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Abstract

The intuitive notion of infinitesimals has been used in mathematical arguments
for many years. However, they are still seen as controversial. The aim of this work
is to give an introduction to ultraproducts, bring the reader closer to non-standard
analysis and to prove that it is rigorously defined. In order to do that, we introduce
the concept of reduced product of structures, as well as we give an ultraproduct
version of the compactness theorem of first-order logic. We also build the set of
hyperreal numbers and give some known results of calculus using infinitesimals.
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Introduction

The notion of an infinitely small number has been used in mathematical ar-
guments for hundreds of years. But it was in the seventeenth century when the
intuitive concept of these numbers, called infinitesimals, was crucial to the devel-
opment of calculus, specially in the work of Leibniz and Newton. However, since
infinitesimals were not formally defined, in the late nineteenth century they were
rejected and replaced by the ε, δ method, which is the one used nowadays, at least
for most mathematicians.

In 1960, the mathematician Abraham Robinson, who was interested in infinites-
imals, gave a rigorous development of the calculus based on them. He wrote in his
book Non-standard Analysis [8]:

[...] the idea of infinitely small or infinitesimal quantities seems to ap-
peal naturally to our intuition. At any rate, the use of infinitesimals was
widespread during the formative stages of the Differential and Integral
Calculus. As for the objection [...] that the distance between two dis-
tinct real numbers cannot be infinitely small, Gottfried Wilhelm Leibniz
argued that the theory of infinitesimals implies the introduction of ideal
numbers which might be infinitely small or infinitely large compared with
the real numbers but which were to possess the same properties as the
latter.

Robinson’s development was based on model theory, a branch of mathematical
logic. His method is called non-standard analysis because it uses a non-standard
model of analysis, and the fundamental way of constructing structures in it is the
ultrapower.

Years later, some mathematicians started studying this method. One of them
is H. Jerome Keisler, who published the first edition of the monograph Foundations
of Infinitesimal Calculus in 1976. This monograph is a companion of his textbook,
which is centered on developing calculus using infinitesimals, instead of the ε, δ ap-
proach, and its latest edition [4] is the reference book most used for the elaboration
of this project.
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iv Introduction

Non-standard analysis has been applied to many areas of mathematics and other
sciences, such as physics. Nevertheless, this method is still seen as controversial and
most mathematicians seem reluctant to use it, since they are unfamiliar to it.

When I started to read about this topic, I found really curious that even though
infinitesimals gave the intuition for the original development of the calculus, they do
not appear in standard presentations of formal calculus. Therefore, the aim of this
work is to bring the reader closer to non-standard analysis, introducing ultraproducts
and building the set of hyperreal numbers from the ultrapower of R, and to prove
that it is rigorously defined. Usually, we will give alternate proofs of standard results
by using infinitesimals. Some results will be left without proof if this one is based
on standard methods only, but a reference to check them will always be given.

In the first chapter, we give some definitions and results related to first-order
logic that are necessary to define reduced products of structures and, in particular,
the ultraproducts.

The second chapter contains concepts such as ultrafilters or ultraproducts in order
to characterize the hyperreal numbers in Chapter 3. One of the main results proved
in this chapter is the Fundamental Theorem of Ultraproducts, also known as Łoś
Theorem, which states the denotation and the satisfaction of terms and formulas,
respectively. Furthermore, an ultraproduct version of the well-known compactness
theorem of first-order logic is shown.

In the last chapter, we define the set of real numbers as an structure R and we
give an axiomatization of its complete first-order theory. Once this is done, we are
ready to define the hyperreal numbers as an elementary extension of R. Finally,
we give a rigorous development of non-stardard analysis, including some topological
concepts, derivatives, continuous functions and integration.



Chapter 1

Preliminaries

Throughout this project we will work by using first-order logic. So, before getting
into the main subject, we need to define some basic notions.

In first-order logic, we have a set of non-logical symbols, called language. These
symbols can be constants, function symbols and relation symbols. The two last ones
have a natural number associated with them n ≥ 1, which is their arity.

We also have terms, which are a finite sequence of symbols built according to the
following rules:

1. Every variable is a term.

2. Every constant is a term.

3. If t1, . . . , tn are terms and F is an n-ary function, then F (t1, . . . , tn) is a term.

In addition, first order logic has the same logical connectives as propositional
logic ¬ (not), ∧ (and), ∨ (or), → (implies), ↔ (if and only if) and also the equality
symbol .= and quantifiers ∀ (for all) and ∃ (exists).

An equation is an expression of the form t1
.
= t2, where t1, t2 are terms. We call

atomic formulas the equations and the formulas of the form R(t1, . . . , tn), where R
is an n-ary relation symbol and t1, . . . , tn are terms.

The formulas are expressions defined as follows:

1. Every atomic formula φ is a formula.

2. If φ,ψ are formulas, so are

¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ).

3. If φ is a formula and x is a variable, then ∀xφ and ∃xφ are formulas.
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2 Preliminaries

Whenever a quantifier Q = ∀, ∃ appears in a formula φ, it is immediately followed
by a variable and then comes a subformula ψ of φ. The formula Qxψ is called the
scope of that particular occurrence of the quantifier Q in φ. Every occurrence of the
variable x that appears in that formula is said to be bound by Q. The free variables
of a formula φ are those variables x that have at least one occurrence which is not
within the scope of any quantifier that binds the variable x. On the other hand,
bound variables of φ are those that have at least one occurrence which is within such
a subformula.

Given a list of different variables x1, . . . , xn, we denote a term whose variables
are in that list by t(x1, . . . , xn) and we denote a formula whose free variables are in
the list by φ(x1, . . . , xn). We will write t = t(x1, . . . , xn) and φ = φ(x1, . . . , xn) if
there is no possible confusion. A first-order formula with no free variables is called
a sentence.

A structure of language L, also called L-structure, is a pair M = (M, I), where
M is a nonempty set, called the universe of the structure, and I is a map, called
interpretation, with domain L such that:

1. For every constant c ∈ L, I(c) ∈M .

2. For every n-ary function symbol F ∈ L, I(F ) :Mn →M .

3. For every n-ary relation symbol R ∈ L, I(R) ⊆Mn.

If M = (M, I), we usually use the notation ξM instead of I(ξ) for every symbol
ξ ∈ L. Therefore, from now on we will write M = (M, ξM)ξ∈L.

The cardinal of a substructure M is the cardinal of its universe M .
Let M be an L-structure, t a term and φ a formula of L. An assignment s is a

function whose domain is a set of variables and whose range is a subset of M . We
say that an assignment s is defined for t if its domain contains all variables of t.
Similarly, s is defined for φ if its domain contains all free variables of φ. Given an
assignment s, a variable x and an element a ∈ M , sxa is defined as the assignment
such that:

1. dom(sxa) =dom(s) ∪ {x}

2. sxa(x) = a

3. sxa(y) = s(y) for any other variable y ̸= x of the domain of s

The denotation of t in M under an assignment s defined for t, denoted by tM[s],
is defined recursively as follows:

1. xM[s] = s(x)
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2. cM[s] = cM

3. FM(t1, . . . , tn)[s] = FM(tM1 [s], . . . , tMn [s])

If t = t(x1, . . . , xn) and s = {(x1, a1), . . . , (xn, an)}, we will usually write tM[a1, . . . , an]

instead of tM[s].
The satisfaction M |= φ[s] of φ in M under an assignment s defined for φ is

defined recursively as follows:

1. M |= t1
.
= tn if and only if tM1 [s] = tM2 [s]

2. M |= R(t1, . . . , tn)[s] if and only if (tM1 [s], . . . , tMn [s]) ∈ RM

3. M |= ¬φ[s] if and only if M ̸|= φ[s]

4. M |= (φ∧ψ)[s] if and only if M |= φ[s] and M |= ψ[s]. We define it similarly
for the other connectives.

5. M |= ∃xφ[s] if and only if there exists a ∈M such that M |= φ[sxa]

6. M |= ∀xφ[s] if and only if for each a ∈M , M |= φ[sxa]

As above, if we have φ = φ(x1, . . . , xn) and s = {(x1, a1), . . . , (xn, an)}, we will write
M |= φ[a1, . . . , an] instead of M |= φ[s].

Now we will give the definition of model, which is one of the main concepts. But,
first, we need a couple of new definitions.

Let M be a L-structure, s an assignment in M and let Σ be a set of formulas
of language L. We write M |= Σ[s] if for each φ ∈ Σ we have M |= φ[s]. The set
Σ is said to be satisfiable if there exist an L-structure M and an assignment s in
M defined for the formulas of Σ such that M |= Σ[s]. We say that a formula of L
φ is a consequence of Σ, and we write Σ |= φ, if for each L-structure M and each
assignment s in M defined for the formulas of Σ and for φ such that M |= Σ[s], we
have M |= φ[s].

Given a set of sentences Σ, i.e. a set of formulas without free variables, the satis-
fiability of Σ can be expressed without assignments, that is there exists a structure
M such that M |= Σ. In that case, we say that the structure M is a model of Σ.

We now give some definitions related to structures which will be needed in the
next chapters.

Definition 1.1. Let L,L′ be languages such that L ⊆ L′ and let M be an L-structure.
Let I ′ be any interpretation for the symbols of L′ ∖L in M. Then M′ = (M, I ∪ I ′)
is an L′-structure and we say that it is an expansion of M to L′. We can also say
that M is the reduct of M′ to L, and we write M = M′ ↾L.
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Definition 1.2. We define the theory of a structure M, and we denote it by Th(M),
as the set of sentences that hold in M, that is

Th(M) = {φ : M |= φ}.

Definition 1.3. Two structures M and N are elementarily equivalent, and we write
M ≡ N , if for every sentence φ,

M |= φ if and only if N |= φ.

Note that M and N are elementarily equivalent if and only if Th(M) = Th(M).

Definition 1.4. A function f :M → N is called a homomorphism if for all elements
a1,. . ., an∈M we have

f(cM) = cN

f(FM(a1, . . . , an)) = FN (f(a1), . . . , f(an))

RM(a1, . . . , an) =⇒ RN (f(a1), . . . , f(an))

for all constants c, n-ary function symbols F and relation symbols R from L. We
denote it by

f : M → N .

When the third condition is "if and only if" we say that f is a strong homo-
morphism. If f is a strong homomorphism and is also injective, then f is called an
embedding. An isomorphism is an exhaustive embedding, and we write f : M ∼= N .
If there is an isomorphism between M and N , the two structures are called isomor-
phic and we write M ∼= N .

