
ar
X

iv
:1

70
2.

04
97

4v
1 

 [
m

at
h.

C
V

] 
 1

6 
Fe

b 
20

17

TRACES OF THE NEVANLINNA CLASS ON DISCRETE SEQUENCES

A. HARTMANN, X. MASSANEDA, A. NICOLAU

ABSTRACT. We show that a discrete sequence Λ of the unit disk is the union of n interpolating

sequences for the Nevanlinna class N if and only if the trace of N on Λ coincides with the space

of functions on Λ for which the divided differences of order n − 1 are uniformly controlled by a

positive harmonic function.

1. DEFINITIONS AND STATEMENT

This note deals with some properties of the classical Nevanlinna class consisting of the holo-
morphic functions in the unit disk D for which log+ |f | has a positive harmonic majorant. We
denote by Har+(D) the set of non-negative harmonic functions in D. Equivalently,

N =
{

f ∈ Hol(D) : lim
r→1

1

2π

∫ 2π

0

log+ |f(reiθ)| dθ < ∞
}

.

Definition. A discrete sequence of points Λ in D is called interpolating for N (denoted Λ ∈
IntN ) if the trace space N |Λ is ideal, or equivalently, if for every v ∈ ℓ∞ there exists f ∈ N
such that

f(λn) = vn, n ∈ N.

Interpolating sequences for the Nevanlinna class were first investigated by Naftalevitch [6].
A rather complete study was carried out much later in [4]. Let B denote the Blaschke product
associated to a Blaschke sequence Λ. Let

bλ(z) =
z − λ

1− λ̄z
and Bλ(z) =

B(z)

bλ(z)
.

Let’s also consider the pseudohyperbolic distance in D, defined as

ρ(z, w) =

∣

∣

∣

∣

z − w

1− z̄w

∣

∣

∣

∣

,

and the corresponding pseudohyperbolic disks D(z, r) = {w ∈ D : ρ(z, w) < r}.
According to [4, Theorem 1.2] Λ ∈ IntN if and only if there exists H ∈ Har+(D) such that

(1) |Bλ(λ)| = (1− |λ|)|B′(λ)| ≥ e−H(λ), λ ∈ Λ .
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Moreover in such case the trace space is

N (Λ) =
{

{ω(λ)}λ∈Λ : ∃H ∈ Har+(D) , log+ |ω(λ)| ≤ H(λ), λ ∈ Λ
}

.

Other properties and characterizations of Nevanlinna interpolating sequences have been given
recently in [3]. In these terms Λ ∈ IntN when for every sequence ω(Λ) ∈ N (Λ) there exists
f ∈ N such that f(λ) = ω(λ), λ ∈ Λ. In terms of the restriction operator

RΛ : N −→ N (Λ)

f 7→ {f(λ)}λ∈Λ,

Λ is interpolating when RΛ(N ) = N (Λ).

Definition 1.1. Let Λ be a discrete sequence in D and ω a function given on Λ. The pseudohy-

perbolic divided differences of ω are defined by induction as follows

∆0ω(λ1) = ω(λ1) ,

∆jω(λ1, . . . , λj+1) =
∆j−1ω(λ2, . . . , λj+1)−∆j−1ω(λ1, . . . , λj)

bλ1(λj+1)
j ≥ 1.

For any n ∈ N, denote

Λn = {(λ1, . . . , λn) ∈ Λ×
n
⌣
· · · ×Λ : λj 6= λk if j 6= k},

and consider the set Xn−1(Λ) consisting of the functions defined in Λ with divided differences
of order n − 1 uniformly controlled by a positive harmonic function H i.e., such that for some
H ∈ Har+(D),

sup
(λ1,...,λn)∈Λn

|∆n−1ω(λ1, . . . , λn)|e
−[H(λ1)+···+H(λn)] < +∞ .

Lemma 1.2. Let n ∈ N. For any sequence Λ ⊂ D, we have Xn(Λ) ⊂ Xn−1(Λ) ⊂ · · · ⊂
X0(Λ) = N (Λ).

