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Abstract: Samples from various winemaking stages of the production of sparkling wines using
different grape varieties were characterized based on the profile of biogenic amines (BAs) and the
elemental composition. Liquid chromatography with fluorescence detection (HPLC-FLD) combined
with precolumn derivatization with dansyl chloride was used to quantify BAs, while inductively
coupled plasma (ICP) techniques were applied to determine a wide range of elements. Musts, base
wines, and sparkling wines were analyzed accordingly, and the resulting data were subjected to
further chemometric studies to try to extract information on oenological practices, product quality,
and varieties. Although good descriptive models were obtained when considering each type of
data separately, the performance of data fusion approaches was assessed as well. In this regard,
low-level and mid-level approaches were evaluated, and from the results, it was concluded that more
comprehensive models can be obtained when joining data of different natures.

Keywords: sparkling wine; biogenic amines; elemental composition; wine quality; winemaking
practices; principal component analysis; data fusion approach

1. Introduction

Data fusion approaches have been considered an excellent way to enrich datasets,
particularly for improving the descriptive performance of the method and the overall
quality of the information [1,2]. The original datasets obtained with different analytical
methods can be simply joined in a global matrix according to so-called low-level data
augmentation to be further analyzed with the arsenal of chemometric methods available
for characterization, classification, and quantification purposes. In addition, raw data
from various sources can be pretreated specifically using chemometric methods, and the
resulting individual post-processed matrices can be combined by using mid- or high-level
data fusion. Hence, data augmentation approaches are especially fruitful in food analysis
for dealing with characterization, classification, and authentication issues [3–5].

More specifically, in the case of wines and related alcoholic beverages, several studies
have been conducted based on data fusion. Ranaweera and coworkers published an
overview of wine authentication based on spectroscopic data and further chemometric
analysis [6]. In a broader sense, Arslan and coworkers reviewed the characterization
and authentication of alcoholic beverages by nondestructive instrumental techniques and
chemometrics [7], and da Costa et al. focused on beers [8]. Among the analytical techniques
used to generate data of high quality, near- and mid-infrared spectroscopies have been
widely used for the authentication of grappa and other spirits [9,10], wine vinegar [11],
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Mexican tequila [12], and beers [13,14]. In addition to vibrational data, other spectroscopies,
such as UV–vis, excitation–emission fluorescence, and nuclear magnetic resonance, have
also been suggested for different classification and characterization purposes [10–16]. For
fast, selective, and sensitive analyses, high-resolution mass spectrometry combined with
flow injection analysis has offered new opportunities for red wine discrimination and
classification [17]. Electronic devices, including e-noses and e-tongues, have also been
introduced for wine characterization, and the data gained from these techniques have
often been combined to obtain more comprehensive descriptions [18–21]. For instance,
colorimetric sensor arrays based on dyes exhibiting different cross-selectivities towards
the analytes were used for the discrimination of alcoholic beverages, including beers and
spirits [22–24]. These devices, when operated in the gas phase, resulted in optoelectronic
noses in which sample recognition relied on volatile species such as aldehydes and ketones.
An interesting review of optoelectronic noses can be found elsewhere [25]. Another widely
used approach to generate instrumental data to assess wine features relies on separation
techniques, including capillary electrophoresis, gas chromatography, and especially liquid
chromatography. Several studies using chromatographic data have been reported in the
scientific literature for the classification of Lambrusco wines [26], grappa spirits [10], and
rums [27]. Multi-sensor data integrating information from a wide variety of analytical
techniques have also been introduced for wine analysis. For instance, Izquierdo-Llopart
et al. studied the classification of sparkling wines as a function of grape variety and coupage
using concentrations of organic acids, phenolic compounds, antioxidant capacity, pH, total
acidity, ethanol, or reducing sugars [28]. In another recent publication, Cavdaroglu and
Ozed developed a strategy for the prediction of vinegar processing parameters based on
UV–visible and mid-infrared spectra, pH, Brix, total acidity, total flavonoid content, total
and individual phenolic contents, organic acid, sugar, and ethanol concentrations [29].

