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Abstract
Modern physics relies heavily on differential geometry in order to establish the mathematical
formulation of its conceptual framework. This tendency started with Maxwell’s equations in
the XIX century and has since then only intensified. This work aims at establishing a more
geometric approach to Maxwell’s equations using differential forms in order to generalize
them to other manifolds than R3, an imperative for any physical theory ever since Einstein
laid the foundations of Special and General Relativity. We will therefore show a modern
approach to physics delving into differential geometry to define the objects that we will
deal with in Maxwell’s equations which will give us deeper insight about the mathematical
structure of these equations and their physical consequence.



Acknowledgements
First of all I want to specially thank to my advisor in this work, Dr. Joana Cirici, for guiding
me in this process, for her helpful suggestions and pertinent corrections and for making the
effort of squeezing in the time for all of this in her busy schedule. Next, I would like to thank
my friends, specially those that have been accompanying me for all these years of study and
who have been facing the same difficulties as I did. Of course, I also want to thank my
family, and specially my mother, for all the unconditional support they have always given
me. And finally, I want to thank both my cats for keeping me company and making me
smile even when the situation was bleak.



Contents

1 Introduction 5

2 Preliminaries on differential geometry 10
2.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The tangent vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Tensor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Constructions in Pseudo-Riemannian geometry 28
3.1 Pseudo-Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Volume forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 The Hodge star operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Rewriting Maxwell’s equations 35
4.1 The first equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The second equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Potentials and gauge freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Solutions to Maxwell’s equations and the Aharonov-Bohm effect . . . . . . . 45

4



Chapter 1

Introduction

Maxwell’s equations in their classic form describe the behaviour of two vector fields, the
electric field E⃗ and the magnetic field B⃗ over R3. These vector fields are defined over
all space, taken as the space R3 with its usual metric and are also functions of time, a real-
valued parameter t ∈ R. These fields depend on the electric charge density ρ, which is
a time-dependent function on space, and also on the electric current density ȷ⃗, which is
a time-dependent vector field on space. Functions are assumed to be real-valued and both
functions and vector fields are assumed to be C∞.

Firstly written by Heaviside after independently developing vector calculus and in units
where the speed of light is c = 1 - the natural choice of units for physicists -, the Maxwell’s
equations are the following set of four equations with given names:

∇ · E⃗ = ρ Gauss’s Law

∇× B⃗ − ∂E⃗

∂t
= ȷ⃗ Ampère’s circuital law

∇ · B⃗ = 0 Gauss’s Law for magnetism

∇× E⃗ +
∂B⃗

∂t
= 0 Faraday’s law of induction

Another crucial formula, which will exhaust all needed formulas to explain electromagnetic
phenomena, is Lorentz’s force law, which is the following:

F⃗ = q(E⃗ + v⃗ × B⃗)

where F⃗ denotes the force exerted over a charged particle of velocity v⃗ and charge q.

One should note that Lorentz’s force law can not be derived from Maxwell’s equations:
since F⃗ = ma⃗, Lorentz’s force law involves mass, while Maxwell’s equations remain indiffer-
ent to mass. One can also imagine a universe where both electric and magnetic field exist
and are ruled by Maxwell’s equations, but where both fields do not interact with matter.
In this universe, even though one could not detect neither field, Maxwell’s equations would
still be true, but Lorentz’s law would not hold.
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6 Introduction

There are some aspects of this equations worth mentioning, which will motivate their rewrit-
ing. Firstly, space and time are conceptually and explicitly separated in Maxwell’s equations,
as if we were stuck on the conceptual framework of Galilean spacetime, which is known to
be deeply flawed. This problem is aggravated by the fact that a simple computation shows
that Maxwell’s equations are not invariant under Galilean transformations. In fact, this
was the driving motivation to develop special relativity, which left behind pre-Einsteinian
misconceptions, such as the non-existence of a universal speed limit - the speed of light in
the vacuum -, and, as we mentioned before, the conceptual schism between space and time
and Galilean relativity, i.e. the idea that the Galilean group was the fundamental group that
left the laws of physics invariant.

Secondly, they hide a very non-physical fact. Using Lorentz’s force law, one can easily
determine the electric field with an experiment. To measure E⃗, we only need to measure by
any means available the force exerted over a static particle, F⃗ , and divide by the charge of
that particle. To figure out B⃗, we can measure the force being exerted on charged particles
with a variety of velocities. However, the definition of the cross product involves a completely
arbitrary right-hand rule. If v⃗ = (vx, vy, vz) and B⃗ = (Bx, By, Bz), define

v⃗ × B⃗ = (vyBz − vzBy, vzBx − vxBz, vxBy − vyBx)

However, this convention is completely arbitrary, we could have as well set a left-hand rule,

v⃗ × B⃗ = (vzBy − vyBz, vxBz − vzBx, vyBx − vxBy)

and the mathematics behind the cross product would work without a problem. However,
when finding the magnetic field from the measurements on F⃗ using the left-hand convention,
we would find a value of B⃗ with an opposite sign. Clearly, something like the magnetic field,
a physical thing existing independently of us, should not depend on our conventions. There
is something deeper to be said about how to mathematically understand the magnetic field,
just as we did with the cross product of two vectors using differential forms.

Finally, Maxwell’s equations come in two pairs, the homogeneous one

∇ · B⃗ = 0 ∇× E⃗ +
∂B⃗

∂t
= 0

and the inhomogeneous one, which involves electric charge and electric current densities:

∇ · E⃗ = ρ ∇× B⃗ − ∂E⃗

∂t
= ȷ⃗

This two pairs look suspiciously alike, up to a minus sign. The symmetry is even clearer in
the vacuum, where having zero electric charge density and current gives

∇ · B⃗ = 0 ∇× E⃗ +
∂B⃗

∂t
= 0

∇ · E⃗ = 0 ∇× B⃗ − ∂E⃗

∂t
= 0
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Then, the transformation
(E⃗, B⃗) 7→ (−B⃗, E⃗)

leaves Maxwell’s equations in the vacuum invariant. This internal symmetry is called duality,
and is hinting to the fact that the electric field and the magnetic field are part of a bigger,
unified whole: the electromagnetic field. Another clue towards this is the fact that Lorentz
transformations do not just mix space and time, which are aspects of spacetime, they also
mix the electric field and the magnetic field. If we introduce a complex-valued vector field

E⃗ = E⃗ + iB⃗

duality can be expressed just by
E⃗ 7→ −iE⃗

and the Maxwell equations in the vacuum can succinctly be expressed as

∇ · E⃗ = 0 ∇× E⃗ = i
∂E⃗
∂t

This reformulation can be used to find solutions that correspond to plane waves moving at
the speed of light in the vacuum, but the symmetry between E⃗ and B⃗ does not extend to
the non-vacuum equations. We could consider the following:

∇ · E⃗ = ρ ∇× E⃗ = i(
∂E⃗
∂t

+ ȷ⃗)

However, this introduces magnetic charge density and magnetic current density in the equa-
tions: since ρ and ȷ⃗ can be splitten into real and imaginary parts, we see that the imaginary
part play a magnetic role:

ρ = ρe + iρm ȷ⃗ = ȷ⃗e + i⃗ȷm

and we get the following Maxwell’s equations:

∇ · B⃗ = ρm ∇× E⃗ +
∂B⃗

∂t
= ȷ⃗m

∇ · E⃗ = ρe ∇× B⃗ − ∂E⃗

∂t
= ȷ⃗e

Even though these equations are much more charming, no magnetic charges - which are
named magnetic monopoles - have ever been observed after many decades of scientific effort
looking for them. We could just say, then, that ρm = 0 and ȷ⃗m = 0 on the basis of experi-
mental evidence, i.e. that ρ and ȷ⃗ are real-valued on this basis. However, finding a way to
understand more deeply the Maxwell’s equations is a much more interesting path to walk.

To do this, we will firstly generalize Rn. Ever since Einstein developed the theories of Special
Relativity and its generalization, General Relativity, it is known that space and time are not
separate entities - they constitute space-time as a whole - and that this space-time is not flat.
Our world is simply not R3 with a time parameter, so it is seems natural for our purpose
that we model space-time as a whole using the concept of a manifold, and then specify the
characteristics of space and time as components of this space-time, which we will do using a
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pseudo-Riemannian metric.

Then, we will find it convenient to specify what a vector is over a manifold. It is very clear
what a vector in R3 is, but how can we speak about vectors on a mathematical object which
is not flat? There is no thing such as a "curved vector". This will take us further to develop
the concept of a vector bundle, which will allow us to define vector fields: we really do not
want to talk about a single vector on a single point, but to define a field over the whole
manifold.

However, as we noticed before, the magnetic field is a "weird" vector field. Apart from the
fact mentioned before - its ambiguity -, when the vector field is reflected across a plane, it
is not just reflected: it is reflected and reversed. How can a vector be a vector but behave
differently than a vector? Physicists usually just stick "pseudo-" to the word vector, creating
the ill-defined idea of a pseudo-vector: a vector which, sometimes, does not behave as such.
This will take down to a path to formalize this using vector bundles, defining 1-forms, ten-
sor fields and k-forms in the path, and their most important operator: the exterior derivative.

Later on, we will introduce what a pseudo-Riemannian metric is and some concepts which
stem from it. Usually, in geometry, only Riemannian metrics are considered. However, in
physics and motivated by Minkowksi space-time, we must generalize this concept to include a
broader type of metrics which allow us to model space-time. Metrics will allow us to properly
talk about distances, longitudes and volumes, concepts which are clearly relevant to physics.
After all, we live in a geometrical reality, not just a topological one. After introducing pseudo-
Riemannian manifolds, which are regular manifolds equipped with a pseudo-Riemannian
metric, which will relate 1-forms with vectors via the musical isomorphisms, we will introduce
the concept of a volume form in such a manifold. Then, we will introduce the Hodge star
operator, a key operator in our formulation. This is a linear operator

⋆ : Ω∗(M) → Ωn−k(M)

acting on the differential forms of our manifold M. Here n denotes the dimension of M and
⋆ is defined by the identity

α ∧ ⋆β := ⟨α|β⟩ωg,

where ⟨α|β⟩ denotes the inner product of two forms, defined using the musical isomorphisms,
and ωg the volume form defined by the metric. Again, with the help of the musical isomor-
phisms, the Hodge star operator will let us redefine some old known operators in calculus,
such as the gradient or the curl of a vector, but in the more general setting of a manifold.

After having developed all these mathematical concepts, we will finally be able to rewrite
Maxwell’s equations, which will turn to be only two equations, succinctly written as just:

dF = 0 ⋆ d ⋆ F = J

These two beautiful, compact equations describe the behaviour of the electromagnetic field:
just like space-time (in fact, as a consequence of its indivisibility), we can not understand the
electric and the magnetic fields separately. The electromagnetic field will turn to be a 2-form,
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and its behaviour will be described using the exterior derivative and the Hodge star operator.

We will then visit a notorious consequence of Maxwell’s equations, which is much clearer
in this setting: gauge freedom. On an intuitive level, it states that there are redundant
degrees of freedom in the electromagnetic field variables, and we are free to impose further
conditions which can help us do calculations. When generalized, this idea gives rise to the
idea of gauge theories and Yang-Mills theories. We will not enter in detail in these because
of their difficulty, but they are one of the most important ideas in modern physics.

Lastly, we will see how to find solutions for Maxwell’s equations, which will relate again
to the topology of the manifold, and will briefly discuss the Aharonov-Bohm effect as a
consequence of the manifold in question not being simply connected. In the setting of this
effect a part of the space will be inaccessible to an electron, so we can consider that space
is not simply connected. This will give rise to a non-exact differential form which allows
integrals along different paths to take different values. In the setting of the path-integral
formulation of quantum mechanics, we have that if the electron starts at a state ψ at the
point a and time t = 0, its state at a point b and time t = T will be

ϕ(b) =

∫
P
e(

i
h̄
s(γ)−q

∫
γ A)ψ(a)Dγ

where P is the set of all possible paths from a at time t = 0 to b at time t = T . The presence
of the non-exact differential form A will give a different phase to each possible path of the
electron, which will then interfere with itself and will find it impossible to reach certain
points which are classically allowed.



Chapter 2

Preliminaries on differential geometry

In order to rewrite Maxwell equations, we will need to lay the basis of the modern mathe-
matical language for geometry: differential geometry. We will start by defining manifolds,
and then move on to discuss some constructions over manifolds which we will need: vector
bundles, vector fields, 1-forms, tensor fields and k-forms. This constructions are the basis
of modern physics and will allow us to refer to the physical objects we are interested in -
the magnetic and electric fields - without any use of coordinates, intrinsically. This section
primarily based on [War83], [Lee09] and nLab.

2.1 Manifolds

Definition 2.1.1. Let X be a topological space. A n-dimensional local chart on X is a
pair (U,φ) where U ⊆ X is an open set and φ : U → φ(U) ⊆ Rn is a homeomorphism. The
functions xi = ui ◦ φ : U → R where ui : Rn → R are the canonical coordinate functions on
Rn, ui(a1, ..., an) = ai, are called the coordinate functions of φ.

Notice that given a chart (U,φ) on a topological space X, the coordinate functions of φ
satisfy φ = (x1, ...xn).

Given two charts (U,φ) and (V, ψ) of a topological space X such that U ∩ V ̸= ∅, the
composition ψ ◦φ−1(U ∩V ) : φ(U ∩V ) → ψ(U ∩V ) which maps the coordinates of ψ to the
coordinates of φ is called the transition map. It is a homeomorphism since the restriction
of a homeomorphism and the composition of homeomorphisms are homeomorphisms.

Definition 2.1.2. Let X be a topological space. An atlas A on X is a family of local charts
on X, A = {(Ui, φi)}i∈I , such that X = ∪i∈IUi. If all charts are n-dimensional, A is called
an n-dimensional atlas on X.

Definition 2.1.3. An atlas A = {(Ui, φi)}i∈I on X is called a smooth atlas on X if for
any non-disjoint charts the transition map φj ◦ φ−1

i are C∞-maps.