Proof. Assume that ω(Λ) ∈ Xn(Λ), that is,

sup
(λ1,...,λn+1)∈Λn+1

∣

∣

∣

∣

∆n−1ω(λ2, . . . , λn+1)−∆n−1ω(λ1, . . . , λn)

bλ1(λn+1)

∣

∣

∣

∣

e−[H(λ1)+···+H(λn+1)] < ∞ .

Then, given (λ1, . . . , λn) ∈ Λn and taking λ0
1, . . . , λ

0
n from a finite set (for instance the n first

λ0
j ∈ Λ different of all λj) we have

∆n−1ω(λ1, . . . , λn) =
∆n−1ω(λ1, . . . , λn)−∆n−1ω(λ0

1, λ1, . . . , λn−1)

bλ0
1
(λn)

bλ0
1
(λn)+

+
∆n−1ω(λ0

1, λ1, . . . , λn−1)−∆n−1ω(λ0
2, λ

0
1, . . . , λn−2)

bλ0
2
(λn−1)

bλ0
2
(λn−1) + · · ·+

∆n−1ω(λ0
n−1, . . . , λ

0
1, λ1)−∆n−1ω(λ0

n, . . . , λ
0
1)

bλ0
n
(λ1)

bλ0
n
(λ1) + ∆n−1ω(λ0

n, . . . , λ
0
1)
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Since ω ∈ Xn−1(Λ) there exists H ∈ Har+(D) and a constant K(λ0
1, . . . , λ

0
n) such that

∣

∣∆n−1ω(λ1, . . . , λn)
∣

∣ ≤ eH(λ0
1)+H(λ1)···+H(λn)ρ(λ0

1, λn) + eH(λ0
1)+H(λ0

2)···+H(λn−1)ρ(λ0
2, λn−1)+

+ · · ·+ eH(λ0
1)+···+H(λ0

n)+H(λ1)ρ(λ0
n, λ1) + ∆n−1ω(λ0

n, . . . , λ
0
1)

≤ K(λ0
1, . . . , λ

0
n) e

H(λ1)+···+H(λn),

and the statement follows. �

The main result of this note is modelled after Vasyunin’s description of the sequences Λ in D

such that the trace of the algebra of bounded holomorphic functions H∞ on Λ equals the space
of pseudohyperbolic divided differences of order n (see [7], [8]). Similar results hold also for
Hardy spaces (see [1] and [2]) and the Hörmander algebras, both in C and in D [5]. The analogue
in our context is the following.

Main Theorem. The identity N|Λ = Xn−1(Λ) holds if and only if Λ is the union of n interpo-

lating sequences for N .

2. GENERAL PROPERTIES

Throughout the proofs we will use repeatedly the well-known Harnack inequalities: for H ∈
Har+(D) and z, w ∈ D,

1− ρ(z, w)

1 + ρ(z, w)
≤

H(z)

H(w)
≤

1 + ρ(z, w)

1− ρ(z, w)
.

We shall always assume, without loss of generality, that H ∈ Har+(D) is big enough so that

for z ∈ D(λ, e−H(λ)) the inequalities 1/2 ≤ H(z)/H(λ) ≤ 2 hold. Actually it is sufficient to
assume inf{H(z) : z ∈ D} ≥ log 3.

We begin by showing that one of the inclusions of the Main Theorem is inmediate.

Proposition 2.1. For all n ∈ N, the inclusion N|Λ ⊂ Xn−1(Λ) holds.

Proof. Let f ∈ N . Let us show by induction on j ≥ 1 that there exists H ∈ Har+(D) such that

|∆j−1f(z1, . . . , zj)| ≤ eH(z1)+···+H(zj) for all (z1, . . . , zj) ∈ D
j.

As f ∈ N , there exists H ∈ Har+(D) such that |∆0f(z1)| = |f(z1)| ≤ eH(z1), z1 ∈ D.
Assume that the property is true for j and let (z1, . . . , zj+1) ∈ D

j+1. Fix z1, . . . , zj and con-
sider zj+1 as the variable in the function

∆jf(z1, . . . , zj+1) =
∆j−1f(z2, . . . , zj+1)−∆j−1f(z1, . . . , zj)

bz1(zj+1)
.

