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Abstract. Using Monte Carlo simulations we have modeled the diffusion of a single particle in two- 

and three-dimensional lattices with different crowding conditions given by distinct obstacles size and 

density. All registered data emphasize that diffusion process is anomalous and diffusing particle 

describes fractal trajectories. We have introduced a new time-scale fractal dimension, dm, which is 

related to the anomalous diffusion exponent, α. This allows us to relate the well-known length-scale 

fractal dimension of the random walk, dw, to the new one introduced here as a time-scale fractal 

dimension. Moreover, the 3D simulations consider similar conditions to those used in our previous 

FRAP experiments in order to reveal the relationship between the length and time-scale fractal 

dimensions. 
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1. INTRODUCTION 

Diffusion is one of the most important transport phenomena that occur in 

living organisms. The living cell has been described as inhomogeneous, disordered 

and crowded media [1] and diffusion process in such environment is considered 

anomalous [2, 3]. Considerable theoretical and experimental work concerning 

diffusion in living organisms has been performed, we only emphasis that earlier 

studies were excellently reviewed by Havlin and Ben-Avraham [3] and Dix and 

Verkman [4] and more recent ones by Saxton [5]. Most of the theoretical studies 

revealed that in crowded environment diffusion is anomalous, but experimental 

studies revealed both anomalous [6, 7] and normal diffusion [8] in crowded 

systems, depending on the time scale of the experimental method. It means that the 

hypothesis that crowding causes anomalous diffusion is still controversial and 

much understanding could be offered by theoretical models resulting from 

simulation works.  



 

The study aims at analyzing the trajectory characteristics of a single particle 

diffusing in both two- (2D) and three-dimensional (3D) crowded media and 

correlates them with the parameters determining anomalous diffusion in such 

systems. In particular, we introduce a new time-scale fractal dimension, dm, related 

with the well-known length-scale fractal dimension, dw. The effect of obstacles size 

and density is tested. Based on the findings, we further compare the time-scale 

fractal dimensions of the trajectory obtained from both 3D simulations and FRAP 

experiments [9]. The experimental data are used to infer the fractal dimension of 

the particle trajectory based on the model tested in 2D diffusion. 

2. METHOD 

2.1 Anomalous diffusion and fractal dimensions 

A diffusion process taken by a solute in dilute solutions can be described 

with the well-known Einstein-Smoluchowski equation for Brownian motion:  

( ) ( )Dtdtr 22 =                                                      (1)  

where d is the topological dimension of the medium where the process is 

embedded and D is its diffusion coefficient [10-12]. In crowded media, typically in 

vivo and in a great number of in vitro experiments, the existence of different 

macromolecular species hinders the diffusion process. In these cases, Eq. (1) must 

be generalized to a more complex process, known as anomalous diffusion [6, 11-

13] which can be described by: 

                                                 ( ) ( ) αtdtr Γ= 22                                                    (2) 

where α is defined as the anomalous exponent (0 < α < 1 is the case of subdiffusion 

and α > 1 holds for the case of superdiffusion) and Γ is a generalized transport 

coefficient, also known as anomalous diffusion coefficient, of units (length
2
/time

α
), 

its value depending on the medium crowding degree. 

The motion of single particle can be described using the concept of random 

walk [14] because the particle movement consists of a succession of random steps. 

The trajectory of a random walk is obtained by connecting the visited sites and it 

has interesting geometric properties described in terms of fractal geometry [15]. 

Also, the fractal geometry proved to be useful to explain features of diffusion in 

crowded media [16]. The random walk motion is quantitatively described by 

fractal dimension of the random walk (dw) that is related to the anomalous 

diffusion exponent through the following relationship [10]: 

                                         
α
2

=wd                                                              (3) 

where dw = 2 for normal diffusion and dw > 2 for anomalous diffusion. Instead of 

determining the fractal dimension of the random walk trajectory using the well-

known box-counting algorithm, we have introduced an algorithm similar to that 

used to compute the fractal dimension of the protein backbone [17]. The novelty of 

the approach, as far as we know, is two-fold: first, the algorithm is applied on 

particle diffusion and second, it is based on the temporal sequence of the trajectory. 