In this publication, we explore the combination of biogenic amine (BA) and elemental
compositions in an attempt to find markers of winemaking practices and product quality.
BAs are low-molecular-weight nitrogenous compounds arising from the decarboxylation
of amino acids, which are especially abundant in wine, cheese, meat, fish, and spoiled
products [30]. BAs provide valuable information on wine quality and oenological fac-
tors [31,32]. In wine and cava, concentrations of BAs can provide valuable information on
product quality, as they are also a good indicator of food safety. BA contents depend on
the agricultural practices involved in the production of grapes, the grape variety used, and
the processes of vinification and aging, especially if the wine is exposed to the activity of
microorganisms or free amino acids are present. Indeed, alcoholic and especially malolactic
fermentations are principal processes involved in BA generation due to the presence of
yeasts and bacteria. Some microorganisms can decarboxylate amino acids with specific
enzymes to form biogenic amines, thus significantly increasing their content. Once the
BAs are formed, they are relatively stable in the wine samples. Putrescine, ethanolamine,
tyramine, and histamine are abundant in the final products to be commercialized. Some
representative recent examples dealing with the relevance of BAs as biomarkers of wine
quality are summarized in Table 1.

Table 1. Recent examples illustrating the potential role of BAs as quality markers.

Analytes Sample Type Method Remarks Ref.

Putrescine, ethanolamine,
histamine, tyramine,

cadaverine,
phenylethylamine,

agmatine, tryptamine,
spermine, and spermidine

Musts, base wines, and
sparkling wine; Xarel·lo
and Pinot Noir varieties

HPLC-FLD with
precolumn derivatization

using dansyl-Cl

Putrescine, ethanolamine,
tyramine, and histamine
are the most important in

wine quality

[33]
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Table 1. Cont.

Analytes Sample Type Method Remarks Ref.

Isopenthylamine,
ethanolamine,

methylamine, ethylamine,
spermidine, spermine,
putrescine, tyramine,

histamine, cadaverine, and
tryptamine

Red and white Croatian
wines from Hrvatsko
zagorje and Dalmatia

regions

HPLC-UV with
precolumn derivatization

using dansyl-Cl

BAs are a discriminating
factor for a grape variety
and geographical origin

for red wines

[34]

Putrescine, histamine,
tyramine, cadaverine,

phenylethylamine,
tryptamine, spermine, and

spermidine

Red and white wines from
Chinese markets

HPLC-FLD with
precolumn derivatization

using dansyl-Cl;
liquid–liquid extraction

of derivatives

Predominant BAs were
putrescine, tyramine, and

2-phenylethylamine
[35]

Putrescine, ethanolamine,
histamine, tyramine,

cadaverine,
phenylethylamine,

tryptamine, and agmatine

Red Spanish wines;
monovarietal ‘Tempranillo’

wines (young, oak, and
aged)

UHPLC-FLD with
precolumn derivatization

using OPA

Storage time,
temperature, and bottle

closing influence BA
levels. Cork stopper and
refrigeration are the best
conditions to prevent the
increase in histamine and

tyramine

[36]

Volatile compounds, amino
acids, and amines;

agmatine, histamine,
spermidine, tyrosine,

phenylethylamine,
isoamylamine, putrescine,
tyramine, and tryptamine

Spanish Sparkling wines
from Verdejo, Viura,

Malvasia, Albarin, Godello,
Prieto Picudo, and

Garnacha; “Champenoise”
method

HPLC-UV with
precolumn derivatization

using diethyl
ethoxymethylene-

malonate

Albarin and Prieto
Picudo wines showed the

highest BA content
[37]

Methylamine, ethylamine,
putrescine, cadaverine,
histamine, spermidine,

spermine,
phenylethylamine,

tyramine, and tryptamine

Alcoholic beverages
including red and white

wine

Ion-pair chromatography
with butane-sulfonic acid;

HPLC-potentiometric
detection; multi-walled

carbon nanotube sensing
membrane

Tyramine and tryptamine
are the most abundant in

red wine; spermidine,
spermine, and

tryptamine are the most
abundant in white wine

[38]

