
ARTICLE

Giant barocaloric effects over a wide temperature
range in superionic conductor AgI
Araceli Aznar 1, Pol Lloveras 1, Michela Romanini 1, María Barrio 1, Josep-Lluís Tamarit 1,

Claudio Cazorla 2, Daniel Errandonea 3, Neil D. Mathur 4, Antoni Planes5, Xavier Moya 4

& Lluís Mañosa 5

Current interest in barocaloric effects has been stimulated by the discovery that these

pressure-driven thermal changes can be giant near ferroic phase transitions in materials that

display magnetic or electrical order. Here we demonstrate giant inverse barocaloric effects in

the solid electrolyte AgI, near its superionic phase transition at ~420 K. Over a wide range of

temperatures, hydrostatic pressure changes of 2.5 kbar yield large and reversible barocaloric

effects, resulting in large values of refrigerant capacity. Moreover, the peak values of iso-

thermal entropy change (60 J K−1 kg−1 or 0.34 J K−1 cm−3) and adiabatic temperature changes

(18 K), which we identify for a starting temperature of 390 K, exceed all values previously

recorded for barocaloric materials. Our work should therefore inspire the study of barocaloric

effects in a wide range of solid electrolytes, as well as the parallel development of cooling

devices.
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Proposals for environmentally friendly solid-state cooling
devices have been inspired by the discovery of both giant
magnetocaloric (MC) effects in a variety of magnetic

materials1–4, and giant electrocaloric (EC) effects in a variety of
ferroelectric materials4–6, but the need to generate large driving
fields is problematic. Large magnetic fields are expensive to
generate, while large electric fields can lead to electrical break-
down. By contrast, it is easy to generate the hydrostatic pressures
required to drive larger4, 7 and more energy efficient8, 9 bar-
ocaloric (BC) effects non-destructively. BC materials have
therefore sparked interest from both academia and industry, but
materials selection remains rather limited.

To date, giant BC effects have only been experimentally
demonstrated near room temperature in a polymer10, a small
number of relatively expensive magnetic materials11–16, a number
of fluorites17–20, a hybrid perovskite21 and a small number of
ferro/ferrielectric materials22, 23. Following the recent prediction
of giant BC effects in fluoride-based superionic conductors at very
high temperatures24, we demonstrate here giant BC effects nearer
to room temperature in a powder of AgI, which is the proto-
typical solid electrolyte that was shown to display fast ionic
conduction over one century ago25, 26.

Above the superionic transition temperature T0 ~ 420 K, AgI
exists as the α polymorph, in which the iodine anions adopt a
body-centred-cubic Im3m structure27, 28, while the interstitial
silver cations are disordered across a fraction of the tetrahedral
interstices to yield a very large ionic conductivity that it is
comparable with the conductivity of the molten state26. Each time
the sample is cooled after heating just through the transition, the
β and the γ polymorphs29 are formed in the same ratio30 due to a
first-order reconstructive phase transition that is accompanied by
a large 5% increase in volume31–34. The β polymorph has iodine
anions in a hexagonal-close-packed P63mc structure27, 29, 35, the γ
polymorph has iodine anions in a cubic-close-packed F43m
structure27, 36, 37. The interstitial silver cations in γ-AgI and β-AgI
are relatively ordered, whereas in α-AgI they are disordered
across a fraction of the tetrahedral interstices, such that the
entropy difference |ΔS0| = 63± 4 J K−1 kg−1 for the α↔ β + γ
transition is large38–40.

Here we show that AgI displays peak isothermal entropy
changes of |ΔS| ~ 60 J K−1 kg−1, corresponding to adiabatic tem-
perature changes of |ΔT| ~ 18 K, due to moderate changes of
applied pressure |Δp| ~ 2.5 kbar (where we assume ambient
pressure to be zero such that |Δp| ~ p). These giant and reversible
inverse BC effects may be driven over a wide range of tempera-
tures below the transition, yielding values of refrigerant capacity1

(RC) that exceed all values previously recorded for BC materials.
The large BC effects in AgI are associated with a pressure-driven
phase transition between the coexisting β and γ polymorphs at
low pressure, and the α polymorph at high pressure. On
increasing pressure at starting temperatures that lie below the
thermally driven transition, the pressure-driven β + γ→ α tran-
sition increases sample entropy by melting the interestitial sub-
lattice of silver cations41, 42. This melting arises as a consequence
of reducing the cation hopping distances, and increasing the
number of vacant interstitial sites42.

Results
X-ray diffraction confirmed that our as-received AgI powder
comprised a mixture of β and γ polymorphs, but it could not
resolve their relative proportions. At atmospheric pressure,
calorimetry data obtained on heating and cooling confirmed both
T0 ~ 420 K and a large thermal hysteresis of ~25 K (Fig. 1a). The
large 5% increase in volume31–34 for the α→ β + γ transition
implies large values of dT0/dp, tending in the p→ 0 limit to −14.0

± 0.5 K kbar-1 on heating and −12.8± 0.5 K kbar−1 on cooling
(right inset, Fig. 1a), as expected31, 43.