 

Let Lm be the length of the trajectory for different step intervals, m, 

calculated according to the following equation: 
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where xi, yi, zi are the spatial coordinates of diffusing particle at step i and T 

represents the total number of time steps. The dependence of Lm on the time-scale 

m will be given by: 

                               
( )m-d

m mL
1

~                                          (5) 

as usual in length-scale fractal dimension calculations, where dm is a new fractal 

dimension on this time-scale. 

In order to relate the two fractal dimensions, dw in length-scale and dm in 

time-scale, we correlate the time-length of the trajectory, Lm, with the root mean 

square displacement,
2

mr , taking into account that this root mean square 

displacement is computed as the mean of different lengths of the trajectories 

“walked” by the particle in a time step interval, m. It can be seen that  

                                       
m

T
Lm

2

mr=                                           (6) 

On the one hand, 
2

mr must follow the same time-scale on the general diffusion  

relation, Eq. (2). Then,  
α

m~r
2

m
                                                     (7) 

and relating the two time-scale parameters Lm (Eq. (5)) and 
2

mr  (Eq. (7)) we get 

the following equation: 

                                          
1
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−

α

mLm                                                          (8) 

Then, from both power laws Eqs. (5) and (8) we obtain the relation between 

the two scale exponents (Eq. (9)) and also between the two fractal dimensions (Eq. 

(10)): 
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It is important to note that the new time-scale fractal dimension, dm, presents 

similarities to the fractal dimension of the protein backbone, df, computed from the 

log-log plots of the backbone length with number of residues that yield the (1/df-1) 

slope [17]. The fractal dimension of the protein backbone has two different values 

corresponding to the local or global scaling regime, depending on the considered 

number of residues. Similarly, the computed dm is associated to a local scaling 

regime, due to different particle trajectory lengths calculated for the same time 

interval, especially for small m values. 

Moreover, dm = 2-α/2, as given by Eq. (9), reaches its lowest value, dm = 3/2, 

for cases of normal diffusion, α = 1, being consistent with the length of the 

trajectory, Lm, given by Eq. (6), using the Eq. (1),  



 

( ) 21-m~2
m

T
DmdLm =                                      (11) 

and also with the scaling exponent, (1-dm) = -0.5 from Eq. (5). For anomalous 

diffusion, α < 1 and dm > 3/2. This is also consistent with the value of dw > 2 for 

obstructed diffusion that gives the anomalous exponents. 

2.2 Simulation model 

The random walk simulations were performed using custom-written Fortran 

77 programs. Regarding the 2D computations, the particle diffusion was simulated 

inside a square lattice of 50 sites edge length, with cyclic boundary conditions. The 

particle occupies 1 site in the lattice and the immobile obstacles are randomly 

distributed considering different site density occupancy, up to the percolation 

threshold: 0, 0.1, 0.2, 0.3 and 0.4 respectively. The obstacles have square shape. 

Different sizes of the obstacles are considered according to edge length chosen: 1, 

3, 5, and 7 sites, respectively. A random number is generated to choose one of the 

four nearest neighbor sites of the single-particle to move. The particle moves only 

if the selected position is empty. Each simulation has 10.000 time steps and every 

run was repeated 500 times with a different initial particle disposition. For each 

simulation the trajectory length and the mean squared displacements are averaged 

along these repetitions.  

The computational model of the particle diffusion in 3D obstructed media 

was tailored in an analogous way with the features of our previously performed 

FRAP experiments to allow the proposed comparison. The model considers a one 

site particle diffusing in an 80x80x80 cubic lattice with cyclic boundary conditions 

in which obstacles are randomly distributed. The tracer-obstacles size ratio is 

similar with that of the protein-crowding agent used during experimentation. Thus, 

two different obstacle dimensions are set: 27 sites corresponding to a 3x3x3 sites 

cube, and 179 sites according to a 7x7x7 sites cube with removed edge and vertex 

sites, to reach a quasi-spherical shape. The obstacles are mobile to simulate the 

motion of the experimental crowding agent. The mobility is controlled by a 

probability factor related to the obstacles size (0.75 for the small ones and 0.1 for 

the big ones). The density of sites occupied by obstacles is further referred to as the 

excluded volume determined by their presence (Φ). The excluded volume values 

are: 0.031, 0.062, 0.124 and 0.187 according to our experimental data. The 

subsequent simulation steps are already explained in detail elsewhere [9, 18]. Both 

