
Axioms for the optimal stable rules and fair-division
rules in a multiple-partners job market.?

Gerard Domènech 1,* and Marina Núñez1
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Abstract

In the multiple-partners job market, introduced in (Sotomayor, 1992), each
firm can hire several workers and each worker can be hired by several firms, up
to a given quota. We show that, in contrast to what happens in the simple
assignment game, in this extension, the firms-optimal stable rules are neither
valuation monotonic nor pairwise monotonic. However, we show that the firms-
optimal stable rules satisfy a weaker property, what we call firm-covariance, and
that this property characterizes these rules among all stable rules. This property
allows us to shed some light on how firms can (and cannot) manipulate the firms-
optimal stable rules. In particular, we show that firms cannot manipulate them by
constantly over-reporting their valuations. Analogous results hold when focusing
on the workers. Finally, we extend to the multiple-partners market a known
characterization of the fair-division rules on the domain of simple assignment
games.

Keywords: assignment game; stable rules; fair division.

1 Introduction

The aim of this paper is to study some allocation rules in a two-sided job market with
firms on one side and workers on the other side. Each agent has a quota that determines
in how many partnerships with agents of the opposite side this agent can enter. Each
potential partnership has a value and a rule determines a matching and an allocation of
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the value of each partnership between the partners. This model is an extension of the
well-known Shapley and Shubik assignment game.

The assignment game was introduced in Shapley & Shubik (1972) as a coalitional-
game model for a two-sided market, formed by buyers and sellers or firms and workers,
where each agent on one side is to be matched to at most one agent on the opposite side.
The objective is to propose a matching and an allocation of the worth of each matched
pair among the partners in such a way that no buyer-seller pair (or firm-worker pair)
blocks the proposed matching because they can get a higher payoff by being matched
together.

Shapley and Shubik prove that, for such markets, stable outcomes always exist and
form a complete lattice, which guarantees the existence of an optimal stable outcome
for each side of the market. They also prove the coincidence between the core, the set
of stable payoff vectors and the set of competitive equilibria payoff vectors.

Many extensions of the Shapley and Shubik assignment game, that we will call the
simple assignment game, have been studied since then. The first ones allow agents
to be matched to more than one partner. Kaneko (1976) assumes that buyers can
only buy one good from one seller while each seller can sell to more than one buyer.
The core is also non-empty but (strictly) contains the set of competitive equilibrium
payoff vectors. Thompson (1981) allows that both buyers and sellers can take part
in multiple partnerships, up to a given quota exogenously determined for each agent.
This extension was also studied in Sánchez-Soriano et al. (2001) with the name of
transportation game and in Sotomayor (2002). It turns out that the core, that also
contains the set of competitive equilibrium payoff vectors, is non-empty but has no
longer a lattice structure. In this model, existence of optimal core allocations for each
side of the market is still an open question.

A different extension of the simple assignment game was introduced in Sotomayor
(1992) with the name of multiple-partners assignment game, and this is the model that
better fits with our initial job market situation. In the multiple-partners assignment
game, each agent can also take part in multiple partnerships, as many as the agent’s
quota allows, but can trade at most one unit with each possible partner. Utilities
are assumed to be additively separable. Again, an outcome consists of a matching
and an allocation of the worth of each partnership between the two partners. In this
setting, a notion of (pairwise) stable outcome is similarly defined. Sotomayor (1992)
shows that the set of stable payoffs is non-empty and a subset of the core, and that
it can be strictly smaller than the core. Sotomayor (1999) adds that the set of stable
payoffs is endowed with a complete lattice structure under two convenient partial order
relations. Although these partial orders are not defined by the preferences of the agents,
all agents on the same side of the market agree on the best stable payoff for them. The
relationship with the set of competitive equilibrium payoffs is analysed in Sotomayor
(2007) and a mechanism that yields the buyers-optimal competitive equilibrium payoff,
which coincides with the buyers-optimal stable payoff, is obtained in Sotomayor (2009).
Pérez-Castrillo & Sotomayor (2019) analyses how the optimal stable and competitive
solutions react to the introduction of a new agent to the market, depending on whether
it is a buyer or a seller.

The aim of our paper is to study stable allocation rules, that is, rules that given the
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values of all possible partnerships select a stable outcome. In particular we will focus on
the two optimal stable rules. We first generalize some monotonicity properties: pairwise
monotonicity and firm-valuation monotonicity (or worker-valuation monotonicity), that
are satisfied by optimal stable rules in the simple assignment game. Firm-valuation
monotonicity states that if the values of a firm weakly decrease but this does not modify
the partners of this firm given by the rule, then this firm should not receive a higher
payoff in any of its partnerships. In the simple assignment game this property char-
acterizes the firms-optimal stable rules among all stable rules (van den Brink et al. ,
2021).