Histamine, putrescine,
cadaverine, and tyramine

“Refosk” wine from
Slovenian-Italian Karst

region

HPLC-UV with
precolumn derivatization

using dansyl-Cl

Some strains of
Lactobacillus have the

ability to produce BAs
[39]

Cadaverine, hexylamine,
histamine,

phenylethylamine,
putrescine, and tyramine

Chinese wines

Direct separation and
detection by

UHPLC-QqQ-MS/MS;
QuEChERS for sample

treatment

Histidine is correlated
with alcoholic degree and

grape variety;
phenylethylamine is

correlated with pH and
storage time

[40]

The elemental composition has also been exploited to characterize and authenticate
wines as a function of geographical, varietal, and oenological factors [41–43]. For instance,
elements such as Al, B, Ca, Cu, Fe, K, Mg, and Mn are relevant markers of some wine
features. Despite the apparent disparity between the two types of analytes, they are
used to characterize the quality of food products, particularly wines, thus providing
complementary information from inorganic and organic species. In addition to the simple
combination of BA and elemental profiles in a sample-wise augmented data matrix, other
data fusion approaches are explored.
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2. Materials and Methods
2.1. Chemicals and Solutions

Unless otherwise specified, all reagents used were of analytical grade. General reagents
for biogenic amine profiling and elemental analysis were as follows: nitric acid (65%
(w/w), PanReac ApplyChem, Castellar del Vallès, Spain), sodium tetraborate (Merck KGaA,
Darmstadt, Germany), dansyl chloride (98%, Thermo Fisher Scientific, Waltham, MA, USA),
formic acid (>96%, Merck), acetonitrile (UHPLC PAI-ACS SuperGradient, PanReac), and
chloroform (≥99.8%, Fluka, Buchs, Switzerland). Purified water was generated with an
Elix3 system (Millipore, Bedford, MA, USA). Solutions for BA derivatization were dansyl-
Cl reagent, prepared at a concentration of 10 mg mL−1 in acetone, and 0.1 mol L−1 sodium
tetraborate as the buffer solution (pH 9.2). For ICP-OES and ICP-MS, samples were diluted
with 1% (v/v) HNO3.

Biogenic amine standards were as follows: 1,5-diaminopentane (cadaverine, 98%),
1,4-diaminobutane dihydrochloride (putrescine, 99%), spermidine trihydrochloride (99%),
and spermine tetrahydrochloride (99%) from Alfa Aesar (Kandel, Germany); histamine
hydrochloride (≥99%), 2-phenylethylamine hydrochloride (≥99%), tryptamine hydrochlo-
ride (≥98%), tyramine hydrochloride (≥97%), octopamine hydrochloride (≥99%), and
agmatine sulfate (≥99%) from Fluka (Buchs, Switzerland); ethanolamine hydrochloride
(≥98%) and hexylamine (≥98%) from TCI (Tokyo, Japan), the latter of which was used
as the internal standard. Each amine was prepared as a 1000 mg L−1 stock solution in
the laboratory by dissolution in Milli-Q water. Calibration standards were prepared by
appropriately diluting stock solutions in a range from 0.1 to 50 mg L−1. Stock and working
solutions were stored at 4 ◦C until use.

Certified ICP grade single-element standards of 1000 mg L−1 in 1% (v/v) HNO3 were
purchased from Inorganic Ventures (Christiansburg, VA, USA). Calibration standards for
ICP-MS and ICP-OES measurements were prepared by carrying out the required dilutions
with 1% (v/v) HNO3.

2.2. Samples

Musts, wines, and sparkling wines were kindly provided by Codorníu SA (Sant
Sadurní d’Anoia, Spain). Table 2 describes the set of 20 monovarietal products from
Xarel·lo grapes and 20 monovarietal products from Pinot Noir grapes, produced in Penedès
and Costers del Segre regions (Catalonia, Spain). Each grape variety had five oenological
classes, comprising musts, base wines, stabilized wines, 3-month-aged sparkling wines,
and 7-month-aged sparkling wines, and four quality levels were defined for each class: A,
B, C, and D, where A is the top quality and D is the lowest one. A more detailed description
of the quality features is given elsewhere [33]. Sample coding is detailed in Table 2.