By the induction hypothesis, there exists H ∈ Har+(D) such that

|∆jf(z1, . . . , zj+1)| ≤
1

ρ(z1, zj+1)

(

eH(z2)+···+H(zj+1) + eH(z1)+···+H(zj)
)

.

If ρ(z1, zj+1) ≥ 1/2 we get directly

|∆jf(z1, . . . , zj+1)| ≤ 4eH(z1)+···+H(zj+1) ,
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and choosing for instance H̃ = H + log 4 we get the desired estimate.
If ρ(z1, zj+1) ≤ 1/2 we apply the maximum principle and Harnack’s inequalities

|∆jf(z1, . . . , zj+1)| ≤ sup
ξ:ρ(ξ,zj+1)=1/2

|∆jf(z1, . . . , zj, ξj+1)|

≤ sup
ξ:ρ(ξ,zj+1)=1/2

4eH(z1)+···+H(zj)+H(ξ)

≤ 4e2[H(z1)+···+H(zj)+H(zj+1)].

Choosing here H̃ = 2H + log 4 we get the desired estimate. �

Definition 2.2. A sequence Λ is weakly separated if there exists H ∈ Har+(D) such that the

disks D(λ, e−H(λ)), λ ∈ Λ, are pairwise disjoint.

Remark 2.3. If Λ is weakly separated then X0(Λ) = Xn(Λ), for all n ∈ N.
By Lemma 1.2, to see this it is enough to prove (by induction) that X0(Λ) ⊂ Xn(Λ) for all

n ∈ N.
For n = 0 this is trivial.
Assume now that X0(Λ) ⊂ Xn−1(Λ) and take ω(Λ) ∈ X0(Λ). Since ρ(λ1, λn+1) ≥ e−H0(λ1)

for some H0 ∈ Har+(D) we have

|∆nω(λ1, . . . , λn+1)| =

∣

∣

∣

∣

∆n−1ω(λ2, . . . , λn+1)−∆n−1ω(λ1, . . . , λn)

bλ1(λn+1)

∣

∣

∣

∣

≤ eH0(λ1)
(

eH(λ2)+···+H(λn+1) + eH(λ1)+···+H(λn)
)

for some H ∈ Har+(D). Taking H̃ = H +H0 we are done.

Lemma 2.4. Let n ≥ 1. The following assertions are equivalent:

(a) Λ is the union of n weakly separated sequences,

(b) There exist H ∈ Har+(D) such that

sup
λ∈Λ

#[Λ ∩D(λ, e−H(λ))] ≤ n .

(c) Xn−1(Λ) = Xn(Λ).

Proof. (a) ⇒(b). This is clear, by the weak separation.
(b) ⇒(a). We proceed by induction on j = 1, . . . , n. For j = 1, it is again clear by the

definition of weak separation. Assume the property true for j−1. Let H ∈ Har+(D) , inf{H(z) :
z ∈ D} ≥ log 3, be such that supλ∈Λ#[Λ∩D(λ, e−H(λ))] ≤ j. We split the sequence Λ = Λa∪Λb

where

Λa =
⋃

{λ∈Λ:#(Λ∩D(λ,e−10H(λ)))=j}

(Λ ∩D(λ, e−10H(λ)))

Λb = Λ \ Λa

Now, for every λ ∈ Λb, we have #(Λ∩D(λ, e−10H(λ))) ≤ j−1, and by the induction hypothesis,
Λb splits into j − 1 separated sequences Λ1, . . . ,Λj−1.
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In the case λ ∈ Λa, there is obviously no point in the annulus D(λ, e−H(λ)) \D(λ, e−10H(λ))
which means that the j points in D(λ, e−10H(λ))) are far from the other points of Λ. So we can
add each one of these j points in a weakly separated way to one of the sequences Λ1, . . . ,Λj−1,
and the j-th point in a new sequence Λj (which is of course weakly separated since the groups

Λ ∩D(λ, e−10H(λ)) appearing in Λa are weakly separated).
(b)⇒(c). It remains to see that Xn−1(Λ) ⊂ Xn(Λ). Given ω(Λ) ∈ Xn−1(Λ) and points

