ORIGINAL RESEARCH

Impact of Diabetes on 10-Year Outcomes Following ST-Segment–Elevation Myocardial Infarction: Insights From the EXAMINATION-EXTEND Trial

Francesco Spione, MD; Victor Arevalos, MD; Rami Gabani, MD; Luis Ortega-Paz, MD, PhD; Josep Gomez-Lara, MD, PhD; Victor Jimenez-Diaz, MD, PhD; Marcelo Jimenez, MD; Pilar Jiménez-Quevedo, MD; Guillermo Bastos-Fernandez, MD; Andrés Iríñquez, MD, PhD; Gianluca Campo, MD, PhD; Antonio Silvestro, MD; Jaume Maristany, MD, PhD; Xacobe Flores, MD, PhD; Loreto Oyarzabal, MD; Antonio Serra, MD, PhD; Javier Pineda, MD, PhD; Alfonso Ielasi, MD, PhD; Maurizio Tespili, MD, PhD; Mattie Lenzen, MD, PhD; Nieves Gonzalo, MD, PhD; Pascual Bordes, MD; Matteo Tebaldi, MD; Simone Biscaglia, MD; Soheil Al-Shaibani, MD; Rafael Romaguera, MD; Joan Antoni Gomez-Hospital, MD, PhD; Josep Rodes-Cabau, MD, PhD; Patrick W. Serruys, MD, PhD; Manel Sabaté, MD, PhD; Salvatore Brugaletta, MD, PhD

BACKGROUND: Long-term outcomes of ST-segment–elevation myocardial infarction in patients with diabetes have been barely investigated. The objective of this analysis from the EXAMINATION-EXTEND (10-Years Follow-Up of the EXAMINATION trial) trial was to compare 10-year outcomes of patients with ST-segment–elevation myocardial infarction with and without diabetes.

METHODS AND RESULTS: Of the study population, 258 patients had diabetes and 1240 did not. The primary end point was patient-oriented composite end point of all-cause death, any myocardial infarction, or any revascularization. Secondary end points were the individual components of the primary combined end point, cardiac death, target vessel myocardial infarction, target lesion revascularization, and stent thrombosis. All end points were adjusted for potential confounders. At 10 years, patients with diabetes showed a higher incidence of patient-oriented composite end point compared with those without (46.5% versus 33.0%; adjusted hazard ratio [HR], 1.31 [95% CI, 1.05–1.61]; \(P =0.016 \)) mainly driven by a higher incidence of any revascularization (24.4% versus 16.6%; adjusted HR, 1.61 [95% CI, 1.19–2.17]; \(P =0.002 \)). Specifically, patients with diabetes had a higher incidence of any revascularization during the first 5 years of follow-up (20.2% versus 12.8%; adjusted HR, 1.57 [95% CI, 1.13–2.19]; \(P =0.007 \)) compared with those without diabetes. No statistically significant differences were found with respect to the other end points.

CONCLUSIONS: Patients with ST-segment–elevation myocardial infarction who had diabetes had worse clinical outcome at 10 years compared with those without diabetes, mainly driven by a higher incidence of any revascularizations in the first 5 years.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04462315.

Key Words: diabetes ■ drug-eluting stent ■ percutaneous coronary intervention ■ ST-segment–elevation myocardial infarction

Correspondence to: Salvatore Brugaletta, MD, PhD, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, c/Villarroel 170, 08036 Barcelona, Spain. Email: sabrugaletta@gmail.com

For Sources of Funding and Disclosures, see page 8.

© 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

J Am Heart Assoc. 2022;11:e025885. DOI: 10.1161/JAHA.122.025885
Spione et al 10-Year Outcomes of Patients With Diabetes-STEMI

Diabetes is a critical global health problem representing an important, independent risk factor conferring a 2-fold excess risk of coronary heart disease, ischemic stroke, and vascular death. Patients with diabetes constitute about 30% to 40% of all patients undergoing percutaneous coronary intervention (PCI), and they are burdened with worse clinical and angiographic outcomes compared with patients without diabetes. Furthermore, diabetes is often associated with unfavorable coronary anatomy because of a greater atherosclerosis burden and blood thrombogenicity, resulting in a higher risk of stent-related events and adverse cardiovascular events after PCI, especially in a thrombotic clinical situation such as ST-segment—elevation myocardial infarction (STEMI).

