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Abstract. Motivated by the theory of representability classes by submani-

folds, we study the rational homotopy theory of Thom spaces of vector bundles.
We first give a Thom isomorphism at the level of rational homotopy, extending

work of Felix-Oprea-Tanré by removing hypothesis of nilpotency of the base

and orientability of the bundle. Then, we use the theory of weight decompo-
sitions in rational homotopy to give a criterion of representability of classes

by submanifolds, generalising results of Papadima. Along the way, we study

issues of formality and give formulas for Massey products of Thom spaces.
Lastly, we link the theory of weight decompositions with mixed Hodge theory

and apply our results to motivic Thom spaces.

1. Introduction

Let ξ : E → B be a vector bundle of rank n. After endowing it with a Riemannian
metric, one can consider its unit sphere bundle S(ξ) : S(E) → B and its unit
disc bundle D(ξ) : D(E) → B. The Thom space of the bundle ξ, denoted Th(ξ),
is the result of collapsing the subspace S(E) of D(E) to a point. Thom spaces
are fundamental in differential topology, as they parametrise cobordism classes of
manifolds with certain structures, and in algebraic topology, being used to define
a rich class of generalised cohomology theories. In particular, Thom spaces play
an important role in the theory of of representability of cohomology classes by
submanifolds. As noted by Papadima in [Pap85], in certain cases, the question of
representability of a cohomology class by a submanifolds may be translated to a
question in rational homotopy theory.

In the sixties, Sullivan and Quillen developed a formalism that allows to associate
to each topological space X another space XQ (all of whose homotopy groups are
rational vector spaces) and a map X → XQ inducing isomorphisms on rational
cohomology. This new space captures all the rational information of X, the rational
homotopy type of X. Sullivan further constructed a functor APL from topological
spaces to commutative differential graded algebras (cdga’s) and showed that, when
restricted to nilpotent spaces, this functor is an equivalence after inverting rational
homology equivalences of spaces and quasi-isomorphisms of cdga’s ([Sul77], see also
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[FHT01]). A space X is said to be formal if there is a string of quasi-isomorphisms
from APL(X) to the cdga with trivial differential given by the rational cohomology
H∗(X,Q) of X. A space is called intrinsically formal if it is rationally homotopy
equivalent to any other simply connected space with the same rational cohomology
ring.

Since Thom spaces of vector bundles of rank n are simply connected as long as
n > 1, the rational localisation theory of Quillen and Sullivan applies, even if the
base of the vector bundle is not nilpotent or the vector bundle is non-orientable. The
rational homotopy type of Thom spaces of universal vector bundles over BGL(Rn)
was studied by Burlet [Bur71]. Later, Papadima [Pap85] showed that Thom spaces
of orientable vector bundles over classifying spaces of closed connected subgroups
of GL(Rn) are formal. As an application, he studied the existence of maps φ : M →
Th(γq)Q from M to the rationalisation of the Thom space Th(γq) of the tautological
bundle over BO(q) such that φ∗(u) = c, where u denotes the Thom class. Then,
he used a result on derationalisation of maps of topological spaces whose target is
formal, to establish the conditions for a multiple of a given cohomology class c of a
manifold M to be representable by a submanifold.

In Section 2 of this paper, we describe the rational homotopy type of the Thom
space of any vector bundle ξ : E −→ B in terms of the rational homotopy type
of B and the Euler class of ξ. This allows us to lift, in Theorem 2.9, the Thom
isomorphism theorem (which classically gives an isomorphism on cohomology) to a
quasi-isomorphism between rational commutative differential graded algebras. This
was recently obtained by Félix, Oprea and Tanré [FOT16] in the case of oriented
vector bundles with nilpotent base. Our more conceptual approach allows us to
remove these hypotheses. In Theorem 2.12 we give a version for non-oriented vector
bundles with twisted coefficients.

Section 3 is devoted to the theory of weight decompositions. We say that a
space X admits a (positive) weight decomposition if there exists a certain (positive)
bigrading on a cdga M compatible with products and differentials (see Definition
3.1 for details), together with a quasi-isomorphismM−→ APL(X). The formality
of X can be reformulated in terms of the existence of a weight decomposition with
pure weights. Therefore one can think of weight decompositions as an intermediate
property towards formality. Furthermore, as indicated to us by Yves Felix, the ex-
istence of positive weight decompositions turns out to be sufficient to derationalise:
given CW-complexes X and Y satisfying certain conditions, every map XQ → YQ
can be lifted to a map X → Y provided Y admits a positive weight decomposition
(Theorem 3.4). Recall now that, if θ : B → BSO(q) is a fibration, a θ-submanifold
of M is a submanifold W of M together with a lift along θ of the classifying map
of the normal bundle W → BSO(q). Using our description of the rational homo-
topy type of Thom spaces, we are able to obtain a criterion of representability of
cohomology classes of a manifold M by θ-submanifolds, in terms of the existence of
positive weight decompositions, thus extending Papadima’s work on this problem
(see Theorem 3.8).

Lastly, in Section 4 we study algebraic vector bundles. The rational cohomology
of every complex algebraic variety X carries functorial mixed Hodge structures. In
fact, these descend to mixed Hodge structures on the rational homotopy type of
X. In Theorem 4.9, we show that mixed Hodge theory leads to functorial weight
decomposition. Furthermore, for smooth quasi-projective varieties, such weight



WEIGHT DECOMPOSITIONS OF THOM SPACES IN RATIONAL HOMOTOPY 3

decompositions are always positive. Let ξ : E → B is be complex vector bundle
over a smooth complex variety B. The collapsing construction needed to define
a Thom space is not algebraic, and therefore Th(ξ) is not, in general, a complex
algebraic variety. Nonetheless, it is motivic space, and we study it as such. In
Theorem 4.10, we describe the mixed Hodge structures on the rational homotopy
type of motivic Thom spaces. As a consequence, we are able to extend Papadima’s
result whenever θ is the classifying map of the underlying real vector bundle of an
algebraic vector bundle over an algebraic variety.

Acknowledgements. We thank Yves Félix for answering our many questions
and for telling us about spaces with weight decompositions. Thanks also to Vi-
cente Navarro for his ideas on mixed Hodge theory and useful comments. We are
also grateful to Andrew Baker, Pascal Lambrechts, Luc Menichi and Jean-Claude
Thomas for their feedback at the early stages of this project. Thanks also to Nero
Budur for spotting an imprecision in our exposition of mixed Hodge theory.

2. A Thom isomorphism theorem in rational homotopy

In this section, we study the rational homotopy type of Thom spaces. After
recalling some preliminaries on Thom’s isomorphism in cohomology, we first study
the simpler case of vector bundles of odd rank. In this case, we show that Thom
spaces are formal. For the even rank case, we give a model of the Thom space from
a model of the base and the Euler class of the vector bundle. This leads to a Thom
isomorphism theorem at the level of rational homotopy. Then, we extend our study
to the case of non-orientable vector bundles.

2.1. Preliminaries: Thom isomorphism in cohomology. The cohomology
with coefficients in a ring R of the Thom space of an oriented vector bundle ξ :
E → B is well-understood: by excision, we have that

H̃∗(Th(ξ);R) ∼= H∗(D(E), S(E);R)

and as D(ξ) : D(E) → B is a homotopy equivalence, H∗(D(E);R) ∼= H∗(B;R).
The relative cup product then gives a pairing

H∗(B;R)⊗ H̃∗(Th(ξ);R)→ H̃∗(Th(ξ);R).