(λ1, . . . , λn+1) ∈ Λn+1, we have to estimate ∆nω(λ1, . . . , λn+1). Under the assumption (b), at

least one of these n + 1 points is not in the disk D(λ1, e
−H(λ1)). Note that Λn is invariant by

permutation of the n+ 1 points, thus we may assume that ρ(λ1, λn+1) ≥ e−H(λ1). Using the fact
that ω(Λ) ∈ Xn−1(Λ), there exists H0 ∈ Har+(D) such that

|∆nω(λ1, . . . , λn+1)| ≤
|∆n−1ω(λ2, . . . , λn+1)|+ |∆n−1ω(λ1, . . . , λn)|

ρ(λ1, λn+1)

≤ eH(λ1)
(

eH0(λ2)+···+H0(λn+1) + eH0(λ1)+···+H0(λn)
)

≤ 2eH(λ1)eH0(λ1)+···+H0(λn+1) .

Taking H̃ = H0 +H + log 2 we get the desired estimate.
(c)⇒(b). We prove this by contraposition. Assume that for all H ∈ Har+(D) there exists

λ ∈ Λ such that

#[Λ ∩D(λ, e−H(λ))] > n .(2)

Consider the partition of D into the dyadic squares

Qk,j =
{

z = reiθ ∈ D : 1− 2−k ≤ r < 1− 2−k−1 , j
2π

k
≤ θ < (j + 1)

2π

k

}

,

where k ≥ 0 and j = 0, . . . 2k − 1.
Let Λk,j = Λ ∩Qk,j and

rk,j = inf{r > 0 : ∃λ ∈ Λk,j : #(Λ ∩D(λ, r)) ≥ n+ 1}.

Take αk,j ∈ Λk,j such that #(Λ ∩D(αk,j, rk,j)) ≥ n+ 1.

Claim: For all H ∈ Har+(D),

inf
k,j

rk,j
e−H(αk,j )

= 0 .

To see this assume otherwise that there exist H ∈ Har+(D) and η > 0 with

rk,j
e−H(αk,j)

≥ η .

In particular, by Harnack’s inequalities,

(3) log
1

rk,j
≤ 3H(z) + log(

1

η
), z ∈ Qk,j.
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Let H̃ := log(2/η) + 4H ∈ Har+(D). By the hypothesis (2) there exist k0 ≥ 0, j0 ∈
{0, . . . , 2k0 − 1}, λk0,j0 ∈ Λk0,j0 such that

#
[

Λ ∩D(λk0,j0, e
−H̃(λk0,j0

))
]

≥ n+ 1 .

In particular, by definition of rk,j, we have rk0,j0 ≤ e−H̃(λk0,j0
), that is

log
1

rk0,j0
≥ H̃(λk0,j0) = log(

2

η
) + 4H(λk0,j0),

which contradicts (3).
Now take a separated sequence L ⊂ {αk,j}k,j for which the disks D(α, rα), α ∈ L, are

disjoint, where for α = αk,j ∈ L we denote rα = rk,j . Given α ∈ L, let λα
1 , . . . , λ

α
n be its n

nearest (not necessarily unique) points, arranged by increasing distance. Notice that ρ(α, λα
n) =

rα.
In order to construct a sequence ω(Λ) ∈ Xn−1(Λ) \Xn(Λ), put







ω(α) =
n−1
∏

j=1

bα(λ
α
j ), for all α ∈ L

ω(λ) = 0 if λ ∈ Λ \ L.

To see that ω(Λ) ∈ Xn−1(Λ) let us estimate ∆n−1ω(λ1, . . . , λn) for any given (λ1, . . . , λn) ∈
Λn. By the separation conditions on L, we know that none of the λα

j is in L. Hence, we may as-

sume that at most one of the points is in L. On the other hand, it is clear that ∆n−1ω(λ1, . . . , λn) =
0 if all the points are in Λ \ L. Thus, taking into account that ∆n−1 is invariant by permutations,
we will only consider the case where λn is some α ∈ L and λ1, . . . , λn−1 are in Λ \ L. In that
case,

|∆n−1ω(λ1, . . . , λn−1, α)| = |ω(α)|
n−1
∏

j=1

ρ(α, λj)
−1 =

n−1
∏

j=1

ρ(α, λα
j )

ρ(α, λj)
≤ 1,

as desired.
On the other hand, a similar computation yields

|∆nω(λα
1 , . . . , λ

α
n, α)| = |ω(α)|

n
∏

j=1

ρ(α, λα
j )

−1 = ρ(α, λα
n)

−1 = r−1
α .