Outcomes of patients with STEMI who have diabetes and are undergoing PCI have been improved by the use of a drug-eluting stent. However, it is known that outcomes may be influenced by the type of stent implanted up to 5 years of follow-up, but thereafter it is rather dependent on patient-related factors. The role of diabetes in influencing outcomes beyond 5 years is unknown.

We aim to analyze 10-year outcomes of patients with STEMI according to diabetes.

METHODS

The data that support the findings of this study are available from the corresponding author on reasonable request.

Patients and Study Design

This is a post hoc analysis study from the all-comer, multicenter, controlled and randomized EXAMINATION-EXTEND trial (10-Years Follow-Up of the EXAMINATION trial). The EXAMINATION (Clinical Evaluation of the Xience-V Stent in Acute Myocardial Infarction) trial (NCT00828087) compared clinical outcomes of everolimus-eluting stent (Xience; Abbott Vascular, Santa Clara, CA) and Multilink Vision bare metal stent (Abbott Vascular) in 1504 patients with STEMI (randomized 1:1). It was an all-comers, multicenter, prospective, randomized, 2-arm, single-blind, controlled trial with broad inclusion criteria and few exclusion criteria, to ensure an all-comers population representative of routine clinical practice.

The primary end point was a patient-oriented composite end point of all-cause death, any myocardial infarction, and any revascularization at 1 year, whereas the secondary end point was a device-oriented combined end point of cardiac death, target vessel myocardial infarction, and ischemia-driven target vessel revascularization at 1 year. All end points were examined at 1 year and yearly up to 5 years. The EXAMINATION trial completed follow-up at 5 years and was reinitiated as the EXAMINATION-EXTEND study to evaluate patient- and device-oriented composite end points at 10 years.

The EXAMINATION-EXTEND study is registered at ClinicalTrials.gov (NCT04462315) as an investigator-driven extension of follow-up of the EXAMINATION trial. Ethical approval for this study was granted at the institutions of the principal investigators (Hospital Clinic and Hospital Bellvitge, Barcelona, Spain). All patients provided written informed consent. The results of the EXAMINATION-EXTEND trial have been previously reported. Data for this substudy were treated in the same way as in the main trial, without any specifics.

Nonstandard Abbreviations and Acronyms

- POCE: patient-oriented combined end point
- TVR: target vessel revascularization

CLINICAL PERSPECTIVE

What Is New?
- Role of diabetes in influencing outcomes in patients with ST-segment—elevation myocardial infarction beyond 5 years is unknown.
- Our analysis is the first 10-year follow-up in patients with ST-segment—elevation myocardial infarction who have diabetes.
- Diabetes plays a continuous active role in determining outcomes in patients with ST-segment—elevation myocardial infarction up to 10 years, with a higher incidence of any revascularizations in the first 5 years of follow-up.

What Are the Clinical Implications?
- Patients with diabetes have a higher risk of stent-related events and adverse cardiovascular events after percutaneous coronary intervention, especially in a thrombotic clinical situation such as ST-segment—elevation myocardial infarction.
- Future studies should be focused on either dedicated stents on population with diabetes or specific long-term pharmacological treatments.

D iabetes is a critical global health problem representing an important, independent risk factor conferring a 2-fold excess risk of coronary heart disease, ischemic stroke, and vascular death. Patients with diabetes constitute about 30% to 40% of all patients undergoing percutaneous coronary intervention (PCI), and they are burdened with worse clinical and angiographic outcomes compared with patients without diabetes. Furthermore, diabetes is often associated with unfavorable coronary anatomy because of a greater atherosclerosis burden and blood thrombogenicity, resulting in a higher risk of stent-related events and adverse cardiovascular events after PCI, especially in a thrombotic clinical situation such as ST-segment—elevation myocardial infarction (STEMI).