We show that the optimal stable rules for the multiple-partners assignment game
do not satisfy the aforementioned monotonicity properties: the firms-optimal stable
rules are neither firm-valuation monotonic nor pairwise monotonic. However, the firms-
optimal stable rules satisfy a weaker form of valuation monotonicity. We strengthen the
conditions under which a decrease of the valuations of the firm should imply a decrease
in that firm’s payoffs: we only require monotonicity when all its valuations are decreased
by the same amount. This weak firm-valuation monotonicity is a consequence of what
we call firm-covariance. Roughly speaking, a rule is firm-covariant if when all valuations
of a firm decrease in a constant amount and all optimal matchings of the initial market
still remain optimal, then the payoff this firm obtains in each partnership decreases in
exactly that constant amount. We prove that firm covariance characterizes the firms-
optimal stable rules among all stable rules, and worker covariance characterizes the
workers-optimal stable rules among all stable rules.

Secondly, we focus on how agents can misrepresent their preferences to manipulate
a stable rule in the multiple-partners assignment game. Pérez-Castrillo & Sotomayor
(2017) analyse the manipulability of competitive equilibrium rules for this market game
(with buyers instead of firms and sellers instead of workers). They show that (i) any
agent who does not receive her/his optimal competitive equilibrium payoff under a com-
petitive rule can profitably misrepresent her/his valuations, assuming the others tell the
truth; (ii) if the buyers-optimal (respectively, sellers-optimal) competitive equilibrium
rule is used in a market with more than one vector of equilibrium prices, then there
is a seller (respectively, buyer) who can profitably misrepresent his (respectively, her)
valuations and (iii) an agent with a quota of one cannot manipulate a rule in a market
if and only if the rule gives to this agent her/his most preferred equilibrium payoff.

Since in multiple-partners assignment games the payoff vector of the buyers-optimal
stable rule coincides with that of the buyers-optimal competitive equilibrium rule (So-
tomayor, 2007), only the buyers with capacity one cannot manipulate the rule. However,
we show that these stable rules that are optimal for one side of the market have a weaker
non-manipulability property: on the domain of multiple-partner job markets where all
firm-worker pairs are acceptable, no firm can manipulate the firms-optimal stable rule
by constantly over-reporting its valuations. Similarly, no worker can manipulate the
workers-optimal stable rule by under-reporting his/her valuation.

There is some experimental evidence that bidders tend to over-report valuations
in some auctions. See for instance Kagel & Levin (1993) for second price auctions,
Kagel & Levin (2009) for the Vickrey multi-unit demand auction, or Kagel et al.
(2014) for some combinatorial auctions with package bidding. We see that, although
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over-reporting may be profitable for firms (or buyers) if the firms-optimal stable rule
is implemented in a multiple-partners job market, the least sophisticated form of over-
reporting which consists in adding the same constant to all firm’s valuations, does not
bring any additional profit.

Finally, we consider the fair-division rules. The payoff vector of these rules is the
midpoint between the firms-optimal and the workers-optimal payoff vectors. On the
domain of simple assignment games, these rules have been characterized in van den
Brink et al. (2021) by means of two properties: great valuation fairness and weak
derived consistency. We adapt the definition of these two properties to the domain of
multiple-partners job markets. Great valuation fairness requires that when the value
of all firm-worker pair decreases by a constant amount (up to a given threshold that
guarantees that all optimal matchings of the initial market remain optimal) then all
players suffer the same reduction in the payoff they receive from the rule. Weak derived
consistency only requires consistency of the payoffs when the market is reduced at a
firm-worker pair that have the same payoff at any stable outcome. We show that these
two properties individualize the fair-division rules among all stable rules.

The structure of the paper is as follows. In Section 2 we introduce the multiple-
partners job market, Section 3 contains the characterizations of the two optimal stable
rules, Section 4 discusses the manipulability of these rules and Section 5 characterizes
the fair-division rules.

2 The multiple-partners assignment game

Let F = {f1, f2, . . . , fm} be a finite set of firms and W = {w1, w2, . . . , wn} a finite
set of workers. Each firm fi values in hij ≥ 0 being matched to worker wj. Also,
each worker wj has a reservation value tj ≥ 0, that can be interpreted as how much
worker wj values each one of his available slots. If firm fi hires worker wj, then a
value aij = max{hij − tj, 0} ≥ 0 is generated that has to be shared by both partners.
Sometimes we will normalize reservation values of workers at zero and then aij = hij for
all i = 1, 2 . . . ,m and j = 1, 2, . . . , n. Each firm fi can hire at most ri workers and each
worker wj can work for at most sj firms.