At each measurement pressure, integrating the calorimetry data
over temperature yields the entropy change for the thermally driven
transition alone ΔS0j j ¼ R T2

T1
ðdQ=dTÞdT=T

��� ���7, 22 (left inset,
Fig. 1a) (the calculation that yields the temperature and pressure
dependence of the absolute entropy (Fig. 1b) is explained later). The
value of |ΔS0| = 64± 2 J K−1 kg−1 at zero pressure is in good
agreement with values previously obtained by experiment38–40,
while the small decrease in |ΔS0(p)| with increasing pressure may be
quantitatively understood in terms of ‘additional’ isothermal
entropy changes22 ΔS+(p)= −(∂V/∂T)p=0 × p away from the tran-
sition (this expression for ΔS+(p) assumes Maxwell relation (∂S/
∂p)T= −(∂V/∂T)p). Plots of V(T)33, 34, 44, 45 imply that these
‘additional’ entropy changes ΔS+(p) are negligible at temperatures
below the transition, while at temperatures above the transition they
are small and conventional such that ΔS+(0→ p)< 0.

Given that we identify the same zero-pressure value of |ΔS0|
from a number of heating and cooling runs at zero pressure, we
infer that the ratio of the β and γ polymorphs on cooling through
the transition is likely to be constant, as expected30. Given also
that the pressure dependence of |ΔS0| (left inset, Fig. 1a) can be
explained purely in terms of the finite additional entropy ΔS+(p)
at temperatures lying above the transition, we infer that the ratio
of polymorphs also remains constant at finite pressure. The
nominally constant ratio of β and γ polymorphs at any tem-
perature and pressure (where the β + γ phase exists) implies that
it is reasonable to use the quasi-direct method4, 7 later in order to
evaluate BC effects associated with the α↔ β + γ transition. Even
if there were a change in this ratio, it should have little influence
on these BC effects, as phonon spectra imply that the two poly-
morphs are separated in entropy by a small amount (~1%) that
varies little with pressure (see Methods and Fig. 2).
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Fig. 1 Superionic transition in AgI under pressure. a Heat flow dQ/dT on
heating and cooling through the transition at different values of increasing
pressure p, after baseline subtraction. At pressure p, we show (left inset)
the thermally driven entropy change |ΔS0| and (right inset) transition
temperature T0, on heating (red) and cooling (blue) (lines denote fits). b
Entropy S′(T,p), constructed by plotting S′(T) at p ~ 0 and 2.5 kbar, on
heating and cooling as indicated via arrows (S′ denotes entropy with
respect to absolute entropy at 340 K and p ~ 0). Adiabatic (isothermal)
trajectories in red (blue) are irreversible (1→ 2), or reversible (2↔ 3) if
wholly within the reversibility region (grey)
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Sample entropy S′(T, p) was evaluated with respect to the
absolute entropy at a given temperature TR below the transition
as,

S′ T; pð Þ¼ S T; pð Þ � S TR; pð Þ¼
Z T

TR

c Tð Þ þ dQ
dT

� �
dT=T: ð1Þ

Given that below the transition (∂V/∂T)p is very small, S(TR, p)
≃ S(TR, 0), and taking TR= 340 K, the results for zero and

maximum pressure (2.5 kbar) are shown in Fig. 1b. When inte-
grating over temperatures lying inside the transition region, we
used our measured values of dQ(T, p)/dT (Fig. 1a), when inte-
grating over temperatures lying outside the transition region we
set dQ/dT= 0, and at all temperatures of integration we used the
specific heat capacity data c(T) measured39 at atmospheric pres-
sure (p ~ 0). At temperatures lying above the transition region,
the decrease of S′ with increasing pressure (Fig. 1b) arises as a
consequence of the finite additional entropy ΔS+(0→ p)< 0
which, as previously mentioned, is due to (∂V/∂T)p> 0.

Inverse BC effects driven using our maximum pressure change
of 2.5 kbar are only reversible in thermally anhysteretic regions of
parameter space (see refs. 46–48), e.g. in the region of (S′,T) space
that is bounded by S′(T,p ~ 0) on cooling and S′(T,2.5 kbar) on
heating (grey, Fig. 1b). By following adiabatic (isothermal) tra-
jectories denoted red (blue) in Fig. 1b, we see that an irreversible
BC effect (1→ 2), whose trajectory starts outside the reversibility
region, is larger than the corresponding reversible BC effect
(2↔ 3), whose trajectory lies wholly within the reversibility region.