Theorem 2.1 (Thom isomorphism). If ξ is an oriented vector bundle of rank
n, then there is a class u ∈ Hn(Th(ξ);R), called the Thom class, such that the
homomorphism

− ∪ u : H∗(B;R)→ H̃∗+n(Th(ξ);R)

given by relative cup product is an isomorphism of graded R-modules.

The composite of the zero section of ξ and the quotient map D(E) → Th(ξ)
is the canonical inclusion, and will be denoted by ι. One has that ι∗(u) = e, the
Euler class of ξ. Using the naturality of the relative cup product for ι, it follows
that ι∗(a ∪ u) = a ∪ e and that

(a ∪ u) · (b ∪ u) = (a · b · e) ∪ u.
Therefore, the Thom isomorphism theorem gives a complete description of the
cohomology ring of the Thom space of any orientable vector bundle.

If ξ : E −→ B is a non-orientable vector bundle, there is a twisted version of
Thom’s isomorphism by considering the rational orientation bundle o and noting
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that o ⊗ o is the trivial line bundle (see for instance Theorem 7.10 of [BT82]). In
short, the rational orientation bundle is obtained by taking the double cover of
orientations of M , which is classified by a map to BZ/2, and then composing this
clasifying map with the inclusion BZ/2→ BAut(Q).

Theorem 2.2 (Thom isomorphism with twisted coefficients). If ξ is a vector bundle
of rank n, then there is a class u ∈ Hn(D(E), S(E); o), such that the homomorphism

− ∪ u : H∗(B; o)→ H̃∗+n(Th(ξ))

given by relative cup product is an isomorphism of graded R-modules. In this case,

(a ∪ u) · (b ∪ u) = (a · (b · e)) ∪ u.

2.2. Vector bundles of odd rank. We begin by studying the simpler case of
vector bundles of odd rank and show that the resulting Thom spaces are formal.

In order to understand the homotopy type of Thom spaces, we divide the col-
lapsing in the definition of a Thom space into two steps: First, for a vector bundle
ξ : E → B of odd rank n, one can consider its fibrewise one-point compactification
ξ̇ : Ė → B, which is a Sn-bundle, that can also be obtained as the fibrewise unre-
duced suspension of the unit sphere bundle ξ : S(E)→ B. This bundle comes with

a canonical section s : B → Ė, namely the section that sends each point p in B to
the point at infinity in the fibre over p. Then, the Thom space of ξ is homeomorphic
to the result of collapsing the image of s inside Ė:

B
s−→ Ė −→ Th(ξ).

Let haut∗(S
n) be the monoid of pointed homotopy automorphisms of Sn, i.e.,

self-maps of the pointed sphere of degree ±1 that preserve the basepoint. Iso-
morphism classes of pairs (η, s) where η is a Sn-fibration over B and s is a sec-
tion of η are classified by homotopy classes of maps B → Bhaut∗(S

n) (see, for
example, Section 8 in [Boo00]). If n is odd, then haut∗(S

n) has two rationally
contractible components, corresponding to orientable and unorientable bundles.
Therefore, in this case, the map s : B → Ė is rationally homotopy equivalent to
the map s′ : B → Ṗ , where ψ : P ∼= L × Rn−1 → B is the Whitney sum of some
line bundle ` : L→ B and a trivial vector bundle of rank n− 1. But then we have
that Th(ξ) ∼= Th(ψ) ' Σn−1Th(`). Since suspensions are formal, we have that if `
is orientable or n > 3, then Th(ξ) is formal, and therefore the cdga H∗(Th(ξ);Q)
with trivial differential is a cdga model of Th(ξ). In the remaining case Th(ξ) fails
to be simply-connected, even nilpotent in general, so the localisation theory does
not apply in this case.

2.3. Oriented vector bundles of even rank. Let Y ⊂ X be a cofibration. Then
it induces a surjection ϕ : APL(X) → APL(Y ) and we may use the model of the
cofibre to write

APL(X,Y ) = Ker(ϕ).

Denote by ι∗ : APL(X,Y ) ↪→ APL(X) the resulting injective morphism. Since the
kernel is an ideal, we have a relative cup product at the level of cdga’s.

Lemma 2.3. The assignment (x, y) 7→ x · ι∗(y) defines a product

∪ : APL(X)⊗APL(X,Y ) −→ APL(X,Y )

which induces the relative cup product in cohomology.
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Proof. It suffices to note that for every x ∈ APL(X) and y ∈ APL(X,Y ) ⊂
APL(X), we have x · ι∗(y) ∈ APL(X,Y ) ⊂ APL(X). �

Let ξ : E −→ B be an oriented vector bundle of even rank n. Denote by

ÃPL(Th(ξ)) := APL(Th(ξ), ∗) ' APL(D(E), S(E))

the algebra of piece-wise linear forms of the inclusion ∗ −→ Th(ξ). The cohomology

of ÃPL(Th(ξ)) computes the reduced cohomology of the Thom space. To get the
model of Th(ξ) one just needs to add Q in degree 0:

APL(Th(ξ))0 = Q and APL(Th(ξ))k = ÃPL(Th(ξ))k for k > 0.

By Lemma 2.3, we have a relative cup product at the level of cdga’s

∪ : APL(D(E))⊗APL(D(E), S(E)) −→ APL(D(E), S(E)).

Lemma 2.4. Let u ∈ APL(D(E), S(E)) be a representative of the Thom class of
ξ and let e = ι∗(u). Then for every x, y ∈ APL(D(E)) we have

ι∗(x ∪ u) = x · e and (x ∪ u) · (y ∪ u) = (x · y · e) ∪ u.

Proof. The first equality is straightforward using the definition of ι∗ and ∪. Indeed,
we have

ι∗(x ∪ u) = x · ι∗(u) = x · e.
Let us prove the second equality, using Lemma 2.3. We have

(x · y · e) ∪ u = (x · y · e) · ι∗(u) = x · y · e · e = (x · e) · (x · e) =

= (x · ι∗(u)) · (y · ι∗(u)) = (x ∪ u) · (y ∪ u).

where we used the fact that e has even degree. �

Before stating the main result of this section, let us fix some notation. Let n > 0
be an integer. The n-th suspension of a graded vector space A =

⊕
Ak is the

graded vector space snA defined by snAk := Ak−n.

Definition 2.5. Let A be a cdga and let e ∈ An, with n > 0 even. Define A[e]
as the graded vector space given by the n-th suspension snA of A. If a ∈ A, write
wa := sna ∈ snA. Define a differential

d : A[e]k −→ A[e]k+1 by d(wx) = wdx

and a product

µ : A[e]k ⊗A[e]l −→ A[e]k+l by µ(wx, wy) = wexy.

Proposition 2.6. Let ξ : E → B be an oriented vector bundle of even rank n. Let
u ∈ APL(D(E), S(E)) be a representative of the Thom class, so that e := ι∗(u) is
a representative of the Euler class. Denote by A the cdga APL(D(E)).

(1) The morphism g : A[e] → APL(D(E), S(E)) given by g(wx) = x ∪ u is a
quasi-isomorphism.