Definition 2.1.4. Let A1 and A2 be two smooth atlases on a topological space X. We say
that the two atlases are compatible if A1∪A2 is a smooth atlas. Denote their compatibility
by A1 ∼ A2.
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2.1 Manifolds 11

The compatibility of atlases, ∼, is an equivalence relation over the set of all atlases of a
given topological space X. Equivalent atlases will give equivalent properties to the space.
Therefore, we will be interested in working with their equivalence classes.

Definition 2.1.5. Let X be a topological space. A smooth structure [A] on X is an
equivalence class on smooth manifolds on X given by the relationship of being compatible,
∼.

Definition 2.1.6. Let M be a topological space. We say that M is a topological manifold
if it is Hausdorff, second countable and locally euclidean, i.e. there exists a number n ∈
N\{0} such that for all p ∈ M there is a neighbourhood of p homeomorphic to Rn.

Remark 2.1.7. The dimension n of a nonempty topological manifold is unique as a conse-
quence of the topological invariance of the domain. This theorem implies that no non-empty
open subset of Rn is homeomorphic to a subset of Rm if n ̸= m.

Remark 2.1.8. The requirement for a topological manifold M to be locally euclidean
implies the existence of an atlas over M of a certain dimension n. By the previous remark,
a n-dimensional topological manifold only admits n-dimensional atlases.

While admitting a countable basis is a technical requirement that allows proving crucial
theorems about manifolds, the Hausdorff condition is imposed in order to avoid pathological
examples of manifolds that can be constructed using quotient spaces, such as the real line
with two origins. This space verifies all imposed conditions except for being Hausdorff.
However, it does not align with the idea underlying manifolds, i.e. a space locally resembling
the m-dimensional real space.

Definition 2.1.9. A n-dimensional smooth manifold is a pair (M, [A]) where M is a
topological manifold and [A] is a n-dimensional smooth structure on M.

From now on, we will write M for a smooth manifold instead of (M, [A] to ease notation
and we will refer to smooth manifolds as just manifolds to ease verbosity.

Example 2.1.10. Let us see some examples of manifolds:

(i) For all n ∈ N\{0}, Rn with the standard structure [{(Rn, idRn}] is a n-dimensional
manifold. We will simply write it as Rn.

(ii) For all n ∈ N\{0}, the n-dimensional sphere

Sn := {(x1, ..., xn) ∈ Rn+1|(x1)2 + ...+ (xn+1)2 = 1}

with the smooth structure given by the atlas {(UN , φN), (US, φS)} is a n-dimensional
manifold, where

UN := Sn\pN US := Sn\pS
and pN = (1, 0, ..., 0), pS = (−1, 0, ..., 0), and φN : UN → Rn and φS : US → Rn are
the stereographic projections from points pN and pS respectively.

(iii) Given a manifold M with an atlas {(Ui, φi)}i∈I , any open subset V ⊂ M is a manifold
of the same dimension as M, taking the induced atlas {(Ui∩V, φ|Ui∩V )}i∈I . Specifically,
any chart of M is a manifold.
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(iv) Let (M, [{(Ui, φi)}i∈I ]) and (N , [{(Vj, ψj)}j∈J ]) be two manifolds of dimension n and
m respectively. The product manifold of M and N is the (n + m)-dimensional
manifold M × N with the smooth structure represented by the atlas (Ui × Vj, φi ×
ψj)i∈I,j∈J

Just as with any other mathematical structure, let us now define the correct concept for a
structure-preserving map, i.e. a smooth map, and the concept of a map which expresses that
two objects are essentially the same, i.e. a diffeomorphism.

Definition 2.1.11. Let M and N be manifolds. A smooth map f : M → N is a
continuous map such that for any pair of charts (U,φ) of M and (V, ψ) of N , the map

ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V )) → ψ(V )

is C∞ as a function from Rn to Rn.

Note that smooth maps are composable and that the identity is a smooth map by definition
and the fact that transition functions are C∞-maps.

Definition 2.1.12. A smooth map f : M → N is called a diffeomorphism if there exists
a smooth map g : N → M such that f ◦ g = IdN and g ◦ f = IdM.

2.2 The tangent vector space
We would now like to define the tangent space of a manifold M at a point p, generaliz-
ing the idea of the tangent directions of a point in M. Since the notion of a manifold
is independent of any kind of ambient space, we must find an intrinsic definition of the
tangent vector. The key realization for this is that a vector can be thought as a direction
we can derive in. Therefore, we will define the tangent space using the concept of derivations.

Given a manifold M, denote by

F(M) = {f : M → R | fi := f ◦ φ−1
i : φi(Ui) → R is C∞ for any chart (Ui, φi)}

the set of smooth functions on M, which is the set of smooth maps from a given
manifold M to the manifold R. The set F(M) is real vector space with point-wise sum and
multiplication:

(f + g)(p) := f(p) + g(p) and (λf)(p) := λf(p)

It is also a ring, with the multiplication:

(fg)(p) := f(p)g(p)

Therefore, F(M) is an algebra: the algebra of smooth functions on M.

Definition 2.2.1. Given a smooth map f : M → N , we have the following induced opera-
tion:

f ∗:F(N ) → F(M)

h 7→ f ∗(h) := h ◦ f

The map f ∗(h) is called the pullback of h by f .
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Definition 2.2.2. A derivation at a point p ∈ M is a linear map
D : F(M) → R that satisfies the Leibniz rule:

D(fg) = D(f)g(p) + f(p)D(g)

The tangent space at a point p of M is the set of all derivations at that point. We
denote it using TpM.

Remark 2.2.3. Following the idea of generalizing derivatives in multivariable calculus,
derivations are local too. Given two smooth function f , g : M → R which are equal at
a neighbourhood of p, we have that D(f) = D(g) for every D ∈ TpM.

Just as expected from generalizing the idea of the space of tangent directions of a point,
TpM is a vector space of dimension n, given the following operations:

(D1 +D2)(f) := D1(f) +D2(f) and (λD)(f) := λD(f)

If the dimension of M is n and given a chart (U,φ) such that p ∈ U and φ = (x1, ... , xn),
we also have n canonical elements of TpM:

(∂1|p, ... , ∂n|p)

where each derivation acts on a smooth function f :M → R as

∂i|p(f) :=
∂(f ◦ φ−1)

∂xi
(φ(p))

Note that the notation ∂i|p implicitly assumes a chart (U,φ). It is not shown as a sub-index
in order to ease notation. Note also that, contrary to Rn, we can not make sense out of
the sum of two vectors from the tangent space of two different points. In order to sum two
vectors, they must be elements of the tangent space of the same point.

Theorem 2.2.4. Let p ∈ M and let (U,φ) be a chart of M such that p ∈ U and φ(p) =
(x1, ... , xn). Then {∂i|p}i{1,...,n} is a basis of TpM

The proof of this theorem is as well-known computation. Any standard differential geometry
book, some of which the reader can find in this work’s bibliography, will cover it.

There are two notorious consequences of this theorem. Firstly, it implies that every deriva-
tion v ∈ TpM can be expressed as

v =
n∑
i=1

v(xi)∂i|p

Secondly, the dimension of TpM is the same as M. Since the manifold M and the manifolds
Ui given by charts (Ui, φi) have the same dimension, so do TpM and TpU . Furthermore there
is a canonical isomorphism between them given by ṽ(f) := v(f |Ui

). This confirms the notion
of locality of tangent spaces.
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Definition 2.2.5. Given a smooth function f : M → R and a point p ∈ M, the differential
of f at p is defined as

(df)p:TpM → R
D 7→ (df)p(D) := D(f)

Theorem 2.2.6. Let F : M → N be a smooth map and let p ∈ M. If (U,φ) is a chart
of M and (V, ψ) a chart of N such that p ∈ U , F (p) ∈ V , φ(p) = (x1, ... , xn) and
ψ(q) = (y1, ... , xm), then for all j ∈ {1, ... , n} we have the following equality:

dpF

(
∂

∂xj

∣∣∣
p

)
=

m∑
i=1

∂F i

∂xj
(p)

∂

∂yi

∣∣∣
F (p)

where we have F i := yi ◦ F ∈ F(M).

Proof. We write w := dpF

(
∂
∂xj

∣∣∣
p

)
∈ TF (P )N . By Theorem 2.2.4 we can write

w =
m∑
i=1

w(yi)
∂

∂yi

∣∣∣
p

And by the definitions of both differential map and tangent vector,

w(yi) = dpF

(
∂

∂xj

)
(yi) =

∂

∂xj

∣∣∣
p
(yi ◦ F ) = ∂F i

∂xj
(p)

Definition 2.2.7. Let F : M → N be a smooth map and let p ∈ M. The matrix JpF
associated to dpF : TpM → TF (p)N in basis {∂/∂xj|p}j∈{1,...,n} of M and {∂/∂yi|F (p)}i∈{1,...,m}
in N is called the Jacobian matrix of F in p relative to (U,φ) and (V, ψ).

It is also possible to define the tangent space as a point p ∈ M, TpM, using smooth curves.

Definition 2.2.8. Let M be a manifold. A smooth curve on M is a smooth function
γ : (−ε, ε) → M.

Any smooth curve defines a derivation at γ(0) = p by

Dγ(f) =

(
d(f ◦ γ)
dt

)
(0)

Then, an equivalent definition for TpM is to define it as the space of equivalence classes of
smooth curves γ: (−ϵ, ϵ) → M with γ(0) = p, where γ1 ∼ γ2 if the derivatives of φi ◦ γ1 and
φi ◦ γ2 at 0 coincide for some chart (Ui, φi) with p ∈ Ui. This definition also captures the
idea of the space of tangent directions of a point in a manifold, but it is less practical for
calculations.

Definition 2.2.9. Let f : M → N be a smooth map and h : N → R a smooth function.
Define the following induced map:

f∗:TpM → Tf(p)N
D 7→ f∗(D)

Where f∗(D)(h) := D(h ◦ f). We call the map f∗(D) the pushforward of D by f .
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2.3 Vector bundles
The following section will necessitate of further abstraction. In order to define vector fields,
1-forms, tensor fields and k-forms without any reference to their local components - i.e.
how an observer is perceiving them - we will need to refer to vector bundles, a mathematical
construction motivated by the tangent spaces. We want to avoid components so our equations
are universal. For instance, when two observers see a vector in R3, they may define their own
basis, so what they say about their vectors is subject to their point of view. However, the
vector in itself is a mathematical entity in its own, so its properties should not depend on who
is looking at it. For instance, it has a fixed length, direction, etc. These are properties that
do not depend on the chosen observer or basis. This idea is crucial in the modern formulation
of physics. To go on with this idea, we will use vector bundles: we will use two manifolds,
one parametrizing the other. The basis manifold will be our space (or space-time) in the
regular physical sense, and the bigger space (or total space) will be where our mathematical
objects of interest live in. Firstly, we will define fiber bundles, and swiftly move on to vector
bundles, which have the proper algebraic structure we need.

Definition 2.3.1. Let F , M and E be manifolds and let π : E → M be a smooth onto
map. The quadruple (E, π,M, F ) is called a fiber bundle if it is locally trivial, i.e. if for
each point p ∈ M there is an open set U ⊂ M and a diffeomorphism ϕ : π−1(U) → U × F
such that the follow diagram commutes:

π−1(U) U × F

U

ϕ

π pr1

where pr1 is the canonical projection of the first coordinate of the Cartesian product.

Definition 2.3.2. If (E, π,M, F ) is a fiber bundle, E is called the total space, M is called
the base space, π is called the bundle projection and F is called the typical fiber. The
set Ep := π−1(p) is called the fiber over p.

For a given fiber bundle (E, π,M, F ) we will usually write just E in order to ease notation.
If this were to create ambiguity in a given situation, we will specify if by E we are referring
to a fiber bundle or its total space or if we are using the different elements of the tuple. Note
that, since π is onto, the total space is the union of the fibers over the points of the base
space, i.e. E = ∪p∈MEp.

Example 2.3.3. Let’s us see some examples of fiber bundles:

(i) Given two smooth manifolds M and F , we have the smooth projection pr1 : M×F →
M. Then (M × F, pr1,M, F ) is a fiber bundle called the trivial bundle. In this
case the fiber over a point p ∈ M is just Ep = {p} × F and there is a canonical
diffeomorphism between each fiber and the typical fiber: for each (p, f) ∈ Ep, we have
(p, f) 7→ f .

(ii) The open Möbius strip is a fiber bundle with base space S1 and typical fiber R1.
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The previous Möbius strip example shows that there exist nontrivial fiber bundles: fiber
bundles are more general spaces than Cartesian products. However, the local triviality
property ensures that any fiber bundle locally looks like a Cartesian product, even though
the whole space may be more complicated, just like the Möbius strip has a twist.

Definition 2.3.4. Given a fiber bundle (E, π,M, F ) and an open set S ⊂ M, the restric-
tion of E to S is the fiber bundle (E|S, π̃, S, F ) where E|S:= {q ∈ E |π(q) ∈ S} and π̃ is
just the restriction of π to E|S.

Let us now define the appropriate structure-preserving morphism between fiber bundles:

Definition 2.3.5. Let (E, π,M, F ) and (E ′, π′,M′, F ′) be fiber bundles. A fiber bundle
morphism from (E, π,M, F ) to (E ′, π′,M′, F ′) is a pair of smooth maps ψ : E → E ′ and
ϕ : M → M′ such that the following diagram commutes:

E E ′

M M′

ψ

π1 π2

ϕ

We write (ψ, ϕ) : (E, π,M, F ) → (E ′, π′,M′, F ′) and say that ψ is a bundle morphism along
ϕ. If both ψ and ϕ are diffeomorphisms, then (ψ, ϕ) is called a bundle isomorphism. In
this case, it is said that the bundles are isomorphic over ϕ.