Definition 1.5. Let M and N be L-structures. We call M a substructure of N ,
and we write M ⊆ N , if M⊆N and if the inclusion map is an embedding from M
to N , i.e.,

1. For every constant of L, cM = cN ;

2. For every n-ary function symbol F of L and every a1, . . . , an ∈ M , we have
FM(a1, . . . , an) = FN (a1, . . . , an);

3. For every n-ary relation symbol R of L, RM = RN ∩Mn.

We say N is an extension of M if M is a substructure of N .

We proceed to state some results related to the above definitions, which will
be useful later. They can be easily proved, so we omit the proofs. Let M be a
substructure of N .
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1. If f : M → N is a homomorphism, t = t(x1, . . . , xn) is a term of L and
a1, . . . , an ∈M , then

f(tM[a1, . . . , an]) = tN [f(a1), . . . , f(an)].

2. If f : M → N is an embedding, then f(M) is the universe of a substructure
of N and f : M ∼= f(M), where f(M) is the substructure that has f(M) as
its universe.

3. If f : M → N is an embedding, φ1 = φ1(x1, . . . , xn) is a quantifier-free formula
of L and a1, . . . , an ∈M , then

M |= φ1[a1, . . . , an] iff N |= φ1[f(a1), . . . , f(an)];

If φ2 = φ2(x1, . . . , xn) is a universal formula of L and a1, . . . , an ∈M , then

N |= φ2[a1, . . . , an] implies M |= φ2[f(a1), . . . , f(an)];

If φ3 = φ3(x1, . . . , xn) is an existential formula of L and a1, . . . , an ∈M , then

M |= φ3[a1, . . . , an] implies N |= φ3[f(a1), . . . , f(an)].

4. If f : M → N is an isomorphism, φ = φ(x1, . . . , xn) is a formula of L and
a1, . . . , an ∈M , then

M |= φ[a1, . . . , an] if and only if N |= φ[f(a1), . . . , f(an)].

The following lemma, together with a result that will be shown later, will be
crucial in the last chapter.

Lemma 1.6. Let f : M → N be an embedding, where M and N are L-structures.
Then, there exist M′ ⊇ M and f ′ : M′ ∼= N such that f ′ restricted to M is f .

Proof. Let X be a set such that X ∼= N∖f(M) and X∩M = ∅, and let the function
h : X → N ∖ f(M) be a bijection. Then we can consider the function f ′ = f ∪ h.
In order to define the structure M′, we need to give its universe M ′ and the map
interpretation. Considering M ′ =M ∪X and the following interpretations:

1. For every constant of L, cM′
= cM

2. For every n-ary function symbol F of L and every a1, . . . , an ∈M ′,

FM′
(a1, . . . , an) = (f ′)−1(FN (f ′(a1), . . . , f

′(an))
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3. For every n-ary relation symbol R of L and every a1, . . . , an ∈M ′,

RM′
(a1, . . . , an) = {(a1, . . . , an) ∈ (M ′)n : (f ′(a1), . . . , f

′(an)) ∈ RN }

the proof is completed.

Definition 1.7. Let M ⊆ N . The embedding f : M → N is called an elementary
embedding, and we write f : M ≲ N , if for every formula φ = φ(x1, . . . , xn) and
for every a1, . . . , an ∈M

M |= φ[a1, . . . , an] iff N |= φ[f(a1), . . . , f(an)].

In the case where f is the identity function, i.e.,

M |= φ[a1, . . . , an] iff N |= φ[a1, . . . , an],

for every formula φ = φ(x1, . . . , xn) and for every a1, . . . , an ∈M , we say that M is
an elementary substructure of N , or that N is an elementary extension of M. We
denote this by M ⪯ N .



Chapter 2

Ultraproducts

In this chapter we define the notion of an ultrafilter and a method of constructing
structures: the ultraproduct construction. This one will play a fundamental role in
Chapter 3. Furthermore, some important results related to both ultraproducts and
first-order logic will be shown.

2.1 Ultrafilters

First of all, before defining an ultrafilter, we shall introduce the notion of a filter
over a set I.

Definition 2.1. Let I be a nonempty set and P(I) the set of all subsets of I. A
filter D over I is a set D ⊆ P(I) such that

1. I ∈ D;

2. if X,Y ∈ D, then X ∩ Y ∈ D;

3. if X ∈ D and X ⊆ Z ⊆ I, then Z ∈ D.

We call the filter D = P(I) the improper filter.
The filter D over I is said to be a proper filter if it is not the improper filter.

Definition 2.2. Let E be a subset of P(I). The intersection D of all filters over I
which include E,

D =
⋂
{F : E ⊆ F and F is a filter over I},

is called the filter generated by E.

7



8 Ultraproducts

E is said to have the finite intersection property if the intersection of any finite
number of elements of E is nonempty.

Proposition 2.3. Let E be any subset of P(I) and let D be the filter generated by
E. Then:

1. D is a filter over I.

2. D is the set of all X ∈ P(I) such that either X = I or Y1 ∩ . . . ∩ Yn ⊆ X, for
some Y1, . . . , Yn ∈ E.

3. D is a proper filter if and only if E has the finite intersection property.

Proof. 1. It’s clearly true.

2. Let D′ be the set of all X ∈ P(I) such that either X = I or Y1 ∩ . . .∩Yn ⊆ X,
for some Y1, . . . , Yn ∈ E. We want to show that D = D′. Let X,X ′ ∈ D′ and,
for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, let Yi, Yj ∈ E be such that

Y1 ∩ . . . ∩ Yn ⊆ X and Y ′
1 ∩ . . . ∩ Y ′

m ⊆ X ′.

By the definition of D′, I ∈ D′. Moreover, since

Y1 ∩ . . . ∩ Yn ∩ Y ′
1 ∩ . . . ∩ Y ′

m ⊆ D′,

we have that X ∩X ′ ∈ D′. Now, if we suppose X ⊆ Z ⊆ I, then

Y1 ∩ . . . ∩ Yn ⊆ Z,

so Z ∈ D′. Therefore, D′ is a filter over I and it follows that D ⊆ D′, because
obviously E ⊆ D′.

Let F be any filter over I which includes E. Then I ∈ F . Besides, for any
Y1, . . . , Yn ∈ E, we have that Y1 ∩ . . . ∩ Yn ∈ F and hence any element X of
P(I) such that Y1 ∩ . . . ∩ Yn ⊆ X belongs to F . So D′ ⊆ F and, consequently,
D′ ⊆ D. Thus, D = D′.

3. It follows easily from (2).

Now we have given the definition of a filter, we can define the notion of an
ultrafilter.

Definition 2.4. D is said to be an ultrafilter over I if D is a filter over I such that
for all X ∈ P(I),

X ∈ D if and only if (I ∖X) /∈ D.
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The following proposition characterizes the ultrafilters.

Proposition 2.5. The following statements are equivalent:

1. D is an ultrafilter over I.

2. D is a maximal proper filter over I.

Proof. Firstly, we will prove (2) assuming (1). Suppose that D is an ultrafilter
over I. Then ∅ /∈ D, as I ∈ D and ∅ = I ∖ I. Therefore, D is a proper filter.
Let F be any proper filter over I such that D ⊆ F . If X ∈ F and X /∈ D, then
I ∖X ∈ D, so I ∖X ∈ F . Thus, by the definition of filter, we have

∅ = X ∩ (I ∖X) ∈ F.

This contradicts the assumption that F is a proper filter. Hence, D = F and (2)
holds.

Now, assume (2). Both X and I ∖X cannot belong to D, because then ∅ ∈ D.
If we prove that X ∈ D or I ∖X ∈ D, then the proof will be completed. Suppose
X /∈ D and I ∖X /∈ D.

Claim. D ∪ {X} has the finite intersection property or D ∪ {I ∖X} has it.

Suppose that neither D∪{X} nor D∪{I∖X} has the finite intersection property.
Then, for any D1, . . . , Dn ∈ D we have

X ∩D1 ∩ . . . ∩Dn = ∅ and (I ∖X) ∩D1 ∩ . . . ∩Dn = ∅.

Hence,
D1 ∩ . . . ∩Dn = (D1 ∩ . . . ∩Dn) ∩ (X ∪ (I ∖X)) = ∅,

which contradicts the assumption that D is a proper filter.
Therefore, by Proposition 2.3, either D ∪ {X} or D ∪ {I ∖X} can be extended

to a proper filter, which is a contradiction with the fact that D is maximal.

We now prove the existence of ultrafilters.

Proposition 2.6 (Ultrafilter Theorem). If E ⊆ P(I) and E has the finite intersec-
tion property, then there exists an ultrafilter D over I such that E ⊆ D.

Proof. By Proposition 2.3, the filter F generated by E is proper. Consider any
nonempty chain C of proper filters over I. Then,

⋃
C is a proper filter over I.

Moreover, if each D ∈ C includes E, then
⋃
C also includes E. Using Zorn’s Lemma,

we have that the set of all proper filters which include E has a maximal element, say
D. Then, D contains E and it is an ultrafilter over I, by Proposition 2.5.
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Corollary 2.7. Any proper filter over I can be extended to an ultrafilter over I.

Proof. Every proper filter has the finite intersection property.

Now we give an example of ultrafilter which will be important in the construction
of hyperreal numbers in the next chapter.

Definition 2.8. Given a filter D, if there exists Y ⊆I such that D={X⊆I : Y ⊆X},
then D is said to be a principal filter. In that case, we say that the principal filter D is
generated by Y . A principal ultrafilter is an ultrafilter which is principal. Otherwise,
the ultrafilter is called non-principal.

The following lemmas are some results related to principal and non-principal
ultrafilters.

Lemma 2.9. If D is a principal filter, then D is an ultrafilter if and only if the set
that generates D contains just one element.

Proof. Suppose D is generated by x ∈ I, that is D = {X ⊆ I : x ∈ X}. Then for
each X ⊆ I either x ∈ X or x ∈ I ∖X, whence by definition D is an ultrafilter.

Now suppose that D is a principal ultrafilter and the set X ′ =
⋂
{X : X ∈ D}

contains the two different elements x, y. Since D is an ultrafilter, either {x} or
I ∖ {x} is in D. In the first case y /∈ X ′ and in the second case x /∈ X ′. Therefore
X ′ contains just one element.

Lemma 2.10. A non-principal ultrafilter contains no finite sets.

Proof. Let D be an ultrafilter that contains a finite set and let X be a set of least
cardinal in D. Since D is proper, X is not empty. Suppose that x and y are different
elements of X. Then, by hypothesis, {x} /∈ D and so I ∖ {x} ∈ D. Therefore
X ∩ (I ∖ {x}) = X ∖ {x} ∈ D. But X ∖ {x} has fewer elements than X, since X is
finite, contradicting our hypothesis. Thus X contains just one element, say x.

Claim Y ∈ D if and only if x ∈ Y .
Assume Y ∈ D. Then, since D is an ultrafilter, {x} ∩ Y ∈ D, so {x} ∩ Y ̸= 0.