2D and 3D simulation data are then used to compute the following parameters: the 

anomalous diffusion exponent, α, from the slope, α-1, of the ( )tr /log
2 ><  versus 

( )tlog  plot and subsequently the fractal dimension of the random walk, dw, 

according to Eq. (3); the fractal dimension of the random walk trajectory, dm, from 

the slope, 1-dm, of the ( )mLlog  versus ( )mlog  plot. The calculated coefficients are 

then used to correlate the fractal aspects of the trajectory with the anomalous 

diffusion of the single particle random walk in a crowded environment. Moreover, 

we try to quantitatively characterize the dependence of diffusion process on the 

size and density of randomly distributed obstacles. 



 

2.3 FRAP experiments 

FRAP experimental technique is able to study the properties of a tracer 

particle (e.g. protein) in a solution containing high concentration of other 

macromolecules. Therefore, the experimental results of a previous work, based on 

this particular technique [7], are used to make the comparison with our 3D 

computational data [9]. The experiments investigated the FITC-alpha-

chymotrypsin complex diffusing in an aqueous buffer in which two different types 

of Dextran was dissolved as crowding agent (Dextran with Mw = 48.6 kDa 

(denoted as D1) and Dextran with Mw = 409.8 kDa (denoted as D2)). Dextran was 

chosen as a crowding agent because it can readily be represented in computer 

simulations as repulsive hard spheres of the appropriate size. D1 corresponds to the 

small obstacles (3x3x3) and D2 to the big obstacles (7x7x7R) considered in our 3D 

simulations. The Dextran concentration in samples was up to 300 mg/mL, and thus 

the excluded volume (from 0 to 0.2) was similar with that considered in the Monte 

Carlo simulations. FRAP data were fitted with a versatile expression for 

subdiffusion in bulk solution [7] from which the α parameter values were obtained 

(see Table 3). The experiments further details have been explained elsewhere [9]. 

3. RESULTS AND DISCUSSIONS 

3.1 2D Monte Carlo simulation 

In all the studied cases, the obtained ( )tr /log 2 ><  versus ( )tlog  diagrams 

for the single particle diffusion in lattices with obstacles have features 

corresponding to anomalous diffusion in good correlation with those presented in 

specific literature [3 - 6, 9]. We illustrate such plots in Fig. 1 for the single particle 

diffusion in a 2D obstructed lattice with square obstacles with the same excluded 

volume (Φ = 0.3) and distinct sizes: 1x1, 3x3, 5x5 and 7x7, respectively. For 

comparison, Fig. 1 also presents the ( )tr /log 2 ><  versus ( )tlog  plot for diffusion 

in a 2D unobstructed lattice (continuous line). Figure 1 reveals classical diffusion 

for single particle movement in unobstructed lattice and anomalous diffusion for 

obstructed lattices. There is a clear distinction between the allure of the plot for 

obstacles having different sizes: the slope of the decreasing regions of curves being 

smaller for bigger obstacles. It means that anomalous diffusion exponent, α, 

decreases with increasing size of obstacles (these exponents are presented in Table 

1) reflecting the higher complexity of the environment obtained when small 

obstacles are distributed in the same density as bigger ones.  

 



 

 

Figure 1  - The ( )tr /log 2 ><  versus ( )tlog  plots at constant obstacles density (0.3) with 

different sizes: 1x1 (dash line), 3x3 (dash-dot-dot line), 5x5 (dot line) and 7x7 (dash-dot line). 

The ( )tr /log 2 ><  versus ( )tlog  plot (continuous line) in the absence of obstacles.  

Table 1 

The values of the anomalous diffusion exponent α, trajectory fractal dimension of the, dm, and 

random walk exponent for single particle movement in 2D lattices with distinct fixed obstacle density 

and sizes. The estimated errors of the parameters are below 1%. 