(2) The product ∪ : A⊗A[e] −→ A[e] given by (x,wy) 7→ wxy is a model of the
relative cup product, that is, the following diagram commutes:

A⊗A[e]

f⊗g
��

∪ // A[e]

g

��
A⊗APL(D(E), S(E))

∪ // APL(D(E), S(E))
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Proof. The second statement is immediate from the first statement and Lemma
2.3. For the first statement, since du′ = 0 it is clear that g is compatible with
differentials. To see that g is multiplicative it suffices to show that

(x ∪ u) · (y ∪ u) = (x · y · e) ∪ u,

for every x, y ∈ A. This follows from Lemma 2.4, since e = ι∗(u). Therefore g is
a morphism of cdga’s. Additionally, it induces the Thom isomorphism after taking
cohomology, hence, by the Thom isomorphism theorem, g is a quasi-isomorphism.

�

Lemma 2.7. The triple (A[e], d, µ) of Definition 2.5 is a cdga after adding Q
in degree 0 and extending d and µ in the obvious way. Moreover, up to quasi-
isomorphism, it does not depend on the chosen representative of the Euler class.

Proof. Since by assumption, e is of even degree, for every a ∈ A, we have (−1)|wa| =
(−1)|a|. Hence A[e] = snA with the product wa ·wb = weab is graded commutative.
Also, since de = 0, we have

d(wa · wb) = d(weab) = wed(ab) = we(da·b+(−1)|a|a·db) = wda · wb + (−1)|wa|wa · wdb.

Therefore the Leibniz rule is satisfied. This proves that (A[e], d, µ) is a cdga.
Let e, e′ be two representatives of the Euler class. Then, e− e′ is exact, so there

is a z with dz = e− e′. Define a homotopy between the multiplications in A[e] and
A[e′] as H(x⊗ y) = xyz. �

The following lemma is straightforward:

Lemma 2.8. Let f : A → A′ be a quasi-isomorphisms of cdgas, and let e ∈ A be a
class of even dimension. Then

(1) The morphism g : A[e] → A′[f(e)] given by g(wx) = wf(x) is well-defined
and a quasi-isomorphism.

(2) The following diagram commutes

A⊗A[e]

f⊗g
��

∪ // A[e]

g

��
A′ ⊗A′[f(e)]

∪ // A′[f(e)]

Puting together Proposition 2.6 and the last two lemmas, we have:

Theorem 2.9. Let ξ : E → B be an oriented vector bundle of even rank n, let
A be a cdga model of B and let e ∈ An be a representative of the Euler class.
Then A[e]⊕Q is a cdga model of Th(ξ) and the product A⊗A[e]→ A[e] given by
(x,wy) 7→ wxy is a model of the relative cup product.

2.4. Non-orientable vector bundles. Note that if Y ⊂ X is a cofibration of
path connected spaces, then taking local coefficients in a pair of real line bundles
`, `′ over X gives the relative cup product with local coefficients:

Hp(X; `)⊗ H̃q(X,Y ; `′) −→ H̃p+q(X,Y ; `⊗ `′).

Recall the functor APL : Top→ Q-CDGA that first takes a space to its singular
simplicial set sing(X), and then takes piecewise linear forms on this simplicial set.
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In detail, let A : ∆op → Q-CDGA be the following simplicial cdga: Its cdga of
n-simplices is

A(n) = Λ (t0, t1, . . . , tn, dt0, dt1, . . . , dtn)

/(
n∑
i=0

ti = 1,

n∑
i=0

dti = 0

)
and if 0 6 i 6 n, the i-th face map ∂i : A(n)→ A(n− 1) is the map of cdgas

tj 7→


tj if j¡i

0 if j = i

tj−1 if j > i

and the i-th degeneration map si : A(n)→ A(n+ 1) is the map of cdgas

tj 7→


tj if j¡i

tj + tj+1 if j = i

tj+1 if j > i

Then APL(X) is the set of simplicial maps from sing(X) to A. The cdga structure
on A induces a cdga structure on the piecewise linear forms APL(X).

This functor generalises further to the category of pairs of topological spaces
with local coefficient systems, i.e., the category Topτ of triples (X,Y, `), where
Y ⊂ X is a cofibration of topological spaces and ` : E → X is a real line bundle.
There is a homomorphism ϕ : O(R) ∼= Z/2→ Aut(A) that sends the reflection

R −→ R
x 7−→ −x

to the automorphism of A given by multiplication by −1.
Using ϕ, we can associate to (X, `) a new bundle (X, ¯̀) of simplicial cdga’s over

X whose fibre is isomorphic to A. Taking singular simplices, we obtain a bundle of
simplicial cdga’s over sing(X) with fibre isomorphic to A. Define APL(X,Y ; `) as
the set of simplicial sections of this bundle that take value 0 on sing(Y ) ⊂ sing(X).

The set APL(X,Y ; `) has the structure of a differential graded Q-vector space,
and, if `′ is another line bundle over X, the diagonal map induces multiplications

APL(X,Y ; `)⊗APL(X,Y ; `′) −→ APL(X,Y ; `⊗ `′)(1)

APL(X; `)⊗APL(X,Y ; `′) −→ ÃPL(X,Y ; `⊗ `′)(2)

If ` is trivial, this becomes the usual multiplication and APL(X,Y ; `) is isomorphic
to the kernel of the augmentation APL(X/Y )→ APL(Y/Y ) ∼= Q. This multiplica-
tion is natural with respect to the map (X, ∅)→ (X,Y ), i.e., the following diagram
commutes:

APL(X; `)⊗APL(X,Y ; `′)

��

// APL(X,Y ; `⊗ `′)

��
APL(X; `)⊗APL(X; `′) // APL(X; `⊗ `′)

Observe additionally that the differential graded module APL(X,Y ; `⊗ `′) includes
in APL(X, `⊗ `′) as the kernel of the restriction homomorphism APL(X; `⊗ `′)→
APL(Y ; i∗(`⊗ `′)), and therefore the rightmost vertical map is injective. In partic-
ular, Lemma 2.3 is also true for the relative cup product with twisted coefficients.
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Let ξ : E → B be a vector bundle of rank k. Let o be the orientation bundle
of ξ and recall that o⊗ o is the trivial line bundle. By the previous discussion the
relative cup product

Hp(D(E); o)⊗Hq(D(E), S(E); o) −→ Hp+q(D(E), S(E))

is induced by

∪ : APL(D(E); o)⊗APL(D(E), S(E); o) −→ APL(D(E), S(E)).

It is straightforward to verify that the formulas of Lemma 2.4 are also valid in the
twisted setting, for any x, y ∈ APL(D(E); o).

Now, let ξ : E → B be a vector bundle of rank n, and let A be a cdga model of
APL(D(E)), and let Ao be a cdga model of APL(D(E); o), so that (1) gives the
following products:

A⊗A −→ A, A⊗Ao −→ Ao, Ao ⊗Ao −→ A.

Let e ∈ Ao be a representative of the twisted Euler class.

Definition 2.10. In this setting, define the cdga Ao[e] whose underlying vector
space is snAo, with differential d(wx) = wdx and multiplication µ(wx, wy) = wexy.

Proposition 2.11. Let A = APL(D(E)) and let Ao = APL(D(E); o). Let u ∈
APL(D(E), S(E); o) be a representative of the Euler class, and let e = ι∗(u) ∈ Ao

be its pullback. Then:

(1) The homomorphism g : Ao[e]→ APL(D(E), S(E)) given by g(wx) = x ∪ u
is a quasi-isomorphism.