Outcomes of patients with STEMI who have diabetes and are undergoing PCI have been improved by the use of a drug-eluting stent. However, it is known that outcomes may be influenced by the type of stent implanted up to 5 years of follow-up, but thereafter it is rather dependent on patient-related factors. The role of diabetes in influencing outcomes beyond 5 years is unknown.

We aim to analyze 10-year outcomes of patients with STEMI according to diabetes.

METHODS

The data that support the findings of this study are available from the corresponding author on reasonable request.

Patients and Study Design

This is a post hoc analysis study from the all-comer, multicenter, controlled and randomized EXAMINATION-EXTEND trial (10-Years Follow-Up of the EXAMINATION trial). The EXAMINATION (Clinical Evaluation of the Xience-V Stent in Acute Myocardial Infarction) trial (NCT00828087) compared clinical outcomes of everolimus-eluting stent (Xience; Abbott Vascular, Santa Clara, CA) and Multilink Vision bare metal stent (Abbott Vascular) in 1504 patients with STEMI (randomized 1:1). It was an all-comers, multicenter, prospective, randomized, 2-arm, single-blind, controlled trial with broad inclusion criteria and few exclusion criteria, to ensure an all-comers population representative of routine clinical practice.

The primary end point was a patient-oriented composite end point of all-cause death, any myocardial infarction, and any revascularization at 1 year, whereas the secondary end point was a device-oriented combined end point of cardiac death, target vessel myocardial infarction, and ischemia-driven target vessel revascularization at 1 year. All end points were examined at 1 year and yearly up to 5 years. The EXAMINATION trial completed follow-up at 5 years and was reinitiated as the EXAMINATION-EXTEND study to evaluate patient- and device-oriented composite end points at 10 years.

The EXAMINATION-EXTEND study is registered at ClinicalTrials.gov (NCT04462315) as an investigator-driven extension of follow-up of the EXAMINATION trial. Ethical approval for this study was granted at the institutions of the principal investigators (Hospital Clinic and Hospital Bellvitge, Barcelona, Spain). All patients provided written informed consent. The results of the EXAMINATION-EXTEND trial have been previously reported. Data for this substudy were treated in the same way as in the main trial, without any specifics.

Nonstandard Abbreviations and Acronyms

- POCE: patient-oriented combined end point
- TVR: target vessel revascularization

D iabetes is a critical global health problem representing an important, independent risk factor conferring a 2-fold excess risk of coronary heart disease, ischemic stroke, and vascular death. Patients with diabetes constitute about 30% to 40% of all patients undergoing percutaneous coronary intervention (PCI), and they are burdened with worse clinical and angiographic outcomes compared with patients without diabetes. Furthermore, diabetes is often associated with unfavorable coronary anatomy because of a greater atherosclerosis burden and blood thrombogenicity, resulting in a higher risk of stent-related events and adverse cardiovascular events after PCI, especially in a thrombotic clinical situation such as ST-segment—elevation myocardial infarction (STEMI).

Outcomes of patients with STEMI who have diabetes and are undergoing PCI have been improved by the use of a drug-eluting stent. However, it is known that outcomes may be influenced by the type of stent implanted up to 5 years of follow-up, but thereafter it is rather dependent on patient-related factors. The role of diabetes in influencing outcomes beyond 5 years is unknown.

We aim to analyze 10-year outcomes of patients with STEMI according to diabetes.

METHODS

The data that support the findings of this study are available from the corresponding author on reasonable request.

Patients and Study Design

This is a post hoc analysis study from the all-comer, multicenter, controlled and randomized EXAMINATION-EXTEND trial (10-Years Follow-Up of the EXAMINATION trial). The EXAMINATION (Clinical Evaluation of the Xience-V Stent in Acute Myocardial Infarction) trial (NCT00828087) compared clinical outcomes of everolimus-eluting stent (Xience; Abbott Vascular, Santa Clara, CA) and Multilink Vision bare metal stent (Abbott Vascular) in 1504 patients with STEMI (randomized 1:1). It was an all-comers, multicenter, prospective, randomized, 2-arm, single-blind, controlled trial with broad inclusion criteria and few exclusion criteria, to ensure an all-comers population representative of routine clinical practice.