The Claim above prevents the existence of H ∈ Har+(D) such that

r−1
α = |∆nω(λα

1 , . . . , λ
α
n, α)|e

−(H(λα
1 )+···+H(λα

n)+H(α)) ≤ C ,

since otherwise, again by Harnack’s inequalities, we would have

r−1
α ≤ e3(n+1)H(α), α ∈ L .

�

It is clear from the characterization (1) of interpolating sequences for N that such sequences
must be weakly separated. The previous result gives another way of showing it.

Corollary 2.5. If Λ is an interpolating sequence, then it is weakly separated.
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Proof. If Λ is an interpolating sequence, then N|Λ = X0(Λ). On the other hand, by Proposition
2.1, N|Λ ⊂ X1(Λ). Thus X0(Λ) = X1(Λ). We conclude by the preceding lemma applied to the
particular case n = 1. �

The covering provided by the following result will be useful.

Lemma 2.6. Let Λ1, . . . ,Λn be weakly separated sequences. There exist H ∈ Har+(D), positive

constants α, β, a subsequence L ⊂ Λ1 ∪ · · · ∪ Λn and disks Dλ = D(λ, rλ), λ ∈ L, such that

(i) Λ1 ∪ · · · ∪ Λn ⊂ ∪λ∈LDλ,

(ii) e−βH(λ) ≤ rλ ≤ e−αH(λ) for all λ ∈ L,

(iii) ρ(Dλ, Dλ′) ≥ e−βH(λ) for all λ, λ′ ∈ L, λ 6= λ′.

(iv) #(Λj ∩Dλ) ≤ 1 for all j = 1, . . . , n and λ ∈ L.

Proof. Let H ∈ Har+(D) be such that

(4) ρ(λ, λ′) ≥ e−H(λ), ∀λ, λ′ ∈ Λj, λ 6= λ′, ∀j = 1, . . . , n .

We will proceed by induction on k = 1, . . . , n to show the existence of a subsequence Lk ⊂
Λ1 ∪ · · · ∪ Λk such that:

(i)k Λ1 ∪ · · · ∪ Λk ⊂ ∪λ∈Lk
D(λ,Rk

λ),

(ii)k e−βkH(λ) ≤ Rk
λ ≤ e−αkH(λ),

(iii)k ρ(D(λ,Rk
λ), D(λ′, Rk

λ′)) ≥ e−βkH(λ) for any λ, λ′ ∈ Lk, λ 6= λ′.

Then it suffices to chose L = Ln, α = αn, β = βn, rλ = Rn
λ. The weak separation and the fact

that rλ < e−H(λ)/3 implies that #Λj ∩D(λ, rλ) ≤ 1, j = 1, . . . , k, hence the lemma follows.

For k = 1, the property is clearly verified with L1 = Λ1 and R1
λ = e−CH(λ), with C big enough

so that (iii)1 holds (C = 3, for instance). Properties (i)1, (ii)1 follow immediately.
Assume the property true for k and split Lk = M1 ∪M2 and Λk+1 = N1 ∪ N2, where

M1 = {λ ∈ Lk : D(λ,Rk
λ + 1/4 e−βkH(λ)) ∩ Λk+1 6= ∅},

N1 = Λk+1 ∩
⋃

λ∈Lk

D(λ,Rk
λ + 1/4 e−βkH(λ)),

M2 = Lk \M1,

N2 = Λk+1 \ N1.

Now, we put Lk+1 = Lk ∪ N2 and define the radii Rk+1
λ as follows:

Rk+1
λ =











Rk
λ + 1/4 e−βkH(λ) if λ ∈ M1,

Rk
λ if λ ∈ M2,

1/8 e−βkH(λ) if λ ∈ N2.