Note that as a fiber-preserving map, i.e. ψ(Ep) = E ′
ϕ(p), we have that ψ determines ϕ and

it does not create any ambiguity to refer to the bundle morphism as just ψ. We could
also now understand the local triviality property in the following terms: for any fiber bun-
dle (E, π,M, F ) and for any p ∈ M, there exists an open subset U ⊂ M and a bundle
isomorphism ϕ such that

ϕ : E|U→ U × F

sending each fiber Ep to {p} × F . ϕ is said to be a local trivialization of E at p.

Let’s move on to a crucial definition, which will generalize physical fields:

Definition 2.3.6. A section of a fiber bundle (E, π,M, F ) is a smooth map s : M → E
such that π ◦ s = IdM. A local section over a set U ⊂ M is a smooth section over the
restriction of E to U . The set of sections of a fiber bundle is noted by Γ(E) and the set of
local sections over a set U is noted by Γ(E|U).

Notice that both Γ(E) and Γ(E|U) are C∞-modules with the following operations:

(s+ s′) := s(p) + s′(p) (fs)(p) := f(p)s(p)

Example 2.3.7. If E = M × F is a trivial bundle with the standard fiber F , a section of
E is a determined by a function from M to F : if we have a section s : M → E, there is a
function f : M → F such that

s(p) = (p, f(p)) ∈ Ep

Conversely, if we have a function f : M → F , the aforementioned formula gives a section.
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We would now like to define vector bundles Informally speaking, a vector bundle is a fiber
bundle where each fiber is a vector space. The idea behind it is to parameterize vector spaces
using a manifold as the underlying parametrization.

Definition 2.3.8. Let V be a n-dimensional real vector space. A n-dimensional vector
fiber bundle with typical fiber V is a fiber bundle (E, π,M, V ) such that each fiber
Ep is a vector space over R isomorphic to V and such for each point p ∈ M there exists
a neighbourhood U of p and a fiberwise linear local trivialization, i.e. there exists a local
trivialization

ϕ : E|U→ U × Rn

that maps each fiber Ep to the fiber {p} × Rn linearly. The number n is called the rank of
the vector bundle.

Definition 2.3.9. Let (E, π,M, V ) and (E ′, π′,M′, V ′) be vector bundles. A vector bun-
dle morphism (ψ, ϕ) : (E, π,M, V ) → (E ′, π′,M′, V ′) is a fiber bundle morphism such
that its restriction to each fiber is linear, i.e. ψ|Ep : Ep → Eϕ(p) is a Rlinear map. A vector
bundle isomorphism is a vector bundle morphism such that it is a bundle isomorphism
and the restriction to each fiber is a vector space isomorphism.

We will now briefly define a specific type of vector bundle which will be crucially important
in the mathematical foundation of physics:

Definition 2.3.10. Let (E, π,M, V ) be a vector bundle. Its dual vector bundle is the
vector bundle (E∗, π∗,M, V ∗) which is obtained by passing each fiber Ep to its dual vector
space, such that E∗ = ∪p∈M(Ep)

∗ and by defining π∗ : E∗ → M as (p, v∗) 7→ p.

Notice that, clearly, the rank of a vector bundle and its dual vector bundle is the same.

2.4 Vector fields
In our next step we will define vector fields. In order to do so, we will need to previously
define the tangent bundle of a manifold M. The idea behind this is to consider a new man-
ifold built up from the tangent spaces of all points p ∈ M, TM. Then, we will consider
the vector bundle where the total space is TM and the base space is M, and we will define
vector fields intrinsically using the concepts we build up in the previous section.

Firstly, fix a manifold M and define the following set:

TM :=
⊔
p∈M

TpM = {(p, v) | p ∈ M and v ∈ TpM}

and the following map:

π: TM → M
(p, v) 7→ p

We can equip the set TM with the smooth structure in the following way:
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Fix a n-dimensional manifold M. Given a chart (U,φ) of M with φ = (x1, ... , xn), let’s
consider

ψU : π
−1(U) → R2n

(p, v) 7→ (p1, ..., pn, v1, ..., vn)

where φ(p) = (p1, ..., pn) = (x1(p), ..., xn(p)) and v :=
∑
vi∂i|p. Then, the topology of TM is

generated by the preimages of ψU of all open sets of R2n and all charts U of M. In addition,
if {(Ui, φi)}i∈I represents the smooth structure on M, {(π−1(Ui), ψUi

)}i∈I represents the
smooth structure on TM. Clearly, TM is a 2n-dimensional manifold and it is now just a
calculation to check that the map π : TM → M is smooth.

Definition 2.4.1. Let M be a n-dimensional manifold. The tangent bundle of M is the
vector bundle (TM, π,M,Rn).

Remark 2.4.2. In order to ensure that (TM, π,M,Rn) is a vector bundle we should prove
that it is locally trivial. To see why, notice that all charts are homeomorphic to Rn by defi-
nition. Taking any point p, we can find a chart U that contains it and so the neighbourhood
of p given by U with the tangent spaces attached will look like R2n.

Notice that the fiber of TM over p, TMp := π−1(p) is canonically identified with TpM by
the mapping (p, v) → v.

Notice that with the definition of the tangent bundle TM we can now combine the push-
forwards of a tangent vector by a smooth map f : M → N , which was defined in Defini-
tion 2.2.9, to define a neew map Tf : TM → TN on the tangent bundles of the manifolds
which is linear in each fiber. This map is called the tangent lift of f . For smooth maps
f : M1 → M2, g : M2 → M3, we have the following simple-looking version of the chain
rule: T (g ◦ f) = T (g) ◦ T (f).

Let’s now finally define vector fields using the tangent bundle of M:

Definition 2.4.3. A vector field over M is a section of the tangent bundle, i.e. it is a
smooth map X : M → TM such that π ◦ X = IdM. Therefore, a vector field over M is
given by X = (p,XP ), where Xp ∈ TpM. Denote by X (M) := Γ(TM) the set of all vector
fields.

Since X (M) is the set of all sections of a vector bundle, it has a natural real vector-space
structure and a F(M)-module structure, defined by the operations:

(X + Y )(p) := (p,Xp + YP ), (λX)(p) := (p, λXp), and (fX)(p) := (p, f(p)Xp)

Moreover, X (M) acts over F(M) as X(f)(p) := Xp(f), where X ∈ X (M) and f ∈ F(M).

We will now see some important cases of vector fields:

Definition 2.4.4. Given a manifold M , a point p ∈ M and a chart (U,φ) such that p ∈ U
and φ = (x1, ... , xm), the map

∂i:U → TpU

p 7→ (p, ∂i|p)
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is a vector field, since the functions ∂i(f) : M → R given by ∂i(f)(p) = ∂i|p(f) are smooth
for all f ∈ F(M). This map is called the coordinate vector field of (U,φ) in the xi

direction.

Definition 2.4.5. The Lie bracket of two vector fields X and Y is the unique vector
field [X, Y ] such that

[X, Y ] := X(Y (f))− Y (X(f))

The proof of its existence and uniqueness can be found in [Lee09].
On a chart (U,φ) such that φ(p) = (x1, ... , xm) we may locally write a vector field as:

X =
∑

ai∂i

where ai are smooth functions. In the case of the Lie bracket [X, Y ], with X =
∑
ai∂i and

Y =
∑
bi∂i given a chart (U,φ), we may write:

[X, Y ] =
∑
i,j

(
aj
∂bi
∂xj

− bj
∂ai
∂xj

)
∂

∂xi

We will briefly refer to the crucial properties of the Lie bracket:

Theorem 2.4.6. The map [·, ·] : X (M) × X (M) → X (M) such that (X, Y ) 7→ [X, Y ] is
bilinear over R and for X, Y, Z ∈ X (M) the following properties hold:

(i) It is anti-symmetric: [X, Y ] = −[Y,X]

(ii) The Jacobi identity holds: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

(iii) [fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X for all f, g ∈ C∞(M)

We will no further talk about the Lie bracket and move on to 1-forms, not because their lack
of interest but the other way around. Lie brackets are a far-reaching concept about which
rivers of ink have flown, so in order to keep this work on track, we will have to move on.

2.5 1-forms
We will now define 1-forms intrinsically on a manifold, without referencing components or
coordinates in our definition. 1-forms (or more generally, k-forms, as we will see later on) are
a founding rock of our understanding of modern geometry and physics, even though most
physicists are not aware of such fact. Instead, they think of forms as vectors which behave
in weird ways. For instance, physicists think about the magnetic field as a vector field.
However, under a reflection, the magnetic field is not reflected, but reflected and reversed. It
is impossible to explain this in terms of vectors, so physicists stack the prefix pseudo in front
of the term, naming the magnetic field as a "pseudo-vector". In reality, the magnetic field
is what is called a 2-form. We will now start to formally cement a theory that can explain
this behaviour using dual vector spaces.

Definition 2.5.1. Given a manifold M and p ∈ M, the cotangent space of M at p is
the dual space of TpM, and we write T ∗

pM := (TpM)∗. Its elements are called linear forms
or covectors.
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Now, define the following set:

T ∗M :=
⊔
p∈M

T ∗
pM = {(p, v∗) | p ∈ M and v∗ ∈ T ∗

pM}

We will use the previous Definition 2.3.10 to to define a new vector bundle:

Definition 2.5.2. Given a manifold M, the cotangent bundle of M is the dual vector
bundle of the tangent bundle of M.

Unpacking this definition a little bit, we get that the cotangent bundle of M is the vector
bundle (T ∗M, π∗,M,Rn) where π∗(p, v∗) = p and n is the dimension of M. We have that
T ∗M is a (2n)-dimensional manifold and that the fiber over a point p is just the cotangent
space over that point, i.e. T ∗Mp = T ∗

pM.

Definition 2.5.3. A (differential) 1-form on M is a section of the cotangent bundle,
i.e. a smooth map ω : M → T ∗M such that π∗ ◦ ω = IdM.

Denote the set of all 1-forms as X ∗(M) := Γ(T ∗M). It has a real vector-space structure
and a F(M)-module structure with analogous operations to the ones defined point-wise in
X (M). Given a vector field X ∈ X (M) we can define different maps ω(X) : M → R by
ω(X)(p) := ωp(Xp) and identify 1-forms with the maps ω : X (M) → F(M), which let us
think of the space 1-forms, X ∗(M) as the dual space of vector fields, X (M) - hence the
notation.

Definition 2.5.4. Given a smooth function f ∈ F(M), the differential of f is the 1-form
df ∈ X ∗(M) defined by df(p) := (p, dpf), where dpf is the differential of f at p as defined in
Definition 2.2.2.

We will now express 1-forms locally so we can do computations with them. Given a manifold
M, a point p ∈ M and a chart (U,φ) such that p ∈ U and φ(p) = (x1, ... , xm), we have that
xi ∈ F(M) and that the form dpx

i ∈ T ∗
pM satisfies that

dpx
j(∂i|p) =

∂xj

∂xi
(p) = δji

where δji is the Kronecker delta. Therefore {dpxi}i∈{1,...,n} is the dual basis of {∂i|p}i∈{1,...,n}.
We can then consider the coordinate 1-forms dx1, ... , dxn on U which satisfy dxj(∂|i) = δji .
Since any vector field can be locally expressed as X =

∑
ai∂i, by applying to both sides the

coordinate 1-forms it follows that any 1-form ω ∈ X ∗(M) can be locally expressed in U as

ω|U= ωidx
i

where ωi := ω(∂i) are smooth functions. In the particular case of the differential of a function,
we have the following expression:

df =
n∑
i=1

∂f

∂xi
dxi
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2.6 Tensor fields
We would now like to generalize the concept of a 1-form. In fact, by doing so, we will
acquire a point of view which regards functions, vector fields and 1-forms as instances of
the same mathematical object: a tensor field. It will also provide the basis to define the
semi-Riemannian metric, which will allow us to generalize the inner-product of Rn to an
arbitrary manifold.
We will first need to introduce the concept of a tensor over a module. Let X be a module over
a ring R and X∗ its dual R-module. For r, s ∈ N, we can consider the following R-modules:

(X∗)r := X∗ × · · ·
(r)

×X∗ and Xs := X × · · ·
(s)

×X

with component-wise induced operations.

Definition 2.6.1. Given r, s ∈ N, a (r, s)-tensor over a module X is an R-multilinear map

A: (X∗)r ×Xs → R

i.e. it is linear in each component of the Cartesian product.

Example 2.6.2. A (0, 0)-tensor is an element of R, a (0, 1)-tensor is a linear form, i.e. an
element of X∗ and a (1, 0)-tensor is a linear form on X∗, i.e. an element of X∗∗, which
can be canonically identified with an element of X. A (0, 2)-tensor is a bilinear form and a
(1, 1)-tensor is a linear transformation.

Denote by T rs (X) the set of all (r, s)-tensors over X, and we write T (X) :=
⊕

r,s∈N T
r
s (X).

This set is called the tensor algebra of X. We will justify that T (X) is an algebra right
away. T rs (X) is an R-module with the usual sum of functions and multiplication by a scalar.

Definition 2.6.3. The tensor product of two tensors A ∈ T rs (X) and B ∈ T tu(X) is the
tensor A⊗B ∈ T r+ts+u(X) defined by

(A⊗B)(α1, ... , αr+t, v1, ... , vs+u) := A(α1, ..., αr, v1, ... , vs)·B(αr+1, ... , αr+t, vs+1, ... , vs+u)

The tensor product defines an associative operation on the set T (X) which is not commu-
tative. It is compatible with the other operations over T (X) induced by the operations over
the R-modules T rs (X). Therefore, the tensor algebra T (X) is a (graded) R-algebra, and
hence its name is indeed justified.

Theorem 2.6.4. Let V be a vector space, V ∗ its dual vector space, {ei}i∈I a basis of V and
{e∗j}j∈I its dual basis. The set {ei1 ⊗ ...⊗ eir ⊗ e∗j1 ⊗ ...⊗ e∗js}ik,jl∈I is well-defined and is a
basis of T rs (V ).

Proof. The result follows from linear algebra: one must check on the linear independence of
the set and then use multilinearity and use the expressions of coordinates relative to V and
V ∗ on the arguments of A. One can find the full proof in [Spi79].