Therefore x ∈ Y . Now suppose x ∈ Y . Then {x} ⊆ Y ⊆ I, so Y ∈ D.
Thus D is the principal ultrafilter generated by {x}.

Lemma 2.11. If I is infinite, then there is a non-principal ultrafilter over I.

Proof. Let Pω(I) be the set of all cofinite subsets of I. Therefore Pω(I) has the
finite intersection property and so can be extended to an ultrafilter D over I. By
construction, D does not contain finite sets and consequently it is non-principal.



2.2 Ultraproducts 11

2.2 Ultraproducts

We are now ready to introduce the reduced product of structures and, in parti-
cular, the notion of ultraproduct. First, we give the definition to sets, and then to
structures.

Suppose that I is a nonempty set, D is a proper filter over I and, for each i ∈ I,
Ai is a nonempty set. Let

C =
∏
i∈I

Ai

be the Cartesian product of these sets. Therefore, C is the set of all functions f with
domain I such that for each i ∈ I, f(i) ∈ Ai.

We need the following in order to continue.

Definition 2.12. Given two functions f, g ∈ C, we say that f and g are D-equivalent
and we write f =D g if

{i ∈ I : f(i) = g(i)} ∈ D.

Proposition 2.13. The relation =D is an equivalence relation over the set C.

Proof. Reflexivity and symmetry can be proved easily. Let’s prove =D is a transitive
relation. Let f, g, h ∈ C be such that f =D g and g =D h. Then, by definition,

Xfg = {i ∈ I : f(i) = g(i)} ∈ D and Xgh = {i ∈ I : g(i) = h(i)} ∈ D.

Since Xfg ∩Xgh ⊆ Xfh := {i ∈ I : f(i) = h(i)} and Xfg ∩Xgh ∈ D, we have that
Xfh ∈ D. Therefore, f and h are D-equivalent.

Let I be a nonempty set, let D be a proper filter over I and let fD be the
equivalence class of f , that is:

fD = {g ∈ C : f =D g}.

The reduced product of sets Ai modulo D, denoted by
∏

D Ai=
∏

D(Ai : i ∈ I), is
defined as the set of all equivalence classes of =D. Thus∏

D

Ai = {fD : f ∈
∏
i∈I

Ai}.

We call the reduced product of sets
∏

D Ai an ultraproduct if D is an ultrafilter over
I. In the case when all the sets Ai are the same, i.e., Ai = A, the reduced product
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is written
∏

D A and it is called the reduced power of set A modulo D . In particular,
if D is an ultrafilter, then

∏
D A is called the ultrapower of set A modulo D .

We now give the definition of reduced product of structures. For each i ∈ I let
Mi be an L-structure. The reduced product

∏
D Mi, which will be denoted by M,

is the L-structure described as follows:

1. The universe set of M is
∏

DMi.

2. Let c be a constant of L. Then

cM = (cMi : i ∈ I)D.

3. Let F be an n-placed function symbol L. Then

FM(f1D, . . . , f
n
D) = (FMi(f1(i), . . . , fn(i)) : i ∈ I)D.

4. Let R be an n-placed relation symbol of L. Then

RM(f1D, . . . , f
n
D) if and only if {i ∈ I : RMi(f1(i), . . . , fn(i))} ∈ D.

Note: FM(f1D, . . . , f
n
D) and RM(f1D, . . . , f

n
D) depend only on the equivalence

classes f1D, . . . , f
n
D and do not depend on the representatives f1, . . . , fn of these

equivalence classes.

The reduced product
∏

D Mi is said to be an ultraproduct if D is an ultrafilter
over I. When all the structures Mi are the same M, the reduced product is called
the reduced power of M modulo D and is written

∏
D M. In particular, if D is an

ultrafilter, then
∏

D M is called the ultrapower of M modulo D .

We now prove an important theorem related to the reduced product of expansions
of arbitrary structures.

Theorem 2.14 (Expansion Theorem). Let L be a subset of the language L′. Let I
be a nonempty set and for each i ∈ I let Mi be an L-structure and Ni an expansion
of Mi to L′. Then the reduced product

∏
D Ni is an expansion of the reduced product∏

D Mi to L′.

Proof. For each i ∈ I, the structures Mi and Ni have the same universe Mi, since
Ni is an expansion of Mi. Hence, the reduced products have the same universe,∏

DMi. Moreover, each symbol of L has the same interpretation in Mi as in Ni. As
the interpretation of a symbol of L in

∏
DMi depends only on its interpretation in

the structures Mi, and on the universe and the filter D, we have that each symbol
of L has the same interpretation in

∏
D Mi as in

∏
D Ni.
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The next theorem is one of the most important, since it states the denotation
and the satisfaction of terms and formulas in an ultraproduct, respectively. It is also
known as the Łoś theorem.

Theorem 2.15 (The Fundamental Theorem of Ultraproducts). Let L be a language,
for each i ∈ I let Mi be a L-structure, where I is the index set. Let M be the
ultraproduct

∏
DMi. Then:

1. For any term t(x1, . . . , xn) of L and elements f1D, . . . , f
n
D ∈ M, we have

tM[f1D, . . . , f
n
D] = (tMi [f1(i), . . . , fn(i)] : i ∈ I)D.

2. For any formula φ(x1, . . . , xn) of L and f1D, . . . , f
n
D ∈ M, we have

M |= φ[f1D, . . . , f
n
D] if and only if {i ∈ I : Mi |= φ[f1(i), . . . , fn(i)]} ∈ D.

3. For any sentence φ of L,

M |= φ if and only if {i ∈ I : Mi |= φ} ∈ D.

Proof. The third condition is an immediate consequence of the first one and the
second one. We will prove (1) and (2) by induction on the terms and formulas, re-
spectively.

From now on we will call φ the formula φ(x1, . . . , xn), t the term t(x1, . . . , xn) and,
for each i ∈ {1, . . . ,m}, ti will denote the term ti(x1, . . . , xn).

1. From the definition of reduced product we see that (1) holds whenever t is a
constant symbol or variable. Suppose that

t = F (t1, . . . , tm),

where F is a function symbol of L and the terms t1, . . . , tm satisfy (1). By the
definition of denotation of terms, we have

tM[f1D, . . . , f
n
D] = FM(tM1 [f1D, . . . , f

n
D] , . . . , t

M
m [f1D, . . . , f

n
D]),

Since t1, . . . , tm satisfy (1), we have for k = 1, . . . ,m,

tMk [f1D, . . . , f
n
D] = gkD.

where
gk = (tMi

k [f1(i), . . . , fn(i)] : i ∈ I).
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Then, by the definition of reduced product, we have

FM(g1D, . . . , g
m
D ) = (FMi [g1(i), . . . , gm(i)] : i ∈ I)D.

Using the definition of denotation of terms again,

tMi [f1(i), . . . , fn(i)] = FMi(g1(i), . . . , gm(i)).

If we now combine these results, we obtain

tM[f1D, . . . , f
n
D] = FM(g1D, . . . , g

m
D ) = (tMi [f1(i), . . . , fn(i)] : i ∈ I)D.

Thus, t satisfies (1).

2. First of all, we need to prove that (2) is true for all atomic formulas. Suppose
that φ is an equation

φ = t1
.
= t2,

where the terms t1, t2 satisfy (1). Then the following are equivalent:

M |= φ[f1D, . . . , f
n
D];

tM1 [f1D, . . . , f
n
D] = tM2 [f1D, . . . , f

n
D];

(tMi
1 [f1(i), . . . , fn(i)] : i ∈ I)D = (tMi

2 [f1(i), . . . , fn(i)] : i ∈ I)D;

(tMi
1 [f1(i), . . . , fn(i)] : i ∈ I) =D (tMi

2 [f1(i), . . . , fn(i)] : i ∈ I);

{i ∈ I : tMi
1 [f1(i), . . . , fn(i)] = tMi

2 [f1(i), . . . , fn(i)]} ∈ D;

{i ∈ I : Mi |= φ[f1(i), . . . , fn(i)]} ∈ D.

Therefore, φ satisfies (2).

Now, assume that
φ = R(t1, . . . , tm),

where R is a symbol function of L and t1, . . . , tm satisfy (1). Then the following
statements are equivalent:

M |= φ[f1D, . . . , f
n
D];

(tM1 [f1D, . . . , f
n
D], . . . , t

M
m [f1D, . . . , f

n
D]) ∈ RM;

{i ∈ I : (tMi

1 [f1(i), . . . , fn(i)], . . . , tMi

m [f1(i), . . . , fn(i)]) ∈ RMi} ∈ D;
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{i ∈ I : Mi |= φ[f1(i), . . . , fn(i)]} ∈ D.

Thus, φ satisfies (2).

The next step is to prove that if ψ satisfies (2), then so does ¬ψ. Suppose that
φ = ¬ψ, where (2) holds for ψ = ψ(x1, . . . , xn). Then the following are equivalent:

M |= φ[f1D, . . . , f
n
D];

M ̸|= ψ[f1D, . . . , f
n
D];

{i ∈ I : Mi |= ψ[f1(i), . . . , fn(i)]} /∈ D;

{i ∈ I : Mi ̸|= ψ[f1(i), . . . , fn(i)]} ∈ D;

{i ∈ I : Mi |= φ[f1(i), . . . , fn(i)]} ∈ D.

The third and fourth statements are equivalent because D is an ultrafilter.

Suppose now that φ = φ1 ∧ φ2, where φ1 and φ2 satisfy (2).

Then we have the following equivalences:

M |= φ[f1D, . . . , f
n
D];

M |= φ1[f
1
D, . . . , f

n
D] and M |= φ2[f

1
D, . . . , f

n
D];

{i ∈ I : Mi |= φ1[f
1(i), . . . , fn(i)]} ∈ D and {i ∈ I : Mi |= φ2[f

1(i), . . . , fn(i)]} ∈ D

{i ∈ I : Mi |= φ[f1(i), . . . , fn(i)]} ∈ D.

Let’s see the last equivalence. Let X1 be the set

{i ∈ I : Mi |= φ1[f
1(i), . . . , fn(i)]},

let X2 be the set
{i ∈ I : Mi |= φ2[f

1(i), . . . , fn(i)]}

and let X be X1 ∩X2, i.e.,

X = {i ∈ I : Mi |= φ1 ∧ φ2[f
1(i), . . . , fn(i)]}.

If X1 ∈ D and X2 ∈ D, we clearly have that X ∈ D. Now, if X ∈ D, since X ⊆ X1,
X ⊆ X2 and D is an ultrafilter, we have that X1 ∈ D and X2 ∈ D.