The primary end point was a patient-oriented composite end point of all-cause death, any myocardial infarction, and any revascularization at 1 year, whereas the secondary end point was a device-oriented combined end point of cardiac death, target vessel myocardial infarction, and ischemia-driven target vessel revascularization at 1 year. All end points were examined at 1 year and yearly up to 5 years. The EXAMINATION trial completed follow-up at 5 years and was reinitiated as the EXAMINATION-EXTEND study to evaluate patient- and device-oriented composite end points at 10 years.

The EXAMINATION-EXTEND study is registered at ClinicalTrials.gov (NCT04462315) as an investigator-driven extension of follow-up of the EXAMINATION trial. Ethical approval for this study was granted at the institutions of the principal investigators (Hospital Clinic and Hospital Bellvitge, Barcelona, Spain). All patients provided written informed consent. The results of the EXAMINATION-EXTEND trial have been previously reported. Data for this substudy were treated in the same way as in the main trial, without any specifics.

Nonstandard Abbreviations and Acronyms

- POCE: patient-oriented combined end point
- TVR: target vessel revascularization
point, cardiac death, target vessel MI and target lesion revascularization, and stent thrombosis. End points were defined according to the Academic Research Consortium definitions.12

All adverse events were reviewed, adjudicated, and classified by a Clinical Event Committee (Barcicore Lab, Barcelona, Spain).

All the end points have been stratified according to the presence of diabetes. Patients with diabetes were defined as those patients who were treated with insulin or hypoglycemic agents at the time of the primary PCI procedure.

Statistical Analysis

Continuous variables are presented as mean and SD (or medians and interquartile ranges, whenever appropriate), and categorical variables were expressed as absolute and relative frequency. Variables were compared using standardized difference, defined as difference in means or proportions divided by SE. For time-to-event variables, survival curves were constructed using Kaplan-Meier estimates, and hazard ratios (HRs) (95% CIs) are displayed using Cox regression model adjusted for clinical confounders that were considered of clinical significance (age, sex, previous smoker, arterial hypertension, hyperlipidemia, family cardiovascular history, cardiovascular history (previous myocardial infarction, PCI, coronary artery bypass graft, or stroke), clinical condition (primary PCI [<12 hours], rescue PCI, PCI after successful thrombolysis, and late comer [>12 and <48 hours]), clinical status on admission (Killip), infarct-related artery, multivessel disease, cardiogenic shock, congestive heart failure, ejection fraction, and procedural characteristics.

Two-tailed *P*<0.05 was considered as significant. The SAS v.9.4 software was used for all analyses.

RESULTS

Baseline and Procedural Characteristics

Of 1498 patients recruited, 258 (17.2%) had diabetes and 1240 (82.8%) did not. Among patients with diabetes, 45 (17.2%) were treated with insulin. Complete

![Figure 1. Flowchart of the study up to 10-year follow-up.](http://ahajournals.org)

A total of 1498 patients were initially recruited. At 10 years, clinical follow-up was obtained in 95.2% of the patients.
10-year follow-up was obtained in 244 (94.5%) patients with and 1183 (95.4%) without diabetes (Figure 1).

Baseline characteristics according to the presence of diabetes are presented in Table 1. Diabetes was significantly associated with advanced age, higher body mass index, higher rate of hyperlipemia, and reduced left ventricular ejection fraction at discharge. Conversely, patients without diabetes were more often previous smokers and with familiar history of cardiovascular disease. Procedural characteristics of the primary PCI are shown in Table 2.