It is clear that (i)k+1 holds:

Λ1 ∪ · · · ∪ Λk+1 ⊂
⋃

λ∈Lk+1

D(λ,Rk+1
λ ) .
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Also, by the induction hypothesis,

1

8
e−βkH(λ) ≤ Rk+1

λ ≤ e−αkH(λ) +
1

4
e−βkH(λ).

Thus, to see (ii)k+1 there is enough to choose αk+1, βk+1 such that

e−αkH(λ) + 1/4 e−βkH(λ) ≤ e−αk+1H(λ),

for instance αk+1 = αk − 1, and

(5) 1/8 e−βkH(λ) ≥ e−βk+1H(λ) ,

that is βk+1H(λ) ≥ βkH(λ) + log 8. Assuming without loss of generality that H(λ) ≥ log 8,
there is enough choosing βk+1 ≥ βk + 1.

In order to prove (iii)k take now λ, λ′ ∈ Lk+1, λ 6= λ′. Notice that

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = ρ(λ, λ′)− Rk+1
λ −Rk+1

λ′ .

Split into four different cases:
1. λ, λ′ ∈ Lk. Assume without loss of generality that H(λ) ≤ H(λ′). Then, by the definition

of Rk+1
λ , we see that

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = ρ(λ, λ′)−Rk
λ − Rk

λ′ −
1

4
e−βkH(λ) −

1

4
e−βkH(λ′).

By inductive hypothesis

ρ(λ, λ′)−Rk
λ −Rk

λ′ = ρ(D(λ,Rk
λ), D(λ′, Rk

λ′)) ≥ e−βkH(λ) .

Thus, by (5),

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ e−βkH(λ) −
1

2
e−βkH(λ) =

1

2
e−βkH(λ) ≥ e−βk+1H(λ).

2. λ, λ′ ∈ N2. Assume also H(λ) ≤ H(λ′). Condition (4) implies ρ(λ, λ′) ≥ e−H(λ), hence

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ e−H(λ) −
1

4
e−βkH(λ).

If βk ≥ 2, by (5) we have

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥ e−2H(λ) ≥ e−βkH(λ) ≥ e−βk+1H(λ).

3. λ ∈ M1, λ
′ ∈ N2 By definition of M1 there exists β ∈ N1 such that

ρ(λ, β) ≤ Rk
λ +

1

4
e−βkH(λ).

Then, using (4) on β, λ′ ∈ Λk+1, we have, by Harnack’s inequalities (if βk ≥ 4),

ρ(λ, λ′) ≥ ρ(β, λ′)− ρ(λ, β) ≥ e−H(β) −Rk
λ −

1

4
e−βkH(λ) ≥ e−2H(λ) −

5

4
e−βkH(λ)

≥ e−4H(λ) ≥ e−βkH(λ) ≥ e−βk+1H(λ) .
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4. λ ∈ M2, λ
′ ∈ N2. Taking into account the definition of Rk+1

λ , Rk+1
λ′ we have

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) = ρ(λ, λ′)− Rk
λ −

1

8
e−βkH(λ)

Since

ρ(λ, λ′)− Rk
λ ≥ ρ(D(λ,Rk

λ), D(λ′, Rk
λ′)),

by inductive hypothesis and by (5)

ρ(D(λ,Rk+1
λ ), D(λ′, Rk+1

λ′ )) ≥
1

4
e−βkH(λ) −

1

8
e−βkH(λ) ≥ e−βk+1H(λ) .

All together, it is enough to start with C > n, define α1 = β1 = C, and then define αk, βk

inductively by

αk+1 = αk − 1 = · · · = C − k , βk+1 = βk + 1 = · · · = C + k .

�

3. PROOF OF MAIN THEOREM. NECESSITY

Assume N|Λ = Xn−1(Λ), n ≥ 2. Using Proposition 2.1, we have Xn−1(Λ) = Xn(Λ), and by
Lemma 2.4 we deduce that Λ = Λ1∪· · ·∪Λn, where Λ1, . . . ,Λn are weakly separated sequences.
We want to show that each Λj is an interpolating sequence.

