Im t| < τ0}, 0 < τ0 <

m τ . Under these hypotheses the following result was proven in [4]: for any η > 0 there exists δ0 and C > 0 such that
he distance between W u and W s measured at a point p ∈ γ is bounded (uniformly in δ for δ < δ0) by

C exp (−2π (Im τ0 − η)/µ) . (17)

e refer to [4,6,17,18] for details and comments on this result.
A direct application of this result to the map Tδ fails to describe the asymptotic behavior of the splitting. The reason

is that property (4) in Proposition 4.1 implies a half-period in the Fourier representation of the difference between the
manifolds in a fundamental domain. Hence, we should consider µ/2 instead µ in (17), see details in Remark 4.3 below.
his is analogous to the situation taking place in the period-doubling bifurcation for area-preserving maps, see [29]. See
lso the related comments in [30,31] about the splitting of the so-called ‘‘twisted’’ map [32].
As a conclusion the splitting σ of the invariant manifolds of Tδ is expected to behave asymptotically as

σ ∼ AδB exp
(

−π
√

−aδ

)
, (18)

or some constants A > 0 and B ∈ R. Equivalently, see Remark 4.1, the asymptotic behavior of σ is given by

σ ∼ A |Re λ|B exp
(

−π |Im λ|

|Re λ|

)
, (19)

n terms of the eigenvalues of the original Hamiltonian system that undergoes the Hamiltonian-Hopf bifurcation.

Remark 4.3. Consider a near-the-identity family of area-preserving maps Fϵ having a hyperbolic equilibrium point with
igenvalues λ = 1 + O(ϵ). Let us recall the basic steps to obtain the upper bound (17), see [4].

1. One would like to construct a first integral (an energy) E to use it to measure the difference between the manifolds
W u/s. E is obtained from the NF at the hyperbolic point, which is convergent [33], and uniformly convergent with
respect to the parameter ϵ [4].

2. The difference between the energy evaluated on each one of the manifolds W u/s turns out to be periodic with period
h = log λ. Then one bounds the coefficients of the Fourier expansion of the previous difference to obtain (17).

Consider now an area-preserving family of maps Fϵ close to minus-the-identity map. Then, F 2
ϵ is a near-the-identity

amily of maps which has a hyperbolic point. Assume that the dominant eigenvalue of F 2 is λ. In this situation, to derive a
harp upper bound able to describe the asymptotic behavior of the splitting, one should adapt the proof of (17). Consider
ϵ = −Fϵ . The NF at the hyperbolic point provides a first integral E of Gϵ . The difference of the first integral evaluated

on the invariant manifolds of Gϵ gives a (log(λ)/2)-periodic function. We note that the energy E is also a first integral of
G2

= F 2. Then, the splitting of the invariant manifolds of F 2 can be described also in terms of E, but it gives a (log(λ)/2)-
periodic function instead. If one performs the Fourier expansion in terms of this half-period and bounds the coefficients
as in [4] one directly obtains a sharp upper bound that agrees with the asymptotic behavior given by (18).

As a final comment we note that the formula derived in [16] for the splitting is similar to (18), but has a factor π/2
in the exponential part instead of π as property (4) of Proposition 4.1 implies.
11
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5. Visualizing the dynamics around the invariant manifolds

In this section we investigate the dynamics of the Hamiltonian system (1) through the reduction to a Poincaré section
nd, in particular, we check the asymptotic behavior of the splitting of W u/s(0) as ν = ϵ − ϵc → 0 from our numerical
omputations.
As a preliminary step we compute the changes of coordinates needed to reduce the Hamiltonian to the Sokolskii NF.

o systematically determine the changes of coordinates we use the tools sketched in Section 4.1: the Burgoyne–Cushman
lgorithm [23] to put the quadratic part of H in the desired form and the Lie method to deal with the higher order terms
see Appendix A). For concreteness, we consider the values of a2, a3 in (6).

The linear (symplectic) change of coordinates L(ψ1, ψ2, J1, J2) = (x1, x2, y1, y2) defined by

x1 =
1
2
ψ1 −

1
3
ψ2, x2 =

−1
√
6
J1 −

√
3

2
√
2
J2, y1 =

5
4
J1 −

9
8
J2, y2 =

3
√
3

4
√
2
ψ1 +

5

2
√
6
ψ2, (20)

educes the quadratic part of the Hamiltonian (1) at the bifurcation value, that is, when ϵ = ϵc = −4/9, to H2 =

ω(x2y1 −x1y2)+ 1
2 (x

2
1 +x22) with ω =

√
2/3. Moreover, the change of variables generated by the flow of the Hamiltonian

G = ν (g1 x1x2 + g2 x1y1 + g3 x2y2 + g4 y1y2)
+ g5 x31x2 + g6 x31y1 + g7 x21x2y2 + g8 x21y1y2 + g9 x1x32 + g10 x1x22y1 (21)
+ g11 x1x2y21 + g12 x1x2y22 + g13 x1y31 + g14 x1y1y22 + g15 x32y2 + g16 x22y1y2
+ g17 x2y21y2 + g18 x2y32 + g19 y31y2 + g20 y1y32,

here

g1 =
153

√
3

256
√
2
, g2 = −

9
256

, g3 = −
153
256

, g4 = −
3
√
3

32
√
2
, g5 = −

2713
√
3

131072
√
2
,

g6 =
20197
393216

, g7 = −
12397
131072

, g8 =
3143

√
3

49152
√
2
, g9 = −

2455
√
3

131072
√
2
, g10 =

13171
131072

,

g11 = −
2353

√
3

49152
√
2
, g12 =

3713
√
3

49152
√
2
, g13 =

395
73728

, g14 =
1463
73728

, g15 =
2455

131072
,

g16 = −
893

√
3

16384
√
2
, g17 = −

793
73728

, g18 = −
517

73728
, g19 = −

5
√
3

9216
√
2
, g20 = −

25
√
3

27648
√
2
,

educes H to the Sokolskii NF up to order 4. The corresponding coefficients in (11) are

a0,1,1 =
3
16
, a1,0,1 =

9
√
3

32
√
2
, a2,0,0 = −

19
4608

, a1,1,0 =
47

√
2

1536
√
3
, a0,2,0 =

5
2304

.

According to (14) one has a = −9/32 and η = 5/1024, then for ν = ϵ − ϵc < 0 the invariant manifolds W u/s(0) are
bounded. In Fig. 1 we displayed W u/s(0) for ϵ = −1/2. Recall that in Section 4.1 we described the geometry of W u/s(0)
in terms of the Sokolskii polar coordinates (9). In Fig. 7 we show W u/s(0) for ϵ = −1/2 represented in the coordinates

(Rl,Θl, rl, θl) = S ◦ L(ψ1, ψ2, J1, J2), (22)

that is, given by the composition of the linear change (20) with the change to Sokolskii polar coordinates (9), that is,
without any normalization step. This change of coordinates is independent of ν.

5.1. The Poincaré map Tδ for the system H

The original system (1), for most of the parameters is non-integrable and the formal first integral Γ1 is not preserved.
This causes the splitting of separatrices which generates dynamical chaos. Recall that the CS point of H is located at the
energy level H(0) = −1− ϵ. Based on the previous considerations, here we use the section Σl = {θl = 0} ∩ {H = −1− ϵ}

o visualize the dynamics of (1). We denote the corresponding return map by Tδ by analogy to the return map introduced
n Section 4.2 for Hδ . But note that the iterates of the return map Tδ : Σl → Σl considered here are computed integrating
(1) and applying the change of coordinates (22) to compute points with θl = 0.

First, let us give some details on how we find the initial conditions to integrate Eqs. (4). Given rl,Θl, rl ̸= 0, we look
for initial conditions on Σl with Rl = 0. We compute (ψ1, ψ2, J1, J2) = L−1

◦ S−1(0,Θl, rl, 0) using (22). It follows from
(9) that S−1(0,Θl, rl, 0) = (0,Θl/rl, rl, 0). Using (20) one obtains

(ψ1, ψ2, J1, J2) =

(
0, 0,

rl
2

−
3
√
3

√
Θl

r
,−

rl
3

−
5
√

Θl

r

)
. (23)
4 2 l 2 6 l

12
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t
h

Fig. 7. The invariant manifolds W u/s(0) shown in Fig. 1 are here represented in Sokolskii polar coordinates, see text for details. The left plot shows
he projection onto the (rl, Rl)-plane, compare with Fig. 5. The right plot displays the θl variable ranging in the vertical axis and, in blue, the
omoclinic orbit also shown in Fig. 1.