Finally, suppose that φ = (∃x0)ψ(x0, x1, . . . , xn) and that (2) holds for ψ. Then
the following statements are equivalent:

M |= φ[f1D, . . . , f
n
D];
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there exists f0D ∈M such that M |= ψ[f0D, f
1
D, . . . , f

n
D];

there exists f0D ∈M such that {i ∈ I : Mi |= ψ[f0(i), f1(i), . . . , fn(i)]} ∈ D.

(2.1)
On the one hand, the third statement implies

X = {i ∈ I : Mi |= φ[f1(i), . . . , fn(i)]} ∈ D, (2.2)

since Mi |= ψ[f0(i), f1(i), . . . , fn(i)] implies Mi |= φ[f1(i), . . . , fn(i)].

Now suppose that (2.2) holds. Then, we can consider the function

f0 : I →
⋃
Mi

such that

1. if i ∈ X, f0(i) ∈Mi satisfies Mi |= ψ[f0(i), f1(i), . . . , fn(i)];

2. if i /∈ X, f0(i) ∈Mi is arbitrary.

Since X ∈ D and X ⊆ Y = {i ∈ I : Mi |= ψ[f0(i), f1(i), . . . , fn(i)]}, we have that
Y ∈ D.

So (2.1) and (2.2) are equivalent and, hence, the formula φ satisfies the second
condition. We have now completed our induction.

One important application of the fundamental theorem is an ultraproduct version
of the compactness theorem of first-order logic:

Corollary 2.16 (An ultraproduct version of the compactness theorem). Let Σ be a
set of sentences of L, let I be the set of all finite subsets of Σ, and for each i ∈ I

let Mi be a model of i. Then there exists an ultrafilter D over I such that the
ultraproduct

∏
D Mi is a model of Σ.

Proof. For each σ ∈ Σ, let σ̂ be the set of all i ∈ I such that σ ∈ i. The set

E = {σ̂ : σ ∈ Σ}

has the finite intersection property because

{σ1, . . . , σn} ∈ σ̂1 ∩ . . . ∩ σ̂n.

As E has this property and E ⊆ P(I), E can be extended to an ultrafilter D over I
by the ultrafilter theorem. If i ∈ σ̂, then σ ∈ i. Thus, since Mi |= i, we have that
Mi |= σ. Hence for each σ ∈ Σ

σ̂ ⊆ {i ∈ I : Mi |= σ} and σ̂ ∈ D.
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Therefore, since D is an ultrafilter

{i ∈ I : Mi |= σ} ∈ D.

By the fundamental theorem 2.15,
∏

D Mi |= σ for all σ ∈ Σ. Thus
∏

D Mi is a
model of Σ.

Corollary 2.17. The Corollary 2.16 also holds when Σ is a set of formulas of L.

Proof. All free variables of the set Σ can be replaced by constants.

Corollary 2.18. Let Σ be a set of sentences of L. If Σ |= φ, then exists Σ0 ⊆ Σ

finite such that Σ0 |= φ.

Proof. For each Σ0 finite such that Σ0 ⊆ Σ, suppose that Σ0 ̸|= φ. Then, for
each Σ0 ⊆ Σ finite, Σ0 ∪ {¬φ} is finitely satisfiable. Hence Σ ∪ {¬φ} is finitely
satisfiable and by the compactness theorem we have that Σ ∪ {¬φ} is satisfiable.
Thus Σ ̸|= φ.

Another application of the Łoś theorem is the following one, which shows that
each structure M is elementarily embeddable in every ultrapower of M in a natural
way. Before that, we need to define the canonical embedding of M into its ultra-
power. This embedding is very important and will be crucial for the construction of
hyperreal numbers later.

Definition 2.19. Let I be a nonempty set, D an ultrafilter over I and M a structure.
The canonical embedding is the function

d : M → MD

such that d(a) = (a : i ∈ I)D, where MD denotes the ultrapower
∏

D M.

Corollary 2.20. Let M be an L-structure and D an ultrafilter. Then the canonical
embedding of M into the ultrapower MD is an elementary embedding.

Proof. Let φ = φ(x1, . . . , xn) be a formula of L and a1, . . . , an ∈M . Then

MD |= φ[d(a1), . . . , d(an)] ⇐⇒ {i ∈ I : M |= φ[a1, . . . , an]} ∈ D

⇐⇒ M |= φ[a1, . . . , an]

Note that the set X = {i ∈ I : M |= φ[a1, . . . , an]} can only be the empty set or I.
Since D is an ultrafilter, X ̸= ∅. Therefore, the second equivalence is true.
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Consider the structure M and the ultrapower MD. By the above corollary, we
know there is an elementary embedding of M into MD. Therefore, by Lemma 1.6,
we can identify the elements of M with the corresponding ones under the canonical
embedding in its ultrapower. Hence, we may consider that M is an elementary
substructure of MD.



Chapter 3

Non-standard analysis

3.1 Real closed fields

In this chapter we will apply all we have seen in the previous ones to non-standard
analysis. First of all, we introduce the following L-structure

R = (R,+,−, · , <, 0, 1),

where the universe R is the set of real numbers, +, · are binary function symbols,
− is a monary function symbol, < is a binary relation symbol and 0, 1 are constants
with their usual meaning.
Note that given an arbitrary L-structure M we usually write each symbol with
the superscript M indicating the interpretation of the corresponding symbol in M.
However, when talking about the structure R all such superscripts will be dropped
in order to simplify notation.

As it is known, A. Tarski proved that the theory of the structure R, Th(R),
can be axiomatized in first-order logic by the axioms for real closed fields (see, for
example, [6] or [11]):

1. Field axioms

∀x∀y∀z((x+ y) + z
.
= x+ (y + z))

∀x∀y(x+ y
.
= y + x)

∀x(x+ 0
.
= x)

∀x(x+ (−x) .= 0)

∀x∀y∀z((x · y) · z .
= x · (y · z))

∀x∀y(x · y .
= y · x)

∀x∀y∀z((x+ y) · z .
= x · z + y · z)

∀x(x · 1 .
= x)

∀x(¬x .
= 0 → ∃y(x · y .

= 1))

19
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2. Order axioms

¬x < x

∀x∀y(x < y ∨ x
.
= y ∨ y < x)

∀x∀y∀z(x < y ∧ y < z → x < z)

∀x∀y∀z(x < y → x+ z < y + z)

∀x∀y(0 < x ∧ 0 < y → 0 < x · y)

3. Positive elements are squares

∀x(0 < x→ ∃y(x .
= y2))

4. Polynomials of degree 2n+ 1 have zeros

∀x0x1 . . . x2n∃z(z2n+1 + x2nz
2n + . . .+ x1z + x0

.
= 0).

The field and order axioms determine an ordered field. Since the characteristic
of any ordered field F is 0, there is an embedding of the set of natural numbers N
and the set of integers Z into F , whence we may assume that N and Z are subsets
of F . In particular, char(R) = 0 and N and Z are subrings of R.

Definition 3.1. Let F be an ordered field. F is said to be complete if every nonempty
subset of F that is bounded above has a supremum in F .

Completeness cannot be expressed by formulas of first-order logic. Indeed, as
it is known, the above axioms do not characterize R up to isomorphism. Given an
ordered field F , it is well-known that

F ∼= R if and only if F is complete,

(for reference see [10]).

Definition 3.2. We say that an ordered field F has the Archimedean property if for
every positive elements x, y of F there is a natural number n such that x < ny. In
other words, the set N of natural numbers has no upper bound in F.

Lemma 3.3. In any ordered field F , the set N does not have a least upper bound.

Proof. Suppose x ∈ F is an upper bound of N. For any y ∈ N we have that y+1 ∈ N,
so y + 1 ≤ x whence y ≤ x− 1. Thus x− 1 is also an upper bound of N. Therefore
x cannot be a least upper bound of N, since x− 1 < x.

Corollary 3.4. Every complete ordered field has the Archimedean Property.

Proof. It follows immediately by the preceding lemma.
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3.2 Hyperreal numbers

In the preceding section we have seen the axiomatization of the theory of the
structure R. Now we are ready to introduce the hyperreal numbers from R. Let D
be a non-principal ultrafilter over the set of natural numbers N and let R∗ be the
ultrapower RD. Therefore,

R∗ = (R∗,+∗,−∗, ·∗ , <∗, 0∗, 1∗)

and we call it the field of hyperreal numbers. By the last paragraph of the previous
chapter, we may assume that R∗ is an elementary extension of R, that is

R ⪯ R∗.

Therefore, each element of R can be identified with its image under the canonical
embedding in RD.

Notation. In many cases, we will work with expansions of R and their ele-
mentary extensions, which by the Expansion Theorem 2.14 are expansions of R∗.
Usually we will denote by R the expansions of R and by R∗ the expansions of R∗.
For example, given a subset X ⊆ R, we may consider the expansion

R = (R,+,−, · , <, 0, 1, X)

and its elementary extension

R∗ = (R,+,−, · , <, 0, 1, X)D = (R∗,+∗,−∗, ·∗ , <∗, 0∗, 1∗, X∗),

which by the Expansion Theorem 2.14 is an expansion of R∗. This also holds for
relations and functions of R.

When no ambiguity can arise, we will omit the stars (∗) on the hyperreal sym-
bols. Moreover, we will usually write known operations such as the absolute value |·|
or dom(), instead of their expressions as formulas of first-order logic. For instance,
the absolute value can be defined by the following formula

φ(x, y) = (x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = −x).

We will also write x ∈ X instead of RXx, where RX is a relation symbol introduced
to denote the set X.

The following corollary will be proved later, since the proof involves definitions
that we do not have yet.
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Corollary 3.5. The ordered field R∗ of hyperreal numbers does not have the Archime-
dean Property.

Now we define the elements of R∗, and we prove that they exist.

Definition 3.6. Given an element x ∈ R∗. We say that x is finite if |x| < r for
some real r. The element x is called infinitesimal if |x| < r for all positive real r.
When |x| > r for all real r, then x is infinite.

Proposition 3.7. There exists x ∈ R∗ such that x is infinite.

Proof. Let r ∈ R and let f : N → R be a function such that f(n) = n.
Claim. fD > r.

Take m > r and let Y = {n ∈ N : n ≤ m}. Since D is a non-principal ultrafilter,
Y /∈ D and consequently the set N ∖ Y = {n ∈ N : n > m} ∈ D. Therefore
{n ∈ N : R |= f(n) > r} ∈ D and by the Fundamental Theorem of Ultraproducts
we have that R∗ |= fD > r.

Now that the existence of infinite numbers in R∗ has been proved, we can prove
the corollary stated before.

Proof. (Corollary 3.5) Let x be an infinite element of R∗. By definition, x is an upper
bound of R and since N ⊆ R, x is an upper bound of N.

Proposition 3.8. There exists x ∈ R∗ such that x is infinitesimal.

