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Abstract

This work studies the diagonalization of second degree polynomial matrices. First, all
the concepts needed to understand the theory on this type of matrix are defined. Then,
the most important working tools for solving the problem are introduced: the Smith
canonical form and the linearization of polynomial matrices. Finally, it is deduced for
which 2nd degree matrices there is a diagonalization.

Resum

En aquest treball s’estudia la diagonalització de matrius polinomials de segon grau. En
primer lloc, es defineixen tots els conceptes necessaris per entendre la teoria d’aquest
tipus de matrius. A continuació s’introdueixen les eines de treball més importants
que permeten resoldre el problema: la forma canònica de Smith i la linearització de
matrius polinomials. Finalment, es dedueix per a quines matrius de 2n grau existeix
una diagonalització.
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Chapter 1

Introduction

Polynomial matrices are a very useful tool in many areas. Several systems in a vari-
ety of disciplines are described by matrix polynomials [12]. This work is focused on
the diagonalization of this type of matrices, particularly in diagonalization of second
degree polynomial matrices.

Before digging into the mathematical study, let us name some applications of polyno-
mial matrices to highlight their importance and to understand the motivation of this
study. To start, many differential equations can be written as polynomial matrices.
Two important areas where second order differential equations arise are the fields of
mechanical and electrical oscillation. They are also very useful in signal processing
and control theory [12]. Therefore, having a deep understanding of their properties,
including their eigenvalue structure, helps solve problems, as can be seen in [12], more
straightforwardly.

The term matrix was, according to Encyclopedia Britannica, first introduced by the
19th-century English mathematician James Sylvester. Though it was Arthur Cayley,
a friend of his, who developed the algebraic aspect of matrices in two papers in the
1850s. The first theory on polynomial matrices appeared in the following decades. As
a reference, we know the Smith canonical form for this type of matrices was obtained
by F.G. Frobenius in 1878.

These matrices share a lot of properties with matrices whose elements are coefficients
on a field F and with polynomials with coefficients on a field F as well. Their com-
mon ground and similarities have helped construct most of what we know about them
nowadays.

However, the development of the theory is far from perfect and many problems re-
main unresolved. One of these is their diagonalization. Although this problem has
been tackled by various mathematicians in recent years and it has been solved for
matrices of first, second, third and fourth degree, it remains open for higher degrees.

This work is focused on second degree diagonalization [10], [13] and is divided mainly
into two blocks. We will begin by illustrating the theory on which the problem is based
and then, we will focus on its solution.
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The general structure of the report is the following: The notation is introduced in
Chapter 2. Chapter 3 includes the definition and the main aspects of polynomial ma-
trices and describes the basic arithmetics.

In Chapter 4, the canonical form into which a polynomial matrix can be transformed is
presented, precisely the Smith canonical form. It also includes relevant concepts such
as equivalence and similarity and introduces invariant polynomials and elementary di-
visors. In Chapter 5, before digging into the main matter of the work, the linearization
of polynomial matrices is explained.

Once the theory is constructed, the diagonalization of second degree polynomial ma-
trices will be discussed in Chapter 6.
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Chapter 2

Notation

Before delving into the subject, let us introduce the notation and terminology that
will be used.

• Unless otherwise stated we assume that all the matrices are defined in the field
F = C or R.

• We will denote by F[λ] the set of polynomials with coefficients in F.

• Fn×m stands for n x m matrices with elements in F and Fn×m[λ] stands for n x
m polynomial matrices whose components are polynomials in F.

• The elements of A(λ) ∈ Fn×m[λ] are denoted by aij(λ), 1 ≤ i ≤ n, 1 ≤ j ≤ m. If n =
m, its adjoint matrix is expressed by Adj(A(λ)), its inverse is denoted by A−1(λ)
and its determinant by det(A(λ)). In addition, we will denote by deg(A(λ)),
rank(A(λ)) and dim(A(λ)), its degree, rank and dimension respectively.

• Given A ∈ Fn×n[λ] we represent its transpose by AT . If, in particular, F = C
then we denote by A∗ its conjugate transpose.

• We denote by I the n x n identity matrix. When denoting the identity matrix of
any other order, say k, we will denote it by Ik.
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Chapter 3

Polynomial matrices

3.1 Definition and main aspects

Given F = R,C, a polynomial matrix or λ-matrix, is a rectangular matrix A(λ)
= (aij(λ)) ∈ Fn×m[λ] whose elements aij(λ) are polynomials in λ. In this work
we will only consider square matrices (i.e. n = m).

Now, let us consider

A(λ) =
⎛
⎜⎜⎜
⎝

a11(λ) a12(λ) ⋯ a1n(λ)
a21(λ) a22(λ) ⋯ a2n(λ)
⋮ ⋮ ⋱ ⋮

an1(λ) an2(λ) ⋯ ann(λ)

⎞
⎟⎟⎟
⎠
∈ Fn×n[λ]

.

Observe that when the elements of A(λ) are evaluated for a particular value of
λ, say λ = λ0, then A(λ0) ∈ Fn×n.

This matrices are not only called polynomial matrices because their elements are
polynomials but also because they can also be written in the following form

A(λ) = A0 +A1λ + ... +Arλ
r ∈ Fn×n[λ]

where Ai ∈ Fn×n and r = max (deg(aij(λ))).
The degree of a λ-matrix A(λ) is defined to be the greatest degree of the poly-
nomials it contains and is denoted deg(A(λ)), therefore r = deg(A(λ)).
If Ar = I, then A(λ) is said to be monic.

Example 3.1.

A(λ) =
⎛
⎜
⎝

3λ3 λ 1
0 λ2 0
λ3 λ λ

⎞
⎟
⎠
=

=
⎛
⎜
⎝

3 0 0
0 0 0
1 0 0

⎞
⎟
⎠
λ3 +

⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠
λ2 +

⎛
⎜
⎝

0 1 0
0 0 0
0 1 1

⎞
⎟
⎠
λ +
⎛
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎠
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In this case, deg(A(λ)) = 3.

Remark 3.2. Matrices whose elements are scalars, A ∈ Fn×n, can be viewed as
λ-matrices with zero degree.

Definition 3.3. A(λ) ∈ Fn×n[λ] is said to be nonsingular if det(A(λ)) /≡ 0. Else
if det(A(λ)) ≡ 0, then A(λ) is said to be singular.

Example 3.4. Let

A(λ) = ( λ + 1 λ + 3
λ2 + 3λ + 2 λ2 + 5λ + 4) ∈ F

2×2[λ]

then

det(A(λ)) = (λ + 1)(λ2 + 5λ + 4) − (λ2 + 3λ + 2)(λ + 3) = −2λ − 2 /≡ 0.

Therefore, A(λ) is nonsingular.

However, the matrix

B(λ) = ( λ + 1 λ + 3
λ2 + 3λ + 2 λ2 + 5λ + 6) ∈ F

2×2[λ]

is singular because

det(B(λ)) = (λ + 1)(λ2 + 5λ + 6) − (λ2 + 3λ + 2)(λ + 3) ≡ 0.

Definition 3.5. A polynomial matrix A(λ) ∈ Fn×n[λ] is said to be invertible if
there is a λ-matrix B(λ) ∈ Fn×n[λ] such that A(λ)B(λ) = B(λ)A(λ) = I, i.e.
B(λ) = A(λ)−1 ∈ Fn×n[λ].

Proposition 3.6. ([9]) A λ-matrix A(λ) ∈ Fn×n[λ] is invertible if and only if
det(A(λ)) ∈ F ∖ {0}.

Proof. If det(A(λ)) = c ≠ 0, then the entries of A−1(λ) = 1
det(A(λ))Adj(A(λ))

T

are equal to the minors of A(λ) of order n - 1 divided by c ≠ 0 and hence are
polynomials in λ. Thus A(λ)−1 ∈ Fn×n[λ]. Conversely, if A(λ) is invertible, then

A(λ)A−1(λ) = I Ô⇒ det(A(λ)) 1

det(A(λ)) = 1

Thus, det(A(λ)) = c, with c≠0.

A λ-matrix A(λ) ∈ Fn×n[λ] such that det(A(λ)) ∈ F∖ {0} is also referred to as a
unimodular λ-matrix.

Example 3.7. Let

A(λ) =
⎛
⎜
⎝

1 λ −2λ2

0 1 λ4

0 0 1

⎞
⎟
⎠
∈ F3×3[λ]

then, det A(λ) = 1 and therefore A(λ) is unimodular. In this case,

A−1(λ) =
⎛
⎜
⎝

1 −λ λ5 + 2λ2

0 1 −λ4

0 0 1

⎞
⎟
⎠
∈ F3×3[λ].
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3.2 Arithmetic with matrix polynomials

Let us now define the basic arithmetic operations for polynomial matrices.

3.2.1 Sum

Let A(λ) = ∑l
i=0 λ

iAi ∈ Fn×n[λ] with deg(A(λ)) = l, and B(λ) = ∑m
i=0 λ

iBi ∈
Fn×n[λ] with deg(B(λ)) = m, then obviously

A(λ) + B(λ) = ∑max(l,m)
i=0 λi(Ai +Bi) ∈ Fn×n[λ],

Thus, deg(A(λ) + B(λ)) ≤ max(l, m).

3.2.2 Product

Considering A(λ) ∈ Fn×n[λ] and B(λ) ∈ Fn×n[λ] as above, we define the product
of polynomial matrices as follows.

A(λ)B(λ) = ∑l
i=0∑m

j=0AiBjλ
i+j ∈ Fn×n[λ]

and deg(A(λ)B(λ)) ≤ l + m. Clearly,

det(A(λ)) ≠ 0 or det(B(λ)) ≠ 0 Ô⇒ deg(A(λ)B(λ)) = l + m.

As previously stated, we are only considering square matrices on this paper.
However, the reader should know the product is also applicable to non-square
matrices. In addition, it shall be noted that the product is not commutative.

3.2.3 Division

Let A(λ) ∈ Fn×n[λ] with deg(A(λ)) = l, and let B(λ) ∈ Fn×n[λ] with deg(B(λ))
= m and det(Bl) ≠ 0. Suppose that there exist Q(λ), R(λ) ∈ Fn×n[λ], with R(λ)
≡ 0 or deg(R(λ)) ≤ m, such that

A(λ) = Q(λ)B(λ) +R(λ).

We call Q(λ) a right quotient of A(λ) on division by B(λ) and R(λ) is a right
remainder of A(λ) on division by B(λ).

Similarly, Q̄, R̄(λ) ∈ Fn×n[λ] are respectively a left quotient and left remain-
der of A(λ) on division by B(λ) if

A(λ) = B(λ)Q̄(λ) + R̄(λ)
with R̄(λ) ≡ 0 or deg(R̄(λ)) ≤ m.

If R(λ) ≡ 0, then Q(λ) is said to be a right divisor of A(λ) on division by B(λ).
Similarly if R̄(λ) ≡ 0 then Q̄(λ) is said to be a left divisor of A(λ) on division
by B(λ).
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Example 3.8. Let us examine the right and left quotients and remainders of
A(λ) on division by B(λ), where

A(λ) = (λ
4 + λ2 + λ − 1 λ3 + λ2 + λ + 2
2λ3 − λ 2λ2 + 2λ ) ∈ F2×2[λ]

and

B(λ) = (λ
2 + 1 1
λ λ2 + λ) ∈ F

2×2[λ]

Note first that B(λ) has an invertible leading coefficient.

B2 = (
1 0
0 1
) and det(B2) = 1

Now observe let us calculate the right and left quotient and remainders.