By likewise obtaining S′(T,p) for our other measurement
pressures, we use trajectories such as those described above to
identify the maximum values of ΔS(T) (Fig. 3a, c) and ΔT(T)
(Fig. 3b, d) that may be achieved irreversibly (Fig. 3a, b) and
reversibly (Fig. 3c, d) on both applying (0→ p) and removing
(p→ 0) pressure. The maximum values of |ΔS| ~ 62 J K−1 kg−1

and |ΔT| ~ 36 K that can be achieved irreversibly with |Δp| ~ 2.5
kbar are reduced to values of |ΔS| ~ 60 J K−1 kg−1 and |ΔT| ~ 18 K
when the constraint of reversibility is imposed. The magnitude of
irreversible (Fig. 4a, b) and reversible (Fig. 4e) isothermal entropy
changes compares favourably with the values recorded for the
best BC materials11–16, 20–22 whether assuming normalization by
mass or volume, especially because some of these literature values
contain an irreversible component owing to the fact that hys-
teresis was not taken into account11–13, 15, 16, 20. Separately, our
large reversible BC changes in entropy compare favourably with
recently theoretically predicted49 large mechanocaloric changes in
entropy in thin films of γ-AgI driven by biaxial stresses up to 10
kbar.

The ability to drive large BC effects over a large ~60 K tem-
perature span (Fig. 3a, b), which arises because of the large shift in
T0 with pressure (right inset, Fig. 1a), yields values of refrigerant
capacity RC= |ΔSpeak| × [FWHM of ΔS(T)] that exceed the values
reported for all known BC materials11–16, 20–23, again whether
normalizing by mass (Fig. 4c) or volume (Fig. 4d). Here we have
used our larger values associated with irreversible BC effects, in
order to achieve a fair comparison with the available literature data.
However, the value of RC= 1.1 kJ kg−1 (6.2 J cm−3) for p= 2.5 kbar
computed from our reversible value of ΔS(T) (Fig. 3c) is also large.

In summary, our observation of giant and reversible inverse BC
effects in the prototypical solid electrolyte AgI, near its superionic
phase transition, should inspire the wider study of BC effects in
similar materials. In future, one may decrease the transition
temperature of AgI by chemical substitution42 or nanostructur-
ing50. More generally, it would be attractive to reduce the thermal
hysteresis of any given superionic transition in order to increase
the magnitude of BC effects, and widen the temperature range of
reversibility.

Methods
Sample characterization. Powders of AgI (99.999%) from Sigma-Aldrich were
characterized using a commercial TA Q100 differential scanning calorimeter, and a
high-resolution X-ray Bruker D8 reflection diffractometer with Cu Kα1= 1.5406 Å
radiation.

Pressure-dependent calorimetry. AgI powder mixed with an inert perfluorinated
liquid was hermetically encapsulated by Sn. Measurements of heat flow under
hydrostatic pressure were performed at approx. ±4 Kmin−1, using a bespoke
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differential thermal analyser whose resistive heater operates between room tem-
perature and 473 K, and an Irimo Bridgman pressure cell that operates up to 3 kbar
with a pressure-transmiting medium of Therm 240 (Lauda).

Phonon dispersion curves. First-principles density functional theory calculations
were performed using VASP51, 52 and the so-called direct method53, where com-
ponents of the force-constant matrix are obtained in real-space within the small
displacement approximation. For our calculations, we used dense k-point grids for
integration within the Brillouin Zone, large supercells with 256 atoms to guarantee
negligible force-constant components at their boundaries, and we considered both
positive and negative atomic displacements in order to obtain null values of
acoustic phonons at the Brillouin zone centre54, 55.

Entropy of the β and γ polymorphs at 400 K. We first treat thermal effects
within the quasi-harmonic (QHA) approximation55, 56 by writing the vibrational
contribution to the Helmholtz free energy as:

Fvib V;Tð Þ ¼ kBT
X

q;s
ln 2sinh �hωqs=2kBT

� �� �
; ð2Þ

where ωqs represent the vibrational phonon frequencies of the crystal calculated at
fixed volume V, and the subscripts q and s run over wave-vectors that span the
Brillouin Zone and phonon branches, respectively.

The resulting Helmholtz free energy of the crystal is given by:

F V ;Tð Þ¼ Estatic Vð Þ þ Fvib V ;Tð Þ; ð3Þ

where the zero-temperature energy contribution Estatic(V) is calculated by
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considering the atoms fixed in their crystalline lattice sites. Calculating F over a grid
of volume and temperature points yields an estimate of pressure p(V,T) = −∂F(V,
T)/∂V and entropy S(V,T)= −∂F(V,T)/∂T, which permits the entropy of the crystal
to be expressed as a function of pressure and temperature. We assume that this
vibrational entropy represents total entropy, as the electronic entropy is negligible
in light of the fact that AgI is a non-magnetic wide band-gap semiconductor.

Data availability. All relevant data are available from the authors.
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