(2) The product ∪ : Ao ⊗ snA −→ Ao[e] given by (x,wy) 7→ wxy is a model of
the relative cup product, that is, the following diagram commutes:

Ao ⊗ snA

f⊗g
��

∪ // Ao[e]

g

��
APL(D(E); o)⊗APL(D(E), S(E); o)

∪ // APL(D(E), S(E))

Proof. It is straightforward to verify that the proof of Theorem 2.9 is valid in the
twisted setting with the obvious modifications and using the twisted version of
Thom’s isomorphism theorem in cohomology. �

Using twisted versions of Lemmas 2.7 and 2.8, we arrive to the most general
version of the Thom isomorphism theorem at the level of cochains:

Theorem 2.12. Let ξ : E → B be a vector bundle of rank n and let o be the
orientation bundle of E. Let A and Ao be cdga models of B with trivial and twisted
coefficients respectively, and let e ∈ Ao be a representative of the twisted Euler
class. Then the cdga Ao[e] is a model of Th(ξ) and Ao ⊗ snA → Ao[e] is a model
of the relative cup product.

2.5. Lie models of Thom spaces. In the algebrisation of rational homotopy
theory of Quillen [Qui69], rational spaces are modelled by differential graded Lie
algebras (dgl’s). Each quasi-isomorphism class of dgl’s contains a canonical free
dgl that is unique up to isomorphism. If X is a simply connected space, then the
canonical dgl that models X receives the name of Quillen model of X, and its vector



WEIGHT DECOMPOSITIONS OF THOM SPACES IN RATIONAL HOMOTOPY 9

space of generators is canonically identified with the rational homology of X (here
we assume that X is a finite complex).

In our situation, the Thom isomorphism theorem gives us the basis of the Quillen
model for free, and therefore it only remains to figure out its differential.

A natural way to try to do this is to use the homotopy transfer theorem (HTT)
[LV12], which establishes a correspondence between isomorphism classes of algebra
structures on a chain complex and isomorphism classes of A∞-structures on the
homology of the chain complex. Then, an A∞-structure on the cohomology gives a
canonical differential on the free Lie algebra generated by the desuspension of the
homology. If X is a space, and A is a cdga model of X, then the HTT gives an
A∞-structure on H∗(A), from which one obtains a free dgl generated by H∗(A) ∼=
H∗(X). The latter is the Quillen model of X.

Indeed, under finitness assumptions one can apply the Quillen functor L] to the
cdga A obtaining a Quillen model of X, L](A), not necessarily minimal [FHT01,
Section 23].

The A∞ structure on H∗(A) induced by the transfer diagram gives rise to an
A∞-coalgebra structure on H∗(A), again under some finitness assumptions, which
in fact, is equivalent to a differential in the tensor algebra (TH+(A), d). The com-
mutativity of A translates into the fact that d restricts to the free Lie algebra
[BFMT17, Theorem 2.2] (LH+(A), d), which is the minimal Quillen model of L](A)
and consequently of X (cf. [BG16, Theorem 3.1]).

If one starts with the model of Th(ξ) obtained in Theorem 2.9 and applies the
HTT, the resulting A∞-structure is easily described in terms of trees, which can
be used to describe the differential in the Quillen model of Th(ξ). What we have
not been able to do, is to give the Quillen model of Th(ξ) in terms of the Quillen
model of B. We pose it as a question.

Question 2.13. Is it possible to describe the Quillen model of Th(ξ) in terms of
the Quillen model of B and the Euler class of ξ?

Here are two reasons to look for such a thing:

(1) If one wants to investigate maps to a Thom space, then in the Sullivan
approach one needs a cofibrant cdga model of the Thom space, and in the
Quillen approach one needs a fibrant dgl model of the Thom space. But
our model of Theorem 2.9 is not cofibrant. On the other hand, any dgl is
fibrant.

(2) The Quillen model of Th(ξ) is generated by H∗(Th(ξ)), which is given by
the Thom isomorphism theorem. On the other hand, the Sullivan model
of Th(ξ) is generated by the rational homotopy groups of Th(ξ), which are
usually infinite and with exponential growth (for instance, when the vector
bundle is trivial).

If the space is formal, then a trivial application of the HTT (or even, as a direct
consequence of our main theorem) exhibits the following Quillen model of Th(ξ):

Let B be a formal space with Quillen model (L(V ), d). This is equivalent to
ask V to have a ordered set of generators {vi} and the differential d has to be
quadratic and order-preserving, i.e., d(vk) =

∑
i,j<k λi,j [vi, vj ]. Let ξ : E → B

be a vector bundle with Euler class e. Let ϕe : V → V be the dual of the map
V ∗ ∼= H∗(B) → H∗+n(V ) ∼= V ∗ given by mutiplication by the Euler class. From
Theorem 2.9, one can deduce the following
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Corollary 2.14. If B is formal and ξ is orientable, the Quillen model of Th(ξ) is
(L(snV ), d̄) with differential

d̄(snvk) =
∑
i,j<k

λi,j ([snϕe(vi), s
nvj ] + [snvi, s

nϕe(vj)]).

3. Weight decompositions on Thom spaces

In this section, we study (positive) weight decompositions of Thom spaces. We
then apply our study to the theory of representability of cohomology classes by
submanifolds.

3.1. Derationalisation of maps via weight decompositions. Let X and Y be
finite complexes. Assume that we have a map f : X → YQ from X to the rationali-
sation of Y . In [Pap85, Prop. 3.1] (see also [Shi79]) it is shown that, whenever Y is
a formal simply connected space, the map f admits a derationalisation: there exists
a self homotopy equivalence h : YQ → YQ such that the map induced in cohomology
by h is given by multiplication by certain scalars, and the lifting problem

Y

��
X //

66

YQ
h // YQ

has a solution. In this section, we show that there is a more general situation in
which the derationalisation problem has a solution: the existence of positive weight
decompositions considered in [BD78] and [BMSS98].

Definition 3.1. A weight decomposition of a cdga A is a direct sum decomposition
for each n > 0,

An =
⊕
p∈Z
Anp

with d(Anp ) ⊂ An+1
p and Anp · Amq ⊂ An+m

p+q . A weight decomposition is positive if

An =
⊕
p>0

Anp for all n > 0 and A0 = A0
0.

We will say that a space X admits a (positive) weight decomposition if there is a
cdga model A −→ APL(X) with a (positive) weight decomposition.

Note that every space admits a trivial weight decomposition of weight 0, which
is clearly non-positive. However, there are examples of topological spaces which do
not admit positive weight decompositions (see [BD78]).

A weight decomposition on A makes its cohomology into a bigraded algebra:

Hn(A)p := Ker(d : Anp −→ An+1
p )/Im(d : An−1

p −→ Anp ).

We will use the following Lemma.

Lemma 3.2. Let A be a connected cdga with a (positive) weight decomposition.
Then a minimal model M−→ A admits a (positive) weight decomposition.
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Proof. It suffices to revise the construction of minimal models of connected cdga’s in
the bigraded setting. Let M[0] = Q be concentrated in degree 0 and weight 0. We
may assume that we have constructed, for all i < k, a cdgaM[i] admitting a positive
weight decomposition, together with a morphism of cdga’s f [i] : M[i] → A com-
patible with the weight decompositions and such that Hk(f [i]) is an isomorphism
for all k 6 i and Hi+1(f [i]) is a monomorphism. Denote by f [i]p :M[i]p → Ap the
morphism of complexes given by the restriction to the weight-p complexes. The
cdga M[n] is classically defined in two steps. We just need to take care of the
weights during these steps. First, let V [n, 0]p := Hn(C(fn−1,p)), where C(−) de-
notes the mapping cone. Note that, since the weight decompositions of M[n − 1]
and A are positive, we have V [n, 0]p = 0 for all p 6 0. Consider V [n, 0]p as a
bigraded vector space of cohomological degree n and weight p. We then let

M[n, 0] :=M[n− 1]⊗d Λ(
⊕
p

V [n, 0]p).