Clinical Outcomes of Patients With STEMI With Versus Without Diabetes

At 10 years, patients with diabetes exhibited a higher incidence of POCE (Figure 2A) compared with those without (46.5% versus 33.0%; adjusted HR, 1.31 [95% CI, 1.05–1.61]; \(P=0.016\)), mainly driven by a higher incidence of any revascularization (24.4% versus 16.6%; adjusted HR, 1.61 [95% CI, 1.19–2.17]; \(P=0.002\)) (Figure 2D). No statistically significant differences were found with respect to all-cause death (29.5%...
versus 19.0%; adjusted HR, 1.23 [95% CI, 0.94–1.62];
P = 0.139) (Figure 2B) and to any MI (7.8% versus 5.3;
adjusted HR, 1.60 [95% CI, 0.94–2.74];
P = 0.085)
(Figure 2C). Within any revascularization, differences
were in terms of non–target vessel revascularization
(non-TVR) (11.6% versus 6.0%; adjusted HR, 1.89
[95% CI, 1.20–2.99];
P = 0.006), but not of TVR (12.8%
versus 10.6%; adjusted HR, 1.35 [95% CI, 0.90–2.00];
P = 0.14). No interaction was found in terms of TVR be-
tween diabetes and type of stent used at the time of
the index revascularization (Table 3).

Low incidence of definite/probable stent thrombosis
was found at 10 years without difference between pa-
tients with versus those without diabetes (2.3% versus
2.9%; adjusted HR, 0.81 [95% CI, 0.51–1.27];
P = 0.61). No differences were found in terms of other end points.
Landmark analyses of POCE and its individual com-
ponents are shown in Figure 3. There was insufficient
evidence of a significant difference in the incidence of
POCE in patients with diabetes versus those without (at
the prespecified α of 0.05) either between 0 and 5 years
(28.3% versus 20.4%; adjusted HR, 1.26 [95% CI, 0.96–
1.66];
P = 0.09) or between 5 and 10 years (25.0% versus
15.7%; adjusted HR, 1.35 [95% CI, 0.96–1.90];
P = 0.08)
(Figure 3A). Specifically, in the first 5 years, any revascular-
ization was higher in patients with diabetes versus those
without (20.2% versus 12.8%; adjusted HR, 1.57 [95%
CI, 1.13–2.19];
P = 0.007), but not afterwards (5.7% versus
4.7%; adjusted HR, 1.62 [95% CI, 0.79–3.33];
P = 0.19)
(Figure 3D). No difference was found in terms of all-cause
death and any MI either between 0 and 5 years or be-
tween 5 and 10 years (Figure 3B and 3C).

The 10-Year POCE, Mortality, and
Revascularization Predictors in Patients
With Diabetes

At multivariate analysis, age (HR, 1.05 [95% CI, 1.03–
1.07]) and previous MI (HR, 3.17 [95% CI, 1.73–5.78])
were independent predictors of 10-year POCE. Age
(HR, 1.14 [95% CI, 1.10–1.17]) and previous smoker (HR,
1.72 [95% CI, 1.05–2.81]) were independent predic-
tors of 10-year mortality. At competitive risk analysis,
hyperlipidemia (HR, 0.43 [95% CI, 0.23–0.80]), manual
thrombectomy (HR, 0.53 [95% CI, 0.29–0.97]), llb/illa in-
hibitor at procedure (HR, 2.00 [95% CI, 1.13–3.52]), and
number of stents (HR, 0.25 [95% CI, 0.07–0.93]) were
independent predictors of 10-year revascularization.