Proof. By the above proposition there exist hyperreal numbers which are infinite.
Let y ∈ R∗ be infinite. Then, in particular, y > r for each positive real r, whence
1/r > 1/y. Therefore there exists a hyperreal number x = 1/y such that s > x for
each positive real s.

We say that two elements x, y ∈ R∗ are infinitely close, and we write x ≈ y, if
x− y is infinitesimal. Observe that x is infinitesimal if and only if x ≈ 0.

Definition 3.9. Let x be a hyperreal number. The monad of x is defined as the set

monad(x) = {y ∈ R∗ : x ≈ y}.

The galaxy of x is the set

galaxy(x) = {y ∈ R∗ : x− y is finite}.
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Therefore, monad(0) is the set of infinitesimal numbers and galaxy(0) is the set
of finite hyperreal numbers.

Theorem 3.10. The set galaxy(0) is a subring of R∗.

Proof. Let x and y be finite, i.e.,

|x| < r and |y| < s,

where r and s are real. Then, since

|x+ y| < r + s, |x− y| < r + s, |xy| < rs

we have that x+ y, x− y and xy are finite.

Corollary 3.11. Given x, y hyperreal numbers, “x − y is finite” defines an equiva-
lence relation and galaxy(x) is the equivalence class of x.

Proof. Reflexivity and symmetry are obvious. Transitivity follows from Theorem
3.10.

Corollary 3.12. The relation ≈ is an equivalence relation and monad(x) is the
equivalence class of x, where x is a hyperreal number.

Proof. Reflexivity and symmetry are easy to prove. Let x, y, z ∈ R∗ be such that
x ≈ y and y ≈ z. Then by definition

|x− y| < r and |y − z| < s,

for all positive real numbers r, s. Therefore,

|x− z| = |x− y + y − z| < r + s.

Thus we have that x ≈ z.

By the above corollaries, any two galaxies are either equal or disjoint and also
any two monads are equal or disjoint.

Theorem 3.13. The set monad(0) of infinitesimal elements is a subring of R∗ and
an ideal in galaxy(0), that is

1. Sums, differences and products of infinitesimals are infinitesimal.
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2. The product of an infinitesimal and a finite element is infinitesimal.

Proof. Let ε, δ ≈ 0. Then |ε| < r/2, |δ| < r/2, for any positive real r. Since
|ε+ δ| < r, |ε− δ| < r, ε+ δ and ε− δ are infinitesimal.
Let a be finite, say |a| < t, 1 ≤ t ∈ R. Hence, for any positive real number r we have
|ε| < r/t, |εa| < r. Thus εa is infinitesimal.

Theorem 3.14. The following statements are true:

1. x is infinite if and only if x−1 is infinitesimal.

2. monad(0) is a maximal ideal in galaxy(0).

Proof. 1. We have the following

|x| ≥ r, for each positive real r ⇐⇒ |x−1| ≥ r−1, for each positive real r
⇐⇒ x−1 is infinitesimal.

2. Let I be an ideal that contains monad(0) and let x ∈ I ∖ monad(0). Since
x = (x−1)−1 is not infinitesimal, we have that x−1 is finite by (1). Therefore
x−1 ∈ galaxy(0), so 1 = x·(x−1) ∈ I. Then for any y ∈ galaxy(0), 1·y = y ∈ I,
so I = galaxy(0).

We will now define the standard part of a hyperreal number, but before that, we
prove the Standard Part Principle.

Theorem 3.15 (Standard Part Principle). Every finite x ∈ R∗ is infinitely close to
a unique real number r. That is, every finite monad contains a unique real number.

Proof. Let x ∈ R∗ be finite. Firstly, we will prove uniqueness and then existence.
Suppose x ≈ r and x ≈ s, where r, s ∈ R. Then, r ≈ s, because ≈ is an equivalence
relation, and furthermore r − s ≈ 0. Since r − s is real, r − s = 0, so r = s.

Let X = {s ∈ R : s < x}. X is nonempty and since there exists a real number
r > 0 such that |x| < r, the set X has an upper bound. Whence −r < x < r, so
−r ∈ X and r is an upper bound of X. In fact, X has a least upper bound t ∈ R,
as R is a complete ordered field. For every real number ε > 0 we have

x ≤ t+ ε, x− t ≤ ε and t− ε ≤ x, −(x− t) ≤ ε.

Consequently, x− t ≈ 0, so x ≈ t.
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Definition 3.16. Let x ∈ R∗ be finite. We say that r is the standard part of x, and
we denote it by st(x) = r, if it is the unique real number such that r ≈ x.

If x is infinite, st(x) is undefined.

Here are some properties of the standard part.

Corollary 3.17. Let x and y be finite, then

1. x ≈ y if and only if st(x) = st(y).

2. x ≈ st(x).

3. If r ∈ R, then st(r) = r.

4. If x ≤ y, then st(x) ≤ st(y).

Proof. 1, 2 and 3 follow from the Theorem 3.15.

4 Let x = st(x) + ε, y = st(y) + δ, for some infinitesimal ε and δ. Suppose
x ≤ y. Then

st(x) + ε ≤ st(y) + δ,

st(x) ≤ st(y) + (δ − ε).

Since ε, δ are infinitesimal, for any real r > 0,

δ − ε < r,

st(x) < st(y) + r.

Therefore st(x) ≤ st(y).

Theorem 3.18. The standard part function is a homomorphism of galaxy(0) onto
the field of real numbers.

Proof. Let x = r + ε, y = s + δ where r = st(x) and s = st(y). Then ε and δ are
infinitesimal. Therefore,

st(x+ y) = st((r + ε) + (s+ δ))

= st((r + s) + (ε+ δ))

= r + s.
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In a similar way we can prove that st(x− y) = st(x)− st(y). Moreover, we have that

st(xy) = st((r + ε) · (s+ δ))

= st(rs+ rδ + sε+ εδ))

= rs,

because rδ + sε+ εδ is infinitesimal, by Theorem 3.13.

Corollary 3.19. Given x,y finite. The following statements hold.

1. If st(y) ̸= 0, then st(x/y) = st(x)/ st(y).

2. If x ≥ 0 and y = n
√
x then st(y) = n

√
st(x).

Proof. 1. Suppose st(y) ̸= 0. Then

st(x) = st((x/y) · y) = st(x/y) · st(y).

2. If x ≥ 0 and y = n
√
x, then yn = x and y ≥ 0. Taking standard parts,

st(x) = st(yn) = st(y)n,

where st(x) ≥ 0, st(y) ≥ 0, so st(y) = n
√

st(x).

3.3 Basic topological notions

In this section we will give some basic topological concepts and we will see that
they also admit definitions in terms of hyperreal numbers.

Definition 3.20. Given a point x ∈ R, a neighborhood of x is a set X such that

(x− r, x+ r) ⊆ X,

where (x− r, x+ r) is an open interval and r is a positive real number.
A set X is called open set if for every x ∈ X, X is a neighborhood of x. The

interior of a set X is defined as the set

int(X) = {x ∈ X : there is a neighborhood Y of x such that Y ⊆ X}.

Note that X is an open set if and only if X = int(X).

We say that X is a closed set if it is the complement of an open set. The closure
X̄ of a set X is defined as follows

X̄ = {x ∈ X : Y ∩X ̸= ∅ for every neighborhood Y of x}.

Notice that X is a closed set if and only if X = X̄.
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Theorem 3.21. Let a ∈ R and X ⊆ R. X is a neighborhood of a if and only if X∗

includes the monad of a.

Proof. Suppose X is a neighborhood of a, that is for some real number r > 0,

(a− r, a+ r) ⊆ X. Then,

R |= ∀x(|a− x| < r → x ∈ X).

Since R∗ is an elementary extension of R, we have

R∗ |= ∀x(|a− x| < r → x ∈ X∗),

whence monad(a) ⊆ X∗.
Now suppose X is not a neighborhood of a, that is (a − r, a + r) ̸⊆ X for each

positive real r. Then,

R |= ∀y(y > 0 → ¬∀x(|a− x| < y → x ∈ X)),

and, consequently,

R∗ |= ∀y(y > 0 → ¬∀x(|a− x| < y → x ∈ X∗)).

Now let ε be infinitesimal, thus ε > 0. Therefore,

R∗ |= ∃x(|a− x| < ε ∧ x ̸∈ X∗),

whence for some x, x ∈ monad(a) and x ̸∈ X∗. So the theorem is proved.

Corollary 3.22. The closure of a set X ⊆ R is equal to the set

{st(x) : x is finite and x ∈ X∗}.

Proof. The following statements are equivalent:

a belongs to the closure of X ⇐⇒ a does not belong to the interior of R∖X

⇐⇒ monad(a) ̸⊆ R∗ ∖X∗

⇐⇒ there is an x ∈ X∗ such that x ≈ a

⇐⇒ a = st(x) for some finite x ∈ X∗.

By the above corollary we have that X is closed if and only if st(x) ∈ X for each
finite element x of X∗.
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Corollary 3.23. Given a positive real number r. A real function f is defined at
every point of (a− r, a+ r) if and only if f∗ is defined at every point of the monad
of a.

Proof. It follows from Theorem 3.21, by taking X = dom(f) and X∗ = dom(f∗).

Definition 3.24. A set X ⊆ R is said to be bounded if it is included in some closed
real interval [a, b].

Theorem 3.25. Let X ⊆ R. Then X is bounded if and only if every element of X∗

is finite.

Proof. Suppose X is bounded, i.e., X ⊂ [a, b]. Then

R |= ∀x(x ∈ X → a ≤ x ∧ x ≤ b)

and since R ⪯ R∗,

R∗ |= ∀x(x ∈ X∗ → a ≤ x ∧ x ≤ b).

Therefore, every element of X∗ is finite.
Now suppose that X is not bounded. Then either X has no upper bound or no

lower bound. Consider X has no upper bound. Hence

R |= ∀y∃x(x ∈ X ∧ y < x).

Again, by Expansion, we have that

R∗ |= ∀y∃x(x ∈ X∗ ∧ y < x).

Hence there exists an infinite element of X∗.

Definition 3.26. A set of real numbers is called compact if it is closed and bounded.

Corollary 3.27. Let X be a set of real numbers. X is compact if and only if for
every x ∈ X∗, x is finite and st(x) ∈ X.

Proof. By Corollary 3.22 and Theorem 3.25.
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3.4 Differentiation

We will define the notion of derivative by using infinitesimals and we will give
some known properties.

Definition 3.28. A real number s is called the slope of a real function f at a real
point a if

s = st

(
f∗(a+∆x)− f(a)

∆x

)
for every nonzero infinitesimal ∆x.

The derivative of a real function f is the real function f ′ such that f ′(x) is the
slope of f at x if it exists, otherwise, f ′(x) is undefined.

The function f is said to be differentiable at a if the slope of f at a exists.