Imposing the point (23) to be in the energy level h = H(0) = −1 − ϵ leads to g(rl,Θl) = 0, where

g(rl,Θl) =
1
2

(
rl
2

−
3
√
3

4
√
2

Θl

rl

)[(
rl
2

−
3
√
3

4
√
2

Θl

rl

)
−

(
rl
3

+
5

2
√
6

Θl

rl

)]
−

3
8

(
rl
3

+
5

2
√
6

Θl

rl

)2

.

One has 2r2l g(rl,Θl) = −kr2l Θl +Θ2
l , being k = 2

√
2/

√
3, which vanishes if Θl = 0 or Θl = kr2l . Therefore we iterate

points with Rl = Θl = θl = 0 and rl > 0 to explore the phase space of Tδ . On the other hand, choosing Θl = kr2l allows
us to explore solutions with different values of Θl that lie in the same energy level, however for values of rl ≈ 0 the
dynamics resembles the previous one and for larger values of rl most of the points escape.

Using the coordinates (22) one can compute the intersection of the invariant manifolds with the section {θl = 0}.
This is shown in Fig. 8 top together with iterates of the map Tδ . The figure also highlights the chaotic region around the
invariant manifolds (that can be clearly observed near the origin as shown in the bottom left plot).

We remark that Σl is not a global transversal section. This contrasts with what happens when considering any
truncation of the NF of Hν where the singularity y1 = 0 inside the energy level of the CS reduces to the origin, see
comments in Section 4.2. However, H does not preserve Γ1 and orbits can approach rl = 0 where the corresponding
Poincaré map is not well-defined. In Fig. 8 bottom left we magnify the phase portrait near the CS point. Finally, in Fig. 8
bottom right we see the transversal splitting of the invariant manifolds. Note that this region is far from r = 0 and
the Poincaré map is well-defined on it. The observed splitting corresponds to the splitting of an area-preserving map as
explained in Section 4.2. The existence of transverse homoclinic trajectories to the complex unstable point lead to the
existence of horseshoes and chaos [34].

The expansion of the term cos(ψ1) + ϵ cos(ψ2) of H around the origin shows that the quadratic terms (in J1, J2) of the
Hamiltonian (1) form a non-degenerate quadratic form that, for a fix energy level, defines a 4D imaginary hyperboloid
homotopic to R3

× S1. For the energy level of the origin, the slice θ = 0 (mod π ) of the 4D hyperboloid is the conical 3D
surface represented in Fig. 9.

Finally, we consider some iterates of the homoclinic point at (Rl, rl) ≈ (2.730290, 0), see Fig. 8 bottom right. The first
two iterates are (1.967828, 1.584435 × 10−1) and (1.029221, 9.853949 × 10−2), respectively. In Fig. 10 we represent
these first two iterates and we show the graph of the unstable manifold with respect to the stable manifold (in suitable
coordinates so that the stable manifold becomes horizontal). The plot shows that the splitting function, that represents
the unstable manifold with respect to the stable one (in a fundamental domain, that is, between consecutive iterates of
the homoclinic point), has the second order harmonic as the dominant one. In particular, four homoclinic orbits coexist
in a fundamental domain of the invariant manifolds for the Poincaré map Tδ .

5.2. A numerical check of the splitting behavior

Let us consider again the values of the splitting angle σ computed in Section 3.2 and shown in Fig. 3. We recall that
in Section 3.2 we computed homoclinic points ph ∈ {ψ1 = 0} ∩ {ψ2 = 0}, then by the change (20) those points are such
that x1 = y2 = 0, ẏ2 = −ωy1 < 0, hence they are in the transversal section considered in Section 4.2. Then, according to
the theory we expect that the splitting σ , that is the angle between W u,s of the Poincaré map Tδ at the homoclinic point,
behaves asymptotically as

σ ∼ Ã|Re λ|B exp
(

−C
)
, (24)
|Re λ|
13
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Fig. 8. For the values in (6) and ϵ = −0.5, we show the intersection of the invariant manifolds W u/s(0) with {θl = 0}. In the top plot, iterates
f the map Tδ are also represented and the chaotic zone along the invariant manifolds is highlighted. The bottom left plot is a magnification of
he previous one to clearly observe the neighborhood of the origin. The bottom right plot is a magnification of the intersection of the invariant
anifolds where we observe the splitting of separatrices far from the origin, where Tδ is well-defined as an area-preserving map. In all plots the
ariable rl ranges in the vertical axis and the variable Rl in the horizontal one.

Fig. 9. The left plot shows the 3D cone section obtained as intersection of the 4D hyperboloid with θl = 0 (mod π ). We have used ϵ = −0.475 and
e represent the coordinates (ψ1, J1, J2). The right plot is a projection onto (J1, J2) of the left one.

here C = π |ω|. Recall that δ =
√

−ν, ν = ϵ − ϵc < 0. For the values (6), ϵc = −4/9, and one checks that

Re λ = ±

√
3
4

√
−ν + O(ν), Im λ = ±

√
2
3

+ O(ν),

according to Remark 4.1 and the previously derived value of a = −9/32. In particular, one expects C =
√
2π/

√
3 ≈

2.56509966 in (24).
To check the theoretical prediction of C , we fit the dependence of Re λ · log σ with respect to Re λ, see Fig. 3 right, by

a function of the form f (x) = A x + B x log(x) − C , A = log Ã. If the fit is performed for 0.025 < Re λ < 0.035 we obtain
A ≈ 6.759, B ≈ −7.02883 and C ≈ 2.5842. If instead, we fit it by a function of the form f (x) = A x+ B x log(x)− C +Dx2,
we obtain A ≈ 12.9569, B ≈ −5.25625, C ≈ 2.5574 and D ≈ −29.1823, in better agreement with the predicted value of
C . If we repeat the fit considering values 0.025 < Re λ < 0.03 then we obtain A ≈ 12.4998, B ≈ −5.38492, C ≈ 2.55925
14
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Fig. 10. The graph of the unstable manifold with respect to the stable one (in the horizontal axis). Rl ranges on the x-axis. A polynomial fitting
of degree 10 was performed to approximate W s(0) in the region rl > 0, and used to represent the relative distance between the manifolds in the
vertical axis. The two blue points correspond to consecutive iterates of the homoclinic point at (Rl, rl) ≈ (2.730290, 0).

nd D ≈ −26.9394. Moreover, we have observed that the value of B oscillates around −6 for many of the fits performed.
f we fix B = −6 and repeat the previous fit we obtain A ≈ 10.2986, C ≈ 2.56783 and D ≈ −15.9276, in much better
agreement with the expected value of C . We conjecture that the value B = −6 holds for the prefactor term. In any case,
hese fits show that the values obtained are quite robust (almost independent on the region where the fit is performed
f Re λ is small enough) and that C approximates quite well the theoretically predicted value.

. Dynamics near the 2D invariant manifolds W u/s(0)

To perform direct and accurate simulations near the invariant manifolds of a hyperbolic object of a Hamiltonian system
r a symplectic map is a difficult problem (see illustrations and comments in Section 6.3). Usually one aims to investigate
he chaotic region which in certain cases, as the one we are studying here, is exponentially small in the perturbation
arameter ϵ. The passages close to the hyperbolic object imply then long integration times which translate in loss of
ccuracy. These considerations have motivated the derivation of the so-called separatrix maps which model the return to
fundamental domain near the invariant manifolds and avoid the numerical integration near the hyperbolic object.
Separatrix maps (SM) have been derived in many contexts to investigate dynamics near separatrices, we refer to

5,6,35–37] for details of the derivation and applications. In this section we aim to derive a return map and to suggest a
irst order SM model to study the dynamics of H around the 2D invariant manifolds of the CS point. The discussion below
s far from being a formal derivation of the SM model but a first step in this direction. In particular, we show how to
onstruct a fundamental domain, we study the passage time near the CS point as given by a linear approximation and we
ntroduce suitable variables to express the SM map in a fundamental domain.

The derivation of the SM needs to be adapted to the setting here considered. In this sense, we emphasize that the
eduction of the dynamics at the Hamiltonian level of the CS point to an area-preserving map was done, in previous
ections, using variables that are not globally defined around the separatrices, see Fig. 8. In particular, the planar area-
reserving map is only well-defined far away from the singular set {y1 = 0}, which means that the passage near the
S point has to be described in terms of the 3-dimensional flow that defines H at the corresponding level of energy.
o overtake such topological intrinsic difficulties one is lead to introduce adapted coordinates to the geometry of the
roblem.
The SM model we describe below will provide a model to investigate the breakdown of the invariant tori surrounding

he invariant manifolds of the complex unstable point which leads to escape, see [38] for a numerical exploration of the
scape in this setting.