The previous theorem ensures that all (r, s)-tensors can be expressed as

A = Ai1...irj1...js
ei1 ⊗ ...⊗ eir ⊗ e∗j1 ⊗ ...⊗ e∗js
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where Ai1...irj1...js
:= A(e∗i1 , ... , e∗ir , ej1 , ... , ejs) are called the components of A in that basis.

Given a vector space V and a basis {ei}i∈I , A ∈ T rs (V ) and B ∈ T tu(V ) with components
Ai1...irj1...js

and Bi1...it
j1...ju

, the components of the tensor C = A⊗B in the same basis are

C
i1,...,ir+t

j1,...,js+i
= Ai1...irj1...js

·Bir+1...ir+t

js+1...js+u

Now, given a vector space V and two bases of this space, {ei}i∈I and {e′j}j∈I , we can consider
the change of basis matrix Λ := Λij defined by ej = Λije

′
i and its inverse matrix Λ′. Then, if

the components of a tensor A in the first basis are Ai1...irj1...js
, the components of A in the second

basis are
A′ i1...ir

j1...js
= Λi1k1 · · · Λ

ir
kr
Λ′ l1

j1
· · · Λ′ ls

jsA
k1...kr
l1...ls

The upper indices of the tensor components, which change according to Λ, are said to be
contravariant, and the lower indices of the tensor components, which change according to
Λ′, are said to be covariant.

The previous discussion justifies the following definition:

Definition 2.6.5. A (r, 0)-tensors is named a contravariant tensor and a (0, s)-tensors is
named covariant tensor.

Definition 2.6.6. Let A be a covariant or a contravariant tensor of at least rank 2. A is said
to be a symmetric tensor if transposing any two of its arguments leaves its image fixed.
A is said to be a skew-symmetric tensor if transposing two any two of its arguments
changes the sign of the image. By convention, we say that (0, 0), (1, 0) and (0, 1) tensors are
both symmetric and skew-symmetric.

Lets now define a tensor bundle over a manifold. Fix a manifold M and define the following
set:

T r,s(M) :=
⊔
p∈M

T rs (TpM)

Definition 2.6.7. Given a manifold M, the (r, s)-tensor bundle over M is the vector
bundle (T r,s(M), π̃,M,Rn(r+s)

) where π̃(p, T ) = p.

The details of the topology of the set T r,s(M) can be found in [Gol98]. Finally, we can get
to define tensor fields via:

Definition 2.6.8. Given a manifold M and r, s ∈ N a (r, s)-tensor field over M is a
section over the (r, s)-tensor bundle over M. Denote the F(M)-module of all (r, s)-tensor
fields over M as T rs (M) := Γ(T r,s(M))

Example 2.6.9. Smooth functions are (0, 0)-tensor fields by convention, vector fields are
(1, 0)-tensor fields and 1-forms are (0, 1)-tensor fields.

Remark 2.6.10. Given a manifold M, and r, s ∈ N, we can also understand a (r, s)-tensor
field over M as a (r, s)-tensor over the F(M)-module X (M), that is a F(M)-multilinear
map

A: (X ∗(M))r × (X (M))s → F(M)

We write T (M) instead of T (X (M)) to signify the tensor algebra over X (M), which is
T (M) =

⊕
r, s ∈ NT r,s(M).
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Given a manifold M and a point p ∈ M, a tensor over the tangent space TpM is called
a tensor at p. A fiber of the (r, s)-tensor bundle over a point p ∈ M is the just the set
of (r, s)-tensors over TpM, i.e. T rs (TpM), the set of all tensors at p. A (r, s)-tensor field
A is equivalent to a field on M smoothly assigning to each p ∈ M a tensor at that point,
Ap : (T

∗
pM)r × (TpM)s → R.

Since A(ω1, ... , ωr, X1, ... , Xs)(p) only depends on the local values of the vector fields
and one-forms and not on the whole vector fields and one-forms, we define:

Ap(α
1, ... , αr, v1, ... , vs) := A(ω1, ... , ωr, X1, ... , Xs)(p)

with ωi is any one-form such that ωip = αi ∈ T ∗
pM and Xj is any vector field such that

Xip = vi ∈ TpM. Conversely, a choice of Ap determines uniquely a tensor field A. In an
analogous way to vector fields and one-forms, the smoothness can be defined in terms of the
smoothness of the map A(ω1, ... , ωr, X1, ... , Xs) : M → R for all ωi ∈ T ∗

pM and for all
Xj ∈ TpM.

Theorem 2.6.11. Let (U,φ) be a chart on a manifold M such that φ(p) = (x1, ..., xn). Any
tensor field A ∈ T r

s (M) can be written on U as

A = Ai1...irj1...js
∂i1 ⊗ ...⊗ ∂ir ⊗ dxj1 ⊗ ...⊗ dxjs

where ik, jl ∈ {1, ..., n} for all k ∈ {1, ..., s} and l ∈ {1, ...r}. The smooth functions
Ai1...irj1...js

:= A(dxi1 , ..., dxir , ∂j1 , ..., ∂js) ∈ F(U) are called the components of A relative to
(U,φ).

Proof. It is a direct proof considering the basis {ei1 ⊗ ... ⊗ eir ⊗ e∗j1 ⊗ ... ⊗ e∗js}ik,jl∈{1,...,n}
of T r

s (TpM) given by Theorem 2.6.4 and the local expressions for vector fields and one-
forms.

Remark 2.6.12. Let (V, ψ) be another chart of M such that ψ(p) = (y1, ..., yn) and U∩V ̸=
∅. In the overlap U ∩ V we have

∂

∂yj
=

n∑
i=1

∂yi

∂xj
∂

∂yi

Therefore the components of a tensor A relative to (V, ψ) on U ∩V can be expressed relative
to (U,φ) using the Jacobian matrix Qi

j =
∂yi

∂xj
= J(ψ ◦φ−1)ij in the expression obtained after

Theorem 2.2.4.

2.7 Differential forms
Differential forms are a particular type of tensor fields which constitute the right math-
ematical frame that allows us to generalize integration, curves and surfaces from Rn to
arbitrary (smooth) manifolds. In an intuitive manner, if dxi is an infinitesimal variation in
the xi direction, a covariant tensor such as dxi ⊗ dxj can be interpreted as a 2-dimensional
infinitesimal variation or a surface which locally approximates the plane ∂i − ∂j. This intu-
itions works in general for k dimensions. However, since the tensor product of two covariant
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tensors is commutative, we can not distinguish between the different coordinate orders, i.e.
dxi⊗dxj = dxj⊗dxi. To naturally keep track of the coordinate order (and therefore a notion
of orientation), we will define k-forms as skew-symmetric covariant tensors. Let’s start with
some linear algebra.

Let V be a R-vector space for all this section. We will denote the space of all skew-symmetric
covariant tensors over V of range k as

∧k(V ). This space is clearly a real vector space. No-
tice that, by previous convention, we have that

∧0(V ) = T 0
0 (V ) and

∧1(V ) = T 0
1 (V ). Let’s

now define a map which allows us to generate elements of
∧k(V ) from elements of T 0

k (V ).

Definition 2.7.1. The antisymmetrization map Altk : T 0
k (V ) →

∧k(V ) is defined by

Altk(ω)(v1, ..., vk) :=
1

k!

∑
σ∈Sk

ϵ(σ)ω(vσ(1), ..., vσ(n))

where Sk is the k-symmetric group and ε(σ) is the sign of the permutation σ ∈ Sk.

The following immediate properties can easily be derived from the definition:

Theorem 2.7.2. For α ∈ T 0
k1
(V ) and β ∈ T 0

k2
(V ), we have

Altk1+k2(Altk1α⊗ β) = Altk1+k2(α⊗ β)

and
Altk1+k2(α⊗ Altk2β) = Altk1+k2(α⊗ β)

Definition 2.7.3. Given ω ∈
∧k1(V ) and η ∈

∧k2 , we can define their exterior product
or wedge product, ω ∧ η ∈

∧k1+k2(V ), as

ω ∧ η :=
1

k1! k2!
Altk1+k2(ω ⊗ η)

Written out, the previous definition is

ω ∧ η =
1

k! l!

∑
σ∈Sk+l

ε(σ)σ(ω ⊗ η) =
1

k1! k2!

∑
σ∈Sk1+k2

ϵ(σ)ω(vσ(1), ..., vσ(k1))η(vσ(k1+1), ..., vσ(k2))

Readers should be careful with this definition. There is another convention in use which
defines the wedge product the same as we did but multiplied by a factor of (k1 + k2)!, which
may affect computations. Let’s now discuss some properties of this product:

Theorem 2.7.4. Let α ∈
∧k1(V ), β ∈

∧k2(V ) and γ ∈
∧k3(V ). We have the following

properties:

(i) ∧ :
∧k1(V )×

∧k2(V ) →
∧k1+k2(V ) is R-linear.

(ii) α ∧ β = (−1)k1k2β ∧ α

(iii) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ
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Theorem 2.7.5. Let {e1, ..., en} be a basis of V ∗. The set of elements

{ei1 ∧ ... ∧ eik | 1 ≤ i1 < i2 < ... < ik ≤ n}

is a basis for
∧k(V ).

A direct consequence of this theorem is that the dimension of
∧k(V ) is dim

∧k(V ) =
(
n
k

)
, and

in particular if k > n we have that dim
∧k(V ) = 0. Now, since

∧0(V ) = R and
∧1(V ) = V ∗

and the wedge product is compatible with the sum and the scalar multiplication, the direct
sum

∧
(V ) =

⊕n
k=0

∧k(V ) is an alternating R-graded algebra with the operations (+, ·,∧).
It has dimension dim

∧
(V ) =

∑n
k=0

(
n
k

)
= 2n.

∧
(V ) is called the exterior algebra of V .

Now that we have finished our linear-algebra digression, we can finally get to define k-forms.
Given a manifold M, define the following set:

k∧
(TM) :=

⊔
p∈M

k∧
(TpM)

Definition 2.7.6. The vector bundle (
∧k(TM), π,M,R(

n
k)) is called the bundle of dif-

ferential k-forms.

The smooth structure of
∧k(TM) is defined in a similar way as the previous bundle examples

that we have seen. One can find the detailed description in the reference used for this section.
We will denote the set of sections over this vector bundle as Ωk(M) = Γ(

∧k(TM)).

Definition 2.7.7. A differential k-form over M or simply a k-form over M is an
element of Ωk(M), i.e. a section of the bundle of k-forms over M.

Given a k ∈ N, an equivalent definition for a differential k-form over M is that it is a skew-
symmetric (0, k)-tensor field over M.

Notice that we have overlapping notations: we have that Ω0(M) = F(M) and that Ω1(M) =
X ∗(M). In general, the set of all k-forms Ωk(M) can be regarded as a subset of T 0

k (M)
specifically as a F(M)-submodule of T 0

k (M). The tensor product of two skew-symmetric
tensors is not, in general, skew-symmetric. Therefore, the tensor product of two k-forms is
not in general a k-form. However we can define a new binary operation, ∧ over k-forms which
gives a k-form via skew-symmetrizing their tensor product. This will allow us to consider
new differential forms such as dxi ∧ dxj which represent infinitesimal oriented surfaces. The
orientation comes from the skew-symmetric property, dxi ∧ dxj = dxj ∧ dxi, which keeps
track of the order of the coordinates, and therefore the orientation of the surface.

Definition 2.7.8. Given two forms ω ∈ Ωk(M) and η ∈ Ωl(M), their exterior product
∧ : Ωk(M)× Ωl(M) → Ωk+l(M) is defined as

ω ∧ η(p) := ω(p) ∧ η(p)

This definition can also be seen as

ω ∧ η =
1

k! l!

∑
σ∈Sk+l

ε(σ)σ(ω ⊗ η)
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where Sn is the n-symmetric group, ε(σ) is the sign of the permutation σ ∈ Sn and
σ(ω⊗η)(X1, ... , Xk+l) := (ω⊗η)(Xσ(1), ... , Xσ(k+l)), and where Xi are vector fields over M.

By definition it is clear that the exterior product is associative and skew-symmetric: for
ω ∈ Ωk(M) and η ∈ Ωk(M), we have

ω ∧ η = (−1)klη ∧ ω

Therefore for any ω ∈ Ω(M) we have

ω ∧ ω = 0

Remark 2.7.9. Since the exterior product defines a binary operation ∧ : Ωk(M)×Ωl(M) →
Ωk+l(M) which is compatible with the other operations defined over Ωk(M) ⊂ T (M), we
have a graded alternating F(M)-algebra (Ω(M),+, ·,∧) where Ω(M) :=

⊕
k≥0Ω

k(M). It
is called algebra of differential forms of the manifold M.

Remark 2.7.10. Since a k-form ω is a tensor field, given a chart (U,φ) of a manifold M
such that φ(p) = (x1, ..., xn) we can locally express the k-form as ω|U= ωi1...ikdx

i1 ⊗ ...⊗ dxil

with ωi1...ik = ω(∂i1 , ..., ∂ik). Since skew-symmetry implies that if there is a repeated index
the coefficient is zero, we can rewrite this expression as:

ω|U=
∑

i1<...<ik

∑
σ∈Sk

ωiσ(1)...iσ(k)
dxiσ(1) ⊗ ...⊗ dxiσ(k) =

∑
i1<...<ik

ωj1...jkdx
j1 ∧ ... ∧ dxjk

which characterizes local expressions of differential k-forms

The following theorem will characterize the exterior derivative, an operator over differential
forms that will be crucial in our rewriting of Maxwell equations.

Theorem 2.7.11. Let M be a manifold. There exists a unique map d : Ω(M) → Ω(M)
such that the following properties hold:

(i) If ω ∈ Ωk(M), then dω ∈ Ωk+1(M).

(ii) d is R-linear.

(iii) If ω ∈ Ωp(M) and η ∈ Ωq(M), d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

(iv) For any ω ∈ Ω(M), d2(ω) := d(dω) = 0.