 

Obstacle size Φ α  dw=2/α  dm dw=1/(2-dm) 

No. Obs. 0 1.000 2.000 1.507 2.027 

0.1 0.966 2.070 1.513 2.053 

0.2 0.927 2.158 1.530 2.126 

0.3 0.863 2.317 1.565 2.299 
1x1 

0.4 0.731 2.735 1.630 2.702 

0.1 0.979 2.043 1.515 2.062 

0.2 0.953 2.099 1.525 2.107 

0.3 0.929 2.153 1.539 2.169 
3x3 

0.4 0.890 2.247 1.558 2.264 

0.1 0.980 2.040 1.516 2.067 

0.2 0.960 2.083 1.527 2.115 

0.3 0.935 2.138 1.539 2.169 
5x5 

0.4 0.903 2.215 1.554 2.242 

0.1 0.980 2.041 1.517 2.068 

0.2 0.960 2.084 1.527 2.114 

0.3 0.935 2.140 1.539 2.171 
7x7 

0.4 0.906 2.209 1.553 2.239 



 

Table 1 also shows the values of the fractal dimension of the random walk, 

dw, calculated with Eq. (3). As anomalous diffusion is considered to arise partly as 

a result of the fractal nature of the particle trajectories [19] we have also investigate 

the fractal dimension of the trajectory of a single particle movement. The results 

are presented in Table 1. Figure 2 illustrates the time-scale computation of the 

fractal dimension of the trajectory, dm, from the slope of ( )mLlog versus ( )mlog  plot 

for the case with an obstacle excluded volume of Φ=0.3.  

 

Figure 2  - Double-logarithmical plot of the trajectory length in 2D media versus step interval 

without and with obstacles of different sizes at 0.3 concentration: 1x1 (dash line), 3x3 (dash-dot-

dot line), 5x5 (dot line) and 7x7 (dash-dot line) 

Finally, we can observe from Table 1 that the dw values, obtained both using 

the Eqs. (3) and (10), are similar. It can be observed that for each particular spatial 

distribution of the occupied sites the values of the anomalous diffusion exponent, 

α, the fractal dimension of random walk, dw, and the time-scale fractal dimension, 

dm, are rising with the increase of the obstacles concentration. For the same 

concentration of obstacles these values decrease with obstacle size. All these 

results are in good agreement with other published data [3, 4, 9, 20]. 

3.2 3D Monte Carlo simulation versus FRAP experiments 

The findings of the previous section have encouraged us to investigate the 

application of Eq. (9) on 3D cases both by simulation and experimentation. To 

obtain comparable results, the 3D simulations considered mobile obstacles 

similarly with the experimental conditions (Table 2). 

 



 

Table 2 

The values of the anomalous diffusion exponent α, trajectory fractal dimension, dm, and random walk 

exponent, dw, for single particle movement in 3D lattices with distinct mobile obstacle density and 

sizes. The parameters estimated errors are below 1%. 

 

Obstacle 

size 
Φ α dw=2/α dm dw=1/(2-dm) 

0.031 0.998 2.005 1.519 2.080 

0.062 0.996 2.009 1.520 2.084 

0.124 0.992 2.017 1.522 2.092 
3x3x3 

0.187 0.987 2.026 1.523 2.098 

0.031 0.997 2.007 1.512 2.048 

0.062 0.993 2.014 1.519 2.081 

0.124 0.986 2.028 1.520 2.084 
7x7x7 R 

0.187 0.979 2.044 1.524 2.101 

 

The previously performed FRAP experiments allowed us to obtain the α 

parameter values for the crowded systems under research. Instead, this 

experimental technique does not facilitate to record the diffusing particle 

trajectory. As a result, the dm values have been indirectly retrieved based on the α 

values using the correlation given by Eqs. (10) and (3). Subsequently, the dw values 

have been calculated using the dm values. All data are found in Table 3. It is worth 

mentioning here that, the relationship proposed by Eq. (10) has been proved to be 

adequate when correlating the two manners of obtaining the dw values. 

 
Table 3 

The values of the anomalous diffusion exponent α from FRAP experiments [9], and the 

corresponding obtained values of the trajectory fractal dimension, dm, and random walk exponent, dw. 