.1. General setting, the fundamental domain and adapted variables

Let J be the matrix of the standard symplectic form dx ∧ dy in R4 and z = (x, y) ∈ R2
× R2. In the following, we

consider an analytic Hamiltonian H : R2
× R2

→ R such that H(0) = ∇H(0) = 0 and the origin is a CS equilibrium point
of the Hamiltonian system ż = XH (z) = J∇H(z). We denote by W u/s

H (0) the corresponding 2D invariant manifolds of the
origin. Furthermore, we assume that there exists a compact set K ⊂ R4 such that

(a) K contains both the origin and the local invariant manifolds W u/s
H (0) extended up to the primary homoclinic orbits
lying in their intersection,

15
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(b) the system ż = XH (z) is ‘‘well approximated’’ in K by the integrable system ż = J∇Hn(z), where Hn denotes the
truncation of the Sokolskii normal form NF(H) to order n ≥ 4.

By ‘‘well approximated’’ we mean that the phase portraits of both systems are close enough, within a certain precision
euristically chosen depending on the setting and what we want to study, see related comments in Section 6.3. As an
xample, a Hamiltonian H above in the setting described in Section 4.1 would be a member of the family of Hamiltonians
ν , for a given value of ν < 0 so that the origin is a CS point, after the transformation to Sokolskii NF up to order n, that
e denoted as φ̂n in Section 4. That is, H = Hν ◦ φ̂n for a given n ≥ 4. Recall that at ν = 0 the transition to CS takes place.
lso, in this setting, the compact K depends on ν as the distance up to the invariant manifolds extend also depend on the
arameter and, concretely, K = O(

√
ν). Moreover, Hn = NFn(Hν) (see Section 4) and hypothesis (b) implies the existence

f an extra first integral, that we denote by Γ1, independent of Hn in the region of interest near the 2D separatrices of
he complex-saddle fixed point, see [7]. Note that here Hn also depends on ν. Concretely, we have H = Hn + o(ν) for
≥ 4, see (13). Moreover, (a) and (b) together guarantee that WHn (0) = W u

Hn
(0) = W s

Hn
(0) is a 2D pinched torus carrying

on a foliation of homoclinic orbits lying on {Hn(z) = 0, Γ1(z) = 0}. We recall that the system with Hamiltonian Hn is
integrable while the system we are interested in, the original system H , is not. In particular, the flow associated to XH
does not preserve Hn nor Γ1.

In the context of this work, we are interested in a planar area-preserving return map model to describe the dynamics
near the separatrices within the energy level −1−ϵ of the CS point of Hamiltonian (1). However, note that to understand
the return map for nearby energy levels (not containing the fixed point) is important in other problems. For example, this
is the case in the analogous problem for a 4D map as mentioned in Section 2 (see also comments in Section 7).

Going back to the general setting, hereafter we consider Hn with n ≥ 4 fixed. For the geometrical description concerning
the fundamental domain below, as well as to express the associated return map, we shall use the Cartesian coordinates,
given by the reduction to normal form up to order n, and the corresponding symplectic Sokolskii coordinates (R,Θ, r, θ )
as introduced in (9). Recall, in particular that Θ = Γ1 is a formal first integral of the system. Our goal is to consider a
return map to a fundamental domain FD within the 3D section Σ̂ = {θ = 0} that captures the dynamics around the
nvariant manifolds. We first consider the return map to Σ̂ defined by the integrable system Hn and after we will add the
effect of the non-integrable part which is mainly reflected by the splitting of separatrices.

We construct a fundamental domain FD as follows. Consider a 3D neighborhood of the invariant manifolds of the
integrable system of the form |Γ1| ≤ γM , for γM small enough, inside Σ̂ . Then:

1. Take a point ℓ ∈ WHn (0) ∩ Σ̂ with coordinate r away from zero (for example, close to the maximum that it takes
when evaluated along WHn (0) ∩ Σ̂). In particular, we assume that ℓ is taken so far from r = 0 that the section Σ̂
is transversal to XHn (ℓ).

2. Let X Σ̂Hn
(ℓ) be the projection of the vector XHn (ℓ) onto the tangent space Tℓ(Σ̂). Note that since ℓ lies on a homoclinic

orbit to the saddle-focus the projected vector is not the zero vector, as follows directly from Eq. (16).
3. Consider a local piece of a 2D surface L in Σ̂ transversal to X Σ̂H (ℓ).
4. Denote by ϕH (t, x) the flow of XH . Let L′ be the first crossing of ϕH (t, L) with Σ̂ for t > 0. Note that the time t = t(x)

depends on the point x ∈ L. On the other hand, since L is chosen locally it follows that t(x) is uniformly bounded
from below.

5. Then FD is the domain in Σ̂ that delimit L, L′ in the neighborhood |Γ1| ≤ γM of the invariant manifolds. Note that
the intersection FD ∩ {H = h} defines a 2D fundamental domain within the 3D energy level surface.

We introduce coordinates in FD to derive the expression of the SM. A point p ∈ FD can be identified by the energy
h = Hn(p) of the integrable system, the value of the first integral γ = Γ1(p) and the variable s that is defined as the
evolution time of the 2π/ω-periodic Hamiltonian action ϕΓ1 that generates Γ1. Recall that the action of Γ1 preserves the
Hn energy and denote by pL the point L ∩ {Hn = h} ∩ {Γ1 = γ }. Then s(p) ∈ [0, 2π/ω) is defined to be the unique value
or which there exists t(p), such that

{ϕHn (t, ϕΓ1 (s(p), pL)), 0 ≤ t ≤ t(p)} ⊂ Σ̂ and ϕHn (t(p), ϕΓ1 (s(p), pL)) = p, (25)

here ϕHn refers to the action (the flow) associated to the integrable Hamiltonian Hn. Each of the flows ϕHn and ϕΓ1
efines a foliation in Σ̂ ∩ FD. Moreover, {Hn,Γ1} = 0 and these foliations are independent, see Fig. 11 for a sketch. We
lso refer to [39] where a complete description of the integrable dynamics is obtained in terms of both first integrals in
nvolution and their corresponding evolution times.

The transformation T : (x1, x2, y1, 0) ↦→ (h, γ , s) is well-defined for |h| < hM small (here h = Hn(x1, x2, y1, 0),
= Γ1(x1, x2, y1, 0) and s is given as explained above) and defines a change of coordinates in FD. Note that a single

teration of SM shiftes s by t (mod 2π ), where t is the time required to return to FD. The corresponding return map SM
reserves a suitable area-form g(γ , s)dγ ∧ ds.

.2. The inner and gluing maps

As usual, see [37], the separatrix return map SM: FD → FD is obtained as the composition of two maps: the inner
ap modeling the passage near the hyperbolic object and the gluing map modeling the reinjection to the fundamental
16
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Fig. 11. Schematic representation of the independent actions of Γ1 and Hn on the torus where the coordinates (t ′, s) ∈ [0, 2π ) × [0, 2π/ω) are
efined. Here t ′ is a normalization of the time t so that t ′ ∈ [0, 2π ). Such a torus lies inside {H = h} ∩ {Γ1 = γ } for given h and γ . By uniqueness
f solutions of the corresponding Cauchy problems, such actions define the coordinate s(p) through relation (25), see text. The action of Γ1 is
epresented vertically (in red). The action of Hn is represented as an inclined line (in blue). The labels p, pL and ϕΓ1 (s(p), pL) indicate the projection
nto the coordinates (t ′, s) of those points.

omain. In our setting, the SM will be a one-parameter family of 2D separatrix maps SMĥ expressed in coordinates (γ , s)
nd parameterized by the preserved energy level ĥ of the non-integrable Hamiltonian H .

he inner map. The inner map concerns the passage near the CS fixed point. The normal form around a hyperbolic
S fixed point was studied in [40], in the C∞ case, and in [41], in the analytic one. Here we simply reformulate the
esult following [42], see also [39], and we refer to the original references for the proofs. Consider a CS fixed point with
igenvalues ±α ± iω, α, ω > 0. The statement adapted to our setting reads as follows.

heorem 6.1. Let Hn be the truncation of the Sokolskii normal form to order n ≥ 4. Then, there exist a neighborhood U of the
S point and symplectic coordinates (x1, x2, y1, y2) defined in U such that

Hn = −ωΓ1 + αΓ4 + Fn(Γ1,Γ4),

here Γ1 = x2y1 − x1y2, Γ4 = x1y1 + x2y2 and Fn is a real analytic function of order 2.