One can find the detailed proof of this theorem in [Spi79]. The restriction d : Ω0(M) →
Ω1(M) agrees with the differential of a function as previously defined. The previous unique
operator d : Ω(M) → Ω(M) is called the exterior derivative.

This operator is far more interesting than it seems at first sight. A differential form α
is called closed if dα = 0 and exact if α = dβ for some differential form β. The last prop-
erty, d2 = 0, is called the exactness property of the exterior derivative: all exact differential
forms are closed. The converse is generally not true, and the extent to which it fails to be
true gives a lot of information on the topological properties of the manifold.
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We will not enter in much detail, because the study of the failure of closed differential
forms to be exact is a field of study in its own: de Rahm cohomology. However we shall
mention that, by the theorem of Poincaré duality, the study of de Rahm cohomology groups,
i.e. of differential forms, give the singular homology groups of the manifold, whose impor-
tance can not be overemphasized in topology.

Furthermore, the study of de Rahm cohomology can help us find solutions to Maxwell differ-
ential equations, and are the basis of study for Gauge invariance and scalar electric potential
and vector magnetic potential which are intimately related to the electric and magnetic
fields. This potentials and the de Rahm cohomology can even explain the Aharonov-Bohm
effect in quantum electromagnetism, an effect by which an electrically charged particle is
affected by the electromagnetic potential despite being confined to a region in which both
the electric and magnetic fields are zero. We will treat this effect briefly in the last section
of this work.



Chapter 3

Constructions in Pseudo-Riemannian
geometry

Even though we have discussed many topics on differential geometry so far, we have been con-
strained to a domain where we didn’t need any metric. However, we will now need to touch
on some pseudo-Riemannian geometric ideas. Firstly, we will discuss pseudo-Riemannian
metrics and manifolds and the natural isomorphism between vector fields and 1-forms which
a metric allows. Then, we will move on to volume forms and the metric form, and finally
we will define the Hodge star operator, which will allow us to rewrite Maxwell equations in
a general setting. This section follows [Lee09], [BM94] and [Spi79].

3.1 Pseudo-Riemannian manifolds
Pseudo-Riemannian metrics generalize the concept of an inner-product from Euclidean vector-
spaces, such as Rn, to manifolds. Lorentzian manifolds, which are the right mathematical
setup for modelling space-time, will emerge from this notion as a particular case.

Definition 3.1.1. Let V be a finite-dimensional real vector space and let g ∈ T 0
2 (V ) be

a symmetric bilinear form on V . We say that g is an inner product on V if it is non-
degenerate, i.e. if g(v, w) = 0 for all w, then v = 0.

Definition 3.1.2. An inner product g on V is said to be positive-definite if g(v, v) > 0
for all v ̸= 0 in V . Equivalently, it is said to be negative-definite if g(v, v) < 0 for all v ̸= 0
in V .

Remark 3.1.3. We will not include positive-(semi)definiteness in the definition of an inner
product. This will allow us to distinguish between two kind of subspaces, which will keep
model the differences between space and time in our lorentzian manifold.

Definition 3.1.4. Let g be an inner product on V . The index ν of the inner product is
the highest dimension possible of the subspaces F ⊂ V over which g|F is negative-definite.

Remark 3.1.5. It is a well-known fact that given an inner product g over an n-dimensional
vector space V , there exists an orthonormal basis {e1, ... , en} on V for g, and that the
number of basis vectors such that g(ei, ei) = −1 is equal to the index of g for any chosen
basis.

28



3.1 Pseudo-Riemannian manifolds 29

Remark 3.1.6. Notice that an orthonormal basis on V for g diagonalizes the matrix of g,
with components defined as gij = g(ei, ej) = ±δij. We will consider orthonormal basis in
an order such that the n-tuple (ε1, ..., εn) := (g11, ... , gnn) - the signature of g - satisfies
that gii = −1 for all i ≤ ν and gii = +1 for all i > ν. This is often denoted as (ν, n − ν).
For instance, if dimV = 4 and the index of g is ν = 1, we say that its signature is (1, 3).
This example will be important later on, since it is the one that models space-time. Now, if
v = viei and w = wiei, we have that

g(v, w) = −
ν∑
i=1

viwi +
n∑

i=ν+1

viwi

We will now generalize this notion to an arbitrary manifold using tensor fields:

Definition 3.1.7. A metric over a manifold M is a symmetric non-degenerate (0, 2)-tensor
field on M of constant index ν. The non-degeneracy and the constant index can be under-
stood regarding g ∈ T 0

2 (M) as a smooth assignation - as we explained before - of an inner
product gp ∈ TpM to each point p ∈ M, with a constant index ν for all points.

Definition 3.1.8. A pseudo-Riemannian manifold is a pair (M, g) where M is a
(smooth) manifold and g a metric on M. We say that it is a Lorentzian manifold if
dimM > 2 and νg = 1. We will usually denote pseudo-Riemannian manifolds using just M.

Remark 3.1.9. Given a local chart (U,φ) of a pseudo-Riemannian manifold (M, g), its
metric tensor can be locally expressed on U as

g = gijdx
i ⊗ dxj

where gij = g(∂i, ∂j) are the local components of the tensor with respect to the chart U . The
symmetry implies that gij = gji and the non-degeneracy implies that (gij)i,j is a non-singular
matrix - i.e. its kernel as a linear application is trivial. If x, Y ∈ X (M) such that X = X i∂i
and Y = Y j∂j locally over U , then we have

g(X, Y ) = gijX
iY j

Definition 3.1.10. Given a pseudo-Riemannian manifold (M, g), we have the following
natural F(M)-linear isomorphisms:

Z:X (M) → X ∗(M)

X 7→ X
Z
: X (M) → F(M)

Y 7→ X
Z
(Y ) = g(X, Y )

which is named the flat operator, and its inverse:

\:X (M) → X ∗(M)

ω 7→ ω
\

given by the equality g(ω\, X) = ω(X) for X ∈ X (M) is named the sharp operator. The
pair of isomorphisms is called the musical isomorphisms.
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Remark 3.1.11. In musical notation, the symbol for flat, Z, is used to signify a lower pitch
and the symbol sharp, \, is used to signify a higher pitch. This motivates the choice for the
notation: in a chart (U,φ) of M with φ(p) = (x1, ..., xn), if we have X ∈ X (M) locally
written as X = X i∂i in U , then X

Z
= Xidx

i with Xi = gijX
j, so given another vector field

locally written as Y = Y k∂k, we have

X
Z
(Y ) = gijX

jdxi(Y k∂k) = gijX
jY kδik = gijX

jY i = g(X, Y )

Therefore we can say that the Z operator is lowering the index by the metric. The situation
is analogous for the \ operator, and we say that it is raising the index by the metric, just like
in musical notation. The situation is analogous for TpM and T ∗

pM at any p ∈ M with gp.

Remark 3.1.12. The metric g over a manifold M induces a symmetric C∞(M)-bilinear
map ⟨·, ·⟩ : Ωk(M) × Ωk(M) → C∞(M) defined by ⟨ω, η⟩(p) := gp(ω

\
, η
\
) = ⟨ω\, η\)p In

fact, we can now give an inner product for any tensor at a point p ∈ M by assigning

⟨α1⊗...⊗αr⊗v1⊗...⊗vs, β1⊗...⊗βr⊗u1⊗...⊗us⟩p = gp(α
1\, β1\)···gp(αr\, βr\)gp(v1, u1)···gp(vs, us)

and generalizing to any k-form using linearity

3.2 Volume forms
Definition 3.2.1. Given a manifold M, two of its charts (U,φ), (V, ψ) are said to be
positively compatible if U ∩ V = ∅ or if for all p ∈ U ∩ V we have |Jp(φ ◦ ψ−1)|> 0. A
manifold is said to be orientable if their charts are positively compatible by pairs.

Even though all points of any manifold have an orientable neighbourhoods (also known as
being locally orientable), not all manifolds are orientable. The easiest example of a non-
orientable manifold is the Möbius strip. The proof of this can be found in [Spi79].

Definition 3.2.2. Let M be an orientable manifold and P(M) the set of possible atlases
of M formed by positively compatible charts. Two atlases A1 and A2 of P(M) are said to
be positively compatible if (M, A1 ∪ A2) is orientable. This defines an equivalence relation
with classes named orientations of M. We say that (M,O) is an oriented manifold,
where M is a manifold and O a fixed orientation on M. We usually just write M for an
oriented manifold.

Definition 3.2.3. A volume-form ω on a n-dimensional manifold M is a non-vanishing
n-form on M, i.e. a n-form ω such that for all vector fields X1, ..., Xn ∈ X (M) the functions
ω(X1, ..., Xn)(p) are non-zero for all p ∈ M. Equivalently, for all p ∈ M we have that
ωp(v1, ..., vn) is non-zero for all v1, ..., vn ∈ TpM.

From [Spi79] we know the following proposition:

Theorem 3.2.4. A manifold is orientable if and only if there exists a volume form.

Given a volume form ω on a manifold M, an ordered basis of TpM is said to be positively
oriented by ω if ωp(v1, ..., vn) > 0. Equivalently, it is said to be negatively oriented by
ω if ωp(v1, ..., vn) < 0. Therefore orientations on M can be regarded as an equivalence class
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over the set of volume forms quotiented by the relation of defining the same set of positively
oriented tangent vectors.
The last missing piece in order to define the Hodge star operator will be metric volume
forms. In order to define them, we must however introduce local (co)frame fields and the
metric volume form.

Definition 3.2.5. Let (M, g) be a n-dimensional pseudo-Riemannian manifold. A local
frame field on U ⊂ M is a set {E1, ..., En} of orthonormal vector fields on U, i.e. for every
p ∈ M {E1(p), ..., En(p)} is an orthonormal basis on TpM. Its local coframe field is the
set of dual one-forms {ω1, ..., ωn}, i.e. ωi(Ej) = δij.

Definition 3.2.6. Let (M, g) be an oriented pseudo-Riemannian manifold of dimension n
and let U and V be two non-disjoint charts of M. Let {ω1, ..., ωn} and {η1, ..., ηn} be two
local coframe fields on U and V respectively. Given that the change of basis matrix Q will
be orthogonal at each point, some calculations give the result:

ω1 ∧ ... ∧ ωn =
1

det(Q)
η1 ∧ ... ∧ ηn = ±η1 ∧ ... ∧ ηn

on the overlap U ∩ V . Taking a local coframe field compatible with the orientation of the
manifold implies that ω1 ∧ ... ∧ ωn = +η1 ∧ ... ∧ ηn. Therefore, the n-forms will agree on all
overlaps, defining a unique volume form for the whole manifold. We name this new global
volume form the metric volume form and note it by ωg.

Remark 3.2.7. The calculation needed to proof that the metric volume form is not ill-
defined is the following one:

Let (U,φ) and (V, ψ) be charts of M such that φ(p) = (x1, ..., xn) and ψ(p) = (y1, ..., yn). Let
ω be a n-form with coordinate ω1...n = ω(∂1, ..., ∂n) in (U,φ). Let the two charts be positively
compatible and non-disjoint. Then, on the intersection U ∩ V , using the expression for a
vector obtained after Theorem 2.2.4 we have the following:

ω1...n =
∂l1

∂x1
· · · ∂yln

∂xn
ω′
l1...ln

=
∑

l1<...<ln

∑
σ∈Sn

ε(σ)
∂ylσ(1)

∂x1
· · · ∂ylσ(n)

∂xn
ω′
l1...ln

=
∑
σ∈Sn

ε(σ)
∂yσ(1)

∂x1
· · · ∂yσ(n)

∂xn
ω′
1...n = det J(ψ ◦ φ−1)ω′

1...n

In our case we have that J(ψ ◦ φ−1) = Q and that Q is orthogonal gives detQ = ±1, which
gives the desired result.

Remark 3.2.8. Let (U,φ) be a chart on a pseudo-Riemannian manifold (M, g) such that
φ(p) = (x1, ..., xn), {E1, ..., En} a frame field on U with {ω1, ..., ωn} its coframe field and
ωg = ω1 ∧ ... ∧ ωn the metric volume form on (M, g). Let Q be the change of basis matrix
Ei = Qj

i∂j. Just as before, we have:

ω1 ∧ ... ∧ ωn =
1

det(Q)
dx1 ∧ ... ∧ dxn
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Since {E1, ..., En} is an orthonormal frame, we have g(Ei, Ej) = εiδij, with (ε1, ...εn) the
signature of g. We have

εiδij = g(Ei, Ej) = Qk
iQ

l
jg(∂k, ∂l) = Qk

iQ
l
jgkl

and taking determinants at both sides we get

±1 = det(Q2)det(g)

Therefore, for a positively oriented coordinate system we obtain

ωg =
√

|detg| dx1 ∧ ... ∧ dxn

Remark 3.2.9. If α, β ∈ Ωk(M) such that α = α1 ∧ ... ∧ αn and β = β1 ∧ ... ∧ βn, we
will write ⟨α|β⟩ = [det⟨αi, βk⟩] for k > 0 and ⟨a|b⟩ = ab for k = 0. Notice the difference
in notation between ⟨·, ·⟩ and ⟨·|·⟩. This map is an inner product which makes the basis
{ei1 , ..., eik}i1<...<ik orthonormal if {ei}i∈{1,...,n} is orthonormal. ⟨·|·⟩ defines an inner product
over the space of k-forms for any k. It is well defined using universal properties, as one can
check in [Lee09]. One will also be able to see that

⟨α|β⟩ = 1

k!
⟨α, β⟩

so the two inner products are the same up to a constant factor.

3.3 The Hodge star operator
Finally, we can define the the Hodge star operator, ⋆. The intuitive idea behind it is that
given a pseudo-Riemannian manifold, the Hodge star operator over a form gives the "dual" of
that form which completes the original form up to the metric volume form. For instance, in
R3, we could visualize this as taking the normal direction of a given oriented surface dx∧dy,
which would be dz, so that the wedge product between the original form representing the
plane and its dual gives the volume form: (dx ∧ dy) ∧ ⋆(dx ∧ dy) = (dx ∧ dy) ∧ (dz) =
dx ∧ dy ∧ dz = volReuc .