Table 2. List of samples under study. Sample codes are as follows: M, must; BW, base wine; SW,
stabilized wine; C3, 3 months in rhyme cava wine (sparkling wine); C7, 7 months in rhyme cava
wine (sparkling wine); P, Pinot Noir; X, Xarel·lo; A, quality A; B, quality B; C, quality C; D, quality D
(reproduced from Ref. [33]).

Grape Variety Quality Must Base Wine Stabilized
Wine

3-Month Sparkling
Wine

7-Month Sparkling
Wine

Pinot Noir

A MPA BWPA SWPA C3PA C7PA
B MPB BWPB SWPB C3PB C7PB
C MPC BWPC SWPC C3PC C7PC
D MPD BWPD SWPD C3PD C7PD

Xarel·lo

A MXA BWXA SWXA C3XA C7XA
B MXB BWXB SWXB C3XB C7XB
C MXC BWXC SWXC C3XC C7XC
D MXD BWXD SWXD C3XD C7XD
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A quality control (QC) sample was prepared to assess the reproducibility of the
analytical methods and the significance of the PCA models by mixing 1 mL of each
must/wine/cava sample.

2.3. Instruments

The chromatographic system consisted of an Agilent 1100 Series HPLC instrument
from Agilent Technologies (Waldbronn, Germany), with degasser (G1379A), binary pump
(G1312A), automatic injector (G1392A), diode-array UV–vis detector (G1315B), and fluores-
cence detector (FLD, G1321A). Instruments for elemental analysis were Optima 3200RL
ICP-OES and Nexlon 350D ICP-MS spectrometers (both from Perkin Elmer, Waltham, MA,
USA) equipped with Ar plasma. Rh was used as the internal standard in ICP-MS.

2.4. Analytical Procedures
2.4.1. Biogenic Amine Determination

The method for the determination of BAs based on offline derivatization and liquid
chromatography with fluorescence detection was established and validated elsewhere [33].
Briefly, BAs were derivatized offline by mixing 250 µL of sample (or biogenic amine stan-
dard), 250 µL of dansyl-Cl reagent solution, and 250 µL of buffer solution (pH 9.2). The
reaction was developed at 40 ◦C in a thermostatic water bath (Tectron 473-100, J.P. Selecta,
Barcelona, Spain) for 60 min. Derivatives were further extracted by adding 750 µL of chlo-
roform and applying mechanical shaking for 10 min (Vortex 3 IKA, Staufen, Germany). The
organic fraction was evaporated to dryness and redissolved in 600 µL of acetonitrile/water
(50:50, v/v).

Derivatized samples were analyzed by HPLC-UV-FLD using a core–shell column
(Kinetex C18, 150 mm × 4.6 mm I.D., 2.6 µm particle size) from Phenomenex (Torrance,
CA, USA). A 0.1% (v/v) formic acid aqueous solution and acetonitrile (ACN) were used as
the mobile phase components under an elution gradient program based on increasing the
percentage of ACN (see Reference [33]). The flow rate was 0.7 mL min−1, and the injection
volume was 10 µL. UV detection was at 254 nm, and FLD was at 320 nm for excitation and
523 nm for emission.

Samples were processed in triplicate and analyzed randomly, injecting the QC sample
every 10 samples.

2.4.2. Elemental Composition Determination

Samples diluted at a 1/10 ratio with 1% HNO3 were directly analyzed by ICP-OES
and ICP-MS, as explained elsewhere [43]. A blank solution (1% HNO3) and the quality
control (QC) sample were analyzed every 15 samples to check for cross-contamination and
assess the repeatability of the results. All samples were analyzed in triplicate.

2.5. Data Analysis

ANOVA was performed with Microsoft Excel (Microsoft, Redmon WA, USA), and
multivariate data analysis was conducted with SOLO software (Eigenvector Research, Inc.
Manson, WA, USA).

Principal component analysis was applied for an exploratory characterization of musts,
wines, and sparkling wines to try to identify patterns of oenological steps, product quality,
and varieties using compositional data as the source of analytical information. Further
details on PCA and other chemometric methods can be found elsewhere [44,45].