We are interested in a small neighborhood of the invariant manifolds of the CS point, hence we simply use the
inear vector field associated to the quadratic Hamiltonian function provided by the previous result, that we denote by
2 = −ωΓ1 + αΓ4, to obtain an approximation of the inner map. The linear passage near a CS point was studied in [34].
he stable invariant manifold is given by x1 = x2 = 0 while y1 = y2 = 0 corresponds to the unstable one. In polar
oordinates x1 = ru cos θu, x2 = ru sin θu, y1 = rs cos θs and y2 = rs sin θs the linear equations are ṙu = α ru, θ̇u = ω,

˙s = −α rs and θ̇s = ω. Hence, the flight time from the 3D section Π0 = {rs = 1} to Π1 = {ru = 1} is tv = − log(r0u )/α,
here r0u refers to the ru-coordinate of the initial point on Π0. Accordingly, the s variable evolves as s ↦→ s+ tv (mod 2π )
uring the inner passage.
Finally, we need to express the flight time tv as a function of the coordinates h, γ . Here h refers to an energy level of H2,

hich is close to the energy level of Hn in a small neighborhood of the CS point. The relations r0s = 1, γ = r0u sin(θu − θs)
nd ωγ + h = αr0u cos(θu − θs) lead to

(αγ )2 + (ωγ + h)2 = (ru0 )
2α2,

hat gives the following expression for the flight time

tv = tv(h, γ ) = −
1
α

log
(
1
α

√
(αγ )2 + (ωγ + h)2

)
. (26)

We observe that

• If ωγ + h = 0 then

tv(h, γ ) = tv(γ ) = −
1
α

log |γ | + O(α).

• If ωγ + h ̸= 0 then

tv(h, γ ) = −
1
log
⏐⏐⏐⏐ωγ + h

⏐⏐⏐⏐+ O(α).

α α

17
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Fig. 12. For ω = 1, α =
√
0.1 we represent the flight time tv(γ , h) as given by (26).

In Fig. 12 we represent tv(h, γ ) for ω = 1, α =
√
0.1. Compare with Fig. 20 in Appendix D where we numerically

ompute the return time to two different Poincaré sections for the integrable system given by Hamiltonian NF4(H).
Introducing b̂ = −1/α < 0 we can express the flight time (26) as tv(h, γ ) = (b̂/2) log(γ 2

+ b̂2(ωγ +h)2). We emphasize
hat in the setting of Section 4.1 one has b̂ = O(1/

√
−ν).

The gluing map. The local coordinates used for the inner map can be extended by forward/backward integration so that
define two coordinate sets on the FD. The gluing map identifies both coordinate sets by taking into account the effect of
the relative position of the split separatrices. This is given by the splitting function M(s).

In a perturbative regime one can derive a more concrete expression for M(s). To this end, we recall that for generic
analytic area-preserving maps, like the return map to FD ∩ {H = h} we aim to construct, the first harmonic of the
plitting function is expected to become the dominant one when the perturbation from the integrable limit is small
nough, see [36,43]. Other more complicated contexts, like the one for a 4D map mentioned in Section 2, might lead to
quasi-periodic representation of the splitting function.
The setting of Section 4.1 falls into the previous perturbative case. Therefore, according to the considerations in

ection 5.1, the splitting function is expected to behave asymptotically as A(ν) sin(2s) when ν → 0, where the factor
can be inferred from the computations displayed in Fig. 10. Note that a shift along the s variable and a normalization
f s is needed to get the previous expression for the splitting function. We will assume that s changes to s + â + tv for
ome constant â ∈ [0, 2π ). The constant A(ν) accounts for the splitting amplitude. In Section 5.2 we checked that the
symptotic behavior of the splitting angle is exponentially small in δ =

√
−ν and, consequently, so it is the asymptotic

ehavior of the amplitude A(ν).

The suggested separatrix map model. Previous considerations suggest that, at first order, a suitable model of the
ntegrable three-dimensional return map to FD ⊂ R2

× R/2πZ is given by⎛⎝h
γ

s

⎞⎠ ↦−→

⎛⎝h′

γ ′

s′

⎞⎠ =

⎛⎜⎝
h
γ

s + â +
b̂
2 log

(
γ 2

+ b̂2(ωγ + h)2
)
⎞⎟⎠ , (27)

here h and γ refer to the values of the first integrals of the integrable system Hn, with n ≥ 4, and Γ1, respectively.
Next we add the effect of the separatrix splitting to the previous integrable return map. As already mentioned,

when considering the system defined by the Hamiltonian H the quantities Hn and Γ1 are no longer preserved. The
intersections of the 3D section Σ̂ = {θ = 0} with the level sets of Hn and H are two close families of 2D manifolds.
The Poincaré maps associated to Hn and H are also close (because hypothesis b in Section 6.1). We assume that the
transformation (h, γ , s) ↦→ (H(h, γ , s), γ , s) defines a change of variables on Σ̂ (at least, locally around W u/s(0)). Denoting
by ĥ = H(h, γ , s) the inverse transformation is given by (ĥ, γ , s) ↦→ (Hn(ĥ, γ , s), γ , s).

We consider ĥ to be the level set of H containing the CS fixed point. Since ĥ remains constant (because H is a first
ntegral), inside {H = ĥ} we can then consider the energy Hn as a function of the variables γ and s, that is, we write

= Hn(γ , s). Then, by substituting it into the expression (27) we obtain a separatrix return map FD ∩ {H = ĥ} →

D ∩ {H = ĥ} ⊂ R × R/2πZ of the form(
γ

s

)
↦−→

(
γ ′

s′

)
=

(
γ + A(ν) sin(2s)

s + â +
b̂ log

(
γ 2

+ b̂2 (ωγ + H (γ , s))2
)) , (28)
2 n

18
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where we have added the effect of the perturbation as a displacement of γ according to the considerations in the
discussion of the gluing map.

In the following we shall assume that |Hn(γ , s)| is small enough so that can be ignored in the approximation of the
dynamics given by (28). Note that we ignore the correction produced by the term |Hn(γ , s)| in a very small neighborhood
f the invariant manifolds since the range of interest of the variable γ in (28) is exponentially small in ν. As H = Hn+o(ν),

taking ν small enough such assumption holds true. The previous considerations let us to consider the return map(
γ

s

)
↦−→

(
γ ′

s′

)
=

(
γ + A(ν) sin(2s)

s + ã + b̂ log |γ ′
|

)
, (29)

here ã, b̂ ∈ R. We note that

• ã = a + b̂ log(ω) + b̂ log |b̂|, (mod 2π ),
• we have ignored terms of relative size O(b−2) in the second component, and
• we have substituted γ by γ ′ in order to obtain an area-preserving return map.

Since we want to study the dynamics around the invariant manifolds W u/s(0) and, concretely, in a neighborhood of
he order of the size of the splitting, we introduce scaling variables s ↦→ s/2π , γ ↦→ γ /A(ν), so that the previous map
29) becomes(

γ

s

)
↦−→

(
γ ′

s′

)
=

(
γ + sin(4πs)

s + a + b log(|γ ′
|)

)
,

here a = ã/2π + b log(2π |A(ν)|) + b log |b| (mod 1) and b = b̂/2π .
Note that the obtained return map (28) only differs from the usual (first order) separatrix map, see e.g. [6], in the

ependence of the constant a with respect to the parameter b. This is because the expression of the flight time obtained
ear the CS hyperbolic fixed point which differs from the flight time near a saddle fixed point of a 1-DOF Hamiltonian.
his modification does not play any relevant role in the main properties of the chaotic zone (but may affect details of
he dynamics inside the chaotic zone, see [44] for a discussion on the dependence of the parameters a and b and the
elation with the abundance of islands within homoclinic lobes in one parameter families of maps). In particular, the
pproximation of the separatrix map by a Chirikov standard map at some distance from the separatrices provides the
ollowing description of the chaotic zone, see [6] for details:

• The distance dc from the separatrices to the closest invariant curve bounding the chaotic region is γ ∼ dc ≈ 2|b|/kG,
where kG ≈ 0.97... is the so-called Greene constant.

• Approximately 1.415 b chains of (rotational) islands are expected to be found within the chaotic zone created by the
splitting of the separatrices, and these islands are expect to appear from distance γ ∼ di ≈ 2|b|/π on, measured
from the separatrices.