Table 2. Procedural Characteristics of Primary PCI

| Procedural characteristics | Patients with diabetes (n=258) | Patients without diabetes (n=1240) | Standardized differences
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI flow before PCI ≤1, n (%)</td>
<td>157 (60.9)</td>
<td>845 (68.1)</td>
<td>0.17</td>
</tr>
<tr>
<td>Anticoagulation regimen, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfractionated heparin</td>
<td>202 (78.3)</td>
<td>987 (79.6)</td>
<td>−0.03</td>
</tr>
<tr>
<td>Low-molecular-weight heparin</td>
<td>24 (9.3)</td>
<td>109 (8.8)</td>
<td>0.02</td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>24 (9.3)</td>
<td>81 (6.5)</td>
<td>0.10</td>
</tr>
<tr>
<td>Antiplatelet regimen, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin before PCI</td>
<td>243 (94.2)</td>
<td>1145 (92.3)</td>
<td>0.07</td>
</tr>
<tr>
<td>Clopidogrel before PCI</td>
<td>244 (94.6)</td>
<td>1174 (94.7)</td>
<td>−0.00</td>
</tr>
<tr>
<td>llb/illa inhibitor, n (%)</td>
<td>115 (44.6)</td>
<td>670 (54.0)</td>
<td>−0.19</td>
</tr>
<tr>
<td>Manual thrombectomy, n (%)</td>
<td>155 (60.1)</td>
<td>621 (66.2)</td>
<td>−0.13</td>
</tr>
<tr>
<td>Type of stent, n (%)</td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>EES/DES</td>
<td>137 (53.1)</td>
<td>614 (46.5)</td>
<td></td>
</tr>
<tr>
<td>Multilink vision/BMS</td>
<td>121 (46.9)</td>
<td>626 (50.5)</td>
<td></td>
</tr>
<tr>
<td>Direct stenting, n (%)</td>
<td>128 (49.6)</td>
<td>757 (61.1)</td>
<td>−0.23</td>
</tr>
<tr>
<td>Predilation, n (%)</td>
<td>126 (48.8%)</td>
<td>458 (36.9%)</td>
<td>0.24</td>
</tr>
<tr>
<td>Postdilatation, n (%)</td>
<td>38 (14.7)</td>
<td>183 (14.8)</td>
<td>−0.00</td>
</tr>
<tr>
<td>Overlapping stent, n (%)</td>
<td>77 (29.8)</td>
<td>327 (26.4)</td>
<td>0.08</td>
</tr>
<tr>
<td>No. of stents, mean (SD)</td>
<td>1.4 (0.7)</td>
<td>1.4 (0.6)</td>
<td>0.08</td>
</tr>
<tr>
<td>Total stent length, median (IQR), mm</td>
<td>23 (18–35)</td>
<td>23 (18–35)</td>
<td>0.05</td>
</tr>
<tr>
<td>Stent diameter, median (IQR), mm</td>
<td>3 (3–3.5)</td>
<td>3 (3–3.5)</td>
<td>−0.05</td>
</tr>
<tr>
<td>TIMI flow after PCI ≥2, n (%)</td>
<td>252 (97.7)</td>
<td>1203 (96.9)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

BMS indicates bare metal stent; DES, drug-eluting stent; EES, everolimus-eluting stent; IQR, interquartile range; PCI, percutaneous coronary intervention, and TIMI, thrombolysis in myocardial infarction.

*Standardized difference = difference in means or proportions divided by standard error.
The main findings of this substudy of the EXAMINATION-EXTEND trial can be summarized as following: (1) at 10-year follow-up, patients with STEMI who have diabetes have worse clinical outcomes compared with those without diabetes, mainly attributable to higher incidence of any revascularization; (2) within any revascularization, non-TVR was more common in patients with diabetes versus those without; (3) specifically looking at the landmark analyses, the cumulative incidence of any revascularization was significantly higher in patients with diabetes in the time between 0 and 5 years of follow-up, but not between 5 and 10 years, compared with patients without diabetes; and (4) in patients with diabetes, age and previous MI were the independent predictors of POCE.

Previous studies have shown worse PCI outcomes in patients with diabetes versus those without up to 5 years of follow-up.8,13–15 Our study extends this observation to a longer-term outcome of 10 years in a particularly interesting population of patients with STEMI. As a matter of fact, patients with STEMI represent a population with an acute thrombotic milieu, in whom follow-up may vary much, with some patients asymptomatic for many years and some others with many recurrent events. These varying events at follow-up are known to be influenced by the type of stent implanted at the culprit event up to 5 years, but not thereafter, where clinical factors, such as diabetes, may be more important than drug-eluting stent in determining such late outcomes.10,16 Our study, specifically focusing on 10-year outcomes, shows that diabetes plays a continuous active role in determining outcomes in patients with diabetes.
with STEMI, with POCE curves continuing to diverge over time, either during the first 5 years or between 5 and 10 years of follow-up (Figure 3A).

Overall, impaired outcomes of patients with STEMI who have diabetes are mainly driven by a high incidence of any revascularization: the profound metabolic disorder associated with diabetes determines a more aggressive and extensive coronary atherosclerosis that is inevitably associated with a higher incidence of revascularization beyond the culprit STEMI lesion treated in the initial acute event.17,18 Non–TVR is the more common event recorded within the revascularization events of patients with diabetes versus those without (11.6% versus 6.0%).