For each instrumental technique, data matrices (X-matrices) were generated, in which
each row corresponded to a sample replicate and each column corresponded to a given
analyte. X-matrix dimensions were 120 × 11 for BAs and 120 × 38 for the elemental
composition. Hence, the low-level data fusion matrix was 120 × 49. The individual
matrices of BA and elemental composition were pretreated by PCA to extract nine PCs,
which were further combined in the mid-level approach, thus resulting in an augmented
matrix of 120 × 18.
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3. Results and Discussion

The performance of BA profiles and elemental composition as a source of potential
descriptors of must, base wine, stabilized wine, and sparkling wine was previously assessed
by Mir-Cerdà et al. and Granell et al., respectively [33,43]. In those studies, the two datasets
were studied separately, so independent conclusions were drawn. In this work, however,
we wanted to combine information from the two compositional profiles in order to try to
improve the quality of the description and provide more comprehensive knowledge of
sample features and the influence of the oenological practice, grape variety, and product
quality. Hence, data matrices generated in the previous studies were fused using low- and
mid-level approaches for further chemometric analysis.

First, we present the most important results extracted from the previous studies to high-
light the outcomes of their independent chemometric characterizations of must, wine, and
sparkling wine samples. As indicated in Section 2 (Materials and Methods), ethanolamine,
putrescine, tyramine, histamine, cadaverine, spermine, spermidine, tryptamine, octopamine,
lysine, and phenylethylamine were quantified by the HPLC-FLD method, and up to 36 ele-
ments were determined by ICP-OES or ICP-MS (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu,
Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Rb, S, Sb, Sc, Si, Sn, Sr, Ti, U, V, W, Y,
Zn, and Zr). Table 3 shows the concentrations of some of the most significant components,
which were selected because of their relevance as potential descriptors of sample type or
sample quality features. As can be seen, potassium is overexpressed in musts, putrescine
and histamine levels are increased in samples of C or D quality, sulfur is remarkably higher
in base and stabilized wines, and ethanolamine and sodium concentration are, in general,
slightly higher in sparkling wines. Similar patterns can be observed for other compounds.

Quantification errors were estimated according to Mir-Cerdà and Granell (see Ref-
erences [33,43]) from the analysis of the QC sample with the respective methods. The
quantification errors of putrescine and ethanolamine (the most abundant amines) were
3.4% and 3.2%, respectively. For the other compounds, errors were below 10% (e.g., 5.5 for
agmatine, 8.4 for tryptamine, 9.0 for phenylethylamine, 7.8 for cadaverine, 9.7 for histamine,
and 6.6 for tyramine), except for spermidine and spermine (ca. 25%, caused by higher
derivatization and stability issues). For the elemental composition, the errors in ICP-OES
values of metals occurring at concentrations of the order of magnitude of 1 mg L−1 were
lower than 2% (e.g., 0.9 for Mg, 1.2 for Ca, 1.5 for P, and 1.7 for Na), except for K (3.5%). For
other important descriptors determined by ICP-MS, errors were ca. 5% (e.g., 4.3 for Fe, 2.7
for B, 6.3 for Cs, 7.3 for S, 6.4 for Sr, 5.6 for Ba, 5.0 for Mn, 4.5 for Cu, and 5.7 for Al). Trace
elements occurring at concentrations between 1 and 100 µg L−1 showed errors ranging
from 7 to 20% (e.g., Li, Mo, Ni, Zn, and V). The descriptive performance of these elements
was more limited, thus mainly contributing to the noise.

In the case of BAs, PCA models showed well-defined clusters for each sample type,
and the loading plot highlighted putrescine and ethanolamine as the best descriptors of the
winemaking process. It was found that concentrations in must samples were, in general,
low (except for ethanolamine). A remarkable rise in BAs was observed at the base wine
stage, i.e., after the first alcoholic fermentation. This increase was even more dramatic
for wines subjected to malolactic fermentation since this process has been identified as a
major factor in the generation of BAs. After this stage, BA levels remained constant or
slightly decreased with stabilization, second fermentation, and aging. This pattern was
also observed for other amines, such as tyramine, histamine, and cadaverine. Regarding
product quality, differences among high- and low-quality products were noticeable.