Theorem 3.3.1. Let (M, g) be a pseudo-Riemannian manifold with a metric volume form
ωg. There exists a unique linear function ⋆ : Ω(M) → Ω(M) satisfying ⋆ : Ωk(M) →
Ωn−k(M) defined by the identity

α ∧ ⋆β := ⟨α|β⟩ωg

The proof of its existence and uniqueness can be found in [Lee09]. The previous operator
⋆ : ω(M) → Ω(M) is the Hodge star operator. Let us now name some of its basic
properties:

Theorem 3.3.2. Let (M, g) be a pseudo-Riemannian manifold with ν its metric index and
ωg its metric volume form. The following identities hold:

(i) ⋆1 = ωg, where 1 is the constant 1 function.
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(ii) ⋆ωg = (−1)ν

(iii) α ∧ ⋆α = 0 if and only if α = 0

(iv) For all α, β ∈ Ωk(M), α ∧ ⋆β = β ∧ ⋆α

(v) If (U,φ) is a chart of M with φ(p) = (x1, ...xn) and σ ∈ Sn, we have

⋆(dxσ(1) ∧ ... ∧ dxσ(k)) = εσ(1) · · · εσ(k)ε(σ)dxσ(k+1) ∧ ... ∧ dxσ(n)

(vi) For all k ≤ n, α ∈ Ωk(M), ⋆ ⋆ α = (−1)ν(−1)k(n−k)α

(vii) For all α, β ∈ Ωk(M) we have ⟨⋆α|⋆β⟩ = (−1)ν⟨α|β⟩

Proof. Properties (i), (ii), (iii) and (iv) follow immediately from the definition of the Hodge
star operator:

(i) ⋆1 = 1 ∧ ⋆1 = ⟨1|1⟩ωg = 1 · ωg = ωg

(ii) ωg ∧ ⋆ωg = ⟨ωg|ωg⟩ωg = det[⟨ωi, ωj⟩]ωg = |detg| det[⟨dxi, dxj⟩]ωg = |detg|ωg =
(−1)νωg ⇐⇒ ⋆ωg = (−1)ν

(iii) α ∧ ⋆α = ⟨α|α⟩ωg = 0 ⇐⇒ ⟨α|α⟩ = 0 ⇐⇒ α = 0, since ⟨·|·⟩ is an inner product.

(iv) α ∧ ⋆β = ⟨α|β⟩ωg = ⟨β|α⟩ωg = β ∧ ⋆α since ⟨·|·⟩ is an inner product and therefore
symmetric.

To prove (v) it suffices to check that

(dxσ(1) ∧ ... ∧ dxσ(k)) ∧ εσ(1) · · · εσ(k)ε(σ)dxσ(k+1) ∧ ... ∧ dxσ(n)

= ⟨dxσ(1) ∧ ... ∧ dxσ(k)|εσ(1) · · · εσ(k)ε(σ)dxσ(k+1) ∧ ... ∧ dxσ(n)⟩ωg

and by uniqueness of the Hodge star operator, we will have the desired result. A detailed
calculation can be found in [Lee09].

We will now proceed to prove (vi). It suffices to consider α = dxσ(1) ∧ ... ∧ dxσ(k) for
some permutation σ ∈ Sn. We first compute ⋆(dxσ(k+1) ∧ ... ∧ dxσ(n)). We must have
⋆(dxσ(k+1) ∧ ... ∧ dxσ(n)) = c dxσ(1) ∧ ... ∧ dxσ(k) for some constant c by (v). On the other
hand,

εσ(k+1)...εσ(n) ωg = ⟨dxσ(k+1) ∧ ... ∧ dxσ(n)|dxσ(k+1) ∧ ... ∧ dxσ(n)⟩ωg
= (dxσ(k+1) ∧ ... ∧ dxσ(n)) ∧ ⋆(dxσ(k+1) ∧ ... ∧ dxσ(n))
= (dxσ(k+1) ∧ ... ∧ dxσ(n)) ∧ c dxσ(1) ∧ ... ∧ dxσ(k) = (−1)k(n−k)cε(σ)ωg

so that c = εσ(k+1) · · · εσ(n)(−1)k(n−k)ε(σ). Using this and (v), we have that

⋆ ⋆(dxσ(1) ∧ ... ∧ dxσ(k)) = ⋆(εσ(1) · · · εσ(k)ε(σ)dxσ(k+1) ∧ ... ∧ dxσ(n)

= εσ(1) · · · εσ(k)εσ(k+1) · · · εσ(n)ε(σ)2(−1)k(n−k)dxσ(1) ∧ ... ∧ dxσ(k)

= (−1)ν(−1)k(n−k)dxσ(1) ∧ ... ∧ dxσ(k)
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Finally, we will prove (vii):

⟨⋆α|⋆β⟩ωg = ⋆α ∧ ⋆ ⋆ β = (−1)ν(−1)k(n−k) ⋆ α ∧ β = (−1)νβ ∧ ⋆α = (−1)ν⟨α|β⟩ωg

which implies the equality which we wanted to prove.

Now, using this newly defined operator and the musical isomorphisms, we can write a more
general version of some old known operators:

Definition 3.3.3. Let M be a manifold, f ∈ F(M) and X, Y ∈ X (M). Define the
following operators:

(i) The gradient of a function f is grad f := (df)
\

(ii) The divergence of a vector field X is div X := ⋆d ⋆ X
Z

And over a 3-manifold we can define the following operators:

(i) The cross product of two vector fields X and Y is X × Y := (⋆(X
Z ∧ Y Z))\

(ii) The curl of a vector field X is curl X := (⋆dX
Z
)
\

This generalized operators keep the properties of the old definitions intact. For instance,
div (curl X) = 0, curl (grad )f = 0 and curl X = 0 =⇒ X|U= grad f .

We will now see a simple example of a computation using the Hodge star operator to get a
basic idea of how it works:

Example 3.3.4. Consider the pseudo-Riemannian manifold R3 with its usual euclidean
metric and orientation. Consider dx, dy and dz as a basis of 1-forms on R3. We then have:

⋆: Ω1(M) → Ω2(M)

dx 7→ ⋆ dx = dy ∧ dz
dy 7→ ⋆ dy = dz ∧ dx = −dx ∧ dz
dz 7→ ⋆ dz = dx ∧ dy

and also

⋆: Ω2(M) → Ω1(M)

dx ∧ dy 7→ ⋆ (dx ∧ dy) = dz

dy ∧ dz 7→ ⋆ (dy ∧ dz) = dx

dz ∧ dx 7→ ⋆ (dz ∧ dx) = dy

This example will be important when we proceed to rewrite Maxwell’s equations.



Chapter 4

Rewriting Maxwell’s equations

Finally we will be able to rewrite Maxwell’s equations in an explicitly covariant way using
differential forms. This process will uncover many interesting things about both the equa-
tions and the mathematical objects that intervene in them. This section will mainly follow
[BM94]

4.1 The first equation
We will firstly generalize the homogeneous Maxwell’s equations, namely, Gauss’s Law for
magnetism and Faraday’s law of induction, to any manifold. This generalization will also
unify both equations in a single one. We have the following equations:

∇ · B⃗ = 0

∇× E⃗ +
∂B⃗

∂t
= 0

Let us first consider the static case. We have just the following two equations:

∇ · B⃗ = 0 ∇× E⃗ = 0

We notice that we are using the divergence and curl of vector fields in R3. In the language of
differential geometry, as we saw in Definition 3.3.3, divergence becomes the exterior derivative
on 2-forms on R3 and curl becomes the exterior derivative on 1-forms on R3. Thus, instead
of treating the magnetic field as a vector field B⃗ = (Bx, By, Bz) and the electric field as a
vector field E⃗ = (Ex, Ey, Ez), we will treat them as:

B = Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy

and
E = Exdx+ Eydy + Ezdz

We define B this way because we can identify dx, dy and dz with dy ∧ dz, dx ∧ dz and
dx∧ dy in R3 as shown in Example 3.3.4. However, to do this, we must use a metric and an
orientation over R3. It is this identification which introduces the right-hand rule in the cross
product. Over R3, we have that both the spaces of 1-forms and 2-forms are 3-dimensional.
The convention of the right-hand rule in the cross product arises from trying to identify this

35
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two different spaces using the Hodge star operator. However, this operator presupposes a
metric and an orientation, which are the ones that will establish the right hand rule. Had
we chosen another metric and orientation, different from the usual ones, we could as well
have a left-hand rule for the cross product. This is why, when considering the magnetic
field as a vector field, there exist two opposite consistent choices possible. The solution is
to this apparent problem is realizing that the magnetic field is not a vector field, but a 2-form.

With this new expressions, the static case can be expressed just as:

dB = 0 dE = 0

We will now consider the general, time-dependant case. We must think about the magnetic
and electric fields as living on spacetime. We will begin by working on the Minkowski
spacetime, the manifold R4, using the standard coordinates (x0, x1, x2, x3). We will often
write t for the time coordinate x0 and (x, y, z) for the space coordinates (x1, x2, x3). We say
that index µ = 0 is time-like and that indices µ = 1, 2, 3 are space-like. We can combine
both the electric field form E and the magnetic field form B in a 2-form in the following
way:

F = B + E ∧ dt

We name this 2-form the electromagnetic field. Looking at the components, we have F =∑3
µ=0

∑3
ν=0

1
2
Fµνdx

µ∧dxν or using the Einstein summation convention, F = 1
2
Fµνdx

µ∧dxν .
We can write the components in a matrix as:

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


This way, the homogeneous Maxwell’s equations become just

dF = 0

To prove this, let’s remember that any k-form on can be locally written as

ω|U=
∑

i1<...<ik

ωj1...jkdx
j1 ∧ ... ∧ dxjk

by Remark 2.7.10. Therefore, taking the global chart of Rn, any form on Rn can be written
as:

ω = ωIdx
I

where I = (i1, ..., ik) is a multi-index and dxI = dxi1 ∧ ...∧ dxik , and where we are using the
Einstein summation convention. We therefore have

dω = dωI ∧ dxI

since d(dxI) = 0, and we get
dω = ∂µω

Idxµ ∧ dxI
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Since the manifold is R4, we get

dω = ∂µωIdx
µ ∧ dxI = ∂iωIdx

i ∧ dxI + ∂0ωIdx
0 ∧ dxI = ∂iωIdx

i ∧ dxI + dt ∧ ∂tω

where i ∈ {1, 2, 3}, and writing dSω := ∂iωIdx
i ∧ dxI for the "space-like part" of the form

and dtω := dt ∧ ∂tω for the "time-like part" of the form, we get

dω = dSω + dtω

Therefore, for the electromagnetic field F , the equation dF = 0 implies that

dF = d(B + E ∧ dt) = dB + dE ∧ dt
= dSB + dt ∧ ∂tB + (dSE + dt ∧ ∂tE) ∧ dt = dSB + (∂tB + dSE) ∧ dt = 0

Where we have used that dt ∧ ∂tB = The first term has no dt while the second one does.
Also, the second term will vanish if and only if the expression inside the parenthesis is 0.
Therefore, it follows that dF = 0 is equivalent to the following pair of equations,

dSB = 0 ∂tB + dSE = 0

which are just the original Maxwell’s equations in a different notation in the case of M = R4.

We could now take any manifold M of any dimension n modelling spacetime, define the
electromagnetic field to be a 2-form F on M. The homogeneous Maxwell’s equations would
then be just dF = 0. Sometimes, but not always, we can split spacetime up in space and
time, and we would have M = R×S for some (n− 1)- manifold S representing space and R
representing time. If this is possible, we can then write t for the usual coordinate on R and
split electric and magnetic fields, and we can also split the exterior derivative in a space-like
part and a time-like part, and we get back the original Maxwell’s equations. We have ar-
rived, then, at a more general way of expressing the homogeneous Maxwell’s equations for
any manifold, which in the Minkowskian case will reduce to our old equations.

Note, however, that electric and magnetic fields can only be defined after we choose how to
split spacetime M up in space and time. M could be diffeomorphic to R× S in a different
number of ways for different S, or in no way at all. It is a lesson from special relativity that
different inertial frames give different splittings of spacetime into R× R3, which are related
by the Lorentz group of transformations. This means that electric and magnetic fields will
be mixed up after a Lorentz transformation, recovering a fact that we mentioned before as
a motivation for our rewriting of Maxwell’s equations.

4.2 The second equation
We will now rewrite the inhomogeneous Maxwell’s equations using differential geometry. It is
now where finally the Hodge star operator will play a key role. Remember that all Maxwell’s
equations are:

∇ · B⃗ = 0 ∇× E⃗ +
∂B

∂t
= 0
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∇ · E⃗ = ρ ∇× B⃗ − ∂E

∂t
= ȷ⃗

In order to rewrite the first pair of equations, the homogeneous one, we treated B as a 2-form
and E as a 1-form. However, the second pair seems to treat E and B the other way around
(up to a minus sign); taking the divergence of E⃗ would imply that it should be treated as
a 2-form, and taking the curl of B⃗ would imply that it should be treated as a 1-form. We
should therefore use what we have been building up to, the Hodge star operator, which in
a 3-dimensional manifold M maps 1-forms to 2-forms and vice-versa. However, it comes at
the price of choosing a metric and an orientation for the manifold M.