A differential d : V [n, 0]p →M[n− 1]n+1
p and a morphism f [n, 0]p : V [n, 0]p → Anp

are defined, as in the classical case, by taking a section of the projection

Zn(C(fn−1,p))� Hn(C(fn−1,p)).

A minor technical detail is that here, Λ(−) denotes the free bigraded algebra on
a bigraded vector space, and the multiplicative extension ⊗ is done by adding
cohomological degrees and weights accordingly. The f [n, 0] : M[n, 0] → A is such
that Hk(f [n, 0]) is an isomorphism for all i 6 n. The second step is done similarly,
by inductively killing the kernel of Hn+1(f [n, 0]) through extensions

M[n, 1] :=M[n, 0]⊗d Λ(
⊕
p

V [n, 1]p), where V [n, 1]p := Hn(C(f [n, 0]p)

and iterating this process until KerHn+1(f [n]) = 0, where f [n] := ∪if [n, i]. �

Formal and coformal spaces admit positive weight decompositions. In fact,
formal spaces are characterised by having a positive weight decomposition with
Hn(A)n = Hn(A), and a minimal model ΛV of a coformal space is characterised
by having a positive weight decomposition of the form V nn−1 = V n.

The following is a simple proof of the fact that weight decompositions detect
formality.

Proposition 3.3. Let A be a cdga with a weight decomposition An =
⊕
Anp . If

Hn(A)p = 0 for all p 6= n then A is a formal cdga.

Proof. Let τA be the bigraded algebra given by the canonical truncation at weight
n: τAnp = 0 for p < n, τAnp = Anp for p > n and τAnn = Ker(d) ∩ Ann with the
differential induced by that of A. It is straightforward to verify that τA, is a sub-
cdga of A. Furthermore, since Hn(A)p = 0 for all p 6= n, the inclusion is clearly
a quasi-isomorphism. Consider the natural projection τA −→ H(A) defined by
τAnn = Ker(d) ∩ Ann � Hn(A)n and sending τAnp to 0, for all p 6= n. Again, it is
clear that this projection is a quasi-isomorphism of cdga’s. �

The existence of positive weight decompositions turns out to be sufficient to
derationalise maps:
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Theorem 3.4. Let X and Y CW-complexes of finite type with X of finite di-
mension and Y simply connected. Assume that Y admits a positive weight de-
composition. If f : X → YQ is a map, then there exists a self homotopy equiva-
lence h : YQ → YQ such that, for each r > 0 there is a λr 6= 0 such that the map
hr : Hr(YQ)→ Hr(YQ) induced in cohomology by h is λr ·Id, and the lifting problem

Y

��
X //

66

YQ
h // YQ

has a solution.

Proof. The proof is parallel to that of Proposition 3.1 of [Pap85], using the char-
acterisation of weight decompositions of minimal cdga’s of [BMSS98]. We sketch
the main steps. By Lemma 3.2 we can assume that Y has a minimal model with
a positive weight decomposition. By [BMSS98, Prop. 2.3], for each λ ∈ Z \ {0},
there is a self-homotopy equivalence of YQ such that the induced homomorphism
on homotopy groups is given by multiplication by a power of λ. On the other hand,
the homotopy of the homotopy fibre of Y → YQ consists only on finitely many
torsion elements in each dimension. Take λ to be a multiple of the order of all the
torsion elements of the homotopy groups in dimension at most dimX − 1. Then,
the pushforward along hλ of the obstructions to the existence of a lift vanishes, and
therefore there is a lift. �

3.2. Formality and weight decompositions of Thom spaces. We next use
the model of the Thom space given in Theorem 2.9 to relate weight decompositions
on the base with the existence of weight decompositions on the Thom space.

We first study the formality of Thom spaces. While Thom spaces of universal
bundles of classifying spaces of connected closed subgroups of GL(Rn) are formal
(see [Pap85]), in general, this is not the case. We give an example of a non-formal
Thom space in Example 3.12 using the non-vanishing of Massey products. As a
straightforward consequence of Theorem 2.9, we show that formality of the base is
transferred to formality of the Thom space.

Proposition 3.5. Let ξ : E → B be a vector bundle. If B is formal then the Thom
space Th(ξ) is formal.

Proof. If B is formal, then we take A = H∗(B) with trivial differential as a cdga
model of B, and Theorem 2.9 gives that the algebra with trivial differential given
by the graded vector space snH∗(B) together with Q in degree 0, with the mul-
tiplication given by the Thom isomorphism theorem, is a model of Th(ξ). Hence
Th(ξ) is formal. �

Remark 3.6. The Thom space of a vector bundle of rank n is (n − 1)-connected
and, therefore, if the dimension of the base is at most 2n−2 (so that the dimension of
the Thom space is at most 3n−2), one can use [HS79, Corollary 5.16] to deduce that
Th(ξ) is intrinsically formal. For instance, this covers the case of tangent bundles of
manifolds. A modification of this argument was used in the second author’s thesis to
prove that the Thom space Th(γ⊥2,n) of the complement of the tautological bundle

over the oriented Grassmannian of 2-planes in Rn+2 is intrinsically formal. The
n-fold loop space of Th(γ⊥2,n) appeared in [CMRW17] as the target of the scanning
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map of the moduli space of surfaces in Rn, and the motivation to write this paper
came at first from the need of a description of the rational homotopy type of the
target of the scanning map for moduli spaces of high dimensional submanifolds of
Rn. This target is the n-fold loop space of a certain Thom space Th(θ∗γ⊥d,n) similar

to Th(γ⊥d,n). As long as d > 2, the argument of Halperin and Stasheff does not
apply to these Thom spaces.

As for the transfer of weight decompositions, we have:

Proposition 3.7. Let ξ : E → B be a vector bundle. Assume that B admits a
(positive) weight decomposition such that the Euler class is homogeneous in the
decomposition. Then Th(ξ) admits a (positive) weight decomposition.

Proof. Define the weight ||wx|| of wx as the weight of x plus the weight of the Euler
class: ||wx|| = ||x|| + ||e||. This gives a well-defined weight decomposition on M,
since

||dwx|| = ||wdx|| = ||dx||+ ||e|| = ||x||+ ||e|| = ||wx||
and

||wx · wy|| = ||wexy|| = ||exy||+ ||e|| = ||ex||+ ||ey|| = ||wx||+ ||wy||. �

3.3. Homology classes representable by submanifolds. Given an oriented
closed manifold M , a cohomology class c ∈ Hq(M ;Z) and an oriented submanifold
W ⊂M of codimension q, we say that W represents c if the fundamental class of W
is Poincaré dual to c. By work of Thom [Tho54], this happens if and only if c is the
pullback of the Thom class under the Pontryagin-Thom collapse map associated to
W ⊂M :

(3) M −→ Th(νW ) −→ Th(γq).

Here νW denotes the normal bundle of W in M and γq is the universal bundle over
BSO(q). Therefore, the question of whether a cohomology class c ∈ Hq(M ;Z) is
representable by a submanifold is reduced to the question of the existence of a map
φ : M → Th(γq) with φ∗(u) = c. This question was answered by Thom himself.