6.3. On the difficulties to describe the chaotic zone near W u/s(0)

The SM map model above derived aims to describe the dynamics in a tubular region near the invariant manifolds
W u/s(0). In the derivation, one assumes the relevant parameter to be close enough to the bifurcation parameter where a
Hamiltonian-Hopf takes place. Moreover a first order approximation of the flight-time and of the splitting function restrict
the parameters for which SM provides useful approximation. Hence, even though the SM model derived might be useful
to describe the dynamics within the chaotic zone where direct numerics simulations are not feasible, to find a suitable
range of parameters where to compare the approximation of the SM with the actual dynamics is a difficult problem. We
refer to [6] for further comments in this direction and for comparisons and illustrations in a simpler framework.

In order to illustrate the difficulties, we consider the original Hamiltonian (1) with the usual parameters (6) and
ϵ = −0.5 (hence ν = −0.05), as in Fig. 8. Note that one cannot consider |ν| too small since then the splitting and the
haotic region cannot be detected within the precision used in simulations (here we restrict ourselves to double precision
imulations). We compute numerically the return map by a direct integration of the original Hamiltonian (1). In Fig. 13
e show details of the phase space of the return map to Σ = {θl = 0} restricted to the level of energy of the CS point
that is, the linear coordinates are used). One can see that the chaotic region extends for 2.712 ⪅ rl ⪅ 2.7796, where
e can observe invariant curves bounding the bounded chaotic component near the invariant manifolds. A preliminary
umerical exploration of the chaotic zone size performing numerical integrations of initial conditions in the chaotic zone
nd iterating them up to t = 107 indicates that the width of the chaotic region seems to be ≈7 × 10−2. For r ≈ 2.7796

there seems to be an invariant curve but it is difficult to assert it properly due to cantori surrounding the different chains
of islands that form an effective barrier to global diffusion (it might be also possible that, for ϵ = −0.5, orbits outside
the invariant manifolds escape after a big enough number of iterations). On the other hand, several chains of islands are
detected and they extend to the open chaotic region for rl ⪆ 2.82.

Fig. 14 shows the predicted position of the invariant manifolds for the approximations obtained by NF4(H) and NF8(H)
espectively. See Sections 4.1 and 5 for details on the applied changes of variables.
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Fig. 13. Phase space of the Poincaré return map to Σ = {θ = 0} for H = −1 − ϵ, ϵ = −0.5 (energy level of the CS point). We also display W u/s(0).
Left: Different chains of islands, even in the open chaotic region, are observed. Right: We can see further details of the bounded chaotic zone created
by the splitting of the invariant manifolds.

Fig. 14. In blue/red we display W u/s(0) for the Poincaré return map to {θ = 0} with H = −1 − ϵ (energy level of the CS point). The black
discontinuous curves represent the intersection of the 3D set Γ1 = 0 with the section {θ = 0}, where Γ1 is computed for NFk(H) with k = 4 and
k = 8 respectively.

We note that:

• Increasing the NF truncation order we can obtain a better approximation of the true position of W u/s(0). This is
expected up to an optimal truncation order, see Remark 4.2. In the example, the obtained approximations are far from
giving an accurate description. We have also checked that using NF12(H) we obtain a slightly better approximation
but still far from being accurate.

• The return map model will predict invariant curves bounding the chaotic zone created by the breakdown of the
invariant curves and that these are expected to be located at the same distance, inside and outside, from the predicted
location of the invariant manifolds.

• Maybe ϵ = −0.5 gives |ν| too large to obtain a satisfactory description of the dynamics in Fig. 13 by a return limit
map as the SM map. But smaller values of |ν| will require longer computations because the flight time close to the CS
point becomes larger, and will require high order precision arithmetics since the width of the chaotic zone decreases
exponentially in |ν|.

We believe that the SM model proposed in this work provides a first order approximation to investigate dynamics for
mall values of |ν| where direct numerics becomes difficult. However, further comparisons and a more rigorous analytical
derivation is necessary to understand the range of values and the limitations of the model.

7. Conclusions and future work

In this paper we have explored the dynamics of a family of 2-DOF Hamiltonian systems after a complex-saddle
transition of an equilibrium point. The considered family is close to a family of integrable Hamiltonians (given by the
truncated Sokolskii NF) which has bounded manifolds.
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We have computed the 2D invariant manifolds of the equilibrium point and we have used two different Poincaré
ections to visualize the phase space geometry in a region containing the invariant manifolds.
Furthermore, we have computed the homoclinic trajectories and the splitting angle between these invariant manifolds.

n particular, we have obtained precise exponentially small estimates (in a parameter which measures the distance to the
ifurcation) of their splitting angle. We have obtained a formula, very close to the analytical upper bounds, that depends on
complex singularity of the homoclinic trajectory of an auxiliary integrable system (as it happens in related problems).
e have numerically checked, using multiprecision arithmetics, that this formula accurately describes the asymptotic
ehavior of the angle.
The splitting of the invariant manifolds creates a chaotic zone near them. The exponential small size of this zone makes

t difficult to detect numerically by iteration of the Poincaré map. To investigate the dynamics in this chaotic zone near
he 2D invariant manifolds we have detailed the steps involved in a derivation of a separatrix return map. The obtained
eturn map models the dynamics in the mentioned zone. The return map description of the dynamics becomes more
ccurate as the parameter becomes smaller, that is, in the regime where direct simulations are out of reach.
Certainly, some of the results of this work require a more detailed analytical explanation. We hope that the explorations

ere can help in this direction. As examples we mention the following two points:

• The discussion of the behavior of the splitting of the 2D invariant manifolds W u/s(0) is based on estimates of the
upper bounds. It would be interesting to provide sharp upper and lower bounds to fully describe the asymptotic
behavior of such splitting.

• The derivation steps leading to the SM model in this setting need to be rigorously justified. It would also be
interesting to estimate the error of the SM model to quantitatively describe the dynamics in a neighborhood of
the invariant manifolds.

To conclude with, we recall that, as pointed out in the Introduction and in Section 2, the system (1) considered through
the paper appears as a local model near double resonances of a 4D symplectic map. The phase space geometry of this
model is relevant for the Arnold diffusion problem in the so-called non-definite setting, where diffusion is expected to be
much slower and there are few available results. We remark that:

• The 2D invariant manifolds of the CS point allow points to cross the junction of the resonances and locally accelerate
the diffusion process along the single resonance. The geometry of the invariant manifolds is similar to the geometry
of the ones of the 2-DOF Hamiltonian system shown here.

• Generically, the preservation of the two formal integrals that provide the Sokolskii NF will no longer hold. The
splitting of the invariant manifolds is expected to be exponentially small in ν but a quasi-periodic effect might
emerge in such splitting behavior due to the interaction of the internal frequency with the external one related to
the discretization. We refer to [7] for a description of the behavior of the splitting of the invariant manifolds of a CS
equilibrium point of a (2 + 1/2)-DOF Hamiltonian system.

• A derivation of a suitable return map adapted to this setting would allow to explore the chaotic dynamics near the
invariant manifolds generated by such splitting. Note that the methodology described in this paper for the derivation
of the return map would be also applicable in this context.

We aim to consider the analogous explorations to those presented here in the setting of 4D symplectic maps elsewhere.
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Appendix A. Numerical solution of the homological equation via the fredholm alternative

As explained in Section 4.1 to normalize the order (k, j) terms we look for a polynomial Hamiltonian G ∈ Pk such that

Hk,j + adH2 (G) ∈ Ker ad⊤

H2
.

ence we have to obtain numerically the following factorization

Pk = Im adH2 ⊕ Ker ad⊤

H2
,

t each order k. This can be easily obtained in the following way:

1. We consider the canonical basis e1, . . . , eN of Pk given by the monomials xi1x
j
2y

s
1y

t
2 ordered according to the reverse

lexicographical order. Note that N = dimPk = (k + 3)!/(6(k!)). Let A ∈ RN×N be the matrix representation of the
linear operator adH2 in this basis.

2. We express the generating Hamiltonian G in terms of the canonical basis, i.e. G = a1e1 +· · ·+aNeN . Our unknowns
are then a = (a1, . . . , aN ). Similarly, let h = (h1, . . . , hN ) be the representation of Hk,j in terms of the canonical
basis. The idea is to solve the homological equation

A a = −h.