The estimated errors of the parameters are below 5%. 

 

Dextran size Φ α dw=2/α dm dw=1/(2-dm) 

0.031 0.94 2.13 1.53 2.13 

0.062 0.88 2.30 1.56 2.30 

0.124 0.90 2.22 1.60 2.22 

D1 

(48.6 kDa) 

0.187 0.87 2.30 1.60 2.29 

0.031 0.90 2.22 1.55 2.20 

0.062 0.82 2.44 1.59 2.44 
D2 

(409.8 kDa) 
0.124 0.82 2.44 1.59 2.44 

 

It can be observed from Table 3 that for each given size of the crowding 

agent, D1 (Dextran with Mw = 48.6 kDa) and D2 (Dextran with Mw = 409.8 kDa), 

the particle trajectory is more fractal as the Dextran concentration is higher. 

Obviously, the particle in its diffusion movement has to avoid many more 

obstacles following a more fractal path. Additionally, for the same occupied 

volume (same crowder density) the particle trajectory is more fractal as the 

crowder size is bigger. The explanation may come from the fact that smaller 



 

obstacles have an increased mobility than bigger ones allowing the particle to 

diffuse more easily through the media. On the contrary, when fixed, these small 

obstacles rip the space obliging the diffusing particle to describe a more fractal 

trajectory. This is in accordance with our 2D simulations in which crowder 

particles were kept immobile. 

Looking at α, dm and dw values obtained by 3D simulations (Table 2), one can 

see they present a very small variation from one case to another. The expected 

magnitude of the crowding effect is strongly dependent upon the relative sizes and 

concentration of the crowding species [21]. Within our 3D computations, low 

densities of obstacle were chosen according to the experimental approach and thus 

the behavior is likely to occur. On the other hand, there are no spatial constrains 

like in 2D media and no other aspects, such as interactions between diffusing 

particle and obstacles, are taken into account. Even though, the dm values have a 

variation with crowder concentration similar with that obtained by experimentation 

for each obstacle size. Opposite to the experimental data, for a certain obstacle 

density the particle exhibits a more fractal trajectory as crowder is smaller.  

It has to be considered that models proposed both by simulation and 

experimentation have the advantage to be intuitive and focused on specific aspects 

of crowding. However, they do not comprise all details of a native-like cellular 

media. Therefore, if more realistic features are introduced when modeling such 

microenvironments it will lead to a better understanding of these complex systems. 

4. CONCLUSIONS  

Within this paper we have studied, on the one hand, the single particle 

movement in two dimensional obstructed square lattices using a Monte Carlo 

simulation algorithm. Two different aspects of the crowding effect on the fractality 

of diffusing particle trajectory have been analyzed: the effect of the obstacle 

concentration expressed in occupied sites and the effect of the spatial distribution 

of the occupied sites, expressed in different obstacle sizes. In all investigated cases, 

the particle trajectory was fractal and diffusion was registered as anomalous. The 

degree of fractality of the trajectory and consequently the density of explored sites 

and the anomalous diffusion rise along with the increase of obstacles density and 

decrease as the obstacles become bigger. These results confirm the hypothesis that 

anomalous diffusion is a consequence of the fractal nature of particle trajectory 

[20] as a higher fractal dimension of diffusing particle trajectory correspond to a 

more anomalous diffusion.  

On the other hand, we have performed 3D simulations according to 

previously done FRAP experiments [9] in order to test the correlation between the 

length and time-scale parameters. The experimental data also demonstrate the 

correlation between the fractality of the particle trajectory and the size, 

concentration and mobility of the crowding agent. This is to say that a greater 

mobility of the a priori more obstructed obstacles yields a less fractal trajectory of 

the diffusing particle. 

Also, our results confirm that anomalous diffusion is a result of a 

microscopic stochastic mechanism [22]. The deterministic nature of considered 



 

crowded systems is expressed through the dependencies of single particle 

displacements on system parameters. These dynamical correlations are 

incorporated in a very complex way resulting in a fractal trajectory of diffusing 

particle. 

All data presented here emphasis that for a better understanding of diffusion 

as a macroscopic transport one must take into account the microscopic dynamics of 

the system. 
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