Let us start with the right division. We want to find matrices Q(λ), R(λ) ∈
F2×2[λ] such that

A(λ) = Q(λ)B(λ) +R(λ)

⇐⇒ A(λ) = (q11 q12
q21 q22

)B(λ) + (r11 r12
r21 r22

)

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ4 + λ2 + λ − 1 = q11(λ2 + 1) + q12λ + r11
λ3 + λ2 + λ + 2 = q11 + q12(λ2 + λ) + r12
2λ3 − λ = q21(λ2 + 1) + q22λ + r21
2λ2 + 2λ = q21 + q22(λ2 + λ) + r22

Solving this system it is found that

A(λ) = (λ
2 − 1 λ − 1
2λ 2

)(λ
2 + 1 1
λ λ2 + λ) + (

2λ 2λ + 3
−5λ −2λ ) = Q(λ)B(λ) +R(λ),

therefore Q(λ) is not a right divisor of A(λ).

Following a similar process it can be seen that

A(λ) = (λ
2 + 1 1
λ λ2 + λ)(

λ2 λ + 1
λ − 1 1

) = B(λ)Q̄(λ).

Thus, Q̄(λ) is a left divisor of A(λ).

We must now prove that given two matrices A(λ), B(λ) ∈ Fn×n[λ], there do exist
quotients and remainders as defined. When we have done this we shall also prove
their uniqueness.

The proof of the next theorem is a generalization of the division algorithm for
scalar polynomials.

Theorem 3.9. ([9]) Let A(λ) = ∑l
i=0 λ

iAi ∈ Fn×n[λ], B(λ) = ∑m
i=0 λ

iBi ∈ Fn×n[λ]
with deg(A(λ)) = l, deg(B(λ)) = m and det Bm≠ 0. Then there exists a right
quotient and right remainder of A(λ) on division by B(λ) and similarly for a left
quotient and left remainder.
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Proof. If l < m, we have only to take Q(λ) = 0 and R(λ) = A(λ) to obtain the
result.
If l ≥ m, we first ”divide by” the leading term of B(λ): Bmλm. Observe that the
term of highest degree of AlB

−1
m λl−mB(λ) is just Alλ

l. Hence

A(λ) = AlB
−1
m λl−mB(λ) +A(1)(λ),

where A(1)(λ) ∈ Fn×n[λ] and deg(A(1)(λ)) = l1 ≤ l - 1.

Writing A(1)(λ) in decreasing powers, let

A(1)(λ) = A(1)l1
λl1 + ... +A(1)0 , A

(1)
l1
≠ 0, l1 < l.

If l1≥ m we repeat the process, but on A(1)(λ) rather than A(λ) to obtain

A(1)(λ) = A(1)l1
B−1m λl1−mB(λ) +A(2)(λ)

where
A(2)(λ) = A(2)l2

λl2 + ... +A(2)0 , A
(2)
l2
≠ 0, l2 < l1.

In this manner we can construct a sequence of matrix polynomials A(λ), A(1)(λ),
A(2)(λ), ... whose degrees are strictly decreasing, and after a finite number of
terms we arrive at a matrix polynomial A(r)(λ) of degree lr < m, with lr−1 ≥ m.
Then, if we write A(λ) = A(0)(λ), we have that

A(s−1)(λ) = A(s−1)ls−1
B−1m λls−1−mB(λ) +A(s)(λ), s = 1,2, ..., r.

Combining these equations, we obtain

A(λ) = (AlB
−1
m λl−m +A(1)l1

B−1m λl1−m + ... +A(r−1)lr−1
B−1m λlr−s−m)B(λ) +A(r)(λ).

The matrix in parentheses can now be identified as the right quotient of A(λ) on
division by B(λ), and A(r)(λ) as the right remainder.

The existence of a left quotient and left remainder can be similarly proved.

Theorem 3.10. ([9]) With the hypotheses of Theorem 3.9, the right quotient,
right remainder, left quotient and left remainder are each unique.

Proof. Let us suppose that there exist matrix polynomials Q(λ), R(λ) and Q̃(λ),
R̃(λ) such that

A(λ) = Q(λ)B(λ) +R(λ)

and
A(λ) = Q̃(λ)B(λ) + R̃(λ)

where deg(R(λ)) < m and deg(R̃(λ)) < m. Then
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(Q(λ) − Q̃(λ))B(λ) = R̃(λ) −R(λ).

If Q(λ) ≠ Q̃(λ), then deg((Q(λ) - Q̃(λ))B(λ)) ≥ m. However, deg(R̃(λ) −R(λ))
< m. Therefore, the equation above does not hold and the uniqueness is proved.

A similar argument can be used to establish the uniqueness of the left quotient
and left remainder.

Division by a linear divisor

Now we consider the special case in which a divisor is linear (i.e. a matrix
polynomial of first degree).
First, note that when discussing a scalar polynomial p(λ) ∈ F[λ], we may write

p(λ) = a1λl + al−1λl−1 + ... + a0 = λlal + λl−1al−1 + ... + a0.

For a matrix polynomial with a matrix argument, this is not generally possible.
If A(λ) ∈ Fn×n[λ] and B ∈ Fn×n, we define the right value A(B) of A(λ) at B by

A(B) = AlB
l +Al−1B

l−1 + ... +A0 ∈ Fn×n

and the left value Ā(B) of A(λ) at B by

Ā(B) = BlAl +Bl−1Al−1 + ... +A0 ∈ Fn×n.

The reader should be familiar with the classical remainder theorem:

Theorem 3.11. ([9]) On dividing the scalar polynomial p(λ) ∈ F[λ] by λ - b,
the remainder is p(b).

We now prove an extension of this result to matrix polynomials. Note first that
λI - B ∈ Fn×n[λ] is monic.

Theorem 3.12. ([9]) The right and left remainders of A(λ) = ∑l
i=0 λ

iAi ∈
Fn×n[λ] on division by λI - B are A(B) and Ā(B), respectively.

Proof. The factorization

λjI −Bj = (λj−1I + λj−2B + ... + λBj−2 +Bj−1)(λI −B)

can be verified by multiplying out the product on the right. Premultiply both
sides of this equation by Aj and sum the resulting equation for j = 1, ..., l. The
right-hand side of the equation obtained is of the form C(λ)(λI - B), where C(λ)
= ∑l

j=1Aj(λj−1I + λj−2B +⋯ + λBj−2 +Bj−1). The left-hand side is

l

∑
j=1

Ajλ
j −

l

∑
j=1

AjB
j =

l

∑
j=0

Ajλ
j −

l

∑
j=0

AjB
j = A(λ) −A(B).

9



Thus,
A(λ) = C(λ)(λI −B) +A(B)

The result now follows from the uniqueness of the right remainder on division of
A(λ) by (λI - B). The result for the left remainder is obtained by reversing the
factors in the initial factorization, multiplying on the right by Aj , and summing.

Definition 3.13. Suppose A(λ) ∈ Fn×n[λ]. A matrix X ∈ Fn×n such that A(X)
= 0 (respectively, Ā(X) = 0) is referred to as a right (respectively, left) solvent
of A(λ).

Corollary 3.14. ([9]) A polynomial matrix A(λ) ∈ Fn×n[λ] is divisible on the
right (respectively, left) by λI - B ∈ Fn×n[λ] with zero remainder if and only if
B ∈ Fn×n is a right (respectively, left) solvent of A(λ).

This result provides a proof of the Cayley-Hamilton theorem.

Theorem 3.15. ([9]) Let A ∈ Fn×n with characteristic polynomial c(λ), then
c(A) = 0.

Proof. Define B(λ) = Adj(λI - A) ∈ Fn×n[λ] and observe that deg(B(λ)) = n -
1 and that

(λI −A)B(λ) = B(λ)(λI −A) = c(λ)I ∈ Fn×n[λ]

Now, deg(c(λ)I) = n and is divisible on both the left and the right by λI - A,
and c(A) = 0.

Corollary 3.16. ([9]) If f ∈ F[λ] and A ∈ Fn×n, then there exists a polynomial
p ∈ F[λ] ( depending on A) with deg(p) < n such that f(A) = p(A).

Proof. Let f(λ) = q(λ)c(λ) + r(λ), where c(λ) is the characteristic polynomial
of A and r(λ) ≡ 0 or deg(r(λ)) ≤ n-1. Then f(A) = q(A)c(A) + r(A) and, by
Teorema 3.15, f(A) = r(A)

3.3 Jordan Structure

Definition 3.17. Let A(λ) ∈ Fn×n[λ] and λ0 ∈ F. We define rank(A(λ0)) to be
the rank over F of the matrix A(λ) evaluated at λ0.

Definition 3.18. λ0 ∈ F is an eigenvalue of A(λ) if there exist a vector X ≠ 0
∈ Fn×1 such that A(λ0)X = 0. All vectors X ∈ Fn×1 satisfying A(λ0)X = 0 are
called eigenvectors of A(λ) corresponding to the eigenvalue λ0. In particular,
note that

Z = {λ0 ∈ F | det(A(λ0)) = 0}.
is the set of all eigenvalues of A(λ).
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Definition 3.19. The integer µ = rank(A(λ)) − rank(A(λ0)) is known as the
geometric multiplicity of λ0, which is equivalent to the number of linearly inde-
pendent eigenvectors associated with it. The amount of times λ0 appears as a
root of det(A(λ)) is its algebraic multiplicitity µ̄.

Remark 3.20. In general, the algebraic multiplicity and geometric multiplicity
of an eigenvalue can differ. However, the geometric multiplicity can never exceed
the algebraic multiplicity.

Definition 3.21. Given an eigenvalue λj ∈ F, it is called semisimple if its alge-
braic and geometric multiplicities coincide.

Example 3.22. Let A(λ) ∈ F3×3[λ] be the same matrix as in Example 3.1.

det(A(λ)) = 3λ6 − λ5 = λ5(3λ − 1)

therefore, the eigenvalues of A(λ) are λ1 = 0 with algebraic multiplicity 5 and
λ2 = 1

3 with algebraic multiplicity 1.

Let us now calculate its corresponding multiplicities and associated eigenvectors.

● We start with λ1 = 0. First observe that rank(A(λ)) - rank(A(0)) = 2,
the geometric multiplicity of λ1. This means there exist 2 eigenvectors
associated to this eigenvalue. To find them we solve the following equation:

A(0) =
⎛
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇐⇒ z = 0

Therefore, the two eigenvectors are (1, 0, 0) and (0, 1, 0).

● Now consider λ2 = 1
3 . First observe that rank(A(λ)) - rank(A(13)) = 1, the

geometric multiplicity of λ2. This means there exists a unique associated
eigenvector. To find it we solve the following equation:

A(1
3
) =
⎛
⎜
⎝

1
9

1
3 1

0 1
9 0

1
27

1
3

1
3

⎞
⎟
⎠

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
⇐⇒

⎧⎪⎪⎨⎪⎪⎩

1
9x +

1
3y + z = 0

1
9y = 0

⇐⇒
⎧⎪⎪⎨⎪⎪⎩

y = 0
z = −1

9x

Therefore, the unique eigenvector is (1, 0 , −1
9).

In Chapter 6 we will explore the diagonalization of second degree polynomial
matrices defined as

A(λ) = A2λ
2 +A1λ +A0 ∈ Cn×n[λ]

where A2, A1, A0 ∈ Cn×n.