In the next section of limits and continuity we will see that the above definition
of derivative coincides with the standard one.

The following results are left without proof, since they are easy consequences of
the definition.

Corollary 3.29. f is differentiable at a ∈ R if and only if

1. f∗(x) is defined for all x ≈ a and

2. the quotient (f∗(a+∆x)− f(a))/∆x is finite and has the same standard part
for all nonzero ∆x ≈ 0.

Corollary 3.30. If f is differentiable at a ∈ R, then f(x) is defined for all real x in
some neighborhood of a.

Given an infinitesimal ∆x, the dependence equation of the increment of y, de-
noted by ∆y, on x and ∆x is the following

∆y = f(x+∆x)− f(x).

Therefore, if f ′(x) exists, its value is

f ′(x) = st

(
∆y

∆x

)
.

Now we give some known properties of derivatives and we prove them by using
infinitesimals. First, we need to show the following result.
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Proposition 3.31. Let x be a real number and ∆x a nonzero infinitesimal. If f ′(x)
exists, then there is an infinitesimal ε such that

∆y = f ′(x)∆x+ ε∆x.

Proof. Take

ε =
∆y

∆x
− f ′(x).

Therefore ε ≈ 0. Now, multiplying by ∆x, we have ε∆x = ∆y−f ′(x)∆x, and so the
proof is completed.

Theorem 3.32. Consider the real functions f and g. Then, for any real value of x
such that f ′(x) and g′(x) exist, we have

1. (Sum Rule)
(f(x) + g(x))′ = f ′(x) + g′(x).

2. (Constant Rule) For any real number c,

(cf(x))′ = c · f ′(x).

3. (Product Rule)

(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x).

4. (Quotient Rule) If g(x) ̸= 0,(
f(x)

g(x)

)′
=
f ′(x) · g(x)− f(x) · g′(x)

g2(x)
.

Proof. Let ∆x be a nonzero infinitesimal.

1. Sum Rule: Let h = f + g. Then

h(x+∆x)− h(x)

∆x
=

f(x+∆x) + g(x+∆x)− (f(x) + g(x))

∆x

=
f(x+∆x)− f(x)

∆x
+
g(x+∆x)− g(x)

∆x
.

Therefore, taking standard parts, the proof is completed.
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2. Constant Rule: Let f = cg. Similarly as above, we have

f(x+∆x)− f(x)

∆x
=

cg(x+∆x)− cg(x)

∆x

= c · g(x+∆x)− g(x)

∆x
.

Again, taking standard parts, the rule is proved.

3. Product Rule: Let h = f · g. Thus

h(x+∆x)− h(x)

∆x
=

f(x+∆x) · g(x+∆x)− f(x) · g(x)
∆x

= f(x) · g(x+∆x)− g(x)

∆x
+ g(x) · f(x+∆x)− f(x)

∆x
.

Taking standard parts, the proof is completed.

4. Quotient Rule: Let h = f/g, where g ̸= 0. Then

h(x+∆x)− h(x)

∆x
=

f(x+∆x)

g(x+∆x)
· 1

∆x
− f(x)

g(x)
· 1

∆x

=
f(x+∆x) · g(x)− f(x) · g(x+∆x)

g(x+∆x) · g(x) ·∆x

=
(f(x+∆x)/∆x) · g(x)− f(x) · (g(x+∆x)/∆x)

g(x+∆x) · g(x)
.

Taking standard parts,

st

(
h(x+∆x)−h(x)

∆x

)
= st

(
(f(x+∆x)/∆x)·g(x)−f(x)·(g(x+∆x)/∆x)

g(x+∆x)·g(x)

)

=
f ′(x)·g(x)−f(x)·g′(x)
st(g(x+∆x)) · g(x)

=
f ′(x)·g(x)−f(x)·g′(x)

g2(x)
.

Let us show the last equivalence. Observe that

g(x+∆x) = g(x) + (g(x+∆x)− g(x)).
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Thus by Proposition 3.31,

g(x+∆x) = g(x) + f ′(x)∆x+ ε∆x,

for some infinitesimal ε. Therefore, st(g(x+∆x)) = st(g(x)) + 0 = g(x).

Theorem 3.33 (Chain Rule). Let f and g be real functions en let h be the compo-
sition

h(t) = (g ◦ f)(t).

For any real value of t where f ′(t) and g′(f(t)) exist, h′(t) also exists and it is

h′(t) = g′(f(t))f ′(t).

Proof. Let x = f(t), y = h(t) = g(x) and let ∆t be a nonzero infinitesimal. Then
∆y = h(t+∆t)− h(t) and ∆x = f(t+∆t)− f(t). By Proposition 3.31,

∆y = g′(x)∆x+ ε∆x,

for some infinitesimal ε. Thus

h(t+∆t)− h(t)

∆t
=
g′(x)∆x+ ε∆x

∆t
,

and taking standard parts we obtain what we wanted.

Theorem 3.34 (Power Rule). If x is a positive real number, r is any rational number
and f(x) = xr, then

f ′(x) = rxr−1.

Proof. There are four different cases.
Case 1: If r is a positive integer, the Power Rule can be easily proved by induction

using the Product Rule.
Case 2: r = 1/n for some positive integer n. Consider the function g(x) = xn. It

follows from Case 1 that g′(x) = nxn−1. By the Chain Rule 3.33,

(f ◦ g)′(x) = f ′(g(x)) · g′(x).

Therefore, since (f ◦ g)(x) = x and (f ◦ g)′(x) = 1, we have that

f ′(g(x)) =
1

g′(x)
=

1

nxn−1
.
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Now we can consider y = (y1/n)n. Then

f ′(y) =
1

n(y1/n)n−1
=

1

n
y

1
n
−1,

and the proof of this case is completed.
Case 3: r is a positive rational. This is a result of Cases 1 and 2 using the fact

that
xm/n = xm(1/n).

Case 4: r is a negative rational. This is a consequence of Case 3 using the
Quotient Rule.

Consider r = m/n. The Power Rule holds for negative values of x when n is odd.
If n is even, then xr is undefined in the real number system when x is negative.

3.5 Limits and continuous functions

As in the preceding sections, in this one we give some notions of limits and
continuity by using infinitesimals.

Definition 3.35. The limit of f(x) as x approaches a real number a, is the real
number L such that whenever x ≈ a but x ̸= a, we have f(x) ≈ L. We denote it by

L = lim
x→a

f(x).

If there is no such L, we say that the limit does not exist.

We can also define infinite limits.

Definition 3.36. Let a and L be real numbers.
limx→∞ f(x) = L if f(y) ≈ L for every positive infinite y.
limx→a f(x) = ∞ if f(x) is positive infinite whenever x ≈ a but x ̸= a.

Again, if there is no such L, we say that the limit does not exist.

The next theorem shows that the above infinitesimal definition of limit when x

approaches a is equivalent to the standard ε, δ definition.

Theorem 3.37. Let f be a real function and let c and L be real numbers. The
following are equivalent:

1. limx→a f(x) = L. That is, whenever x ≈ a, then f(x) ≈ L.

2. There exists a hyperreal δ > 0 such that whenever |x− a| < δ, then f(x) ≈ L.
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3. For every real ε > 0 there exists a real δ > 0 such that whenever x is real and
|x− a| < δ, then |f(x)− L| < ε.

Proof. (1) implies (2), with δ being any positive infinitesimal. We want to see that
(2) implies (3). Suppose (3) fails for some real ε > 0. Then we have the following

R |= ∀x(x > 0 → ∃y(|y − a| < x ∧ |f(y)− L| ≥ ε)).

Therefore,
R∗ |= ∀x(x > 0 → ∃y(|y − a| < x ∧ |f(y)− L| ≥ ε)).

Let δ > 0 be hyperreal. Then there is a hyperreal x such that |x − a| < δ and
f(x) ̸≈ L. Thus (2) doesn’t hold.

Now assume (3). Let ε > 0 be any real number and let δ > 0 be the corresponding
real number in the ε, δ condition. Then

R |= ∀x(|x− a| < δ → |f(x)− L| < ε)

and so
R∗ |= ∀x(|x− a| < δ → |f(x)− L| < ε).

Hence taking x1 ≈ a we have |x1 − a| < δ, and consequently |f(x1)− L| < ε. Since
this holds for each real ε > 0, f(x1) ≈ L.

Similarly, it can be proved that definition 3.36 is equivalent to the ε, δ one.

From the definitions of limit and standard part, we see that if st(f(x)) = L for
all x infinitely close but not equal to a, then

lim
x→a

f(x) = L.

Corollary 3.38. If limx→a f(x) exists, then f(x) is defined for all real x ̸= a in
some neighborhood of a.

Proof. Let X =dom(f) ∪ {a}. Then by Expansion X∗ =dom(f∗) ∪ {a} and by the
definition of limit, f(x) must be defined for all x ̸= a in monad(a), so monad(a) ⊆
X∗. Therefore, by Theorem 3.21, X is a neigborhood of a, thus f(x) is defined for
all real x ̸= a in that neighborhood.

The following corollary states that the definition of derivative given in the pre-
vious section and the standard one coincide.
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Corollary 3.39. The slope of f at a is given by the limit

f ′(a) = lim
∆x→0

f(a+∆x)− f(a)

∆x
.

Proof. It follows easily from the definitions.

The limit with respect to a subset X of R is defined as follows.

Definition 3.40. Let L, a be real numbers. We say that L is the limit of f(x) as x
approaches a in X, and we write

L = lim
x→a,x∈X

f(x)

if whenever x ∈ X∗ and x ≈ a but x ̸= a, we have f(x) ≈ L.

The one-sided limits are defined by

lim
x→a−

f(x) = lim
x→a,x<a

f(x)

lim
x→a+

f(x) = lim
x→a,x>a

f(x).

Proposition 3.41. limx→a f(x) exists if and only if both one-sided limits exist and
are equal.

Proof. It follows from the definitions.

Let us see some properties of limits, which follow easily from the ones of standard
parts.

Theorem 3.42. Suppose the limits

lim
x→a

f(x), lim
x→a

g(x)

both exist. Then

1. For any constant c, limx→a(cf(x)) = c limx→a f(x)

2. limx→a(f(x) + g(x)) = limx→a f(x) + limx→a g(x)

3. limx→a f(x) · g(x) = (limx→a f(x)) · limx→a g(x))

4. If limx→a g(x) ̸= 0, limx→a(f(x)/g(x)) = (limx→a f(x))/(limx→a g(x)).

Proof. It can be easily proved by using the Theorem 3.18 and the fact that limx→a f(x) =

st(f(x)).
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We now give the definition of continuity in terms of infinitesimals, and the corol-
lary that states this definition and the standard ε, δ one are equivalent.