Since Ker A ̸= ∅ the previous equation does not have a unique solution.
3. The Fredholm alternative give us a systematic way to choose a solution of the homological equation for all orders

k. First we determine a basis of Im A. To this end we apply a Gaussian elimination procedure with column pivoting
to A⊤. The non-zero rows after the process generate Im A hence we remove from A the corresponding columns.
Assume that M = dim(Im A). Denote by Ã ∈ RN×M the reduced matrix after removing the columns and by ã ∈ RM

and h̃ ∈ RM the vectors obtained from a and h respectively by removing the corresponding components.
4. The Sokolskii NF reduction (10) shows that Ker A⊤ is generated by I(Γ1,Γ3)∩Pk, where I(Γ1,Γ3) stands for the ideal

of the ring of polynomials in four variables generated by Γ1 and Γ3. In particular, N − M = dim(I(Γ1,Γ3) ∩ Pk) =

N − dim(Ker A).
5. Denote by g1, . . . , gN−M the elements of I(Γ1,Γ3) ∩ Pk. They form a basis of Ker A⊤. Express gi in terms of the

canonical basis of Pk. Define B ∈ RN×N by completing Ã adding the columns g1, . . . , gN−M . We also add to the
unknowns ã a set of unknowns α1, . . . , αN−M and we complete the vector h̃ adding 0’s in the remaining components.
Denote by â and ĥ the obtained vectors.

6. Finally we solve the (consistently determined) linear system of equations

B â = −ĥ.

In this way we obtain the coefficients a (one has to complete ã by adding zeros in the removed components).
The coefficients α1, . . . , αN−M are the coefficients of the linear combination of the terms Ĥk,j of the normalized
Hamiltonian in terms of the basis g1, . . . , gN−M of Ker A⊤.

The above procedure allows to compute the generating Hamiltonian G. Then, selecting a proper strategy to eliminate
order by order the terms, we can formally (i.e. ignoring the storage limitations due to the memory capabilities of the
computer) compute the changes of coordinates to obtain the Sokolskii NF for the Hamiltonian-Hopf bifurcation up to any
desired order.

Appendix B. On the set of parameters a2, a3 for which the NF Hamiltonian has non-bounded manifolds after the CS
transition

In this appendix we consider the Hamiltonian (1) and we explore the boundedness of the manifolds W u/s(0) for
different values of the parameters a2 and a3. These parameters have to verify a3 − a22 < 0 since otherwise the origin
of the Hamiltonian system (1) does not undergo a CS transition. It is enough to consider a2 > 0 (otherwise consider
J1 ↦→ −J1, ψ1 ↦→ −ψ1). Recall from (13)–(14) that, for NF(Hδ), the invariant manifolds are bounded provided η > 0. For
η < 0 the invariant manifolds are not locally bounded. According to (11)–(13), the higher order terms of the Hamiltonian
on the manifolds are of the form δk1Γ

k2
3 for some k1, k2 ∈ N, k1 ≥ 2, k2 ≥ 1, being δ2Γ 3

3 , δ
3Γ3 the dominant ones. But

since 2Γ3 = y21 + y22, these terms do not force the invariant manifolds to be bounded (in the domain where the optimally
truncated NF gives a good approximation, see Remark 4.2).

In Fig. 15 we represent in blue the region of parameters for which η is negative. To get such a figure we have
numerically computed the reduction to the form (11) for values of a2, a3 in a mesh of points, exactly as we did in Section 5
for the values a2 = 1/2 and a3 = −3/4. The figure shows that the condition to have η < 0 is 2|a2| − 1 < a3 < a22. The

corresponding lines bounding the blue region are represented in red in the figure.
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Fig. 15. Region of (a2, a3)-parameters for which η < 0, hence with non-bounded invariant manifolds W u/s(0) (for the NF). Also the lines bounding
he previous region are shown in red.

ppendix C. Comments on ‘‘the passage by the maximum’’ section

In appropriate coordinates, the original system (1) can be considered as a small perturbation of the system (13),
gnoring the O(δ2)-terms, that is, it becomes close to the system ż = X0(z) = J∇H0(z) where z = (x1, x2, y1, y2) and

H0 = −Γ1 + δ
(
Γ2 + aΓ3 + ηΓ 2

3

)
. (30)

Note that, comparing with (13), with the aim of lighten the notation, we have omitted the ∼ on the scaled variables.
We consider the section Π taken at the passage by a maximum of Γ3 = (y21 + y22)/2. Note that for any truncation

of the normal form system (10), and also for the rescaled system (30), one has d
dtΓ3 = 0 if, and only if, Γ4 = 0, where

Γ4 = y1x1 + y2x2. Note that this condition is equivalent to R = 0 if r > 0, see (9) and Fig. 5.

Remark C.1. The section Π at the passage by the maximum of Γ3 was used in [7] for exploring the splitting of the
invariant manifolds of the CS of a periodic forcing of an integrable system for which the CS has a 2D homoclinic manifold.
This is the main reason why we consider it here.

Let us discuss about the transversality properties of the section Π . Consider first the system (30). For this system one
has ⟨X0,∇Γ4⟩ = 0 for

Γ2 = Γ3(a + 2ηΓ3). (31)

This relation defines a 3-dimensional manifold where the section Π is non-transversal. On the other hand, system (30)
possesses Γ1 as an additional first integral. We claim that this implies that {Γ1 = 0} ∩ Π = {Γ2 = 0} ∩ Π . To see this,
note that one has W u/s

H (0) ⊂ {H = Γ1 = 0}. Then Γ2 + aΓ3 + ηΓ 2
3 = 0 on W u/s

H (0). It follows that W u/s
H (0)∩ {Γ2 = 0} ̸= ∅

if, and only if, Γ3 = 0 or Γ3 = −a/η. On the other hand, the orbital derivative of the function Γ3(z) along solutions of
ż = XH (z) is

d
dt
Γ3 = −δΓ4.

If x = (x1, x2) and y = (y1, y2), then the condition of being extrema implies ⟨x, y⟩ = 0. But, the condition Γ1 = 0 means
that ⟨x, y⊥

⟩ = 0, meaning that extrema of Γ3 on W u/s(0) is reached whenever x = 0, that is, for points on {Γ2 = 0}.
Hence, the non-transversality relation (31) reduces to Γ3(a + 2ηΓ3) = 0. Then we obtain that, apart from the origin,

transversality is lost on the circumference y21 + y22 = −a/η, x1 = x2 = 0 (recall that a < 0 and η > 0 in the bounded
case). Moreover, the second order orbital derivative of Γ3, is

d2

dt2
Γ3 = −2δ2 (Γ3(a + 2ηΓ3) − Γ2) , (32)

hat, when evaluated at Γ2 = 0 and Γ3 = −a/η, is negative. We conclude that the intersection W u/s
H (0)∩ {Γ2 = 0} ∩Π is

the circumference y21 + y22 = −2a/η, x1 = x2 = 0. This implies transversality of the section Π in a neighborhood of the
invariant manifolds W u/s(0). Fig. 16 shows iterates of the return map toΠ for the integrable system (30) with a = −9/32,
η = 5/1024 and δ ≈ 0.2357 which corresponds to ϵ = −0.5.

We emphasize however that our goal is to use the section Π to investigate the original system (1). For such a system,
Γ is not a first integral but simply a formal first integral. This has important consequences concerning the transversality
1
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Fig. 16. We display return map iterates obtained from the integrable system (30) with a = −9/32, η = 5/1024 and δ =
√
ϵ − ϵc with ϵ = −0.5.

he invariant manifolds form a circle of radius ≈10.73 in the coordinates (y1, y2) shown.

Fig. 17. For parameters (6), we show the curves in Y , X-variables where the section Π is non-transversal. Each of these curves corresponds to a
D surface within the 3D energy level of the CS point. The two points correspond to the 1D intersection with Π of the 2D invariant manifolds of

the CS point for the limit system obtained by the truncation to order four of the Sokolskii NF for ν → 0. In the (y1, y2) coordinates these points
correspond to a circle. See text for details. The figure shows that there are points of non-transversality of Π in any tubular region of the invariant
manifolds for any perturbed (non-integrable) nearby system.

properties ofΠ . To describe the loci of points where transversality fails we proceed as follows. Let x = (x1, x2), y = (y1, y2),
then 2Γ2 = x⊤x = X2, 2Γ3 = y⊤y = Y 2 where X = ±∥x∥2 and Y = ±∥y∥2. The condition (31) reads X2

− aY 2
+ ηY 4

= 0.
The signs of X and Y determine two curves where the section Π is not transversal. For positive signs the curve is bounded
away from the invariant manifolds W u/s(0). For alternate signs however the curve extends to infinity. The whole picture
is shown in Fig. 17 for parameters (6). We summarize the geometrical meaning of this plot in the following items:

• Each of the curves shown in the Y , X-plane corresponds to a 3D surface embedded in the 4D space (in x, y
coordinates). Restricted to the zero energy level of the complex-saddle point of the original Hamiltonian (in Cartesian
coordinates) they are 2D manifolds and, hence, they define a 1D intersection manifold with Π . We denote this 1D
intersection by NT1, recall that it corresponds to points where the section is non-transversal.