To accommodate cases where det(A2) = 0, we may admit the point at infinity
as an eigenvalue of A(λ).
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Definition 3.23. Let A(λ) = ∑l
i=0 λ

iAi ∈ Fn×n[λ] and consider the matrix

A∗(λ) =
l

∑
i=0

λiAl−i ∈ Fn×n[λ]

This is called the reverse or dual polynomial of A(λ), and notice that A∗ =
λlA(1/λ).

Remark 3.24. If λ ≠ 0 is an eigenvalue of A∗(λ) with geometric and algebraic
multiplicities µ and µ̄, then 1

λ is an eigenvalue of A(λ) with the same multiplici-
ties.

Definition 3.25. We say that A(λ) ∈ Fn×n[λ] has an eigenvalue at infinity if
A∗(λ) ∈ Fn×n[λ] has an eigenvalue λ = 0.

Remark 3.26. Since A∗(0) = Al, A(λ) has an eigenvalue at infinity if and only
if Al is singular.

Lemma 3.27. ([13]) Let A(λ)∑l
i=0 λ

iAl−i ∈ Fn×n[λ], and let nf and n∞ be the
sum of the algebraic multiplicities of its finite and infinite eigenvalues. Then,

ln = nf + n∞ (3.3.1)

where l = deg(A(λ)) and n = dim(A(λ))
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Chapter 4

Canonical form of a
polynomial matrix

In this chapter our immediate objective is the reduction of a matrix polynomial
to a simpler form by means of equivalence transformations, which we will now
describe.

4.1 Elementary operations of a polynomial matrix

Now we shall introduce the elementary operations on A(λ) ∈ Fn×n[λ]:

1. Multiplication of any row (column) by a number c ∈ F ∖ {0}.
2. Interchange of any two rows (columns).

3. Addition to any row (column) of any other row (column) multiplied by an
arbitrary polynomial b(λ) ∈ F[λ].

These three operations are equivalent to a multiplication of the polynomial ma-
trix A(λ) on the left by the following square matrices of order n.

We will first define the left elementary operations which are particularly per-
formed on rows.

1. Multiplication of any row by a number c ∈ F ∖ {0}.

E′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1
c

1
⋱

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Fn×n[λ]
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2. Interchange of any two rows.

E′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

⋱
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Fn×n[λ]

3. Addition to any row of any other row multiplied by an arbitrary polynomial
b(λ) ∈ F[λ].

E′′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
⋱

1 ⋯ b(λ)
⋱ ⋮

1
⋱

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Fn×n[λ]

Similarly we can define the right elementary operations, which are performed on
the columns. The matrices corresponding to them are the same as for the left
operations but transposed. We will call them T ′, T ′′ and T ′′′.

The matrices corresponding to either left or right elementary operations are called
elementary matrices. Note that these matrices are unimodular and therefore their
inverses are also elementary matrices.

4.2 Equivalence of polynomial matrices

Definition 4.1. ([5]) Two matrices A(λ), B(λ) ∈ Fn×n[λ] are called

1. left-equivalent if B(λ) can be obtained from A(λ) by means of left elementary
operation, i.e. B(λ) = P(λ)A(λ).

2. right-equivalent if B(λ) can be obtained from A(λ) by means of right ele-
mentary operations, i.e. B(λ) = A(λ)Q(λ).

3. equivalent if B(λ) can be obtained from A(λ) by means of left and right
elementary operations, i.e. B(λ) = P(λ)A(λ)Q(λ).

where P(λ) and Q(λ) ∈ Fn×n[λ] are unimodular matrices.

Note that we are using the fact that every P(λ)∈ Fn×n[λ] can be represented as
a product of elementary matrices. We will see this in Corollary 4.10.

Definition 4.2. An equivalence transformation is the process through which a
matrix A(λ) ∈ Fn×n[λ] is transformed to an equivalent matrix Â(λ) = P(λ)A(λ)Q(λ),
where P(λ) ∈ Fn×n[λ] and Q(λ) ∈ Fn×n[λ] are unimodular.
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Remark 4.3. Equivalence between matrix polynomials is an equivalence rela-
tion.

From this moment on, we will denote equivalence between two matrices A(λ),
B(λ) ∈ Fn×n[λ] by A(λ)∼B(λ).

Example 4.4. Let us show that the matrices

A(λ) = ( λ λ + 1
λ2 − λ λ2 − 1) ∈ F

2×2[λ] and B(λ) = (1 0
0 0
) ∈ F2×2[λ]

are equivalent and find its transforming unimodular matrices.

Let us start by simplifying A(λ). First, we apply row2 = row2 − (λ − 1)row1:

(λ λ + 1
0 0

).

Now, applying column2 = column2 + (−1)column1 we obtain

(λ 1
0 0
).

Finally, we make the following subtraction: column1 = column1 − λcolumn2

obtaining the matrix

(0 1
0 0
) = B(λ)∼A(λ).

Translating the performed operations into elementary matrices, we can calculate
Q(λ) and P(λ).

Q(λ) = (1 −1
0 1

)( 1 0
−λ 1

) = (1 + λ −1
−λ 1

) ∈ F2×2[λ]

and

P(λ) = ( 1 0
−(λ − 1) 1

) = ( 1 0
1 − λ 1

) ∈ F2×2[λ].

Therefore the equation
B(λ) = P (λ)A(λ)Q(λ)

holds.

Definition 4.5. We define the rank of a matrix polynomial A(λ)∈ Fn×n[λ] to
be the order of its largest minor that is not equal to the zero polynomial. Note
that if A(λ) ∈ Fn×n[λ], then it is nonsingular if and only if rank(A(λ)) = n.
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Proposition 4.6. ([9]) The rank of a matrix polynomial is invariant under
equivalence transformations.

Proof. Let A(λ), B(λ)∈ Fn×n[λ] and suppose A(λ)∼B(λ). Then there exist uni-
modular matrices P(λ) ∈ Fn×n[λ] and Q(λ) ∈ Fn×n[λ] such that

B(λ) = P (λ)A(λ)Q(λ).

Apply the Binet-Cauchy formula twice to this equation to express a minor b(λ)
of order j of B(λ) in terms of minors as(λ) of A(λ) of the same order as follows
(after a reordering):

b(λ) = ∑
s

ps(λ)as(λ)qs(λ) (4.2.1)

where ps(λ) and qs(λ) denote the appropriate minors of order j of the matrix
polynomials P(λ) and Q(λ), respectively.

If b(λ) ≠ 0 is a minor of B(λ) of the greatest order r (that is, rank(B(λ)) = r),
then it follows from Eq. (4.2.1) that at least one minor as(λ) (of order r) is a
nonzero polynomial and hence rank(B(λ)) ≤ rank(A(λ)).

However, applying the same argument to the equation

A(λ) = P (λ)−1B(λ)Q(λ)−1,

we see that rank(A(λ)) ≤ rank(B(λ)). Thus, the ranks of equivalent polynomial
matrices coincide.

4.3 The Smith Canonical Form

The main goal of this section is to show how to obtain the simplest form of any
A(λ) ∈ Fn×n[λ] by means of left and right elementary operations. In more detail,
it will be shown that any A(λ) ∈ Fn×n[λ] with rank(A(λ)) = r is equivalent to a
diagonal matrix polynomial

S(λ) = diag[i1(λ), i2(λ), ..., ir(λ),0, ...,0] ∈ Fn×n[λ], (4.3.1)

in which ij(λ) is a nonzero monic polynomial for j = 1, 2, ..., r, and ij−1(λ)|ij(λ),
j = 2, 3, ..., r. S(λ) is known as the Smith canonical form of A(λ). Note that if
some of the polynomials ij(λ) are (nonzero) scalars, then they must be equal to
1 and be placed in the first positions of the canonical matrix. Thus, the Smith
canonical form of A(λ) ∈ Fn×n[λ] with rank(A(λ)) = r is generally

S(λ) = diag[1, ...,1, ik(λ), ..., ir(λ),0, ...,0] ∈ Fn×n[λ].

.

Example 4.7. An example of a matrix with Smith canonical form is the follow-
ing:

A(λ) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 λ − 1 0 0
0 0 λ − 1 0
0 0 0 (λ − 1)2

⎞
⎟⎟⎟
⎠
∈ F4×4[λ].
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Theorem 4.8. ([9]) Any A(λ) ∈ Fn×n is equivalent to a polynomial matrix of
Smith canonical form.

Proof. We may assume that A(λ) ≠ 0, for otherwise there is nothing to prove.
The proof is merely a description of a sequence of elementary transformations
needed to reduce successively the rows and columns of A(λ) to the required form.

Step 1 : Let aij(λ) ≠ 0 be an element of A(λ) of least degree; by interchanging
rows and columns (elementary operations of type 2) we make it into the element
a11(λ).
For each element of the first row and column of the resulting matrix, we find the
quotient and remainder on division by a11(λ):

a1j(λ) = a11(λ)q1j(λ) + r1j(λ) j = 2,3, ..., n

ai1(λ) = a11(λ)qi1(λ) + ri1(λ) i = 2,3, ..., n

and apply the following transformations (elementary operations of type 3):

columnj = columnj − q1j(λ)column1, (j = 2, ..., n)

rowi = rowi − qi1(λ)row1, (i = 2, ..., n)

Then the elements a1j(λ), ai1(λ) are replaced by r1j(λ) and ri1(λ), respectively
(i, j = 2, 3, ..., n), all of which are either the zero polynomial or have degree less
than that of a11(λ). If the polynomials are not all zero, we use an elementary
operation of type 2 to interchange a11(λ) with an element r1j(λ) or ri1(λ) of
least degree.

Now we repeat the process of reducing the degree of the off-diagonal elements
of the first row and column to be less than that of the new a11(λ). Clearly,
since the deg(a11(λ)) is strictly decreasing at each step, we eventually reduce the
λ-matrix to the form:

⎛
⎜⎜⎜
⎝

a11(λ) 0 ⋯ 0
0 a22(λ) ⋯ a2n(λ)
⋮ ⋮ ⋱ ⋮
0 an2(λ) ⋯ ann(λ)

⎞
⎟⎟⎟
⎠

(4.3.2)

Step 2 : In the form of (4.3.2) there may now be nonzero elements aij(λ), 2 ≤ i,
j ≤ n, whose degree is less than that of a11(λ). If so, we repeat Step 1 again and
arrive at another matrix of the form (3.1) but with the degree of a11(λ) further
reduced. Thus, by repeating Step 1 a sufficient number of times, we can find a
matrix of the form (4.3.2) that is equivalent to A(λ) and for which a11(λ) is a
nonzero element of least degree.

Step 3 : Having completed Step 2, we now ask whether there are nonzero elements
that are not divisible by a11(λ). If there is one such, say aij(λ) we do

column1 = column1 + columnj ,
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find remainders and quotients of the new column1 on division by a11(λ), and go
on to repeat Steps 1 and 2, winding up with a form (4.3.2), again with a11(λ)
replaced by a polynomial of smaller degree.

Again, this process can continue only for a finite number of steps before we
arrive at a matrix of the form

⎛
⎜⎜⎜
⎝

i1(λ) 0 ⋯ 0
0 b22(λ) ⋯ b2n(λ)
⋮ ⋮ ⋱ ⋮
0 bn2(λ) ⋯ bnn(λ)

⎞
⎟⎟⎟
⎠
,

where, after an elementary operation of type 1 (if necessary), a1(λ) is monic and
all the nonzero elements bij(λ) are divisible by a1(λ) without remainder.