Definition 3.43. We say that f is continuous at a ∈ R if f(a) is defined and
f(x) ≈ f(a) whenever x ≈ a.

Corollary 3.44. Let f be a real function and let c be a real number. The following
are equivalent:

1. f is continuous at a. That is, whenever x ≈ a, then f(x) ≈ f(a).

2. There exists a hyperreal δ > 0 such that whenever |x−a| < δ, then f(x) ≈ f(a).

3. For every real ε > 0 there exists a real δ> 0 such that for all real x∈(a−δ, a+δ),
we have |f(x)− f(a)| < ε.

Proof. It follows from Theorem 3.2.

The following results are immediate consequences of the definitions. The first
one is the usual condition for continuity in terms of limits.

Corollary 3.45. f is continuous at a real point a if and only if f(a) is defined and
limx→a f(x) = f(a).

Corollary 3.46. If f is continuous at a, then f(x) is defined for all real x in some
neighborhood of a.

It follows from Theorem 3.42 that sums, products, and quotients of continuous
functions are continuous, provided that the denominator is not 0.

Theorem 3.47. If f is differentiable at a, then f is continuous at a.

Proof. Let f be differentiable at a and let x ≈ a but x ̸= a. Then f(a) is defined
and

f(x)− f(a)

x− a

is finite and x− a is infinitesimal. It follows from Theorem 3.13 that f(x)− f(a) is
infinitesimal. Hence f is continuous at a.



3.5 Limits and continuous functions 37

Proposition 3.48. Compositions of continuous functions are continuous, that is if
f is continuous at a and g is continuous at f(a), then h(x) = g(f(x)) is continuous
at a.

Proof. Let x ≈ a. Then f(x) ≈ f(a) and g(f(x)) ≈ g(f(a)), whence h(x) ≈ h(a)

obviously.

We now give the definition of continuity and uniform continuity on a subset X
of the real numbers R.

Definition 3.49. Let X be a subset of the domain of a real function f. We say that f
is continuous on X if whenever a ∈ X, x ≈ a, and x ∈ X∗, we have f∗(x) ≈ f∗(a).

f is uniformly continuous on X if whenever x, y ∈ X∗ and x ≈ y, we have
f∗(x) ≈ f∗(y).

It follows from the above definitions that if f is uniformly continuous on X, then
f is continuous on X.

Theorem 3.50. Let X ⊆ R be compact. If f is continuous on X, then f is uniformly
continuous on X.

Proof. Suppose f is continuous on X. Let x, y ∈ X∗ and x ≈ y. By Corollary 3.57,
x is finite and a := st(x) ∈ X. Then a = st(y), as x ≈ y. Since f is continuous on
X,

f(x) ≈ f(a) and f(y) ≈ f(a).

Therefore f(x) ≈ f(y) and f is uniformly continuous on X.

The following theorem states that one can extend the domain of a uniformly
continuous function from an interval to the whole real line.

Theorem 3.51. 1. Let f be uniformly continuous on an interval I. Then there
exists a function g such that g ↾I= f and it is uniformly continuous on the
whole real line.

2. Suppose the derivative f ′ of f is uniformly continuous on an interval I. Then
there exists a function g such that g ↾I= f and g′ is uniformly continuous on
the whole real line.

Proof. We give the proof for the case where I is a half-open interval of the form
[a, b). The other cases can be proved similarly.
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1. Firstly, we show that limx→b− f(x) exists. Let x < b such that x ≈ b. Suppose
that f(x) is infinite. Then for each real number r > 0,

R∗ |= r < b→ ∃y(y ∈ (r, b) ∧ |f(r)− f(y)| ≥ 1)

Thus,
R |= ∀u(0 < u < b→ ∃y(y ∈ (u, b) ∧ |f(u)− f(y)| ≥ 1),

and so

R∗ |= ∀u(0 < u < b→ ∃y(y ∈ (u, b) ∧ |f(u)− f(y)| ≥ 1).

Therefore, for u1 < b such that u1 ≈ b there exists y1 ∈ (u1, b) such that
|f(u)− f(y1)| ≥ 1. Whence u1 ≈ y1, but f(u1) ̸≈ f(y1). Consequently f(x) is
finite and has a standard part B. Then for all y < b such that y ≈ x, we have
f(y) ≈ f(x) and thus f(y) ≈ B. Hence B = limx→b− f(x). Now consider the
function g such that

g(x) =


f(a), if x < a

f(x), if x ∈ [a, b)

B, if x ≥ b.

Then g restricted to [a, b) is f and is uniformly continuous on the whole real
line.

2. From the proof of (1), we have that the limits

B = lim
x→b−

f(x), C = lim
x→b−

f ′(x)

both exist. Let g be the function

g(x) =


f(a) + f ′(a)(x− a), if x < a

f(x), if x ∈ [a, b)

B + C(x− b), if x ≥ b.

Then g restricted to [a, b) is f and has a uniformly continuous derivative on
the whole real line.

Now we introduce the notion of a partition of a closed interval [a, b] into infinitely
many subintervals of equal infinitesimal length. Consider the hyperreal numbers x, y.
The set

[x, y]∗ = {z ∈ R∗ : x ≤ z ≤ y}
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is called a hyperreal closed interval. When a ≤ x ≤ y ≤ b, we call [x, y]∗ a hyperreal
subinterval of [a, b]∗. An infinitesimal interval is an interval of the form [x, x+∆x]∗,
where 0 < ∆x and ∆x ≈ 0. Since there is no confusion, we usually write [x, x+∆x]

instead of [x, x + ∆x]∗. Given n ∈ N∗, the closed hyperreal interval [a, b]∗ may be
partitioned into subintervals of length δ = (b− a)/n. The partition points are

a, a+ δ, a+ 2δ, . . . , a+ kδ, . . . , a+ nδ = b,

where k ∈ N∗ runs from 0 to n. When n is infinite, the length of each subinterval
will be infinitesimal, and the partition is called an infinite partition of [a, b]∗.

The following corollary will be needed later.

Corollary 3.52. Let [a, b] be a real interval, n a positive hypernatural number and
let δ = (b− a)/n. Then [a, b]∗ is the union of the subintervals

[a+ kδ, a+ (k + 1)δ)∗,

where k ∈ N∗ and k < n.

Proof. Consider x ∈ [a, b]∗ and let k be the greatest hypernatural number such that
k ≤ (x− a)/δ. Then

k ≤ x− a

δ
< k + 1.

Therefore
0 ≤ k <

b− a

δ
= n and a+ kδ ≤ x < a+ (k + 1)δ.

We will now give some well-known results of continuous functions and use hyper-
reals to prove them.

Theorem 3.53 (Intermediate Value Theorem). Suppose f is continuous on the
closed interval [a, b]. Then for every real number d ∈ [f(a), f(b)] there is a point
c ∈ [a, b] such that f(c) = d.

Proof. We may assume that f(a) ≤ f(b). Since the result is obvious if d = f(a) or
d = f(b), we assume that a < b and f(a) < d < f(b). Let n ∈ N+ and let

a, a+ δ, a+ 2δ, . . . , a+ nδ = b

be a finite partition, where δ = (b − a)/n. As the value of f must cross d in one of
the subintervals. we have

R |= ∀x∀y(x∈N+∧xy=(b−a) → ∃z(z∈N∧ z<x∧ f(a+ zy)≤d≤f(a+(z+1)y))).
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Hence

R∗ |= ∀x∀y(x∈N+∗∧xy=(b−a) → ∃z(z∈N∗∧z<x∧f(a+zy)≤d≤f(a+(z+1)y))).

Now we can take an infinite n1 ∈ N∗ and the infinitesimal δ1 = (b−a)/n. Therefore,
there exists m ∈ N∗ such that m < n1 and f(a+mδ1) ≤ d ≤ f(a+ (m+ 1)δ1). Let
c = st(a+mδ1). We want to see that a ≤ c ≤ b and f(c) = d. We have

a ≤ a+mδ1 ≤ a+ (m+ 1)δ1 ≤ a+ n1δ1 = b.

Now taking standard parts, a ≤ c ≤ b. Since f is continuous on [a, b],

f(c) = st(f(a+mδ1)) ≤ d

f(c) = st(f(a+ (m+ 1)δ1)) ≥ d.

Thus f(c) = d.

Definition 3.54. A function f is called increasing if f(x) < f(y) whenever x < y

and x, y ∈ dom(f). f is called decreasing f(x) > f(y) whenever x < y and x, y ∈
dom(f). Otherwise, f is said to be constant when f(x) = f(y) for all x, y ∈ dom(f).

Theorem 3.55. If f is a continuous one to one function such that dom(f) = I,
where I is an interval, then f is either strictly increasing or decreasing.

Proof. The proof of this theorem uses standard methods only, so we will not give it
here.

Definition 3.56. We say that f has a maximum at a if f(a) ≥ f(x) for all element
x of the domain of f . f has a minimum at a if f(a) ≤ f(x) for all x of the domain
of f .

Proposition 3.57. Suppose f has a maximum at a. Then f∗ also has a maximum
at a, i.e., f∗(a) ≥ f∗(x) for all hyperreal x ∈ dom(f∗).

Proof. Let f be a function which has a maximum at a. Then

R |= ∀x(f(x) is defined → f(a) ≥ f(x)).

Therefore,
R∗ |= ∀x(f∗(x) is defined → f∗(a) ≥ f∗(x)).
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Definition 3.58. We say that f has a local maximum at a if there exists an open real
interval (a−r, a+r) such that f(x) is defined and f(a) ≥ f(x), for all x ∈ (a−r, a+r).
A local minimum is defined analogously.

The above definition of local maximum can be characterized in terms of hyperreals
as follows.

Theorem 3.59. f has a local maximum at a if and only if f(x) is defined and
f∗(a) ≥ f∗(x) for all hyperreal x ≈ a.

Proof. Suppose f has a local maximum at a. Then f(a) ≥ f(x) for all x in some open
real interval (a−r, a+r). Similarly to Proposition 3.57, we can see that f(a) ≥ f(x)

for each x ∈ R∗ such that a − r < x and x < a + r, whence f(a) ≥ f(x) for each
hyperreal x ≈ a.

Now suppose f does not have a local maximum at a. Assume first there is no
real open interval (a − r, a + r) on which f is defined and therefore, by Corollary
3.23, there is a hyperreal number x ≈ a at which f(x) is not defined. Now suppose
that f is defined on some real open interval (a − r, a + r). Let s < r be a positive
real number. Since f does not have a local maximum at a,

R |= ∀z(0 < z < r → ∃x(a− z < x ∧ x < a+ z ∧ f(a) < f(x))).

Then,

R∗ |= ∀z(0 < z < r → ∃x(a− z < x ∧ x < a+ z ∧ f(a) < f(x))).