Following [Sto68], a structure is a fibration θ : X → BSO(q). A θ-structure on
a vector bundle ξ : X → B is a lift of the classifying map of ξ along the fibration θ.
This factorisation gives a pair of pullback diagrams

E

��

// θ∗γq

��

// γq

��
B // X // Grq(R∞) = BSO(q)

and therefore a factorisation

Th(ξ) −→ Th(θ∗γq) −→ Th(γq).

Examples of θ-structures are framings (when B = Vk,n is the Stiefel manifold of
k-frames in R∞ and θ is the map that sends a frame to the oriented plane that it
spans), spin structures (when B is the 2-connected cover of BSO(q)) or complex
structures (when q = 2k and B = BU(k)).

A θ-submanifold of M is a submanifold W ⊂ M together with a θ-structure
on its normal bundle. We have that a cohomology class c ∈ Hq(M ;Z) can be
represented by a codimension q θ-submanifold W of M if and only if there is a map
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φ : M → Th(θ∗γq) such that φ∗(u) = c, where u denotes the Thom class. In other
words, if and only if the following lifting problem has a solution:

Th(ξ)

u

��
M

;;

c // K(Z, q),

where the vertical arrow is the Thom class.
The following Theorem asserts that, whenB has a positive weight decomposition,

it is enough to solve the above lifting problem at the rational level.

Theorem 3.8. Let θ : B → BSO(n) be a structure and let ξ : E → B be the
resulting vector bundle. Suppose that B admits a positive weight decomposition and
that the Euler class is homogeneous in the decomposition. Let M be an oriented
closed manifold, and let c ∈ Hq(M ;Z) be a cohomology class. Then there exists a
multiple λc with λ ∈ Z \ {0} that is representable by a θ-submanifold if and only if
the lifting problem

Th(ξ)Q

u

��
M

;;

c // K(Z, q).

has a solution.

Proof. By Proposition 3.7, the positive weight decomposition on B induces a pos-
itive weight decomposition on the Thom space Th(ξ). Therefore by Theorem 3.4,
the lifting problem

Th(ξ)

��
M

;;

// Th(ξ)Q.

has a solution. �

Remark 3.9. There is no general argument to determine whether a cohomology
class is homogeneous with respect to some weight decomposition. In section 4.3,
we show that Hodge theory gives a criterion of homogeneity for the Euler class of
vector bundles of complex algebraic varieties (see also [Del74], Corollary 9.1.3).

The following remark was pointed out to us by the referee:

Remark 3.10. Whether a cohomology class in a manifold M is realisable by a
θ-submanifold depends only on the rational homotopy type of M . Therefore, one
may assign to each manifold and to each topological space B admiting a weight
decomposition, and to each vector bundle θ over B, the lattice in the cohomol-
ogy ring of M of those cohomology classes that are realisable by a θ-submanifold.
These lattices are a rational homotopy invariant of M that potentially refines the
cohomology ring of M . We leave open the question of how strong this invariant is.
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3.4. Massey products of Thom spaces. As is well-known, formality is closely
linked to the vanishing of higher Massey products in cohomology. We end this
section by studying Massey products of Thom spaces and the effect of the canonical
inclusion on them.

Lemma 3.11. The triple Massey product (wx, wy, wz) in H∗(Th(ξ)) is in canonical
bijection with e · (x, ey, z) = (ex, y, ez) ∈ H∗(B), and this bijection preserves 0.

Proof. The Massey product is

(wx, wy, wz) = {[wλ · wz − (−1)|x|wxwµ] | d(wλ) = wxwy and d(wµ) = wywz}
= {[weλz−(−1)|x|exµ] | d(λ) = exy and d(µ) = eyz}
= {[we(λz−(−1)|x|xµ)] | d(λ) = x(ey) and d(µ) = (ey)z}
= {[weu] | u ∈ (x, ey, z)}

The latter subset of H∗(Th(ξ)) is in bijection with e · (x, ey, z) ⊂ H∗(B) because
d(weu) = wd(eu). Moreover, this bijection preserves 0. Finally, observe that the
sets

e · (x, ey, z) = {e · (λz − (−1)|x|xµ) | dα = exy, dβ = eyz}

(ex, y, ez) = {λez − (−1)|ex|exµ) | dα = exy, dβ = eyz}
coincide. �

As a direct consequence, we have that not every Thom space is formal.

Example 3.12. Let X be the cofibre of a non-trivial triple Whitehead product
S4 → S2 ∨ S2, and let ξ : E → X × CP∞ be a vector bundle with Euler class e
the pullback of the generator of H2(CP∞). Let x, y be the pullback of the natural
generators of H2(S2∨S2). Then, writing down the minimal model of X×CP∞, one
rapidly realises that (x, ex, y) is a non-empty Massey product that does not contain
zero. Since multiplication by e is injective, the set e(x, ex, y) is also non-empty and
does not contain zero, and so does (wx, wx, wy), therefore Th(ξ) is not formal.

Remark 3.13. In [RT00], a method to produce non-formal symplectic manifolds
using Massey products in Thom spaces was introduced. Their argument, which
assumes a pre-existing non-formal symplectic manifold, is the following:

(1) Produce a smooth embedding i : M → X between symplectic manifolds
such that M has a non-trivial triple Massey product.

(2) Obtain the blow up X̃ of X along i, which is a symplectic manifold that

comes with a smooth embedding ĩ : P(νM)→ X̃ of codimension 2.
(3) Prove that if M has a non-trivial triple Massey product (x, y, z), then

P(νM) has a non-trivial triple Massey product (ex, ey, ez) as long as the
complex codimension of M in X is at least 4.

(4) Prove that under the composition P(νM) → X̃ → Th(ν(P(νM))), the
triple Massey product (wx, wy, wz) exists and is mapped to (ex, ey, ez).

(5) Therefore, (wx, wy, wz) is also non-trivial, and there is an intermediate non-

trivial triple Massey product in X̃, so X̃ is a new non-formal symplectic
manifold.

For higher Massey products there are no nice formulas, but we get maps: First,
there is a map

ek−1(aii)
k
i=1 −→ (waii)

k
i=1,
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but this map can be improved, as it factors through the map in the next lemma.

Lemma 3.14. Let ϕ(i) be 0 if i is even and 1 if i is odd, and let γ(i) = ϕ(i)− 1.
There are injective pointed maps between Massey products in B and Massey products
in Th(ξ):

eb
k−2
2 c
(
eϕ(i)xii

)k
i=1
−→ (xii ∪ u)

k
i=1

ed
k−2
2 e
(
eγ(i)xii

)k
i=1
−→ (xii ∪ u)

k
i=1 .

when k = 3, these are the bijections of Lemma 3.11. The composition of this map
and the pullback along the canonical inclusion is given by multiplication by e.

Proof. Let (A, d) be a cdga, and let {xi,i}ki=1 ⊂ A. A Massey system for {xi,i}ki=1

is a pair of sequences

{ai,j}16i6j6k, {mi,j}16i6j6k,(i,j)6=(1,k)

in A, satisfying that

(1) ai,i = 0,
(2) mi,i = xi,i,
(3) d(mi,j) = ai,j ,

(4) ai,j =
∑j−1
l=i ±mi,lml+1,j .

The product associated to this system is a1,k. Finally, the Massey product of
(xi,i)

k
i=1 is the set of all products of Massey systems for (xi,i)

k
i=1.

Define, depending on whether we are constructing the first or the second map,

s(i, j) = bj − i− ϕ(i)

2
c, s(i, j) = bj − i− γ(i)

2
c

and observe that

(1) s(i, j) = s(i, l) + s(l + 1, j) + 1,
(2) s(1, k) = bk−2

2 c for the first map and s(1, k) = dk−2
2 e for the second map.