Step 4 : If all bij(λ) = 0, the theorem is proved. If not, the above matrix may
be reduced to the form

⎛
⎜⎜⎜⎜⎜⎜
⎝

i1(λ) 0 0 ⋯ 0
0 i2(λ) 0 ⋯ b2n(λ)
0 0 c33(λ) ⋯ c3n(λ)
⋮ ⋮ ⋮ ⋱ ⋮
0 0 cn3 ⋯ cnn(λ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where a2(λ) is divisible by a1(λ) and the elements cij(λ), 3 ≤ i, j ≤ n, are divisible
by a2(λ). Continuing the process we arrive at the statement of the theorem; a
matrix like the following:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

i1(λ) 0 ⋯ 0 0 ⋯ 0
0 i2(λ) ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋮
0 0 ⋯ ir(λ) 0 ⋯ 0
0 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Fn×n[λ]. (4.3.3)

Example 4.9. Let us find the canonical form of the following matrix following
the steps shown above.

A(λ) =
⎛
⎜
⎝

0 1 λ
λ λ 1

λ2 − λ λ2 − 1 λ2 − 1

⎞
⎟
⎠
∈ F3×3[λ].

First of all we apply Step 1 : We want to make the element a11(λ) become the
element of least degree of the matrix. Therefore, we exchange column1 and
column2 of the matrix and obtain:

⎛
⎜
⎝

1 0 λ
λ λ 1

λ2 − 1 λ2 − λ λ2 − 1

⎞
⎟
⎠
∈ F3×3[λ]
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Now let us divide a1j(λ) and ai1(λ) by a11(λ) (j, i = 2, 3):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a12(λ) = 0 = 1 ⋅ 0
a13(λ) = λ = 1 ⋅ λ
a21(λ) = λ = 1 ⋅ λ
a31(λ) = λ2 − 1 = 1 ⋅ (λ2 − 1).

Considering the results of these divisions, we apply the following transformations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

column2 = column2 − 0 ⋅ (λ)column1

column3 = column3 − λ ⋅ column1

row2 = row2 − λ ⋅ row1

row3 = row3 − (λ2 − 1)row1

and obtain the matrix

⎛
⎜
⎝

1 0 0
0 λ 1 − λ2

0 λ2 + λ −λ3 + λ2 + λ + 1

⎞
⎟
⎠
.

Observe that a11(λ) is the nonzero polynomial of lest degree, therefore we can
skip Step 2 and, in addition, a22(λ), a23(λ), a32(λ) and a33(λ) are divisible by
a11(λ), so we can also skip Step 3.

Now, as not all aij(λ) = 0, i = 2, 3, j = 2, 3, we continue with the reduction
(Step 4 ). Observe that a22(λ) is the polynomial of least degree between a22(λ),
a23(λ), a32(λ) and a33(λ), as we want. Now we divide a23(λ) and a32(λ) by
a22(λ): ⎧⎪⎪⎨⎪⎪⎩

a23(λ) = −λ2 + 1 = λ(−λ) + 1
a32(λ) = λ2 + λ = λ(λ + 1).

Then we apply the following transformations

⎧⎪⎪⎨⎪⎪⎩

column3 = column3 − (−λ)column2

row3 = row3 − (λ + 1)row2

and obtain the matrix
⎛
⎜
⎝

1 0 0
0 λ 1
0 0 2λ2

⎞
⎟
⎠
.

Note that deg(a23(λ)) < deg(a11(λ)). Therefore, we exchange column2 and
column3 by applying an elementary operation of second type:

⎛
⎜
⎝

1 0 0
0 1 λ
0 2λ2 0

⎞
⎟
⎠
.

Now,
⎧⎪⎪⎨⎪⎪⎩

a23(λ) = λ = 1 ⋅ λ
a32(λ) = 2λ2 = 1 ⋅ 2λ2
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and by applying the following transformations

⎧⎪⎪⎨⎪⎪⎩

column3 = column3 − λ ⋅ column2

row3 = row3 − 2λ2 ⋅ row2

we finally obtain the canonical form of A(λ):

⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
.

Note that by using left(right) elementary operations only, a matrix polynomial
can be reduced to an upper-(lower-)triangular matrix polynomial B(λ) ∈ Fn×n[λ]
with the property that if deg(bjj(λ)) = lj (i = 1, 2, ..., n) then

1. lj = 0 implies that bij(λ) = 0 (bji(λ) = 0), i = 1, 2, ..., j - 1, and

2. lj > 0 implies that deg(bij(λ)) < lj (deg(bji(λ)) < li), i = 1, 2, ..., j - 1.

The reduction of matrix polynomials described above takes on a simple form in
the important special case in which A(λ) does not depend explicitly on λ at all,
that is, when A(λ)≡ A ∈ Fn×n (i.e. when deg(A(λ)) = 0).

Corollary 4.10. ([5]) Consider A(λ) ∈ Fn×n[λ]. If det(A(λ)) ∈ F ∖ {0}, then
the matrix can be represented in the form of a product of a finite number of
elementary matrices.

As we just noted A(λ) can be brought into the form

B(λ) =
⎛
⎜⎜⎜
⎝

b11(λ) b12(λ) ⋯ b1n(λ)
0 b22(λ) ⋯ b2n(λ)
⋯ ⋯ ⋯ ⋯
0 0 ⋯ bnn(λ)

⎞
⎟⎟⎟
⎠

(4.3.4)

by left elementary operations. Since in the application of elementary operations
to a square polynomial matrix the determinant of the matrix is only multiplied
by constant nonzero factors, then

det(A(λ)) = c ⋅ det(B(λ)) = c ⋅ b11(λ)b22(λ)⋯bnn(λ) ∈ F ∖ {0},
where c ≠ 0 ∈ F. Hence,

bii(λ) ∈ F ∖ {0} (i = 1,2, ..., n).

We also know that the matrix (4.3.4) is equivalent to the diagonal form (4.3.3)
and can therefore be reduced to the identity matrix I by means of left elementary
operations of type 1. But then, conversely, the identity matrix I can be trans-
formed into A(λ) by means of the left elementary operations whose matrices are
E1(λ),E2(λ), ...,Ep(λ). Therefore

A(λ) = Ep(λ)Ep−1(λ)⋯E1(λ)I = Ep(λ)Ep−1(λ)⋯E1(λ).

The uniqueness of the polynomials i1(λ), ..., ir(λ) ∈ F[λ] appearing in the form
(4.3.3) is shown in the following section.
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4.4 Invariant Polynomials

We start this section by constructing a system of polynomials that is uniquely
defined by a given A(λ) ∈ Fn×n[λ] and that is invariant under equivalence trans-
formations.

Suppose A(λ) ∈ Fn×n[λ] with rank(A(λ)) = r and let

dj(λ) = gcd(all minors of A(λ) of order j),

where j = 1, 2, ..., r.

Clearly, any minor of order j ≥ 2 may be expressed as a linear combination of
minors of order j - 1, so that dj−1(λ)|dj(λ).
Hence, if we define d0(λ) ≡ 1, then in the sequence d0(λ), d1(λ), ..., dr(λ),
dj−1(λ)|dj(λ), j = 1, 2, ..., r. Note that for the Smith canonical form

S(λ) = diag[i1(λ), i2(λ), ..., ir(λ),0, ...,0]

the polynomials described above are respectively

d1(λ) = i1(λ), d2(λ) = i1(λ)i2(λ), ..., dr(λ) =
r

∏
j=1

ij(λ)

The polynomials d0(λ), d1(λ), ..., dr(λ) are invariant under equivalence transfor-
mations. To see this, let dj(λ) and δj(λ) denote the (monic) greatest common
divisor of all minors of order j of A(λ), B(λ) ∈ Fn×n[λ], respectively. Note that
provided that A(λ)∼B(λ), the number of polynomials dj(λ) and δj(λ) is the
same.

Proposition 4.11. ([9]) Let A(λ), B(λ) ∈ Fn×n[λ] of rank r be equivalent.
Then, with the notation of the previous paragraph, dj(λ) = δj(λ) for j = 1, 2,
..., r.

Proof. Preserving the notation used in the proof of Proposition 4.6, it is easily
seen from Eq. (4.2.1) that any common divisor of minors aj(λ) of A(λ) of order
j (1 ≤ j ≤ r) is a divisor of any minor bj(λ) of B(λ) of order j (1 ≤ j ≤ r). Hence
dj(λ)|δj(λ). But again, the equation A(λ) = P (λ)−1B(λ)Q(λ)−1 implies that
δj(λ)|dj(λ) and, since both polynomials are assumed to be monic, we obtain

δj(λ) = dj(λ), j = 1,2, ..., r.

Now consider the quotients

i1(λ) =
d1(λ)
d0(λ)

, i2(λ) =
d2(λ)
d1(λ)

, ..., ir(λ) =
dr(λ)
dr−1(λ)

.

In view of the divisibility of dj(λ) by dj−1(λ), the quotients ij(λ) (j = 1, 2, ..., r)
are polynomials. They are called the invariant polynomials of A(λ). Note that
for j = 2, 3, ..., r, ij−1(λ)|ij(λ).
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Corollary 4.12. ([9]) Two matrix polynomials A(λ) and B(λ) are equivalent if
and only if they have the same invariant polynomials.

Proof. The ”only if” statement is just Proposition 4.11. If two matrix polyno-
mials have the same invariant polynomials, then Theorem 4.8 implies that they
have the same Smith canonical form. The transitive property of equivalence
relations then implies that they are equivalent.

Theorem 4.13. ([5]) If in a block-diagonal matrix

C(λ) = (A(λ) 0
0 B(λ)) ∈ F

(n+m)× (n+m)[λ]

every invariant polynomial of A(λ) ∈ Fn×n[λ] divides every invariant polynomial
of B(λ)∈ Fm×m[λ], then the set of invariant polynomials of C(λ) is the union of
the invariant polynomials of A(λ) and B(λ).

Proof. We denote by i
′

1(λ), i
′

2(λ), ..., i
′

r(λ) and i
′′

1(λ), i
′′

2(λ), ..., i
′′

q (λ), respectively,
the invartiant polynomials of A(λ) ∈ Fn×n[λ] and B(λ) ∈ Fm×m[λ].
Then

A(λ) ∼ diag[i′1(λ), ..., i
′

r(λ),0, ...,0], B(λ) ∼ diag[i′′1(λ), ..., i
′′

q (λ),0, ...,0]

and therefore

C(λ) ∼ diag[i′1(λ), ..., i
′

r(λ), i
′′

1(λ), ..., i
′′

q (λ),0, ...,0].

The λ-matrix on the right-hand side of this relation is of canonical diagonal form.
The diagonal elements of this matrix that are not identically zero then form a
complete system of invariants of the matrix C(λ) ∈ Fn×n[λ].

Example 4.14. Let us now compute (from their definition) the invariant poly-
nomials of the following matrix used in Example 4.9:

A(λ) =
⎛
⎜
⎝

0 1 λ
λ λ 1

λ2 − λ λ2 − 1 λ2 − 1

⎞
⎟
⎠
∈ F3×3[λ].

First of all we shall calculate the rank of A(λ). In order to do so, we will examine
its minors, as we will probably need to calculate them anyways. Let us start with
its unique minor of order 3:

det(A(λ)) =

RRRRRRRRRRRRRR

0 1 λ
λ λ 1

λ2 − λ λ2 − 1 λ2 − 1

RRRRRRRRRRRRRR
= 0.
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This means rank(A(λ)) ≠ 3. Now let us compute all minors of order 2.