• On the other hand, for |ν| small, the 2D W u/s(0) lie inside the 3D surface of constant energy equals zero and intersect
Π near the 1D curveW1 : {y21+y22 = −2a/η}, since the system is a perturbation of such a case. In the Y , X-coordinates
this curve is seen as two points on the X = 0 axis.

• The curves NT1 and W1 intersect at four points in Π . This follows from the fact that, along the curves of NT1
corresponding to alternate signs of X and Y , the Y variables ranges from values less than

√
−2a/η to larger values.

The curves NT1 where Π become non-transversal are present in all the illustrations below and they reflect the
ntriguing topology of the Hamiltonian-Hopf singularity.

One might expect another section to be transversal in a neighborhood of the invariant manifolds W u/s(0) of the non-
ntegrable system. However, the previous considerations imply that any candidate section that is invariant by the formal
ymmetry of the Sokolskii NF becomes singular for points on W u/s(0) of a non-integrable system. Let us state this fact
igorously.
24



E. Fontich and A. Vieiro Communications in Nonlinear Science and Numerical Simulation 117 (2023) 106971

t
s

P
A

b
i
u
i

r

b
s

D

t
s

Proposition C.1. Let H be any non-integrable Hamiltonian perturbation of (30), both having the same jet up to order 4.
Denote by X the corresponding vector field. Let W u/s(0) be the invariant manifolds of the CS point of X, δ > 0. Let Π ⊂ R4 a
hree-dimensional C1-manifold invariant by the action of the rotation group generated by Γ1. Then, there is z ∈ Π ∩ W u/s(0)
uch that X(z) ∈ TzΠ .

roof. By hypothesis X = X0 +O(δ2) being X0 = (−x2 + δy1(a+η(y21 + y22)), x1 + δy2(a+η(y21 + y22)),−y2 − δx1, y1 − δx2).
ssume that Π = {g(z) = 0} for a C1 smooth function g such that ∇g(z) ̸= 0.
The invariance of Π by the group generated by Γ1 implies that, for z ∈ Π , ⟨J∇Γ1(z),∇g(z)⟩ = 0 where J is the matrix

of the standard symplectic form dx∧ dy. In particular ∇g(z) belongs to the orthogonal subspace Vz to the vector J∇Γ1(z).
One has J∇Γ1(z) = (x2,−x1, y2, y1) and its orthogonal subspace is generated by the vectors ∇Γ2, ∇Γ3 and ∇Γ4, where
Γ4 = x1y1 + x2y2.

But since ⟨X0(z),∇Γ2(z)⟩ = ⟨X0(z),∇Γ3(z)⟩ = 0, we conclude that the transversality is lost at those points z ∈ R4

such that ⟨X0(z),∇Γ4(z)⟩ = 0. This condition was analyzed before. From the previous discussion we conclude then that
there exists z ∈ Π ∩ W u/s(0) where the flow of X0 is not transversal to Π . Since X coincides up to O(δ2) with X0 the
transversality condition to order δ is the same for both vector fields. □

Next we show the dynamics of the return map PM to the section Π . Each initial condition is propagated by integrating
(1) and, along the solution, Γ3 is computed after transforming the coordinates by the change of coordinates generated by
the Hamiltonian (21) that reduces the system to the Sokolskii NF up to order four.2

We display iterates of PM in Fig. 18. From left to right, the three plots of the top row correspond to ϵ = −0.5,−0.45 and
−0.445, respectively. For better comparison of the results for different ϵ we display the results using y1, y2-coordinates
scaled by the factor ω/

√
ϵ − ϵc (recall that ϵc = −4/9 and ω =

√
2/3). We clearly observe in the plots the singular lines

due to non-transversality of the section since no points are obtained near them.
For reference, in the plots of the first row we also display the first crossing withΠ of 1234 points taken equidistributed

along a circle in the s1, s2-variables of small enough radius on the local invariant manifolds W u(0) and W s(0) around the
origin (see definition of the variables in Section 3.1. Next iterates of those points under PM turn around the origin almost
filling up what resembles a circle. Indeed, as previously stated, for X0 the intersection of the invariant manifolds with Π
lie on a circle.

The plots of the second row of Fig. 18 are magnifications of those of the first one. The splitting of the stable/unstable
invariant manifolds for ϵ = −0.5 is seen in the first plot. The other two plots show magnifications of the plots of the
first row for ϵ = −0.45 and −0.445 respectively. We remark that the orbits have many iterates of PM near {y1 = y2 = 0}
ecause, due to the non-integrability, orbits have many maxima of y21 + y22 near this set. However, the interest is near the
nvariant manifolds (and far from the singular lines where there is non-transversality). As expected, in the coordinates
sed in the plots, we recognize the limit circle (of radius ≈ 10.73) where the invariant manifolds of the integrable system
ntersect Π .

Finally, Fig. 19 shows the iterates for ϵ = −0.5 (left) and ϵ = −0.45 (right) displayed in coordinates θ = arctan(y2/y1),
2

= 2Γ3 and Γ1. We see the oscillations Γ1 for the system (1). For ϵ = −0.445 (not displayed) the oscillations of Γ1 in
the interior of the circle radius 10.73 are O(10−5). This decay of the range of the oscillations is a consequence of the fact
that the formal integral Γ1 provides an adiabatic invariant that is better preserved for smaller values of ϵ − ϵc .

Appendix D. Investigation of the return times for the integrable system

We consider the truncation to order 4 of the Sokolskii NF reduction of the 2-DOF Hamiltonian-Hopf bifurcation given
in (30) and, concretely, H = −Γ1 + δ(Γ2 −Γ3 +Γ 2

3 ) where, for simplicity, suitable parameters of the unfolding have been
chosen: we have considered a = −1 and η = 1 in the scaled Sokolskii NF (13). This is not restrictive since the rescaling
xi → (−

√
ηa)xi, yi → (−

√
ηa)yi, i = 1, 2, δ →

√
−aδ reduces (30) to the case here considered. Below we report on the

ehavior of the return time as a function of the parameters (γ , h) for the nonlinear integrable flow of H to the Poincaré
ection Π , introduced in Appendix C, and to the section Σ = {θ = 0} used along the paper.

.1. Return time to Π = {max(y21 + y22)}

The pinched torus that form the invariant manifolds W u
H (0) = W s

H (0) is a homoclinic surface inside the intersection of
he 3D level sets {H = 0} and {Γ1 = 0} that intersects Π = {max(y21 + y22)} transversally whenever Γ2 ̸= Γ3(2Γ3 − 1), as
hown in Appendix C. Hence, for h0, γ0 > 0 small enough

Π̂ = {|H(z)| ≤ h0, |Γ1(z)| ≤ γ0} ∩Π ⊂ R4

2 Simulations using the change to NF up to order 6 and 8 do not reveal further details in the region of interest.
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Fig. 18. We display iterates of PM for the same initial conditions and parameters considered to generate Fig. 8 and for ϵ = −0.5 (left), −0.45
(center) and −0.445 (right). Also the first crossing of the invariant manifolds of the origin is shown. The second row plots are magnifications of the
ones of the first row. The (y1, y2)-coordinates shown are scaled by the factor ω/

√
ϵ − ϵc to compare with Fig. 16.

Fig. 19. Iterates of PM in coordinates θ , 2Γ3 and Γ1 for ϵ = −0.5 (left) and ϵ = −0.45 (right). We observe the decay of the oscillations of Γ1 as
− ϵc → 0 (that is, as getting closer to the Hamiltonian-Hopf bifurcation parameter). See text for details.

efines a 3D section.

electing points on Π̂ with h and γ given. Consider Γ1 as a Hamiltonian and let XΓ1 (x, y) = (−x2, x1,−y2, y1)⊤. We
hoose q = (0, 0,

√
2, 0) ∈ {W u

H (0) = W s
H (0)} ∩ {y21 + y22 = 2}, and we denote by OΓ1 (q) its XΓ1 orbit. One has

W u/s
H (0) ∩Π = OΓ1 (q) = {x1 = x2 = 0, y21 + y22 = 2}.

Given p ∈ OΓ1 (q) one has XH (p) = (δy1, δy2,−y2, y1)⊤ and XΓ1 (p) = (0, 0,−y2, y1)⊤. Then,

⟨XH (p), XΓ1 (p)⟩
⊥

= ⟨(0, 0, y1, y2), (−y2, y1, 0, 0)⟩ =: ⟨u1, u2⟩.