Now, let (A, d) be a cdga model of B and let (T, δ) be the model of Th(ξ) given by
Theorem 2.9. Let yi,i = eϕ(i)xi,i (resp. yi,i = eγ(i)xi,i), and let {ai,j}, {mi,j} be a
Massey system for {yi,i}ki=1 ⊂ A. We claim that

(4)
{(
es(i,j)ai,j

)
∪ ū
}
,
{(
es(i,j)mi,j

)
∪ ū
}

is a Massey system for {xi,i ∪ ū}ki=1 ⊂ T . The first three conditions are straight-
forward to check, and for the fourth one uses the additivity property (1) of s(i, j)
remarked before:(

es(i,j)ai,j

)
∪ ū =

(
es(i,j)

j−1∑
l=i

±mi,lml+1,j

)
∪ ū

=

(
j−1∑
l=i

±e ·
(
es(i,l)mi,l

)
·
(
es(l+1,j)ml+1,j

))
∪ ū

=

j−1∑
l=i

±
((
es(i,l)mi,l

)
∪ ū
)
·
((
es(l+1,j)ml+1,j

)
∪ ū
)

This defines a map from Massey systems of {yi,i}ki=1 to Massey systems of {xi,i∪
ū}ki=1, which after taking products of the Massey systems, is given by multiplying
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the product a1,k by the adequate power of the Euler class, and then taking the
map − ∪ ū inducing the Thom isomorphism. That these maps send zero to zero

is clear from the construction: if a1,k is a coboundary, then
(
eb

k−1
2 ca1,k

)
∪ u is a

coboundary too.
Now, we look at the pullback of (4) along the canonical map ι : B → Th(ξ),

which is

{es(i,j)+1ai,j}, {es(i,j)+1mi,j},
and so the composite of the map of the lemma and the pullback is multiplication
by the Euler class. �

4. Positive weight decompositions for smooth varieties and
application to motivic Thom spaces

In this section, we show that mixed Hodge theory naturally gives rise to func-
torial weight decompositions, which are always positive for smooth varieties. We
then study Thom spaces of complex vector bundles on smooth complex varieties.
Specifically, we use Theorem 2.9 to describe the mixed Hodge structures on the
rational homotopy type of motivic Thom spaces.

4.1. Mixed Hodge structures give weight decompositions. We first study
the relation of mixed Hodge structures with weight decompositions.

Definition 4.1. A mixed Hodge structure on a finite dimensional rational vector
space V is given by an increasing filtration W of V , called the weight filtration,
together with a decreasing filtration F on VC := V ⊗QC, called the Hodge filtration,
such that for all m > 0, each graded vector space GrWm V := WmV/Wm−1V carries a
pure Hodge structure of weightm given by the filtration induced by F onGrWm V⊗C,
i.e., there is a direct sum decomposition

GrWm V ⊗ C =
⊕

p+q=m

V p,q where V p,q = F p(GrWm V ⊗ C) ∩ F q(GrWm V ⊗ C) = V
q,p
,

and K denotes complex conjugation of K.

Morphisms of mixed Hodge structures are given by morphisms f : V → V ′ of
vector spaces compatible with filtrations: f(WmV ) ⊂WmV

′ and f(F pVC) ⊂ F pV ′C.
To compare mixed Hodge structures and weight decomposition we will use the

following result on the splitting of mixed Hodge structures:

Lemma 4.2 ([Del71], 1.2.11). Let (V,W,F ) be a mixed Hodge structure. Then
VC := V ⊗Q C admits a direct sum decomposition VC =

⊕
Ii,j such that the filtra-

tions W and F defined on VC are given by

WmVC =
⊕

i+j6m

Ii,j and F pVC =
⊕
i>p

Ii,j .

This decomposition is functorial for morphisms of mixed Hodge structures.

Definition 4.3. A filtered cdga (A,W ) is a cdga A together with a filtration
{WpAn} indexed by Z on each An such that Wp−1An ⊂ WpAn, d(WpAn) ⊂
WpA

n+1, and WpAn ·WqAm ⊂Wp+qAn+m.
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Remark 4.4. Let A be a cdga. Then a weight decomposition An =
⊕
Anp for

A gives a filtered cdga (A,W ) by letting WpAn :=
⊕

q6pAnq . The converse is

not true in general: if (A,W ) is a filtered cdga, one cannot always find a weight
decomposition An =

⊕
Anp satisfying WpAn :=

⊕
q6pAnq . We will next see that

mixed Hodge structures make this possible.

Definition 4.5. A mixed Hodge cdga is a filtered cdga (A,W ) defined over Q,
together with a filtration F on AC := A⊗ C, such that

(i) for each n > 0, the triple (An,W, F ) is a mixed Hodge structure and
(ii) the differentials d : An → An+1 and products An × Am → An+m are mor-

phisms of mixed Hodge structures.

Lemma 4.6. Every mixed Hodge cdga A admits a weight decomposition An =⊕
Anp such that WpAn =

⊕
q6pAnq .

Proof. We follow a similar argument to that of Lemma 3.20 of [CG14] on the relation
between a mixed Hodge cdga and its associated weight spectral sequence (see also
[Mor78], Theorem 9.6). By Lemma 4.2 we have functorial decompositions

AnC =
⊕

Ip,qn , with WpAnC =
⊕
i+j6p

Ii,jn .

Since both the differential and products of A are morphisms of mixed Hodge struc-
tures, we have

d(Ip,qn ) ⊂ Ip,qn+1 and Ip,qn · Ip
′,q′

n′ ⊂ Ip+p
′,q+q′

n+n′ .

Define
Anp :=

⊕
i+j=p

Ii,jn .

We next check that this is a weight decomposition for AC. Indeed, we have:

d(Anp ) =
⊕
i+j=p

dIi,jn ⊂
⊕
i+j=p

Ii,jn+1 = An+1
p .

As for the compatibility of products:

Anp · An
′

p′ =
⊕
i+j=p

Ii,jn ·
⊕

i′+j′=p′

Ii
′,j′

n′ ⊂
⊕
i+j=p
i′+j′=p′

Ii+i
′,j+j′

n+n′ = An+n′

p+p′ .

Clearly, we have thatWpAnC =
⊕

q6pAnq . Now, by the theory of descent of splittings

of [CH, Theorem 4.3], this weight decomposition descends to a decomposition over
Q. �

4.2. Mixed Hodge structures in rational homotopy. Deligne’s weight filtra-
tion on the rational cohomology Hk(X;Q) of a complex algebraic variety X is
bounded by:

0 = W−1H
k(X;Q) ⊂W0H

k(X;Q) ⊂ · · · ⊂W2kH
k(X;Q) = Hk(X;Q).

If X is projective then WkH
k(X;Q) = Hk(X;Q), while if X is smooth then

Wk−1H
k(X;Q) = 0. In particular, for a smooth projective variety, the weight

filtration on Hk(X;Q) is pure of weight k.
It was proven by Morgan [Mor78] for smooth complex varieties and by Hain

[Hai87] and Navarro-Aznar [NA87] independently for possibly singular varieties,
that the rational homotopy type of every complex algebraic variety carries mixed
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Hodge structures in a certain functorial way. A consequence of this result is the
following. For simplicity, we restrict to simply connected spaces.