M1 = ∣ λ 1
λ2 − 1 λ2 − 1∣ = (λ

2 − 1)(λ − 1), M2 = ∣ λ 1
λ2 − λ λ2 − 1∣ = λ2(λ − 1),

M3 = ∣ λ λ
λ2 − λ λ2 − 1∣ = λ(λ − 1), M4 = ∣ 1 λ

λ2 − 1 λ2 − 1∣ = (λ
2 − 1)(1 − λ),

M5 = ∣ 0 λ
λ2 − λ λ2 − 1∣ = −λ

2(λ − 1), M6 = ∣ 0 1
λ2 − λ λ2 − 1∣ = −λ(λ − 1),

M7 = ∣1 λ
λ 1

∣ = 1 − λ2, M8 = ∣0 λ
λ 1

∣ = −λ2, M9 = ∣0 1
λ λ

∣ = λ

Not all the minors above are null, therefore rank(A(λ)) = 2 and

d2(λ) = gcd(M1,M2, ...,M9) = 1.

Finally, by looking at the elements of the matrix, we deduce

d1(λ) = gcd(0,1, λ,1, λ2 − λ,λ2 − 1) = 1.

And we always consider d0(λ) = 1.

Therefore the invariant polynomials are

i1(λ) =
d1(λ)
d0(λ)

= 1

1
= 1, and i2(λ) =

d2(λ)
d1(λ)

= 1

1
= 1.

and the Smith canonical form of A(λ), as seen in Example 4.9, is

⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
∈ F3×3[λ].

4.5 Elementary Divisors

Consider a matrix A(λ) ∈ Fn×n[λ] with rank(A(λ)) = r, invariant polynomials
i1(λ), i2(λ), ..., ir(λ) and eigenvalues λ1, ..., λt.

From the Smith canonical form, we deduce

det(A(λ)) =
r

∏
j=1

ij(λ) =
t

∏
k=1

(λ − λk)µ̄k ∈ F[λ]

where µ̄k is the algebraic multiplicity of the eigenvalue λk.

Moreover, since ij(λ)|ij+1(λ) for j = 1, 2, ..., r-1, it follows that there are integers
mjk, 1 ≤ j ≤ r and 1 ≤ k ≤ t, such that

i1(λ) = (λ − λ1)m11(λ − λ2)m12⋯(λ − λs)m1t
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i2(λ) = (λ − λ1)m21(λ − λ2)m22⋯(λ − λt)m2t

⋮

ir(λ) = (λ − λ1)mr1(λ − λ2)mr2⋯(λ − λt)mrt

and for k = 1, 2, ..., t,

0 ≤m1k ≤m2k ≤mrk ≤ µ̄k and
r

∑
j=1

mjk = µ̄k.

Definition 4.15. Each factor (λ − λk)mjk appearing in the factorization with
mjk > 0 is called an elementary divisor of A(λ). And each integer mjk, j = 1,
..., r is called a partial multiplicity of the eigenvalue λk.

An elementary divisor for which mjk = 1 is said to be linear ; otherwise it is
nonlinear. We may also refer to the elementary divisors (λ − λk)mjk as those
associated with λk, with the obvious meaning.

Remark 4.16. The system of all elementary divisors (along with the rank and
order) of a matrix polynomial completely defines the set of its invariant polyno-
mials and vice versa. It follows that the elementary divisors are invariant under
equivalence transformations.

Theorem 4.17. ([9]) Suppose A(λ), B(λ) ∈ Fn×n[λ]. Then, A(λ)∼B(λ) if and
only if they have the same elementary divisors.

Theorem 4.18. ([9]) If A(λ) ∈ Fn×n[λ] and B(λ) ∈ Fm×m[λ], then the set of
elementary divisors of the block-diagonal matrix

C(λ) = (A(λ) 0
0 B(λ)) ∈ F

(n+m)× (n+m)[λ]

is the union of the sets of elementary divisors of A(λ) and B(λ).

Proof. Let S1(λ) and S2(λ) be the Smith forms of A(λ) and B(λ), respectively.
Then clearly

C(λ) = E(λ) (S1(λ) 0
0 S2(λ)

) F(λ)

for some nonsingular polynomial matrices E(λ) and F(λ). Let (λ−λ0)α1 , ..., (λ−
λ0)αp and (λ − λ0)β1 , ..., (λ − λ0)βq be the elementary divisors of S1(λ) and
S2(λ), respectively, corresponding to the same eigenvalue λ0. Arrange the set
of exponents α1, ..., αp, β1, ..., βq, in a nondecreasing order: α1, ..., αp, β1, ..., βq =
γ1, ..., γp+q, where 0 < γ1 ≤ ⋯ ≤ γp+q.

From the definition of invariant polynomials it is clear that in the Smith form
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S(λ) = diag[i1(λ), ..., ir(λ),0, ...,0] of diag[S1(λ), S2(λ)], the invariant polyno-
mial ir(λ) is divisible by (λ − λ0)γp+q but not by (λ − λ0)γp+q+1; and ir−1(λ) is
divisible by (λ − λ0)γp+q−1 but not by (λ − λ0)γp+q−1+1; and so on. It follows that
the elementary divisors of

diag[S1(λ), S2(λ)],

and therefore also those of C(λ), corresponding to λ0 are just (λ− λ0)γ1 , ..., (λ−
λ0)γp+q , and the theorem is proved.

Example 4.19. Let

A(λ) =
⎛
⎜⎜⎜
⎝

λ − 3 −1 0 0
4 λ + 1 0 0
−6 −1 λ − 2 −1
14 5 1 λ

⎞
⎟⎟⎟
⎠
∈ F4×4[λ],

we will now calculate its elementary divisors.

First, we apply row4 = row4+λrow3 ∶

⎛
⎜⎜⎜
⎝

λ − 3 −1 0 0
4 λ + 1 0 0
−6 −1 λ − 2 −1

14 − 6λ 5 − λ λ2 − 2λ + 1 0

⎞
⎟⎟⎟
⎠
.

Now applying column1 = column1+(−6)column4, column2 = column2+(−1)column4

and column3 = column3 + (λ − 2)column4 we obtain

⎛
⎜⎜⎜
⎝

λ − 3 −1 0 0
4 λ + 1 0 0
0 0 0 −1

14 − 6λ 5 − λ λ2 − 2λ + 1 0

⎞
⎟⎟⎟
⎠
.

Then, we make the following addition: column1 = column1 + (λ − 3)column2

obtaining

⎛
⎜⎜⎜
⎝

0 −1 0 0
λ2 − 2λ + 1 λ + 1 0 0

0 0 0 −1
−λ1 + 2λ − 1 5 − λ λ2 − 2λ + 1 0

⎞
⎟⎟⎟
⎠
.

Now we do: row2 = row2 + (λ + 1)row1 and row4 = row4 + (5 − λ)row1, and we
obtain

⎛
⎜⎜⎜
⎝

0 −1 0 0
λ2 − 2λ + 1 0 0 0

0 0 0 −1
−λ1 + 2λ − 1 0 λ2 − 2λ + 1 0

⎞
⎟⎟⎟
⎠
.

Finally, we apply row2 = row2 + row4; then row1 = (−1)row1 and row3 =
(−1)row3. After permuting some rows and columns we obtain:
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⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 (λ − 1)2 0
0 0 0 (λ − 1)2

⎞
⎟⎟⎟
⎠
.

Therefore, its invariant polynomials are 1, 1, (λ−1)2 and (λ−1)2 and it has two
elementary divisors (λ − 1)2 and (λ − 1)2.
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Chapter 5

Linearization of a matrix
polynomial

In this chapter the definition of the companion matrix of a polynomial matrix will be
given and after the concept of linearization will be explained in detail.

For a matrix polynomial A(λ) ∈ Fn×n[λ],

A(λ) =
l

∑
j=0

Ajλ
j , detAl ≠ 0, (5.0.1)

we formulate the generalization of the companion matrix:

Definition 5.1.

CA =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 In 0 ⋯ 0
0 0 In ⋯ ⋮
⋮ ⋮ ⋮ ⋱ 0
0 0 0 ⋯ In
−Â0 −Â1 −Â2 ⋯ −Âl−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈ Fln× ln

where Âj = A−1l Aj for j = 0, 1, ..., l-1.

CA is called the (first) companion matrix of A(λ).

Remark 5.2. The characteristic polynomial of A(λ) satisfies

det(A(λ)) = det(λIln −CA)det(A1). (5.0.2)

This means that the eigenvalues of A(λ) coincide with the eigenvalues of CA. In
addition, the relation (5.0.2) says that A(λ) and λI − CA have the same invariant
polynomials of highest degree. However, the connection is deeper than this, as the
following theorem shows.

Theorem 5.3. The ln × ln matrix polynomials

(A(λ) 0
0 I(l−1)n

) and λIln −CA
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are equivalent.

Proof. First define ln x ln matrix polynomials F(λ) and E(λ) by

F(λ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

I 0 0 ⋯ 0
−λI I 0 ⋯ 0
0 −λI I ⋯ 0
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ −λI I

⎞
⎟⎟⎟⎟⎟⎟
⎠

, E(λ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Bl−1(λ) Bl−2(λ) Bl−3(λ) ⋯ B0(λ)
−I 0 0 ⋯ 0
0 −I 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ −I 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

where B0(λ) = Al, Br+1(λ) = λBr(λ) +Al−r−1 for r = 0, 1, ..., l - 2. Clearly,

det(E(λ)) = ±det(Al), det(F (λ)) = 1. (5.0.3)

Hence F (λ)−1 ∈ Fn×n[λ]. It is easily verified that

E(λ)(λI −CA) = (
A(λ) 0
0 I(l−1)n

)F (λ), (5.0.4)

and so

(A(λ) 0
0 I(l−1)n

) = E(λ)(λI −CA)F (λ)−1 (5.0.5)

determines the equivalence stated in the theorem.

Remark 5.4. Theorem 5.3 shows that all the invariant polynomials (and hence all of
the elementary divisors) of A(λ) and λI −CA with degree > 0 coincide.

Definition 5.5. Let A(λ) ∈ Fn×n[λ] with deg(A(λ)) = l and with nonsingular leading
coefficient, then for any matrix λI − L ∈ Fln× ln[λ] for which λI − L ∼ diag(A(λ),
I(l−1)n), is called a linearization of A(λ).

Example 5.6. Let us find a linearization for the matrix polynomial

A(λ) = (λ
2 −λ
0 λ2) .

First of all observe that A(λ) has a nonsingular leading coefficient

A2 = (
1 0
0 1
) ∈ F2×2.

Now we want to find a matrix L ∈ F4×4 such that λI −L ∼ diag[A(λ), I(l−1)n]. We have
seen that λI −CA ∼ diag[A(λ), I(l−1)n]. Therefore we will compute CA ∈ F4×4. First,
notice that

A−12 = (
1 0
0 1
) , A0 = (

0 0
0 0
) and A1 = (

0 −1
0 0

) .

So,

Â0 = A−12 A0 = (
1 0
0 1
)(0 0

0 0
) = (0 0

0 0
) ,
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Â1 = A−12 A1 = (
1 0
0 1
)(0 −1

0 0
) = (0 −1

0 0
) .

Then

CA = (
0 I2
−Â0 −Â1

) =
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟
⎠
∈ F4×4

and we have obtained a linearization λI −CA of A(λ).