Regarding elemental composition, interesting patterns in the evolution of the compo-
sition of elements such as K, Cu, Ca, S, and Mg during the vinification process were found.
Furthermore, some elements were recognized as potential markers of product quality. For
instance, the top-quality (A) samples displayed lower contents of some elements, such as K
and Ca. Other elements such as Mg, Mn, Na, Ni, Sr, and Zn also appeared in higher levels in
C and D products since they were introduced from additives used in different technological
processes. PCA showed two separated clusters corresponding to musts and fermented sam-
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ples, thus confirming the noticeable differences due to the addition of several substances
during fermentation, clarification, and stabilization processes. Subsequently, during the
aging process, they tended to precipitate together with the lees, so their concentrations
typically decreased in aged products.

Given the remarkable conclusions preliminarily extracted from the analysis of BA and
elemental composition datasets, in the following analysis, we aimed to assess the perfor-
mance of the combination of the two types of descriptors to obtain a more comprehensive
characterization of the samples.

Table 3. Determination of various relevant compounds in the different samples. Concentrations are
expressed in mg L−1. Bold numbers denote samples with higher values.

Sample Ethanolamine Putrescine Histamine S K Na

MPA 2.99 2.52 0.16 2.68 93.3 1.22
MPB 2.70 1.42 0.14 5.86 151.0 2.77
MPC 3.85 4.84 0.17 8.04 124.1 2.05
MPD 3.49 2.14 0.13 3.83 151.3 2.59
MXA 2.72 1.29 0.11 3.48 72.9 1.87
MXB 4.01 0.43 0.10 2.91 87.6 2.16
MXC 5.30 3.29 0.11 3.46 120.8 1.78
MXD 4.09 2.81 0.12 3.31 95.2 1.40

BWPA 3.14 4.01 0.19 32.5 47.4 0.59
BWPB 5.21 3.42 0.18 33.9 79.0 0.50
BWPC 5.35 24.10 4.00 32.7 96.6 2.02
BWPD 6.13 21.43 3.68 22.5 77.5 3.38
BWXA 3.86 1.81 0.11 17.7 38.8 0.50
BWXB 5.14 3.05 0.11 43.0 78.9 1.37
BWXC 5.75 10.79 1.76 57.9 63.7 3.27
BWXD 6.51 13.07 1.94 40.9 75.7 2.44
SWPA 3.43 3.77 0.20 37.5 34.6 1.12
SWPB 5.49 2.80 0.31 25.9 37.6 2.23
SWPC 4.75 10.81 1.20 24.3 46.0 2.82
SWPD 6.57 15.87 1.78 16.4 30.4 5.18
SWXA 3.22 0.95 0.11 16.9 34.0 0.70
SWXB 6.29 2.43 0.21 22.7 27.2 2.00
SWXC 5.94 14.37 2.32 21.6 28.8 3.98
SWXD 7.13 10.26 1.77 21.5 35.7 4.63
C3PA 2.89 2.11 0.18 14.2 26.2 2.48
C3PB 6.05 2.69 0.30 25.9 37.1 2.28
C3PC 4.94 12.00 1.40 20.8 44.7 3.43
C3PD 6.42 15.90 2.32 16.8 25.4 4.69
C3XA 3.41 1.11 0.13 11.7 30.7 2.05
C3XB 7.14 3.14 0.26 24.4 14.2 2.40
C3XC 7.25 17.83 2.64 21.2 25.9 5.23
C3XD 6.08 9.47 1.69 19.9 39.3 5.16
C7PA 2.73 1.39 0.14 14.5 30.6 2.42
C7PB 5.50 2.28 0.26 25.3 40.7 2.20
C7PC 5.04 11.47 1.38 21.5 45.5 3.46
C7PD 6.74 18.47 2.90 19.1 21.8 5.70
C7XA 3.44 0.94 0.12 12.2 32.4 1.99
C7XB 5.55 3.11 0.26 23.4 30.4 3.42
C7XC 5.88 10.84 1.87 20.8 39.7 5.41
C7XD 6.06 18.50 2.79 21.2 41.0 5.04

3.1. Low-Level Data Fusion

In this analysis, BA and elemental composition datasets were joined by row-wise
matrix augmentation, in which each row corresponded to a replicate of a given sample (it
should be noted that samples were analyzed in triplicate), and each column was associated
with a compositional variable (i.e., BA or element). The contents of BAs and target elements
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differed in both the magnitude and amplitude of concentrations, so data autoscaling was
applied to equalize their influence in the models.