We will first understand the effect of taking the Hodge dual of the electromagnetic field
F , F 7→ ⋆F . We will consider the manifold (R4, η) - the Minkowski spacetime - whith
its usual coordinates xµ, µ ∈ {0, 1, 2, 3} as our manifold for the following computations.
The Minkowski metric η with this choice of coordinates (the global chart for all R4) is the
following one:

η(v, w) = −v0w0 + v1w1 + v2w2 + v3w3

Since we can split the manifold as M = R×S = R×R3 with t := x0 the coordinate of time for
R and (x, y, z) := (x1, x2, x3), we can write the electromagnetic field as F = B+E∧dt, where
B is a time-dependant 2-form and E is a time-dependant 1-form. We have F = 1

2
Fµνdx

µ∧dxν ,
and therefore

⋆(F ) = ⋆(
1

2
Fµνdx

µ ∧ dxν) = 1

2
Fµν ⋆ (dx

µ ∧ dxν)

Taking into account that the signature of η is σ(η) = (− + ++) and the definition of the
Hodge star operator, an easy but tedious computation shows that

⋆(dx0 ∧ dx1) = −dx2 ∧ dx3 ⋆ (dx0 ∧ dx2) = dx1 ∧ dx3 ⋆ (dx0 ∧ dx3) = −dx1 ∧ dx2

⋆(dx1 ∧ dx2) = dx0 ∧ dx3 ⋆ (dx1 ∧ dx3) = −dx0 ∧ dx2 ⋆ (dx2 ∧ dx3) = dx0 ∧ dx1

and therefore we have that the components of ⋆F in the chosen basis are

(⋆F )µν =


0 Bx By Bz

−Bx 0 Ez −Ey
−By −Ez 0 Ex
−Bz Ey −Ex 0


In other words, taking the dual by the Hodge star operator of the electromagnetic field F
amounts to doing the replacement (Ei, Bi) 7→ (−Bi, E), which is the symmetry which we
named duality, and was one of the driving motivations to rewrite Maxwell equations. We
have then found that the origin of the symmetry between the electric and magnetic field is
rooted in the Hodge star operator. This duality is the main difference between the first pair
of Maxwell’s equations

∇ · B⃗ = 0 ∇× E⃗ +
∂B⃗

∂t
= 0

and the second pair

∇ · E⃗ = ρ ∇× E⃗ − ∂E⃗

∂t
= ȷ⃗
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The second difference between the two pairs is that the second one is not homogeneous: it
contains ρ and ȷ⃗, which are non-zero in general. To get a differential form, we can transform
the current density

ȷ⃗ = j1∂1 + j2∂2 + j3∂3

to a 1-form using the flat isomorphism:

j := ȷ⃗
Z
= j1dx1 + j2dx2 + j3dx3

Similarly we can combine the current density ȷ⃗ and the electric charge density ρ in a single
vector field in the Minkowski spacetime:

J⃗ = ρ∂0 + j1∂1 + j2∂2 + j3∂3

and using the flat isomorphism given by the Minkowski metric we get

J := J⃗
Z
= −ρdx0 + j1dx1 + j2dx2 + j3dx3 = j − ρdt

which we call the current in the Minkowski spacetime.

We claim that, in the same way that the homogeneous Maxwell’s equations could be re-
duced to the equation dF = 0, the inhomogeneous Maxwell’s equations can be generalized
to the single equation:

⋆d ⋆ F = J

We will prove this for a more general space than the Minkowski space, which we were con-
sidering before. Consider any M manifold as the spacetime. Then the electromagnetic field
over M is a 2-form F and the current J is a 1-form over M. The first Maxwell equation is
dF = 0. We must assume that M is a pseudo-Riemannian, oriented manifold in order to
write the second Maxwell equation, ⋆d⋆F = J . To introduce magnetic and electric fields we
must assume that M = R×S where S is named the space. We can then write F = B+E∧dt
and J = j − ρdt. Suppose that the space is 3-dimensional and that the metric over M is
a static one of the form η = −dt2 +3 g, where 3g is a Riemannian metric over S. Using
the notation presented in the last section, we would then have that the M is a Lorentzian
manifold.

Now, to prove what we want, we will split the Hodge star operator as we did with the exterior
derivative. We will consider the operator ⋆S, which is the Hodge star operator viewing the
forms on M as time-dependant forms over S, where the operator is acting with the metric
3g over S. We will firstly compute ⋆F in terms of ⋆S. Using linearity we get

⋆F = ⋆B + ⋆(E ∧ dt)

The key realization here is that since every component of E∧dt contains a dt, when we apply
the ⋆ operator no components will contain it. The converse is true for B: since no terms
contain dt, all terms of ⋆B will. Doing a little computation using the Hodge star operator
and factoring the common dt, we get

⋆F = − ⋆S B ∧ dt+ ⋆SE
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which reformulates the electromagnetic duality as (B,E) 7→ (⋆SE,− ⋆S B).

Now

d ⋆ F = d(⋆SE − ⋆SB ∧ dt) = dS ⋆S E + dt ⋆S E − dS(⋆SB ∧ dt)− dt(⋆SB ∧ dt)

and since
dt(⋆SB ∧ dt) = dt ∧ ∂t(⋆SB ∧ dt) = 0

we will get

d ⋆ F = dS ⋆S E + dt ⋆S E − dS(⋆SB ∧ dt)
= dS ⋆S E + ⋆S∂tE ∧ dt− dS ⋆S B ∧ dt = dS ⋆S E + (⋆S∂tE − dS ⋆S B) ∧ dt

Taking the Hodge star operator once again on both sides, the terms with dt will lose it and
the term without it will gain a dt, and so we get

⋆d ⋆ F = − ⋆S dS ⋆S E ∧ dt+ (−∂tE + ⋆SdS ⋆S B)

Finally, setting ⋆d ⋆ F = J and equating the terms we get

⋆SdS ⋆S E = ρ − ∂tE + ⋆SdS ⋆S B = j

which in the case of the Minkowski spacetime, are just the old acquaintances

∇ · E⃗ = ρ ∇×B − ∂E⃗

∂t
= j⃗

In conclusion, for any pseudo-Riemannian, orientable manifold (M, η) where M = R × S
and η = −dt2 +3 g with S a 3-dimensional manifold and 3g is a Riemannian metric over S,
and where F is a 2-form over M and J is a 1-form over M, the Maxwell’s equations over
M are

dF = 0

⋆d ⋆ F = J

Let us now discuss three interesting consequence of our newly formulated Maxwell’s equa-
tions. Firstly, it is interesting to note that in the static case, where F is independent of t -
or, equivalently, B and E are independent of t -, Maxwell’s equations can be written as a
pair involving only B

dB = 0 ⋆S d ⋆S B = j

and a pair involving only E
dE = 0 ⋆S d ⋆S E = ρ

This shows that only when the electric and magnetic field are time-dependant can they affect
each other. It was Faraday who in 1831 first discovered that a changing magnetic field causes
a nonzero curl in the electric field, being thus responsible for the ∂B⃗

∂t
term in the Maxwell’s

equations.
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In 1861 Maxwell hypothesized that a changing electric field should induce a nonzero curl
on the magnetic field, guessing that there should be a ∂E⃗

∂t
term too. It is only when both

these effects are taken into account that we can explain electromagnetic radiation, in which
changes in E produce changes in B and vice-versa, creating a wave which propagates through
space: light.

Secondly, let’s derive a crucial law from our equations. Let’s consider the second Maxwell’s
equation, ⋆d ⋆F = J . Let’s take the Hodge star operator on both sides to get d ⋆F = ± ⋆ J ,
where the sign depends on the value of ⋆2 over 1-forms, i.e. on the metric of the manifold.
Taking now the exterior derivative again, since d2 = 0, we get

d ⋆ J = 0

This equation is named the continuity equation and mathematically expresses the local
conservation law for charge: not only is the total charge of the universe constant, but in
order to move charge from one point to another, it must go through intermediate regions.
In terms of components, this equation is written just as

∂µJµ = 0

which in the Minkowski space time can be written as

dρ

dt
+∇ · ȷ⃗ = 0

This was the original formulation of the law, which motivated Maxwell to introduce the ∂E⃗
∂t

term in the old Maxwell’s equations in order to derive the local conservation of charge from
the equations for electromagnetism. To derive it, we just have to take the divergence on
both sides of Ampère’s circuital law:

∇ · (∇× B⃗ − ∂E⃗

∂t
) = ∇ · ȷ⃗

Since ∇ · (∇× B⃗) = 0 and ∇ · ∂E⃗
∂t

= ∂(∇·E⃗)
∂t

= ∂ρ
∂t

by Schwarz’s theorem and Gauss’s Law for
the electric field, we get the continuity law in its original formulation.

Thirdly, the first Maxwell equation, namely dF = 0 is specially charming: it is generally
covariant. This means that it is independent of any fixed choice of metric or other geomet-
rical structure on spacetime. More specifically, it implies that the equation is conserved by
any diffeomorphism. Therefore, the equation dF = 0 is not only invariant under the Lorentz
group of transformations, but under any kind of coordinate transformation.

Finally, it is worth noting that one can also express Lorentz’s Force Law easily using differ-
ential forms as

fµ = qF µ
ν u

ν

where fµ are the components of the electromagnetic force acting over a particle of charge
q, F µ

ν are the components of the electromagnetic 2-form and uν are the components of the
quadri-velocity vector, given by u = (mc, v1, v2, v3) where c is the speed of light in vacuum
and m the mass of that particle.
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4.3 Potentials and gauge freedom

Let’s now see the most notorious consequence of Maxwell’s equations, which is immediate in
this form, and which is usually unnecessarily mystified: gauge freedom. As we will see later
on, this concept is key in modern physics.

This newly found equations are a more general, compact, tidy and elegant formulation of
Maxwell’s equations. An immediate consequence of the couple in question,

dF = 0 ⋆ d ⋆ F = J

is that if the electromagnetic field form F is exact - F = dA for some 1-form A -, the
first equation is automatically true by the exactness property of the exterior derivative,
dF = d(dA) = d2A = 0, and the second equation is reduced to ⋆d⋆dA = J . A 1-form A such
that F = dA is a electromagnetic potential. Notice that we say it is "a" electromagnetic
potential and not "the" electromagnetic potential because A is not uniquely determined:
indeed, if we have an electromagnetic potential which just differs from A by an exact 1-form,
i.e. A′ = A+df , it also satisfies that dA′ = F , since dA′ = d(A+df) = dA+d2f = dA = F .
This way of changing A is called a gauge transformation and our freedom for choosing A
is called gauge freedom.

It can be very convenient to use gauge freedom to make the vector potential satisfy handy
extra conditions. Ending with these redundant degrees of freedom via fixing one of these
conditions is called choosing a gauge.

The simplest gauge one can imagine is temporal gauge. If we suppose that we are on a
Lorentzian spacetime such that M = R×S, where S is the space, with a given metric dt2−3g,
where 3g is a Riemannian metric over S, and time t is a coordinate over R. Differentiating
with respect to t can be thought as the vector field ∂t on M. If the 1-form A on M = R×S
satisfies

A(∂t) = 0

we say that A is in temporal gauge. For instance, in Minkowski spacetime R4, any 1-form
can be written as

A = A0dt+ A1dx+ A2dy + A3dz

and temporal gauge is simply the condition that A0 = 0. To keep notation simple we will de-
fine A0 = A(∂t) for any space-time of the form R×S, so that A is in temporal gauge if A0 = 0.

Let’s now show that given any exact 2-form F on M = R × S, we can find some A in
temporal gauge. Let’s start with A, not necessarily in temporal gauge, such that dA = F .
Let f be a function on M = R× S such that for any point (t, p) ∈ R× S,

f(t, p) =

∫ t

0

A0(s, p)ds

and let
A′ = A− df
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We have that dA′ = f and that A′ is in temporal gauge:

A′
0(t, p) = A′(∂t)(t, p) = A0(∂t)(t, p)− (df(∂t))(t, p) =

= A0(t, p)− (df(∂t))(t, p) = A0(t, p)− (∂tf)(t, p) =

= A0(t, p)− ∂

∫ t

0

A0(s, p)ds = 0

Let us see how Maxwell’s equations on M = R × S look like when the electromagnetic
potential A is in temporal gauge. Since A0 = 0 we can think of A as a 1-form on S that is
a function of time. Since F = B + E ∧ dt and

F = da = dSA+ dtA = dSA+ dt ∧ ∂tA

we have that
E = −∂tA B = dSA

We will now rewrite Maxwell’s equation in terms of the Cauchy data (A,E) on a space-like
surface, a surface of the form {t} × S. The first pair of Maxwell’s equations

dSB = 0 ∂tB + dSE = 0

become thus tautological in terms of A:

d2SA = 0 ∂tdSA− dS∂tA = 0

while the second pair becomes

⋆SdS ⋆S E = ρ − ∂E + ⋆SdS∂SB = j

which describe the behaviour of the Cauchy data: the first equation - Gauss’s Law - becomes
a constraint that the Cauchy data must satisfy at any given time and the second equation
together with the fact that ∂tA = −E describe the evolution of the Cauchy data with time:

∂t(A,E) = (−E, ⋆SdS ⋆S dSA− j)

With this, we can compute the Cauchy data any later or earlier time provided that we know
it at time t. It is worth noting that as long as the continuity equation

∂tρ+ ⋆SdS ⋆S j = 0

holds, Gauss’s Law together with the evolutionary equation imply that Gauss’s Law holds
at later times, i.e. Gauss’s Law is preserved in by time evolution. Lets proof this with a
simple computation. Take Gauss’s Law and derive it with respect to t:

∂t(⋆SdS ⋆S E − ρ) = 0

and now using the continuity equation ∂tρ = − ⋆S dS ⋆S j and the evolutionary equation
∂tE = ⋆sdS ⋆S dSA− j we get that

⋆SdS ⋆S (⋆SdS ⋆S dSA− j)− ⋆SdS ⋆S j = ± ⋆S d
2
S(⋆SdSA) = 0
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One should also note that an exact 2-form F = on R× S, the 1-form A in temporal gauge
such that F = dA is not unique. In other words, there is still some gauge freedom. The
reason is that if ω is any fixed, closed 1-form on space, A′ = A + ω will again be a 1-form
on R × S that is in temporal gauge and has dA′ = F . In particular, we can take ω = df
fore some function f on space. Getting rid of the remaining gauge, for any reason we would
want to do so, freedom would suppose more work.