We can find more linearizations B1λ+B0 of A(λ) by applying equivalence transforma-
tions to λI − CA. Thus, for any nonsingular matrices P, Q ∈ Fln× ln, P(λI − CA)Q =
B1λ +B0 ∈ Fln× ln[λ] is also a linearization of A(λ).
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Chapter 6

Second degree diagonalization

In this chapter we will show the characterization of the diagonalizable quadratic matrix
polynomials. In other words, we shall see which are the admissible partial multiplici-
ties of the eigenvalues of diagonalizable matrices A(λ) = A2λ

2 +A1λ +A0 ∈ Fn×n[λ].
The difficulty of the diagonalization of polynomial matrices is that the degree of the
matrix must be maintained, we are not only looking for a diagonal matrix with the
same Jordan Structure, but with the same degree as well. The presented theory has
been extracted from papers [10] and [13].

Solving the quadratic eigenvalue problem is critical in several applications in control
and systems. As noted in the introduction of this work, several systems in a variety of
disciplines are described by quadratic matrix polynomials

A(λ) = A2λ
2 +A1λ +A0

where A2, A1, A0 ∈ Cn×n.

Before we begin this chapter let us briefly comment the case for polynomial matrices
of first degree.

Suppose A(λ) = λA1 +A0 ∈ Cn×n[λ].

● First, if det(A1) ≠ 0 we can transform A(λ) to an equivalent matrix Â(λ):

A−11 A(λ) = A−11 (A1λ +A0) = Iλ +B = Â(λ).

Then, A(λ) is diagonalizable if and only if B ∈ Cn×n is diagonalizable.

• If det(A1) = 0, then we consider the infinite eigenvalues of A(λ). Suppose
λ1, ..., λt, λ∞ ∈ F are the eigenvalues of A(λ) with corresponding algebraic multi-
plicities µ̄i, i = 1, ..., t, ∞ and partial multiplicities mij , i = 1, ..., t, ∞. Then

t

∑
i=1

µ̄i + µ̄∞ = n and

mij =m∞j = 1, i = 1, ..., t,∞.

We want to show that there exists a diagonal matrix Â(λ) with the same infinite
structure as A(λ). We know that all elementary divisors of A(λ) have degree =
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1, therefore, if we associate each of them to one of the entries of Â(λ), we obtain
a diagonal matrix isospectral to A(λ). Therefore A(λ) is diagonalizable.
and therefore A(λ) is diagonalizable.

Let us now focus on the diagonalization of polinomial matrices A(λ) = A2λ
2+A1λ+A0

∈ Cn×n[λ].

Definition 6.1. A system is said to be

• real if A2, A1, A0 ∈ Rn×n.

• hermitian or real symmetric if A2, A1, A0 are all Hermitian, or all real and
symmetric.

• diagonal or decoupled if A2, A1, A0 are diagonal matrices or equivalently if it
admits an isospectral diagonal system.

Definition 6.2. Two systems will be called isospectral if they share the same Jordan
form; i.e. the same eigenvalues and the same partial multiplicities.

One alternative to solve this diagonalization problem is to reduce the matrix to a
diagonal form so that its eigenvalue structure can be recognized in the diagonal of the
equivalent matrix. There are two major categories of diagonalizable systems.

● The first category, which we will study in Sections 6.1, 6.2 and 6.3, consists of sys-
tems that can be directly decoupled to a diagonal system by applying congruence
or strict equivalence transformations.

In the first case, we are talking about systems A(λ) for which there exists a
non-singular matrix U such that L(λ)∼U∗L(λ)U where U∗L(λ)U is diagonal.

The second case refers to systems A(λ) ∈ Cn×n[λ] for which there exist non-
singular matrices U, V ∈ Cn×n for which L(λ)∼UL(λ)V and UL(λ)V is diagonal.

Turns out these relatively simple cases require one of the coefficients A2, A1, A0

to be expressed in terms of the other two, and their natural independence is lost.

● The second category, which we will study in Section 6.4, is much wider and
concerns systems for which their linearizations (acting on the larger space C2n×2n)
are strictly equivalent, meaning systems which can be decoupled by applying
congruence or strict equivalence transformations to the isospectral ”linearization”
λB1 - B0 of A(λ), where

B1 = (
A1 A2

A2 0
) , B0 = (

−A0 0
0 A2

) , (6.0.1)

while preserving the structure of A(λ).

6.1 Diagonalization without linearization

Let us first explore the polynomial matrices of the first category.
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6.1.1 Symmetric and Hermitian systems: reduction by congru-
ence

When reducing a Hermitian or real-symmetric polynomial matrix real eigenval-
ues can arise, then knowledge of the sign characteristic of each real eigenvalue is
required.

Each real eigenvalue has one or more partial multiplicities and a +1 or -1 is
associated with each of them. The eigenvalue has

1. positive type if all the associated numbers are +1,

2. negative type if all the associated numbers are -1.

3. If all the associated numbers are +1 or -1 we say it has definite type, otherwise
it has mixed type.

Here, we first admit semisimple real eigenvalues with no restriction on the type.

Lemma 6.3. ([10]) Let A2, A0 ∈ Cn×n with det(A2) ≠ 0, A∗2 = A2, A
∗

0 = A0.
Assume that λA2 + A0 is diagonalizable with all eigenvalues real. Let

∆ = diag[λ1I1, λ2I2, ..., λsIs], S = diag[±I1,±I2, ...,±Is] (6.1.1)

where the size of the identity matrix Ii is a partial multiplicity of eigenvalue λi for
each i, and the sign of each term in S is determined by the corresponding +1 or
-1 in the sign characteristic. Then there exists a family of nonsingular matrices
V∈ Cn×n such that

V ∗A2V = S,V ∗A0V = S∆. (6.1.2)

If V is one such matrix, then so is any matrix VD where D = diag[D1,D2, ...,Ds]
and each Di is unitary with the size of Ii.

An analogous result hols in the case A2, A0 ∈ Rn×n. It is only necessary to
use congruence over R and to replace the unitary matrices Ai by real orthogonal
matrices. (This is a special case of Theorem 9.2 of [11].)

Remark 6.4. If, in addition, A2 is positive definite, all eigenvalues of A(λ) would
be real and of positive type, then S = I. This is the original case in the paper of
Caughey and O’Kelly [1]. We shall now show a generalization of their theorem.

Theorem 6.5. ([10]) Let the hypothesis of Lemma 6.3 hold, assume also that all
eigenvalues of λA2 + A0 have definite type, and that AT

1 = A1. Then there exists
a nonsingular U ∈ Cn×n such that U∗A2U, U

∗A1U, and U∗A0U are diagonal if
and only if A1M

−1A0 = A0M
−1A1.

If, in particular, A2, A1, A0 are real and symmetric, then there is a correspond-
ing nonsingular matrix U ∈ Rn×n such that UTA2U, U

TA1U, and UTA0U are
diagonal if and only if A1A

−1
2 A0 = A0A

−1
2 A1.

Proof. Usin the notation in Lemma 6.3, from Eq. (6.1.2) we obtain

A−12 A0 = (V SV ∗)(V −∗S∆V −1) = V S2∆V −1 = V −1. (6.1.3)

A0A
−1
2 = (V −∗S∆V −1)(V SV ∗) = V −∗S∆SV ∗ = V −∗∆U∗. (6.1.4)
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If also A1A
−1
2 A0 = A0A

−1
2 A1 then A1V∆V −1 = V −∗∆V ∗ and so

(V ∗A1V )∆ =∆(V ∗A1V ).

The assumption that all eigenvalues have definite type means λ1, λ2, ..., λs in Eq.
(6.1.1) are distinct. And it follows that V ∗A1V is block-diagonal. But, as the
blocks of V ∗A1V are Hermitian, the unitary blocks of matrix D of Lemma 6.3
can be chosen to further reduce V ∗A1V to diagonal form.

Conversely, if U∗A2U , U∗A1U , U∗A0U are diagonal, it is easily verified that
A1A

−1
2 A0 = A0A

−1
2 A1.

The case of real-symmetric matrices A2, A1, A0 is very similar.

6.1.2 No symmetry systems: reduction by strict equivalence

For systems which are not Symmetric or Hermitian it is natural to replace the
congruence transformations of A(λ) by strict equivalence transformations.

Lemma 6.6. ([10]) Let A2, A0 ∈ Cn×n with det(A2) ≠ 0, assume that λA2 + A0

is semisimple, and write a diagonal matrix of the eigenvalues of λA2 + A0 in the
form

∆ = diag[λ1I1, λ2I2, ..., λsIs],
where λi ≠ λj when i ≠ j.

Then there is a family of nonsingular matrices U, V ∈ Cn×n such that

UA2V = I and UA0V =∆ (6.1.5)

If A = diag[A1,A2, ...,As] is nonsingular and Aj has the size of Ij, then U, V can
be replaced by A−1U , VA, respectively.

Theorem 6.7. ([10]) Let A2, A1, A0 ∈ Cn×n with det(A2) ≠ 0 and assume that
λA2 + A0 has n distinct eigenvalues. Then there exist nonsingular U, V ∈ Cn×n

such that UA2V = I, and UA1V, UA0V are diagonal if and only if A1A
−1
2 A0 =

A0A
−1
2 A1.

Proof. First use Lemma 4.3 to obtain nonsingular U, V ∈ Cn×n such that UA2V
= I and UA0V = ∆, a diagonal matrix. Then

A−12 A0 = (V U)(U−1∆V −1) = V∆V −1, (6.1.6)

A0A
−1
2 = (U−1∆V −1)(V U) = U−1∆U. (6.1.7)

If also A1A
−1
2 A0 = A0A

−1
2 A1 then A1(V∆V −1) =(U−1∆U)A1 and hence

(UA1V )∆ =∆(UA1V ) (6.1.8)

Since ∆ is diagonal with distinct diagonal entries, this implies that UA1V is also
diagonal, as required. Conversely, if A20 = UA2V, A10 = UA1V, A00 = UA0V
are diagonal, it is easily verified that A1A

−1
2 A0 = A0A

−1
2 A1.
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We have seen that many systems cannot be diagonalized by strict equivalence
or congruence because a very strong commutativity condition must be satisfied.
Nonetheless, most systems admit a diagonal isospectral system through which
they can be decoupled, will explore this in more detail in the following section.

6.2 Systems with nonsingular leading coefficient

In this section the spectrum of a diagonal matrix A(λ) ∈ Cn×n[λ] with deg(A(λ))
= 2 and det(A2)≠0 is characterized with the aim of determining necessary and
sufficient conditions for it to admit an isospectral diagonal system.

Suppose A(λ) ∈ Cn×n[λ] with deg(A(λ)) = 2 and det(A2) ≠ 0 and let λ1, ..., λt be
its eigenvalues with corresponding algebraic, geometric and partial multiplicities
µ̄i, µi and mij , i = 1, ..., t and j = 1, ..., µi respectively. Then:

t

∑
i=1

µ̄i = 2n. (C1)

Example 6.8. Let

A(λ) = λ2
⎛
⎜
⎝

1 1 1
1 0 1
1 1 0

⎞
⎟
⎠
+ λ
⎛
⎜
⎝

−1 −1 −3/2
−1 0 −2
−3/2 −2 0

⎞
⎟
⎠
+
⎛
⎜
⎝

0 0 1/2
0 0 1
1/2 1 0

⎞
⎟
⎠

First note that det(A2) = 1 ≠ 0. Now, det(A(λ)) = λ2(λ−1)4. Therefore A(λ) has
eigenvalues λ1 = 0 and λ2 = 1 with corresponding algebraic multiplicities µ̄1 = 2
and µ̄2 = 4. And condition (C1) holds.