PCA showed a clear structure of samples according to the winemaking stage or process,
regardless of other features such as quality or variety (see Figure 1). As a result, the scatter
plot of PC1 vs. PC2 scores, which retained more than 43% of data variance, demonstrated
clusters according to the sample type, with musts located on the left side, base wines in the
upper-left area, stabilized wines predominating in the upper-right quadrant, and sparkling
wines mainly in the lower-right part. Sparkling wines were also distinguished based on
the aging period, with 3-month-aged wines above 7-month-aged ones. It is important to
highlight that this noticeable class separation was not observed when BA and elemental
datasets were analyzed separately (see References [33,43]). PC3 retained ca. 15% of the
variance, thus providing some additional discrimination patterns (not shown here since
the information from 3D plots was more difficult to visualize).
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The study of leading descriptors revealed the occurrence of combined or hybrid
markers. Elements such as K, Cu, Rb, and Ba were higher in musts compared with the
other classes. Some of them (e.g., K and Cu) are the result of agricultural practices such
as soil fertilization or mildew treatment. Various BAs—including putrescine, tyramine,
spermidine, cadaverine, and histamine—were the dominant features of base and stabilized
wines, as the contents of these BAs dramatically increased in the fermentations, especially
when malolactic fermentation was applied to reduce the strong malic acidity of wines. A
wide range of elements were characteristic of all fermented samples, as their concentrations
increased because of oenological treatments with technological additives such as yeasts,
tirage liquors, bentonite, and other agents. Among them, Zn, Al, Mn, Fe, Ni, and V can be
cited. The BA composition of sparkling wines was different from that of stabilized wines. In
this regard, ethanolamine was identified as a marker of sparkling wines since their higher
alcoholic degree, achieved through the second fermentation, induced the generation of
this compound. As another pattern, BA levels (e.g., cadaverine, histamine, and tyramine)
slightly decreased with aging.

As a general conclusion, the BA and elemental compositions of grapes, which were
assumed to be similar to the composition of musts, underwent remarkable changes after
their transformation in wines. At this step, variations were statistically significant (p < 0.05)
in all cases. In particular, levels of BAs significantly increased from musts to wines, and then
they remained almost constant throughout winemaking processes and barely decayed with
aging (except for ethanolamine, which slightly increased with the second fermentation).
Similarly, changes in the elemental composition during vinification were dramatic as well
due to the set of additives introduced to trigger fermentation and clarification processes.
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Thus, an improvement in the characterization and discrimination performance was
obtained after applying the data fusion approach.

3.2. Mid-Level Data Fusion

As mentioned in the experimental section, the individual matrices of BA and elemental
profiles were pretreated by PCA filtering. The scores of three PCs were extracted, as they
were a rich source of concentrated information, while irrelevant or ambiguous contributions
were excluded from the model.

The row-wise augmented data matrix was evaluated by PCA, and the results obtained
are summarized in Figure 2. The scatter plot of PC1 vs. PC2 scores shows a group of musts
in the upper-left quadrant, meaning that this class is discriminated from the others. Wines
and sparkling wines are scattered throughout the other sectors, without a clear separation
among classes but with a certain predominance in some areas. For instance, sparkling
wines tend to be across a diagonal (from the bottom left to top right), while base wine
samples are located below this area. The other classes are mainly located in intermediate
positions. Despite these patterns, the overall performance of this approach was lower than
that obtained using the low-level model. On the other hand, the clustering of samples
according to quality or variety was not detected either.
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Figure 2. Plots of scores (a) and loadings (b) from mid-level data fusion. Sample assignment:
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wine with 3 months of aging (red); 7M = sparkling wine with 7 months of aging (green). Variable
assignment: 1–9 = 1–9 PC of biogenic amines PCA; 10–18 = 1–9 PC of elemental composition PCA.