Of note is that revascularization related to diabetes seems to be time dependent, with a higher incidence in any revascularization in the first 5 years of follow-up but not after (Figure 3D). The early interaction between STEMI proinflammatory state and glycemic metabolic disorder may explain this higher incidence of revascularization beyond the culprit STEMI lesion treated in the initial acute event.17,18 Non–TVR is the more common event recorded within the revascularization events of patients with diabetes versus those without (11.6% versus 6.0%).

Eventually, looking specifically at patients with diabetes, age and history of previous MI resulted as independent predictors of POCE. Considering independent predictors of mortality and revascularization either in patients with or in those without diabetes, whereas some appear easy to explain (eg, age and previous smoker as independent predictors of mortality in patients with diabetes), some others may be the result of a play of chance and should be carefully interpreted (eg, such as use of unfractionated heparin or low-molecular-weight heparin at the time of the index procedure as independent predictor of mortality for patients without diabetes).

Despite the advancements of STEMI reperfusion strategies and medical therapy, there is still a gap in the long-term outcomes between patients with and without diabetes. Future clinical investigations should focus on either dedicated stents or pharmacological treatment, which may be able to improve over time prognosis of patients with STEMI who have diabetes.21–23

Limitations

This is a post hoc analysis, and the results should be interpreted with caution, as potential confounding factors cannot be excluded. However, it is the first 10-year report on patients with STEMI who have diabetes. No data about estimated glomerular filtration rate, hemoglobin A1c, and blood pressure, glycemic control, or change in diabetic therapy over time are available. No data were collected about patients without diabetes who developed diabetes during the follow-up. This study was performed in the “clopidogrel era,” which may affect the clinical outcomes, especially in this high-risk group of patients: impact of dual antiplatelet therapy on such long-term outcome is, however, small. Eventually, we did not perform an analysis about the type of stent implanted and outcomes, as such analysis would not make any sense because of small

Table 3. Clinical Events at 10 Years

<table>
<thead>
<tr>
<th></th>
<th>Patients with diabetes (n=258)</th>
<th>Patients without diabetes (n=1240)</th>
<th>Adjusted HR (95% CI) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-y Follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient-oriented composite end point, n (%)†</td>
<td>120 (46.5)</td>
<td>409 (33.0)</td>
<td>1.31 (1.05–1.61)</td>
</tr>
<tr>
<td>All-cause death, n (%)²</td>
<td>76 (29.5)</td>
<td>235 (19.0)</td>
<td>1.23 (0.94–1.62)</td>
</tr>
<tr>
<td>Cardiac</td>
<td>42 (16.3)</td>
<td>124 (10.0)</td>
<td>1.15 (0.79–1.67)</td>
</tr>
<tr>
<td>Myocardial infarction, n (%)³</td>
<td>20 (7.8)</td>
<td>66 (5.3)</td>
<td>1.60 (0.94–2.74)</td>
</tr>
<tr>
<td>Target vessel related</td>
<td>11 (4.3)</td>
<td>41 (3.3)</td>
<td>1.45 (0.72–2.93)</td>
</tr>
<tr>
<td>Non–target vessel related</td>
<td>9 (3.5)</td>
<td>25 (2.0)</td>
<td>1.76 (0.76–4.05)</td>
</tr>
<tr>
<td>Revascularization, n (%)</td>
<td>63 (24.4)</td>
<td>206 (16.6)</td>
<td>1.61 (1.19–2.17)</td>
</tr>
<tr>
<td>Target lesion</td>
<td>21 (8.1)</td>
<td>86 (6.9)</td>
<td>1.38 (0.84–2.26)</td>
</tr>
<tr>
<td>Target vessel</td>
<td>33 (12.8)</td>
<td>131 (10.6)</td>
<td>1.35 (0.90–2.00)</td>
</tr>
<tr>
<td>Non–target vessel</td>
<td>30 (11.6)</td>
<td>75 (6.0)</td>
<td>1.89 (1.20–2.99)</td>
</tr>
<tr>
<td>Definite/probable stent thrombosis, n (%)²</td>
<td>6 (2.3)</td>
<td>37 (2.9)</td>
<td>0.81 (0.51–1.27)</td>
</tr>
</tbody>
</table>

HR indicates hazard ratio.