Let ω(Λj) ∈ N (Λj) = X0(Λj). Let ∪λ∈LDλ be the covering of Λ given by Lemma 2.6. We
extend ω(Λj) to a sequence ω(Λ) which is constant on each Dλ ∩ Λj in the following way:

ω|Dλ∩Λ =

{

0 if Dλ ∩ Λj = ∅

ω(α) if Dλ ∩ Λj = {α} .

We verify by induction that the extended sequence is in Xk−1(Λ) for all k ≤ n. It is clear that it
belongs to X0(Λ).

Assume that ω ∈ Xk−2(Λ), k ≥ 2, and consider (α1, . . . , αk) ∈ Λk. If all the points are in
the same Dλ then ∆k−1ω(α1, . . . , αk) = 0, so we may assume that α1 ∈ Dλ and αk ∈ Dλ′ with
λ 6= λ′. Then we have, for some H0 ∈ Har+(D),

ρ(α1, αk) ≥ e−βH0(α1), k 6= 1.

With this and the induction hypothesis it is clear that for some H ∈ Har+(D),

|∆k−1ω(α1, . . . , αk)| =

∣

∣

∣

∣

∆k−2ω(α2, . . . , αk)−∆k−2ω(α1, . . . , αk−1)

bα1(αk)

∣

∣

∣

∣

≤ eβH0(α1)
(

eH(α2)+···+H(αk) + eH(α1)+···+H(αk−1)
)

.

Taking for instance H̃ = H + βH0 + log 2 we get

|∆k−1ω(α1, . . . , αk)| ≤ eH̃(α1)+···+H̃(αk) ,

thus ω(Λ) ∈ Xk−1(Λ). By assumption there exist f ∈ N interpolating the values ω(Λ). In
particular f interpolates ω(Λj).



10 A. HARTMANN, X. MASSANEDA, A. NICOLAU

4. PROOF OF THE MAIN THEOREM. SUFFICIENCY

Assume Λ = Λ1 ∪ · · · ∪ Λn, where Λj ∈ IntN , j = 1, . . . , n, and denote Λj = {λ(j)
k }k∈N.

Denote also by Bj the Blaschke product with zeros on Λj . We will use the following property of
the Nevanlinna interpolating sequences (see Theorem 1.2 in [3]).

Lemma 4.1. Let Λ ∈ IntN and let B the Blaschke product associated to Λ. There exists

H1 ∈ Har+(D) such that

|B(z)| ≥ e−H1(z)ρ(z,Λ) z ∈ D .

According to Proposition 2.1 we only need to see that Xn−1(Λ) ⊂ N|Λ. Let then ω(Λ) ∈
Xn−1(Λ) and split it

{ω(λ)}λ∈Λ = {ω(1)
k }k∈N ∪ · · · ∪ {ω(n)

k }k∈N ,

where ω
(j)
k = ω(λ

(j)
k ), j = 1, . . . , n, k ∈ N. By Lemma 1.2 and the hypothesis {ω(1)

k }k∈N ∈
X0(Λ1), hence there exists f1 ∈ N such that

f1(λ
(1)
k ) = ω

(1)
k , k ∈ N .

In order to interpolate also the values {ω(2)
k }k consider functions of the form

f2(z) = f1(z) +B1(z)g2(z) .

Immediately f2(λ
(1)
k ) = f1(λ

(1)
k ) = ω

(1)
k , k ∈ N, and we will have f2(λ

(2)
k ) = ω

(2)
k as soon as we

find g2 ∈ N such that

g2(λ
(2)
k ) =

ω
(2)
k − f1(λ

(2)
k )

B1(λ
(2)
k )

, k ∈ N .

Since Λ2 ∈ IntN such g2 will exist as soon as the sequence in the right hand side is majorized

by a sequence of the form {eH(λ
(2)
k

)}k.

Given λ
(2)
k ∈ Λ2 pick λ

(1)
k such that ρ(λ

(2)
k ,Λ1) = ρ(λ

(2)
k , λ

(1)
k ). There is no restriction in

assuming that ρ(λ
(2)
k , λ

(1)
k ) ≤ 1/2. Then, by Lemma 4.1 there exists H1 ∈ Har+(D) such that

|B1(λ
(2)
k )| ≥ e−H1(λ

(2)
k

)ρ(λ
(1)
k , λ

(2)
k ) k ∈ N.