3.3. Sample Classification

Supervised studies of sample classification focused on low-level data fusion as, in this
particular case, this approach has demonstrated excellent performance in describing the
behavior of the samples. Given the natural dependence of sample features with respect
to the vinification process, this section investigates the application of the PLS-DA to the
classification of samples into the following classes: must, base wine, stabilized wine,
3-month-aged sparkling wine, and 7-month-aged sparkling wine.

The first model was established using all of the samples, in which the optimal number
of latent variables (LVs) was 3. The plot of scores of LV1 versus LV2 (see Figure 3) shows
a remarkable concentration of samples of each class in some specific areas. For example,
musts are separated from the others and located in the bottom-right part. The base wines
occupy the upper-right part of the graph, also separated from the other classes. Stabilized
wines are located in the upper-left quadrant, while sparkling wines are in the lower-left
part, showing two groups for 3- and 7-month-aged samples.
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For the external validation of the sample classification performance, a set of 120 sam-
ples (40 different combinations of class, quality, and variety analyzed in triplicate) was
divided into two subsets for training and prediction, with 60 and 40% of the samples
randomly selected, respectively. Table 4 summarizes the results using the PLS-DA model
using three LVs for the multiclass classification of samples (i.e., classification of each given
sample to one of the five classes). The calibration results showed that samples in the must
and base wine classes were perfectly classified. For stabilized wine, two samples were in-
correctly predicted to be base wine. For sparkling wines, a certain degree of confusion was
found between 3- and 7-month-aged samples (two and three samples were misclassified,
respectively). For the validation step, no unassigned samples were obtained. Additionally,
musts, stabilized wines, and sparkling wines were correctly classified, while a certain
amount of confusion was found for base wines (two base wines were classified as stabi-
lized ones). Despite this confusion, which was attributed to the compositional similarities
between these two classes, this method opens up promising possibilities for the study of
the evolution of oenological samples throughout the vinification process. Furthermore, the
performance of classification models based on the integration of BA and elemental profiles
was definitively superior to that obtained from the use of each type of data separately.

Table 4. Summary of classification results with the percentages of correctly classified samples in both
calibration and validation steps using PLS-DA.

Classification Rate
Step Must Base Wine Stabilized Wine 3-Month Sparkling Wine 7-Month Sparkling Wine

Calibration 100% 100% 90% 1 87% 2 75% 3

Validation 100% 70% 4 100% 100% 100%

Misclassifications are as follows: 1 predicted as base wine; 2 predicted as 7-month-aged sparkling wine; 3 predicted
as 3-month-aged sparkling wine; 4 predicted as stabilized wine.

4. Conclusions

In previous papers, it was found that the study and interpretation of descriptive
models using biogenic amine or elemental profiles separately provided an incomplete
depiction of the evolution of oenological samples throughout the production process of
sparkling wines. In this study, this issue was fully solved by combining both sources
of information via data fusion. The descriptive performance of a low-level approach
using concentrations of BAs and metals was, in this case, superior to that of the mid-level
counterpart using PCA scores as the fused data. The oenological process was found to
be the principal factor affecting the composition of the studied analytes, while, in this
set of samples, quality and variety issues had a lower influence on the description. In
particular, excellent discrimination of musts, base wines, stabilized wines, and sparkling
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wines was realized, thus suggesting that this data combination can be used for successful
sample characterization. Some increases in markers of the different classes were identified
as well. For instance, high levels of lysine, K, and Cu were detected in musts, while BAs
such as putrescine, tyramine, and histamine and elements such as Zn, Al, Mn, and Fe were
predominant in base and stabilized wines, and ethanolamine was identified as a biomarker
of sparkling wines. Furthermore, PLS-DA successfully classified samples as musts, base
wines, stabilized wines, and sparkling wines, meaning that this method can be applied
to accurately follow the evolution of oenological samples throughout the winemaking
process.
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