Theorem 4.7 ([CG14], Theorem 3.17). For every simply connected complex alge-
braic variety X there exists a mixed Hodge cdga (A,W, F ) such that A ' APL(X),
with

0 = W−1Ak ⊂W0Ak ⊂ · · · ⊂Wp−1Ak ⊂WpAk ⊂ · · · ⊂W2kAk = Ak.

Furthermore, if X is projective then WkAk = Ak, while if X is smooth then
Wk−1Ak = 0. The induced mixed Hodge structure on Hk(X;Q) is Deligne’s mixed
Hodge structure.

Remark 4.8. For the smooth case, the above result is due to Morgan [Mor78].
The definition of mixed Hodge cdga of [CG14] differs by a décalage from the one
introduced here. This does not affect the above result. Also, in Theorem 3.17 of
[CG14], the bounds on the weight filtration are not stated explicitly. However, they
can be directly deduced from the proof of the theorem.

The restriction to simply connected varieties is to make sure that the model will
be of finite type, since mixed Hodge structures are defined on finite dimensional
vector spaces. However, a careful study of the model construction of [CG14] shows
that one can get a model in which every degree is a colimit of mixed Hodge struc-
tures admitting weight decompositions. Hence the following result is also valid in
the non-finite type case (see also [CH]).

Theorem 4.9. Let X be a complex algebraic variety. Then its homotopy type
admits a functorial weight decomposition A =

⊕
p>0Anp such that Hn(A)p ∼=

GrWp H
n(X;Q), where W denotes Deligne’s weight filtration. If X is a smooth

variety then the weight decomposition is positive.

Proof. By Theorem 4.7 we may assume that A ' APL(X) is a mixed Hodge cdga
such that W−1An = 0 (Wn−1An = 0 if X is smooth). The proof now follows from
Lemma 4.6. �

4.3. Motivic Thom spaces. Let ξ : E −→ B be a rank k complex vector bundle
over a smooth complex variety B. Denote by s : B −→ E the zero section. The
Thom space of ξ is defined by the homotopy quotient

Th(ξ) = E/(E − s(B)).

Here the complement of the zero section is the algebraic analogue of the sphere
bundle. The homotopy equivalences E ' D(E) and E − s(B) ' S(B) allow us to
identify this construction with the topological definition of the Thom space.

In general, the Thom space of an algebraic vector bundle is not an algebraic va-
riety. This is due to the nonexistence of colimits in algebraic geometry. However, it
is by construction a motivic space in the sense of Voevodsky [Voe98]. In particular,
via the mixed Hodge realisation functor, the cohomology of Th(ξ) carries a mixed
Hodge structure (see [Hub95]). In fact, the mixed Hodge structure may also be
obtained using the relative cohomology of B and E − s(B) (see 8.3.8 of [Del74]).

Furthermore, being defined as a homotopy limit, the rational homotopy type
of Th(ξ) carries mixed Hodge structures compatible with the natural map B −→
Th(ξ). Indeed, by taking the Thom-Whitney simple

sTW (A(∗)×A(E)⇒ A(E − s(B))) ,
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where A : SchC −→ Ho(MHD) denotes Navarro-Aznar’s functor (see [NA87]), one
obtains a mixed Hodge diagram whose rational component is the rational homotopy
type of Th(ξ).

We next use the model of the Thom space given in Theorem 2.9 to provide an
explicit simple description of these mixed Hodge structures, in terms of the mixed
Hodge structures on APL(B).

Theorem 4.10. Let ξ : E −→ B be a rank k complex vector bundle over a smooth
complex variety B. The rational homotopy type APL(Th(ξ)) of the Thom space
carries mixed Hodge structures compatible with the map ι : B −→ Th(ξ). Further-
more:

(1) The induced mixed Hodge structure in cohomology coincides with Deligne’s
mixed Hodge structure.

(2) The morphism −∪u : A∗ −→ A[e]∗+k of Theorem 2.9 becomes an isomorphism
of differential graded mixed Hodge structures.

Proof. By Theorem 4.7 we can take a model of B to be a mixed Hodge cdga
(A,W, F ). Let M be the cdga model of Th(ξ) given by Theorem 2.9. Define
filtrations W and F on M by letting

WpMn := Wp−2k(s2kA)n = Wp−2kAn−2k and F pMn
C := F p−k(s2kAC)n.

The characteristic classes of a complex fiber bundle over every complex algebraic
variety are pure of type (k, k) (see for example [Del74], Corollary 9.1.3). Since
the Euler class is the top Chern class, this implies that e is pure of type (k, k).
Therefore we have e ∈ W2kA2k \W2k−1A2k and e ⊗ C ∈ F kA2k \ F k−1A2k. As
a consequence, the filtrations W and F defined above for M are compatible with
products and differentials, hence condition (ii) in Definition 4.5 holds. It only
remains to check condition (i), i.e., that for all n > 0, the triple (Mn,W, F ) is a
mixed Hodge structure. This follows from the fact that Mn = An−2k(−k) is the
−k-Tate twist of An−2k (see for example Section 3.1 of [PS08]). We next provide a
quick proof for completeness: Since (An−2k,W, F ) is a mixed Hodge structure, we
have a direct sum decomposition

GrWmAn−2k
C =

⊕
p+q=m

V p,q

where V p,q = F pAn−2k
C ∩ F qAn−2k

C . Let us show that the vector spaces Up,q :=
V p−k,q−k give the decomposition for (A[e]n,W, F ). Indeed, we have:

GrWmA[e]nC = GrWm−2kAn−2k
C =

⊕
p+q=m−2k

V p,q =
⊕

p+q=m

Up,q.

Therefore we have

Up,q = V p−k,q−k = F p−kAn−2k
C ∩ F q−kAn−2k

C = F pA[e]nC ∩ F
qA[e]nC.

This proves that (M,W, F ) is a mixed Hodge cdga.
By construction, the morphism M −→ A defined via multiplication by e is

compatible with filtrations, hence a morphism of mixed Hodge cdga’s.
We now prove (1). The mixed Hodge structure induced on Hn(Th(ξ);Q) is just

the −k-Tate twist of Hn−2k(B). This is the only mixed Hodge structure making the
map H∗(Th(ξ);Q) ∼= H∗−2k(B) −→ H∗(B), given by a 7→ a · e, strictly compatible
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with filtrations. Therefore it coincides with Deligne’s mixed Hodge structure. The
isomorphism − ∪ u : A∗ −→ A[e]∗+2k of (2) now follows trivially. �

Corollary 4.11. Let ξ : E −→ B be a rank k complex vector bundle over a smooth
complex variety B. The rational homotopy type of the Thom space Th(ξ) carries a
positive weight decomposition. In particular, Theorem 3.8 applies.

Proof. This follows from the proof of the previous theorem together with Lemma
4.6. �

Alternatively, by Theorem 4.9, B carries a positive weight decomposition. Also,
note that a key point in the proof of Theorem 4.10 is the fact that the Euler class
is pure of type (k, k) in H2k(B;Q). In particular, the hypotheses of Proposition
3.7 are satisfied and Theorem 3.8 applies to give:

Corollary 4.12. Let ξ : E −→ B be a rank k complex vector bundle over a smooth
complex variety B, with structure θ : B → BSO(n). Let M be an oriented closed
manifold and let c ∈ Hq(M ;Z) be a cohomology class. Then there exists a multiple
λc with λ ∈ Z\{0} that is representable by a θ-submanifold if and only if the lifting
problem

Th(ξ)Q

u

��
M

;;

c // K(Z, q).

has a solution.
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