If in addition, A(λ) is diagonal then:

1. µi coincides with the number of entries in the diagonal of A(λ) containing at
least one linear factor (λ − λi) and

2. the partial multiplicities of λi coincide with the multiplicities of λi in the
entries of A(λ). Therefore,

3.
1 ≤mij ≤ 2, i = 1, ..., t, j = 1, ..., µi, (C2)

and in consequence, µi ≥ µ̄i

2 .

Example 6.9. Consider the matrix

A(λ) = (λ
2 + 1 0
0 λ2) ∈ C2×2[λ].

A2 = I2 is nonsingular and det(A(λ)) = (λ2 + 1)λ2. Therefore, its eigenvalues are
λ1 = 0, λ2 = i and λ3 = −i. Note that the Smith canonical form of A(λ) is

S(λ) = (1 0
0 λ2(λ − i)(λ + i)) ∈ C

2×2[λ] (6.2.1)

and its elementary divisors are λ2, (λ − i) and (λ + i). Then the algebraic multi-
plicities of λ1, λ2 and λ3 are µ̄1 = 2, µ̄2 = 1 and µ̄3 = 1, the geometric multiplicities
are µi = 1, i = 1, 2, 3 and partial multiplicities m11 = 2, m21 = 1, m31 = 1. The
above conditions 1, 2, 3 stand and µi ≥ µ̄i

2 , i = 1, 2, 3.
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Remark 6.10. Note that each linear factor of the elements in the diagonal of
A(λ), coincides with an elementary divisor of its Smith canonical form. And each
quadratic elementary divisor is associated with just one entry in the diagonal of
A(λ).

For each distinct eigenvalue λi ∈ C, i = 1, ..., t, we define the positive integers
si ≥ 0 by writing

mij =
⎧⎪⎪⎨⎪⎪⎩

2 for j = 1, 2, ..., si

1 for j = si + 1, ..., µi.

The total number of quadratic elementary divisors is then

p =
t

∑
i=1

si, (6.2.2)

and, the n - p remaining entries of A(λ) contain distinct eigenvalues. So, the
number of linear elementary divisors associated with λi is smaller than or equal
to n - p, finally

µ̄i

2
≤ µi ≤ n − p + si. (C3)

Theorem 6.11. ([13]) Let A(λ) = A2λ
2+A1λ+A0 ∈ Cn×n[λ] represent a regular

system with no eigenvalue at infinity (det(A2) ≠ 0). There exists a diagonal system
Â(λ) isospectral to A(λ), if and only if (C1), (C2) and (C3) hold.

Proof. The necessity has been established. To prove the sufficiency, suppose that
(C1), (C2) and (C3) hold and consider the Jordan structure of A(λ) as above.

From (C2) we know that the largest degree of the elementary divisors is 2, so,
each of these divisors could be associated with one of the n entries in the diagonal
of Ā(λ). To finish the proof we must verify that the number

q =
t

∑
i=1

(µi − si) (6.2.3)

of remaining linear elementary divisors of A(λ) is even.

Suppose there are si quadratic divisors associated with λi then,

2si + µi − si = µi + si = µ̄i (6.2.4)

and because of (C1) and (6.2.2)

t

∑
i=1

µi + p = 2n

so finally
t

∑
i=1

µi + p = 2n − 2p

t

∑
i=1

(µi − si) = q = 2(n − p)
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Now, condition (C3) ensures that the maximum number of linear elementary
divisors associated with λi for i = 1, ..., t is n - p. Therefore, the linear elementary
divisors of A(λ) can be organized in n - p pairs with distinct eigenvalues so that
the remaining n - p entries in the diagonal of Ā(λ) can be constructed.

Example 6.12. Let

A(λ) = (λ
2 + λ + 1 λ + 1
λ + 1 λ2 + 2λ + 1) = λ2 (1 0

0 1
) + λ(2 1

1 2
) + (1 1

1 2
)

In this case det(A(λ)) = (λ + 1)4 so there is a unique eigenvalue: λ1 = -1, with
µ̄ = 4 and µ = 1. Therefore, condition (C3) does not hold (42 /≤ 1) and A(λ) is not
diagonalizable.

Example 6.13. Now consider

A(λ) = λ2 (0 1
1 3
) + λ(−1 −3

−3 −7) + (
1 2
2 4
) .

In this case, det(A(λ)) = -λ(λ − 1)3. So its eigenvalues are λ1 = 0 and λ2 = 1
with algebraic multiplicities µ̄1 = 1 and µ̄2 = 3 and geometric multiplicities µ1 = 0
and µ2 = 2. Now observe that its Smith canonical form is

S(λ) = (λ − 1 0
0 λ(λ − 1)2) .

Therefore its elementary divisors are λ, λ−1 and (λ−1)2. Thus, all the conditions
of Theorem 6.11 are satisfied and A(λ) is isospectral to the following diagonal
matrix:

((λ − 1)
2 0

0 (λ − 1)λ)

.

6.3 Systems with singular leading coefficient

Now we extend the results Section 6.3 to admit systems with a singular leading
coefficient. In particular, we will see that the results of Theorem 6.11 can be
applied to any regular matrix even if A2 is singular (det(A2) = 0).

Let us begin by illustrating some possible cases that could arise through examples.

Example 6.14. Consider the matrix

A(λ) =

⎛
⎜⎜⎜
⎝

1 − 2λ + λ2 1 − 2λ + λ2 −1 + 2λ − λ2 0
0 λ2 0 0
0 0 1 λ2

0 0 0 −1 + λ

⎞
⎟⎟⎟
⎠
∈ C4×4[λ]

with eigenvalues λ1 = 0 and λ2 = 1 and partial multiplicities m11 = 2,m12 = 2
and m22 = 1. Note that the elementary divisors of A(λ) are (λ − 1)2, λ2 and
(λ−1). Clearly the conditions of Theorem 6.11 hold (regardless of the eigenvalue
at infinity), and a diagonal matrix sharing the same finite eigenvalue structure as
A(λ) is
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Â(λ) =

⎛
⎜⎜⎜
⎝

(λ − 1)2 0 0 0
0 λ2 0 0
0 0 1 0
0 0 0 λ − 1

⎞
⎟⎟⎟
⎠

Notice however that the structure at infinity is not preserved. The partial mul-
tiplicity of the eigenvalue at infinity in A(λ) is m∞1 = 3, whereas in Â(λ) we
have m∞1 = 2 and m∞2= 1. In fact, as we will now show, there does not exist a
diagonal matrix of degree 2 sharing the same finite and infinite structure as A(λ).

Example 6.15. Now consider the matrix

A(λ) =
⎛
⎜
⎝

−1 + λ 0 0
2λ − λ2 0 −2 + λ

−9 + 6λ − λ2 9 − 6λ + λ2 0

⎞
⎟
⎠
∈ C3×3[λ].

Det(A(λ)) = -(λ − 1)(λ − 2)(λ − 3)2. Therefore its eigenvalues are λ1 = 1, λ2 = 2
and λ3 = 3 with algebraic multiplicities µ̄1 = 1, µ̄2 = 1 and µ̄3 = 2 and geometric
multiplicities µi = 1, i = 1, 2, 3.

Similarly, the algebraic and geometric multiplicities of the eigenvalue at infinity
are equal to 2 and 1, respectively. Clearly the conditions of Theorem 6.11 hold,
and two diagonal matrices sharing the same finite eigenvalue structure as A(λ)
are

Â1(λ) =
⎛
⎜
⎝

−1 + λ 0 0
0 −2 + λ 0
0 0 (−3 + λ)2

⎞
⎟
⎠

and

Â2(λ) =
⎛
⎜
⎝

1 0 0
0 (−2 + λ)(−1 + λ) 0
0 0 (−3 + λ)2

⎞
⎟
⎠
.

Notice that only Â2(λ) preserves the infinite eigenvalue structure of A(λ).

Remark 6.16. We will say that the matrix Â2(λ) in the Example 6.15 above is
a diagonal matrix strongly equivalent to A(λ), i.e. that A(λ) admits a strongly
isospectral diagonal system Â2(λ).

Next we derive the conditions for a system to admit a strongly equivalent diagonal
matrix. Let us start by analyzing the structure of systems A(λ) which are already
diagonal. Note that, in this case, the diagonal could include not only quadratic
terms, but also linear and constant terms.

Suppose that, in addition to the distinct eigenvalues λi for i = 1, ..., t, the
diagonal matrix A(λ) has an eigenvalue at infinity with partial multiplicities
m∞1 ≥ m∞2 ≥ ⋯ ≥ m∞µ∞ where µ∞ ≤ n is its geometric multiplicity, and let
µ̄∞ denote is its algebraic multiplicity. Then,

t

∑
i=1

µ̄i + µ̄∞ = 2n. (C1’)

Remark 6.17. Note that the geometric multiplicity of the eigenvalue at infinity
is the number of constant and linear entries in the diagonal of A(λ), and its
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algebraic multiplicity is the multiplicity of λ = 0 in the polynomial det(A∗(λ)),
where A∗(λ) is the reverse matrix of A(λ).

Clearly then, the partial multiplicities of λi are the multiplicities of λi in the
entries of A(λ), and the partial multiplicities of the point at infinity are equal to
2 for any constant entry in the diagonal of A(λ) and equal to 1 for any linear
entry. Then

1 ≤mij ≤ 2, i = 1, .., t, j = 1, ..., µi,

1 ≤m∞j ≤ 2, j = 1, ..., µ∞, (C2’)

and, in consequence,

µi ≥
µ̄i

2
, µ∞ ≥

µ̄∞
2

.

Each quadratic finite elementary divisor (i.e. each partial multiplicity mij = 2)
is associated with just one quadratic entry in the diagonal of A(λ), and each
quadratic infinite elementary divisor (i.e. each partial multiplicity m∞j = 2) is
associated with just one constant entry. Define also

m∞j =
⎧⎪⎪⎨⎪⎪⎩

2 for j = 1, 2, ..., s∞

1 for j = s∞ + 1, ..., µ∞.

The number of constant entries in A(λ) is then s∞ and, in consequence, the
n − p − s∞ other entries of A(λ) contain two distinct finite eigenvalues or one
finite eigenvalue and the infinite. So, the number of linear elementary divisors
associated with λi is smaller than or equal to n − p − s∞, finally

µ̄i

2
≤ µi ≤ n − p − s∞ + si,

µ̄∞
2
≤ µ∞ ≤ n − p. (C3’)

Theorem 6.18. ([13]) Let A(λ) = A2λ
2 +A1λ +A0 be a regular system with an

eigenvalue at infinity. There exists a diagonal system Â(λ) with the same finite
and infinite structure as A(λ), if and only if (C1’), (C2’) and (C3’) hold.

Proof. The necessity is already established.

To prove the sufficiency, suppose that (C1’), (C2’) and (C3’) hold. From (C2’) we
know that the largest degree of the elementary finite and infinite divisors is 2, so,
each of these divisors could be associated to one of the n entries in the diagonal
of Â(λ) as a quadratic entry or as a constant entry respectively. So to finish the
proof we must verify that the number

q̄ =
t

∑
i=1

(µi − si) + µ∞ − s∞

of linear elementary finite and infinite divisors of A(λ) is even and, moreover, they
can be organized in n − p − s∞ pairs with distinct eigenvalues (possibly infinite)
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λk1 and λk2 for k = 1, ..., n − p − s∞, so that the remaining n − p − s∞ entries in
the diagonal of Â(λ) can be constructed.