Now, since f1(λ
(1)
k ) = ω

(1)
k we have

∣

∣

∣

∣

∣

ω
(2)
k − f1(λ

(2)
k )

B1(λ
(2)
k )

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

ω
(2)
k − ω

(1)
k

B1(λ
(2)
k )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f1(λ
(1)
k )− f1(λ

(2)
k )

B1(λ
(2)
k )

∣

∣

∣

∣

∣

≤
(

∆1(ω
(1)
k , ω

(2)
k ) + ∆1(f1(λ

(1)
k ), f1(λ

(2)
k ))

)

eH1(λ
(2)
k

) .

By hypothesis, and since f1 ∈ N , there exists H2 ∈ Har+(D) such that

∆1(ω
(1)
k , ω

(2)
k ) + ∆1(f1(λ

(1)
k ), f1(λ

(2)
k )) ≤ eH2(λ

(1)
k

)+H2(λ
(2)
k

),
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and therefore, by Harnack’s inequalities,
∣

∣

∣

∣

∣

ω
(2)
k − f1(λ

(2)
k )

B1(λ
(2)
k )

∣

∣

∣

∣

∣

≤ eH2(λ
(1)
k

)+H2(λ
(2)
k

)eH1(λ
(2)
k

) ≤ e3(H1+H2)(λ
(2)
k

),

In general, assume that we have fn−1 ∈ N such that

fn−1(λ
(j)
k ) = ω

(j)
k k ∈ N, j = 1, . . . , n− 1 .

We look for a function fn ∈ N interpolating the whole Λ of the form

fn = fn−1 +B1 · · ·Bn−1gn .

We need then gn ∈ N with

gn(λ
(n)
k ) =

ω
(n)
k − fn−1(λ

(n)
k )

B1(λ
(n)
k ) · · ·Bn−1(λ

(n)
k )

, k ∈ N .

Let us see that the sequence of values in the right hand side of this identity have a majorant of

the form {eH(λ
(n)
k

)}k.

Pick λ
(j)
k ∈ Λj , j = 1, . . . , n− 1 such that ρ(λ

(n)
k ,Λj) = ρ(λ

(n)
k , λ

(j)
k ). There is no restriction

in assuming that ρ(λ
(n)
k , λ

(j)
k ) ≤ 1/2. Since fn−1(λ

(j)
k ) = ω

(j)
k , j = 1, . . . , n − 1, an immediate

computation shows that

ω
(n)
k − fn−1(λ

(n)
k ) =

[

∆n−1(ω
(1)
k , . . . , ω

(n−1)
k , ω

(n)
k )−

−∆n−1(fn−1(λ
(1)
k ), . . . , fn−1(λ

(n−1)
k ), fn−1(λ

(n)
k ))

]

b
λ
(1)
k

(λ
(n)
k ) · · · b

λ
(n−1)
k

(λ
(n)
k ) .

Again by Lemma 4.1, there exists H1 ∈ Har+(D) such that

|Bj(λ
(n)
k )| ≥ e−H1(λ

(n)
k

)ρ(λ
(j)
k , λ

(n)
k ) , k ∈ N, j = 1, . . . , n− 1.

Hence, by hypothesis and the fact that fn−1 ∈ N there exists H ∈ Har+(D) such that
∣

∣

∣

∣

∣

ω
(n)
k − fn−1(λ

(n)
k )

B1(λ
(n)
k ) · · ·Bn−1(λ

(n)
k )

∣

∣

∣

∣

∣

≤ [|∆n−1(ω
(1)
k , . . . , ω

(n)
k )|+|∆n−1(fn−1(λ

(1)
k ), . . . , fn−1(λ

(n)
k ))|] e(n−1)H1(λ

(n)
k

)

≤ eH(λ
(1)
k

)+···+H(λ
(n−1)
k

)+H(λ
(n)
k

)+(n−1)H1(λ
(n)
k

) .

Finally, by Harnack’s inequalities, this is bounded by e2n(H(λ
(n)
k

)+H1(λ
(n)
k

)).
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