Hence, given p ∈ OΓ1 (q) and values h, γ , we look for a point

p̃ = p + αu1 + βu2 = (−βy2, βy1, (1 + α)y1, (1 + α)y2)

such that H(p̃) = h, Γ1(p̃) = γ . One has Γ1(p̃) = 2β(1 + α), Γ2(p̃) = β2 and Γ3(p̃) = (1 + α)2, and the conditions to
impose are

Γ (p̃) = 2β(1 + α) = γ , H(p̃) = γ + δ(β2
− (1 + α)2 + (1 + α)4) = h.
1
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By substitution of β = γ /(2(1 + α)) into the condition for H(p̃) one obtains the equation

z3 − z2 −

(
γ + h
δ

)
z +

γ 2

4
= 0, where z = (1 + α)2.

olving this equation for fixed values of h, γ and δ we obtain p̃ as required.
It remains to impose that the computed point belongs toΠ . This can be done taking into account the next observations:

• If a point z = (x, y) ∈ Π then Γ4(z) = x1y1 + x2y2 = 0. One has Γ4(z) = Γ4(w) for all w ∈ OΓ1 (z).
• The points p ∈ OΓ1 (q) are of the form (0, 0, y1, y2), y21 + y22 = 2. Then Γ4(p) = 0. On the other hand, p̃ =

(−βy2, βy1, (1 + α)y1, (1 + α)y2) and Γ4(p̃) = 0. In particular, for p = q = (0, 0,
√
2, 0) one has q̃ = (0, β

√
2, (1 +

α)
√
2, 0) and Γ4(q̃) = 0. Moreover, the second order orbital derivative (32) of Γ3 at q̃ is −2δ(1 + O(α, β2)), and it

never vanishes for |α| and |β| small enough. Then one has q̃ ∈ Π .

It follows that OΓ1 (q̃) ⊂ Π . In the following, given h and γ , and for a fixed δ, we compute q̃ and we choose points in
OΓ1 (q̃) as initial conditions on Π̂ ∩ {H = h} ∩ {Γ1 = γ } and we investigate the return time to Π̂ .

The return time to Π̂ . Once we know how to select initial points on Π we proceed to investigate the return time as a
function of γ and h.

First, we introduce convenient variables to express the return map to Π . We recall that OΓ1 (q̃) ∈ Π is the orbit of the
point q̃ under the evolution given by the 4D linear system(

ẋ
ẏ

)
= A

(
x
y

)
, where A =

(
J⊤ 0
0 J⊤

)
, J =

(
0 1

−1 0

)
.

Hence, we parameterize OΓ1 (q̃) ⊂ Π by a parameter s so that

OΓ1 (q̃) = {(x, y) ∈ R2
× R2, (x, y)⊤ = exp(As)q̃⊤, s ∈ [0, 2π )},

and, in particular, OΓ1 (q) = {(x, y) ∈ R2
× R2, x = 0, y =

√
2(cos(s), sin(s)), s ∈ [0, 2π )}.

Then, we express the return map to Π for the vector field XH in terms of coordinates (h, γ , t, s), where t is the time
f the system evolution. For the integrable system one has

(h, γ , t, s) → (h, γ , t + tv(h, γ , s), s + sv(h, γ , s)).

Numerical evidence supports that tv and sv only depend on h and γ , that is tv(h, γ , s) = tv(h, γ ) and sv(h, γ , s) =

v(h, γ ). The results on the behavior of tv as a function of h and γ are summarized in Fig. 20. The hyperbolic point is
ocated at the level of energy h = 0 and the corresponding time tv displays the typical logarithmic behavior as a function
f the action Γ1. This is shown in the third of the bottom plots of Fig. 20. For other energy levels the time tv remains
inite. We observe that it shows maxima for Γ1 close to h.

As the time evolves from t = 0 to t = tv a given initial point in Π with parameter s returns to Π at a different point
n OΓ1 (q̃) corresponding to s + sv(h, γ ). One expects sv to be related to tv in some way. Let us consider first the energy
= 0. In Fig. 21 left we display tv(0, γ ) and sv(0, γ ) (since sv ∈ [0, 2π ) we display sv + 55 to see better the relation
etween sv and tv). Note that for h = 0 we expect tv ∼ log(γ )/δ + b, for some constant b, since at this level of energy

one has the hyperbolic point. The lack of symmetry of tv in the figure indicates that for γ > 0 and γ < 0 different values
of b are expected. On the other hand, one checks from computations that

sv(0, γ ) =

{
tv(0, γ ) + δ − 2π [tv(0, γ ) + δ/(2π )], γ > 0,
tv(0, γ ) + δ + π − 2π [tv(0, γ ) + δ + π/(2π )], γ < 0.

(33)

For h ̸= 0 the relation between tv and sv is not so evident. Both are displayed in Fig. 21 for h = 0.005. To better
compare them, in Fig. 21 right we show the behavior of sv and tv near the maxima. In particular, the maxima do not
coincide and are reached for different values of γ close to, but to the left of, γ = h.

.2. Return time to a fundamental domain FD in Σ = {θ = 0}

Now we chooseΣ = {θ = 0} as a return section. Expressed as a function of the Cartesian coordinatesΣ = {g(y1, y2) :=

rctan(y2/y1) = 0}, then XH (z)∇g(z) = 1 − δΓ1/r2 and the section is transversal for r ≈
√
δ, distance up to which the

nvariant manifolds extend, provided Γ1 is small enough. That is, for γ0, h0 > 0 small enough,

Σ̂ = {|H(z)| ≤ h0, |Γ1(z)| ≤ γ0} ∩Σ ⊂ R4

efines a 3D transversal section that we shall use to construct the return map.
We recall from Section 4.1 that the invariant manifolds of H in Σ form a loop as the one that possesses the Duffing

ystem. In order to capture just one point of each orbit we simply consider iterates in Σ near s = arctan(x1/y1) = 0 as
ollows.
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Fig. 20. Return time tv as a function of h and γ . The bottom plots display tv as a function of γ for the values of h = −0.01(0.005)0.01 (from left
to right). The value of δ = 0.1 has been selected for these illustrations.

Fig. 21. We display the return time tv together with sv + 55 as a function of γ for h = 0 in the left plot and for h = 0.005 in the center one. Also
for h = 0.005, in the rightmost plot we display sv + 79.98 and tv as a function of γ near their maxima. We see that maxima are not reached for
γ = h but for close different values of γ . As before δ = 0.1 in all plots.

1. Given a point z = (x1, x2, y1, 0) ∈ Σ we consider h = H(z), γ = Γ1(z) and s = S(z) := arctan(x1/y1) as coordinates
to identify such a point.

2. The solution of the Cauchy problem associated to XH with initial condition p0 = (h, γ , 0) intersects Σ = {θ = 0}
several times. We restrict to crossings such that y1 > 1/2 and we consider p1 to be the first crossing with Σ with
s > 0.
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Fig. 22. For both plots we consider δ = 0.1 and the same set of initial conditions with s = 0 in FD. Left: We display the return time tr to FD as a
unction of h, γ ∈ [−0.01, 0.01]. Right: We display the coordinate s after one return to FD.

3. Let s1 = S(p1), note that s1 = s1(h, γ ). The set FD = {(h, γ , s) ∈ Σ, |h| ≤ h0, |γ | ≤ γ0, s ∈ [0, s1)} defines a
fundamental domain. This is analogous to the fundamental domain FD introduced in Section 6.1.

4. The return map P is defined as follows: Given p = (h, γ , s) with s ∈ [0, s1) we define q = P(p) as the first crossing
of the solution with initial condition p such that S(q) > 0 and y1(q) > 1/2 with Σ .

eturn time to FD. We investigate the return time to the fundamental domain for the integrable system H for a fixed
> 0. To this end, we choose initial conditions on FD as follows: a point (h, γ , s) ∈ FD identifies an initial condition of

he form (
√
z tan(s), γ /

√
z,

√
z, 0) where z is the solution nearest to 2 of the equation

z3

2
+ (tan2(s) − 1)z2 − 2

(γ + h)
δ

z + γ 2
= 0.

e are interested in values of |γ | ≈ 0, then the existence of such solution requires γ + h = O(δ). The range of γ in
xperiments need to be adjusted accordingly (depending on δ).
Then we compute the image under the return map to FD as described above. In Fig. 22 left we illustrate the return

ime for the set of points of the form (h, γ , 0) for h, γ = −0.01(10−4)0.01. We see that as h, γ → 0 the return time
tends to infinity in a logarithmic way while rotating around the asymptote at h = γ = 0. On Fig. 22 right we display the
s coordinate of the image of these points as a function of h and γ .
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