Therefore taking an infinitesimal number z, there is a hyperreal number x ≈ a such
that f(a) < f(x).

Theorem 3.60 (Extreme Value Theorem). If the domain of f is a closed interval
[a, b] and f is continuous on [a, b], then f has a maximum and a minimum.

Proof. We may assume a < b, since the result is trivial if a = b. Let n ∈ N+ and
consider the finite partition

a, a+ δ, a+ 2δ, . . . , a+ nδ = b,

where δ = (b− a)/n. Let f(a+mδ) be the greatest of the values

f(a), f(a+ δ), . . . , f(a+ nδ),

and let g be the function on N+ such that g(n) = m. Then

R |= ∀x∀y∀z(x ∈ N+ ∧ xy = (b− a) ∧ z = g(x) → a ≤ a+ zy ≤ b) (3.1)
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and consequently,

R∗ |= ∀x∀y∀z(x ∈ N+∗ ∧ xy = (b− a) ∧ z = g(x) → a ≤ a+ zy ≤ b).

Furthermore, since the following formula holds in R:

∀x∀y∀z∀u(x ∈ N+∧xy=(b−a)∧z=g(x)∧u ∈ N+∧u ≤ x→ f(a+zy) ≥ f(a+uy)),

the following one holds in R∗:

∀x∀y∀z∀u(x ∈ N+∗∧xy=(b−a)∧z=g(x)∧u ∈ N+∗∧u ≤ x→ f(a+zy) ≥ f(a+uy)),

Now we can take a positive infinite hypernatural n1, δ1 = (b−a)/n1 and m = g(n1).

We show that f has a maximum at c = st(a+mδ1). By (3.1) we have that

a ≤ a+mδ1 ≤ b.

Taking standard parts,
a ≤ c ≤ b.

Let x be any real number such that x ∈ [a, b]. By Corollary 3.52,

x ∈ [a+ kδ1, a+ (k + 1)δ1]
∗,

where k is a hypernatural number between 0 and n1. Then x = st(a + kδ1). Now
considering k in addition to n1, δ1 and m, we have that

f(a+mδ1) ≥ f(a+ kδ1).

Since f is continuous on [a, b],

f(c) = st(f(a+mδ1)) ≥ st(f(a+ kδ1)) = f(x).

Hence f has a maximum at c.

Theorem 3.61 (Critical point Theorem). Suppose the domain of f is an interval I,
f is continuous on I and f has a maximum or a minimum at a point a ∈ I. Then
one of the following occurs:

1. a is an endpoint of I

2. f ′(a) is undefined

3. f ′(a) = 0
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Proof. Suppose that neither (1) nor (2) holds. We must show that (3) is true.
Suppose f has a maximum at a and let ∆x > 0 be infinitesimal. Then

f(a+∆x) ≤ f(a) and f(a−∆x) ≤ f(a).

Therefore
f(a+∆x)− f(a)

∆x
≤ 0 ≤ f(a−∆x)− f(a)

−∆x

and taking standard parts,
f ′(a) ≤ 0 ≤ f ′(a).

Thus f ′(a) = 0.

A point a where (1), (2) or (3) happens is called a critical point of f . A critical
point which is not an endpoint of I is called an interior critical point of f .

Theorem 3.62 (Mean Value Theorem). If a < b and f is continuous on the closed
interval [a, b] and differentiable on (a, b). Then there exists a point c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
.

We do not give the proof of this Theorem, since it follows from the Extreme
Value and Critical Point Theorems and uses standard procedures only.

The Intermediate, Extreme, and Mean Value Theorems have the following useful
consequences which involve hyperreal numbers. They can be easily proved, so we
omit the proofs.

In each of the following theorems we suppose that f is a real function which is
continuous on a closed interval I.

Theorem 3.63 (Hyperreal Intermediate Value Theorem). For each a, b ∈ I∗ such
that a < b, if y ∈ [f∗(a), f∗(b)] is a hyperreal number, then there is a hyperreal
x ∈ [a, b] such that f(x) = y.

Theorem 3.64 (Hyperreal Extreme Value Theorem). For each a, b ∈ I∗ such that
a < b, f∗ has a maximum and a minimum on the hyperreal closed interval [a, b]∗.

Theorem 3.65 (Hyperreal Mean Value Theorem). If a < b and f is continuous on
the closed interval [a, b] and differentiable on (a, b), and let g = f ′. Then there exists
a hyperreal number x ∈ (a, b)∗ such that

g∗(x) =
f∗(b)− f∗(a)

b− a
.
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3.6 Integration

Throughout this section we assume that f and g are real functions which are
continuous on an interval I.

Definition 3.66. Let [a, b] be a subinterval of I and let ∆x be a positive real number.
We define the Riemann sum

∑b
a f(x)∆x as the sum

b∑
a

f(x)∆x = f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x+ f(xn)(b− xn),

where n is the largest integer such that a+ n∆x < b and

x0 = a, x1 = a+∆x, . . . , xn = a+ n∆x.

We observe that the Riemann sum is a real function of the three variables a, b,∆x.
If we fix a and b and we replace the positive real ∆x in this function by a positive
infinitesimal dx, then the elementary extension gives us the infinite Riemann sum.

Definition 3.67. Let f be a continuous real function I, [a, b] a subinterval of I and
let

S(∆x) =
b∑
a

f(x)∆x

be the finite Riemann sum. Then

S∗(dx) =
b∑
a

f(x)dx

is called the infinite Riemann sum.

The infinite Riemann sum is defined for every hyperreal dx > 0, since the finite
Riemann sum is defined for every real ∆x > 0. We will define the integral as the
standard part of the infinite Riemann sum, hence we must prove that this sum is
finite, so its standard part exists.

Lemma 3.68. Let a < b in I and let dx be a positive infinitesimal. Then the infinite
Riemann sum

∑b
a f(x)dx is a finite hyperreal number.

Proof. By the Extreme Value Theorem 3.60, f has a minimum m and a maximum
M on [a, b]. Then for each positive real ∆x we have

b∑
a

m∆x ≤
b∑
a

f(x)∆x ≤
b∑
a

M∆x,
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and
b∑
a

m∆x = m(b− a),
b∑
a

M∆x =M(b− a).

That is

R |= ∀y(0 < y → m(b− a) ≤
b∑
a

f(x)y ≤M(b− a)).

Hence

R∗ |= ∀y(0 < y → m(b− a) ≤
b∑
a

f(x)y ≤M(b− a)).

We can take a positive infinitesimal dx, so
∑b

a f(x)dx is finite.

Definition 3.69. Let a < b in I and let dx be a positive infinitesimal. We define
the definite integral of f from a to b with respect to dx as the standard part of the
infinite Riemann sum, that is∫ b

a
f(x)dx = st

(
b∑
a

f(x)dx

)
.

Furthermore, ∫ a

a
f(x) = 0,

∫ a

b
f(x)dx = −

∫ b

a
f(x)dx.

We now give some properties of the definite integrals.

Theorem 3.70. Let a, b ∈ I such that a < b, let c ∈ R be a constant and let dx be
a positive infinitesimal. Then

1.
∫ b
a c dx = c(b− a)

2.
∫ b
a c f(x)dx = c

∫ b
a f(x)dx

3.
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx+

∫ b
a g(x)dx

4. If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x)dx ≤

∫ b
a g(x)dx

Proof. We give the proof of 2. The other cases can be proved analogously. We have

R |= ∀y(0 < y →
b∑
a

cf(x)y = c
b∑
a

f(x)y).

Therefore

R∗ |= ∀y(0 < y →
b∑
a

cf(x)y = c

b∑
a

f(x)y).

Then we can take a positive infinitesimal dx, so
∑b

a cf(x)dx = c
∑b

a f(x)dx. Now
taking standard parts, we obtain what we wanted.



46 Non-standard analysis

The definite integral
∫ b
a f(x)dx does not depend on the infinitesimal dx. The

following theorem shows it.

Theorem 3.71. Let a, b ∈ I such that a < b and let dx and du be positive infinites-
imals. Then ∫ b

a
f(x)dx =

∫ b

a
f(u)du.

Proof. It is sufficient to prove that for every positive real number r,∫ b

a
f(x)dx ≤

∫ b

a
f(u)du+ r.

Consider c = r/(b− a). If we show that

b∑
a

f(x)dx ≤
b∑
a

(f(u) + c)du, (3.2)

then, by Theorem 3.70,∫ b

a
f(x)dx ≤

∫ b

a
(f(u) + c)du =

∫ b

a
f(u)du+ r.

Let ∆x and ∆u be positive real numbers. If

b∑
a

f(x)∆x >
b∑
a

(f(u) + c)∆u,

then there exist x, u in [a, b] such that u ∈ [x − ∆u, x + ∆x] and f(x) > f(u) + c.

Therefore the following formula holds in R

∀y∀z(y > 0 ∧ z > 0 ∧
b∑
a

f(x)y >
b∑
a

(f(u) + c)z →

∃u∃v(u ∈ [a, b] ∧ v ∈ [a, b] ∧ v ∈ [u− z, u+ y] ∧ f(u) > f(v) + c)).

Thus the following is true in R∗

∀y∀z(y > 0 ∧ z > 0 ∧
b∑
a

f(x)y >

b∑
a

(f(u) + c)z →

∃u∃v(u ∈ [a, b] ∧ v ∈ [a, b] ∧ v ∈ [u− z, u+ y] ∧ f(u) > f(v) + c)).

Now suppose dx and du are infinitesimals such that

b∑
a

f(x)dx >
b∑
a

(f(u) + c)du.
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Then there exist hyperreals x1, u1 that satisfy

x1 ∈ [a, b], u1 ∈ [a, b], u1 ∈ [x1 − du, x1 + dx], f(x1) > f(u1) + c.

Since dx, du are infinitesimals, we have that x1 ≈ u1 and f(x1) ̸≈ f(u1). This
contradicts the continuity of f . Therefore (3.2) is true and the proof is completed.



Conclusions

Throughout this work we have reviewed some basic notions of first-order logic and
we have learnt new concepts, such as filters or ultraproducts, as well as we have seen
important results related to them. A couple of examples could be the Łoś theorem or
the ultraproduct version of the compactness theorem of first-order logic. Moreover,
we have defined the hyperreal numbers as an elementary extension of the structure of
the real numbers. Finally, we have been able to develop rigorously notions of calculus
as derivatives, limits, or continuity, based on an infinitesimal approach. Therefore,
the initial objectives have been met.

This work could be continued in a natural way by showing more properties and
results of integration. Besides trigonometric and exponential functions, infinite series
or differential equations can be defined by using infinitesimals.

In this project we have shown that many branches of mathematics can be related
to others, although it may not seem so at first glance. In this case, model theory
and analysis together develop non-standard analysis.
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