*Adjusted for age, sex, previous smoker, arterial hypertension, hyperlipidemia, and body mass index.
†Combined end point of all-cause death, any recurrent myocardial infarction, and any revascularization.
²Death was adjudicated according to the Academic Research Consortium definition.
³Myocardial infarction was adjudicated according to the World Health Organization extended definition.
⁴Stent thrombosis was defined according to the Academic Research Consortium definition.
number of patients to be compared and because bare metal stents are rarely used in daily clinical practice; nevertheless, an interaction analysis between type of stent and diabetes was negative.

CONCLUSIONS

In this 10-year follow-up of patients with STEMI treated with primary PCI, patients with diabetes exhibit a worse clinical outcome compared with patients without diabetes. This was mainly driven by a higher incidence of any revascularization in the first 5 years. Future studies should be focused on either dedicated stents on population with diabetes or specific long-term pharmacological treatments.

ARTICLE INFORMATION

Received August 31, 2022; accepted October 25, 2022.

Affiliations

Hospital Clinic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (F.S., V.A., R.G., L.O.-P., J.R.-C, M.S., S. Brugaletta); Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy (F.S.); Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL (L.O.-P.); Hospital Universitari de Bellvitge, Institut d’Investigació Biomèdica de Bellvitge, Hospital de Llobregat, Spain (J.G.-L., L.O., R.R., J.A.G.-H.); Hospital Alvaro Cunqueiro, Vigo, Spain (V.J.-D., G.B.-F., A. Iñiguez); Cardiovascular Research Group, Galicia Sur Health Research Institute SERGAS-UVIGO, Vigo, Spain (V.J., G.B., A.I.); University Hospital of Sant Pau, Barcelona, Spain (M.J., A. Serra); University Hospital San Carlos, Madrid, Spain (P.J.-Q., J.E., N.G.); Thoraxcenter, Rotterdam, The Netherlands (R.D., M.L., S.A.-S.); Hospital General of Alicante, Alicante, Spain (J.P., P.B.); Cardiology Unit, Azienda Ospedaliera Universitaria di Ferrara, Cona, Italy (G.C., M. Tebaldi, S. Biscaglia); University Hospital Bolognini Seriate, Bergamo, Italy (A. Silvestro, A. Ielasi, M. Tespili); Hospital Son Dureta, Palma de Mallorca, Spain (J.M.); Hospital Universitari, A Coruña, Spain (X.F.); International Center of Circulatory Health, Imperial College London, London, United Kingdom (P.W.S.); Department of Cardiology, National University of Ireland, Galway, Ireland (P.W.S.); and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERO Cardiología), Instituto de Salud Carlos III, Madrid, Spain (M.S.).

Acknowledgments

The authors thank all research coordinators and cardiologists at the participating hospitals who contributed to the study. The authors thank Jose Montes Garcia for the statistical analysis.

Sources of Funding

The EXAMINATION (Clinical Evaluation of the Xience-V Stent in Acute Myocardial Infarction) trial was partially funded by an unrestricted grant from Abbott Vascular to the Spanish Heart Foundation (promoter) during the first 5 years of follow-up. The EXAMINATION-EXTEND (10-Years Follow-up of the EXAMINATION Trial) study was funded by an unrestricted grant from Abbott Vascular to the Spanish Heart Foundation (promoter). Or Spione has been supported by a research grant provided by the Cardiopath PhD program (University of Naples “Federico II”).

Disclosures

None.

REFERENCES

Figure 3. Landmark analysis of patient-oriented outcomes after ST-segment–elevation myocardial infarction.

This figure shows a landmark analysis, from 0 to 5 and from 5 to 10 years, for patient-oriented composite end point (A) and its individual components: all-cause death (B), any myocardial infarction (C), or any revascularization (D). HR indicates hazard ratio.