If there are si quadratic divisors associated with λi and s∞ quadratic infinite
divisors then,

2si + µi − si = µi + si = µ̄i, for i = i, ..., t,

2s∞ + µ∞ − s∞ = µ∞ + s∞ = µ̄∞
and because of (C1’) and (6.2.2)

t

∑
i=1

µi + p + µ∞ + s∞ = 2n,

so finally
t

∑
i=1

µi − p + µ∞ − s∞ = 2n − 2p − 2s∞

t

∑
i=1

(µi − si) + µ∞ − s∞ = q̄ = 2(n − p − s∞).

Now condition (C3’) ensures that the maximum number of linear elementary
divisors associated with λi for i = 1, ..., t, and the maximum number of linear
elementary divisors at infinity is n− p− s∞ and, in consequence, that the q̄ linear
elementary finite and infinite divisors of A(λ) can be organized in n−p−s∞ pairs
with distinct eigenvalues (possibly including the point at infinity).

6.4 Diagonalization through linearization

Let us suppose A(λ) ∈ Cn×n[λ] admits a diagonal isospectral system. We will
now dig into the problem of generating an isospectral diagonal system by the
application of strict equivalence or congruence transformations to the linearization
λB1−B0 defined in (6.0.1). The idea is to find nonsingular matrices U, V ∈ C2n×2n

such that
λB̂1 − B̂0 = U(λB1 −B0)V (6.4.1)

is the linearization of a diagonal system

Â(λ) = Â2λ
2 + Â1λ + Â0.

The following specific classes of transformations will be considered. Notice they
all preserve the Jordan structures.

Definition 6.19. ([10])

1. A system A(λ) = A2λ
2+A1λ+A0 ∈ Cn×n[λ] is DEC (diagonalizable by strict

equivalence over C) if there exist nonsingular U, V ∈ C2n×2n such that

U(λB1 −B0)V = λB̂1 − B̂0,

where λB̂1 − B̂0 is the linearization of a (generally complex) diagonal system
Â(λ) = λ2Â2 + λÂ1 + Â0.
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2. A real system A(λ) = A2λ
2 +A1λ+A0 ∈ Rn×n[λ] is DER (diagonalizable by

strict equivalence over R) if there exist nonsingular U, V ∈ C2n×2n such that

U(λB1 −B0)V = λB̂1 − B̂0,

where λB̂1 − B̂0 is the linearization of a real diagonal system Â(λ) = λ2Â2 +
λÂ1 + Â0.

3. A system A(λ) = A2λ
2 + A1λ + A0 ∈ Cn×n[λ] is DCR (diagonalizable by

congruence) if there exists a nonsingular U ∈ C2n×2n such that

U(λB1 −B0)UT = λB̂1 − B̂0,

where λB̂1 − B̂0 is the linearization of a real diagonal system Â(λ) = λ2Â2 +
λÂ1 + Â0.

Remark 6.20. In the third case, if the system is Hermitian (or real and sym-
metric), then so are B̂1, B̂0 and, in particular, because Â0 and Â2 are diagonal,
so is B̂0.

Let us denote by Jn,C and Jn,R the classes of 2n x 2n canonical Jordan matrices
for n x n diagonal complex and real systems.

Theorem 6.21. ([10])

1. A(λ) ∈ Cn×n[λ] of deg(A(λ)) = 2 with Jordan form J ∈ C2n×2n is DEC if
and only if J ∈ Jn,C.

2. A(λ) ∈ Rn×n[λ] of deg(A(λ)) = 2 with Jordan form J ∈ C2n×2n is DER if
and only if J ∈ Jn,R.

3. An Hermitian system A(λ) ∈ Cn×n[λ] with Jordan form J ∈ C2n×2n is DCR
if and only if J ∈ Jn,R.

Proof. 1. Following definition 6.19, if A(λ) is DEC then λB1 −B0 and λB̂1 − B̂0

have the same Jordan form J, and since λB̂1 − B̂0 is the linearization of a
diagonal system, J ∈ Jn,C.
Conversely, A(λ) has Jordan form J ∈ Jn,C implies that there exists an strictly

isospectral diagonal system Â(λ). Thus, λB1 −B0 and λB̂1 − B̂0 are isospec-
tral. But then it follows from the Kronecker reduction of regular polynomial
matrices ([11], Theorem 3.1) that the systems are strictly equivalent to the
same canonical form and hence to one another.

2. Suppose A(λ) is DER. Then, in definition 6.19, λB1 −B0 and λB̂1 − B̂0 have
the same Jordan form J and, since Â(λ) is real diagonal, J ∈ Jn,R. The con-
verse argument is as in (1) but over the real field. ([11], Theorem 3.2)

3. Suppose A(λ) is a DCR hermitian system. Then, in definition 6.19, λB1−B0

and λB̂1 − B̂0 have the same Jordan form J and, because Â is diagonal, J
∈ Jn,R as required.
Conversely, let the Hermitian system A(λ) have Jordan form J ∈ Jn,R and let
ϵ be its sign characteristic. Then, J ∈ Jn,R implies that there exist isospectral

real diagonal systems Â(λ). According to (C2) the partial multiplicities of
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the eigenvalues of A(λ) (and then of Â(λ)) are either 2 or 1. By Proposition
10.12 in [6] it can be concluded that for the real semisimple eigenvalues the
number of +1’s and -1’s in ϵ is equal. Furthermore, the diagonal terms of (λ)
with distinct real zeros necessarily combine pairs of eigenvalues with opposite
signs.
Given one such Â(λ), multiplication by a diagonal of +1’s and -1’s and ex-
changing factors corresponding to semisimple real eigenvalues along the diag-
onal generates another isospectral diagonal system. Using this freedom, and
knowing the signs attached to the real eigenvalues of A(λ), corresponding
signs can be associated with the real eigenvalues of Â(λ). In this way an
Â(λ) is determined which is strictly isospectral with A(λ).
Now let λB1 −B0, λB̂1 − B̂0 be the linearizations of A(λ) and Â(λ), respec-
tively, and note that each one inherits both the spectrum and sign character-
istic of the parent polynomial. Then it follows that the systems λB1−B0 and
λB̂1 − B̂0 have the same canonical forms and are therefore congruent. Thus,
A(λ) is DCR.

6.4.1 Algorithms

Now we could ask ourselves how the matrices U and V in Eq. (6.4.1) in the
case A(λ) = A2λ

2 + A2λ + A0 ∈ Cn×n[λ] has an isospectral diagonal system
Â(λ) ∈ Cn×n[λ].

This problem has been tackled by Chu and Del Buono in [3] and [4], but only for
systems with singular leading coefficient. In particular they found two different
algorithms to calculate U and V. The first, the spectral decomposition algorithm,
is based on the Jordan structure of A(λ) whereas the second, the so called isospec-
tral flow algorithm does not need the computation of the eigenvalues of A(λ).

It should be noted that Zúñiga explored both these algorithms in [13] and con-
cluded none of them is practically useful, therefore the development of practical
methods to calculate U and V is still open.

6.5 Third degree diagonalization

The diagonalization problem has also been recently solved for polynomial matrices

A(λ) = A3λ
3 +A2λ

2 +A1λ +A0

where A3,A2,A1,A0 ∈ Cn×n[λ] in ([14]).

In this case, the complexity is higher and A(λ) must meet even more conditions.
Let us show that the conditions found for second degree polynomial matrices are
not enough to conclude if third degree polynomial matrix is diagonalizable. We
will see it through a counterexample.

Before, let us replicate conditions (C1), (C2) and (C3) for third degree poly-
nomial matrices.
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Suppose A(λ) = A3λ
3+A2λ

2+A1λ+A0 ∈ Cn×n[λ] with deg(A3)≠ 0 has eigenvalues
λ1, ..., λt with corresponding algebraic, geometric and partial multiplicities µ̄i, µi

and mij , i = 1, ..., t, j = 1, ..., µi.

Then, from Lemma 3.27 we know that

t

∑
i=1

µ̄i + µ̄∞ = 3n. (C1”)

and it can easily be seen that

1 ≤mij ≤ 3, i = 1, ..., t, j = 1, ..., µi. (C2”)

For each eigenvalue λi ∈ C, i = 1, ..., t, we define the positive integers ri and pi
by writing

mij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3 for j = 1, 2, ..., ri

2 for j = ri + 1, ..., ri + pi
1 for j = ri + pi + 1, ..., µi.

Then the total number of cubic elementary divisors is

k =
t

∑
i=1

ri, i = 1, ..., t

and
µi ≤ n − k + ki, i = 1, ..., t. (C3”)

Now let us see a counterexample. Consider the matrix polynomial

A(λ) =
⎛
⎜
⎝

(λ − 1)2(λ − 3) −2(λ − 1)(λ − 3) −(λ − 1)(λ − 3)
0 (λ − 1)(λ − 2)(λ − 3) −1(λ − 1)(λ − 3)
0 0 (λ − 1)(λ − 2)(λ − 3)

⎞
⎟
⎠
.

Det(A(λ)) = (λ− 1)4(λ− 2)2(λ− 3)3. Therefore, its eigenvalues are λ1 = 1, λ2 = 2
and λ3 = 3.
Note that the Smith canonical form of A(λ) is

S(λ) =
⎛
⎜
⎝

(λ − 1)(λ − 3) 0 0
0 (λ − 1)(λ − 3) 0
0 0 (λ − 1)2(λ − 2)2(λ − 3)

⎞
⎟
⎠
,

then its elementary divisors are

(λ − λ1)2, (λ − λ1), (λ − λ1), (λ − λ2)2, (λ − λ3), (λ − λ3), (λ − λ3). (6.5.1)

It can easily be seen that conditions (C1”) and (C2”) and (C3”) hold.

However, the only possible distributions for the elementary divisors in products
of degree 3 are:

● (λ − λ1)2(λ − λ1), (λ − λ2)2(λ − λ1), (λ − λ3)(λ − λ3)(λ − λ3)
● (λ − λ1)2(λ − λ3), (λ − λ2)2(λ − λ1), (λ − λ1)(λ − λ3)(λ − λ3)
● (λ − λ1)2(λ − λ1), (λ − λ2)2(λ − λ3), (λ − λ1)(λ − λ3)(λ − λ3)
● (λ − λ1)2(λ − λ3), (λ − λ2)2(λ − λ3), (λ − λ1)(λ − λ1)(λ − λ3),

and no diagonal matrix with these diagonal elements has the polynomials of
(6.5.1) as elementary divisors.
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Chapter 7

Conclusions

The diagonalization of polynomial matrices has plenty of applications in science and
engineering problems such as signal processing and control theory mainly.

The criteria for diagonalization of first degree polynomial matrices, as has been shown,
is quite obvious and no additional conditions are needed. For this reason, the main
subject of the work is the diagonalization of second degree polynomial matrices. First,
systems that can be directly decoupled to a diagonal system by applying congruence or
strict equivalence transformations have been studied. The study of this first category
has been divided between systems with nonsingular and singular leading coefficients.
Secondly, the conditions for the diagonalization of systems for which their lineariza-
tions are strictly equivalent have been specified.

As shown in the last section of the work, for the diagonalization of third degree systems
the established conditions for second degree systems are not enough to decide whether
a matrix is diagonalizable or not. However, though it hasn’t been shown in this work,
this case has been solved, as well as for fourth degree polynomials matrices.

With respect to matrices with fifth degree or above, the problem remains open. The
main difficulty lies in the increase of possible permutations of the elementary divisors
in the diagonal matrix.

To sum up, the main goal of the work, the study of the second degree case, has
been achieved.
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