Other well-known gauges in the Minkowski space-time are Couloumb gauge, which is equal
to fixing

A(∂x + ∂y + ∂z) = ∂i(Ai)
\
= A1 + A2 + A3 = 0

and Lorentz gauge which is

A(−∂0 + ∂x + ∂y + ∂z) = ∂µ(Aµ)
\
= −A0 + A1 + A2 + A3 + A4 = 0

using Einstein notation and the typical notation that Latin letters exclude the time-index
and Greek letters range over all indices, i.e. i ∈ {1, 2, 3} and µ ∈ {0, 1, 2, 3}.

Gauge freedom may not seem that important at first sight, but the realization that Maxwell’s
equation possess this symmetry was one of the key advancements in the history of theoretical
physics. This realization and a consequent generalization - gauge theory - gave rise to Yang-
Mills equations (or more generally, Yang-Mills theory). Gauge theory made it possible to
establish the standard model of particles using similar equations to Maxwell’s equation,
Yang-Mills equations. They can be very easily stated as just:

dDF = 0 ⋆ dD ⋆ F = J

which look just like Maxwell’s equations with a sub-index. However, making sense of that
sub-index requires constructions in differential geometry related to G-bundles, connections,
curvature, holonomy, generalizing the exterior derivative and the Hodge operator, etc. The
case of electromagnetism is special because it turns out that it is a specially easy case, an
Abelian gauge theory using a relatively simple group, U(1).

The main take-away we want to express is that a modern approach to Maxwell’s equations
provides the foundation of modern physics. With the exception of general relativity, all
important theories of modern physics are quantized versions of Yang-Mills theory. These
include quantum electrodynamics, the electroweak theory by Salam and Weinberg General
and the standard model of particle physics. The most important of these theories is the
standard model, which is what is called a Yang-Mills theory with an U(1)× SU(2)× SU(3)
gauge symmetry. General relativity also satisfies a what is called a gauge symmetry, even
though it is not known if it can be cast as a Yang-Mills theory, being that a crucial problem
in today’s theoretical physics which, if solved, would be a great advance towards a Grand
Unified Theory of physics.
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4.4 Solutions to Maxwell’s equations and the Aharonov-
Bohm effect

As we have seen, we can find solutions for Maxwell’s equations using the electromagnetic
potential. However, can we get all solutions using this procedure? In our previous discussion,
we were speaking about exact electromagnetic fields and we know that any exact form is
closed. As we will see, the converse is not always true, and it gives rise, as we explained in
the differential’s form section, to de Rahm cohomology. Lets first introduce some terms.

A 0-form ϕ - also known as a function - such that E = −dϕ is known as a scalar potential
for E and a 1-form such that B = dA is called a vector potential for B. Notice that the
minus sign is just a convention.

We will now study when a 1-form is exact. Let S, space, be a manifold with a 1-form E
such that dE = 0. Can we obtain a function ϕ such that E = −dϕ? We will attempt to do
so integrating the 1-form E along a smooth path γ in S, i.e. a smooth map γ : [0, T ] → S.
Technically we should have previously defined a manifold with a boundary to properly speak
about a smooth map from [0, T ]. However, since we will be integrating and the boundary
of that manifold with boundary would be 0, T , which is of measure 0, it will not affect our
computations. We will denote ∫

γ

E =

∫ T

0

Eγ(t)(γ
′(t))dt

where Eγ(t) = E(γ(t)) is the 1-form evaluated at the point γ(t) and γ′(t) = ∂tγ(t) is the
tangent vector at the point γ(t). We will define ϕ as follows: fix any point p ∈ S and for
any q ∈ S let γ be some path from p to q and

ϕ(q) = −
∫
γ

E

In the case of S = R3, this is how one would write a curl-free vector field as the gradient of
a function.

Notice that in order to define a path from p to q, it must be that p and q are in the same
arc-connected component of S. Since we are talking about space, we will further assume
that S is arc-connected. Were it to be that there are different arc-connected components of
space, we could just apply the following procedure to each arc-component independently.

Now, a watchful reader would have noticed that the details of that integral will in general
depend on the details of the path γ and not just its endpoints γ(0) = p and γ(T ) = q. We
will analyze this further: suppose that we have another path γ′ from p to q and a smooth
path homotopy between them, i.e. a smooth function H : [0, 1] × [0, T ] → S such that
H(s, 0) = p and H(s, T ) = q for any s ∈ [0, T ] and that H(0, t) = γ and H(1, t) = γ′. Let’s
now see how

Is =

∫ T

0

Eγ(s,t)γ
′(s, t))dt =

∫ T

s

Eµ(γ(s, t))∂tγ
µ(s, t)dt
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depends on s by differentiating:

∂sIs =

∫ T

0

∂s[Eµ(γ(s, t))∂tγ
µ(s, t)]dt =

=

∫ T

0

[∂sEµ(γ(s, t))∂tγ
µ(s, t) + Eµ(γ(s, t))∂s∂tγ

µ(s, t)]dt =

=

∫ T

0

[∂sEµ(γ(s, t))∂tγ
µ(s, t)− ∂tEµ(γ(s, t))∂sγ

µ(s, t)]dt =

=

∫ T

0

∂νEµ(γ(s, t))[∂sγ
ν∂tγ

µ − ∂tγ
ν∂sγ

µ]dt

where we have used the product rule, integration by parts and the chain rule. Now, since
dE = (∂µEν − ∂νEµ)dx

µdxν we obtain that

∂sIs =

∫ T

0

(dE)µν∂sγ
µ∂tγ

νdt = 0

since dE = 0, and thus Is is independent of s. We have proven that a closed 1-form has
the same integral along any two homotopic paths. Therefore, given a manifold S which is
arc-connected and simply connected - i.e. we can speak about the fundamental group with-
out fixing a base-point and it has the trivial fundamental group, π(X) = 0 - we can define
ϕ unambiguously for E. A reader which is interested in treating homotopy, the fundamen-
tal group of a topological space and simple connectedness more thoroughly should refer to
[Hat02].

However, if S is not simply connected, we can find counter-examples for this. For in-
stance, given S = R2 − {0}, the form E = xdy−ydx

x2+y2
integrated along the non-homotopic

paths γ1 : [0, π] → S defined by γ1(t) = (cos t, sin t) and γ2 : [0, π] → S defined by
γ2(t) = (cos t,− sin t) gives

∫
γ1
E = π and

∫
γ2
E = −π.

Now, let’s show that indeed E = −dϕ. To show that they agree at a point p, we have to
show that they agree when applied to any tangent vector v ∈ TpM. Therefore we need to
show that E(v) = dϕ(v). To do this, lets pick a path γ : [0, 2] → S with γ(0) = p, γ(1) = q
and γ′(1) = v. We then have:

E(v) = E(γ′(1)) =
d

ds

∫ s

0

E(γ′(t))dt

∣∣∣∣
s=1

= − d

ds
ϕ(γ(s))

∣∣∣∣
s=1

= −v(ϕ)

using that the derivative of ϕ(γ(s)) with respect to s is the same as the derivative of ϕ in
the direction γ′(s) = v.

We could think of using the same procedure for finding solutions for the vector potential of
the magnetic field. However, a quick reader will notice a crucial difference: we do not know
how to integrate it, since it is not a function.

An omission we have been making is that k-forms are something that can be integrated over.
We will not analyze this much further, since it would take many pages: defining manifolds
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with boundaries, how to integrate k-forms and stating and proving Stokes’ theorem. We will
take all of these for granted in order to briefly speak about the Aharonov-Bohm effect, which
shows the importance of the vector potential in electromagnetism, specially on a quantum
setting. An interested reader - and they should indeed be - should check the reference [Fra12]
for a thorough mathematical understanding of the topic.

The setting behind the Aharonov-Bohm is how it follows. We will first consider cylindrical
coordinates (r, θ, z) on R3. We notice that z is a smooth function over R3, so dz is a form
defined over all R3, but r is only smooth away from the z-axis, i.e. r = 0, so dr is only
defined away from this axis. Moreover, theta is not well-defined over the z-axis and only up
to modulo 2π. Nonetheless it is tradition to define the 1-form

dθ =
xdy − ydx

x2 + y2

even if it is not an exact form. It is, however, a closed form. Let’s consider a solenoid by
winding a wire around a cylinder in a tight spiral, with the cylinder centered at the z-axis.
If current j flows through the wire, one obtains a constant magnetic field inside the solenoid
and zero magnetic field outside, i.e.

B = f(r)rdr ∧ dθ

where f is constant for r < R and zero for r > R. We also obtain

⋆B = f(r)dz

and the vector potential
A = g(r)dθ

with
g(r) =

∫ r

0

sf(s)ds

that fulfills dA = B. One can find the proof of this computation in [BM94]. In particular,
outside the solenoid we have

A =
Φ

2π
dθ

where Φ is the magnetic flux through the solenoid, i.e. the integral of the B 2-form over the
disc r ≤ R in any plane of constant z:

Φ =

∫
D

B =

∫
D

f(r)rdr ∧ dθ = 2π

∫ R

0

f(r)rdr

Remember that we haven’t learnt how to integrate 2-forms, but the basic idea is that the
part dr ∧ dθ becomes the drdθ inside the integral and that we integrate the "function part"
of the form, f(r)r over the area and the differentials drdθ. Remember also that A is not the
unique vector potential such that dA = B by gauge freedom, but we only want one vector
potential for this discussion.
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The Aharonov-Bohm effect occurs when a charged particle passes around the solenoid. It is
a purely quantum effect, so we will briefly explain the ideas we will need.

In quantum mechanics, physical systems are described by wave-functions, unit vectors in
some Hilbert space H. The inner product of H is related to the probabilistic nature of
quantum mechanics as it follows. Suppose that there is a system represented by the state
ψ ∈ H and that an experiment is performed to check if the system is in a state ϕ ∈ H. The
probability to find that the system is in the state ϕ in that experiment is

|⟨ϕ|ψ⟩|2

which is called the transition probability. Also, while we represent states as unit vectors, it
is important to note that if two states ψ and ψ′ differ by a phase, i.e. if ψ′ = eiθψ for θ ∈ R,
they describe the same state, because transition probabilities are not affected by the change:
for all ϕ ∈ H, we have

|⟨ϕ|ψ′⟩|2= ⟨ϕ|ψ⟩|2

Now, suppose we have a particle in R3 with electric charge q. In classical mechanics, a
particle moves along some path γ in R3 and there is a function called the Lagrangian,
L = L(γ(t), γ′(t)), describing the particle which depends on the particle’s position and
velocity. If we consider the particle’s path from time 0 to T and integrate the Lagrangian
over this interval of time we get a quantity called the action, S,

S =

∫ T

0

Ldt

In classical mechanics, a particle going from a point p at time 0 to a point q at time T will
always follow a path which is a critical point of the action! It often implies that the path
minimizes the action, but it is not always the case.

In quantum mechanics, the Lagrangian also plays an important role. However, particles in
quantum mechanics do not move through a path. Now suppose that a particle starts at a
state ψ at t = 0 and we wish to compute its state ϕ at some other time t = T . Suppose also
at first that there is no magnetic field, Let

P = {γ : [0, T ] → R3 : γ(0) = a, γ(T ) = b}

denote the space of all paths that start at a at time 0 and end at b at time T . Then, as
stated by Feynmann’s path-integral quantum-mechanics formulation

ϕ(b) =

∫
P
e

i
h̄
S(γ)ψ(a)Dγ

where Dγ is a kind of measure on the space P (of which we will not enter in detail, which
would require another 50 pages of mathematics) and h̄ is Planck’s constant. In words, we can
think that the particle takes all possible paths weighted by a factor of e

i
h̄
S(γ). One can show

that as h̄ → 0, this phase factor oscillates rapidly near the paths that are critical points,
cancelling out in such a way that only the classical path contributes.



4.4 Solutions to Maxwell’s equations and the Aharonov-Bohm effect 49

Now, funnily enough, suppose that there is a magnetic field B on R3 with a vector potential
A, and they are independent of time. The new path integral should be

ϕ(b) =

∫
P
e(

i
h̄
s(γ)−q

∫
γ A)ψ(a)Dγ

In other words, a new phase factor appears:

e−
i
h̄
q
∫
γ A

In the case which a = b, the extra phase factor is just

e−
i
h̄
q
∮
γ A

or if γ bounds the disk D, by Stokes’ theorem,

e−
i
h̄
q
∫
D B

This phase does indeed have physical effects: it can differ for different loops producing
constructive or destructive interference in the path integral. Now, in the previous solenoid
setting, consider an electron completely excluded by the solenoid, which is taken to be of
radius 1

2
. Since the electron is excluded from the solenoid, we may as well take space to be

S = R3 − {r ≤ 1
2
}, which is not simply connected. Now, the magnetic field vanishes in S,

but A does not. Suppose that we send an electron from a = (−1, 0, 0) to b = (1, 0, 0) in S.
Since it is quantum-mechanical, the electron will take any path in S from a to b.

However, due to the vector potential, the electron can pick different phases depending on
the path it takes from a to b. This gives rise to interference, which is the Aharonov-Bohm
effect. In short, in quantum mechanics the vector potential can affect the wavefunction in a
significant way even when the magnetic field is 0 in the region!

To see this precisely, notice that since the vector potential (up to gauge freedom) is A = Φ
2π
dθ,

the phase factor e−
i
h̄
q
∫
γ A equals e

−iqΦ
2h̄ on the path of module 1 at one side of the solenoid and

e
iqΦ
2h̄ at the other. By adjusting a proper A, the factors are i and −i. By symmetry, every path

from a to b has its reflected path which cancels its factor, and thus the path-integral vanishes.

In other words, for the right value of Φ it is impossible for an electron to go from point
a to point b because it interferes with itself, and all due to the vector potential A, while
B = 0. This effect is commonly observed and the basis for the superconducting quantum
interference devices, which measure magnetic flux accurately.

The crucial hidden property here is that the space S is not simply connected. This is what
allows the integral along different paths to take different values. While real space is indeed
connected, the space accessible by the electron is not, so Aharonov-Bohm effect can be easily
understood using a model of space which is not simply connected, which gives rise to a non-
exact differential form which makes the electron interfere with itself so it can never go from
one point to another one.
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