A multiple-partners assignment market or a multiple-partners job market is then
defined by (F,W, a, r, s) where a = (aij) i=1,...,m

j=1,...,n
, r = (ri)i=1,...,m and s = (sj)j=1,...,n. The

set of all possible valuation profiles for a set F of firms and a set W of workers is denoted
by AF×W . We add a dummy agent on each side of the market, f0 and w0, such that
a00 = ai0 = a0j = 0 for all i = 1, . . . ,m and j = 1, . . . , n. As for the quotas, a dummy
player may form as many partnerships as needed to fill up the quotas of the non-dummy
players. We write F0 = F ∪{f0} and W0 = W ∪{w0}. A dummy player may be matched
to more than one player of the opposite side and more than once to the same player.
When all non-dummy agents have quota 1, this model coincides with the one in Shapley
& Shubik (1972) and we will say it is a simple assignment game.

A matching µ is a subset of F0×W0, that does not violate the quotas of the players,
that is, each fi ∈ F appears in exactly ri pairs of µ and each wj ∈ W appears in
exactly sj pairs of µ, since a firm that does not fill some of its positions is assumed to
be matched to the dummy worker w0 (and similarly for workers with unfilled positions).
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When necessary, we denote by µfi the set of partners of firm fi ∈ F in matching µ, that
is µfi = {j ∈ W0 | (fi, wj) ∈ µ}. Similarly, for all wj ∈ W , µwj

= {i ∈ F0 | (fi, wj) ∈ µ}.
The set of all matchings is M(F,W, r, s). A matching µ is optimal if, for any other

µ′ ∈ M(F,W, r, s),
∑

(fi,wj)∈µ aij ≥
∑

(fi,wj)∈µ′ aij. The set of optimal matchings is

Ma(F,W, r, s).
From this market situation, a coalitional game (F ∪ W,wa), the multiple-partners

assignment game is defined with set of agents F ∪W and coalitional function

wa(T ) = max
µ∈M(F∩T,W∩T,r,s)

∑
(fi,wj)∈µ

aij

for all T ⊆ F ∪W with T ∩ F 6= 0 and T ∩W 6= 0, and wa(T ) = 0 otherwise.
An outcome for the market (F,W, a, r, s) consists of a matching and the payoffs that

each agent obtains from each of the partnerships he/she establishes in this matching.
That is, if firm fi hires worker wj at a salary vij, this firm receives uij = aij − vij.

Definition 2.1. Let (F,W, a, r, s) be a multiple-partner job market. A feasible outcome
is (u, v;µ) where µ ∈M(F,W, r, s) and for each (fi, wj) ∈ µ,

1. uij + vij = aij,

2. uij ≥ ai0 and vij ≥ a0j,

3. if fi = f0, then v0j = a0j,

4. if wj = w0, then ui0 = ai0.

Notice that uij and vij are only defined if (fi, wj) ∈ µ. Hence, u and v contain a list
of dissagregated payoffs for each agent, one for each partnership established by µ. Also,
as a consequence of the above definition, the payoff of the dummy agents is always zero.

For these markets, a notion of stability, sometimes called pairwise stability, is defined
in Sotomayor (1992).

Definition 2.2. Let (F,W, a, r, s) be a multiple-partner job market. A stable outcome
is a feasible outcome (u, v;µ) such that for all (fi, wj) 6∈ µ,

uik + vlj ≥ aij for all (fi, wk) ∈ µ and (fl, wj) ∈ µ. (1)

Notice that if there existed (fi, wk) and (fl, wj) in µ such that uik + vlj < aij, then
fi and wj might break their current partnerships with wk and fl, respectively, and form
a new one together, because this could give to each of them a higher payoff.

It is shown in Sotomayor (1992) that if (u, v;µ) is a stable outcome, then µ is an
optimal matching.

For the multiple-partners assignment game, stable outcomes always exist. This is
proved in Sotomayor (1992) in two different ways: one of them uses linear programming1

1It is shown in Appendix 1 of Sotomayor (1992) the relationship between the set of stable outcomes
of the multiple-partners assignment market and the set of dual solutions to the linear program that
obtains an optimal matching for this market.
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and the second one, that we comment on below, is based on a replication of the players
and a convenient way of defining the valuation matrix.

Given any multiple partners-assignment game (F,W, a, r, s) we can define a related
simple assignment game (F̃ , W̃ , ã) in the following way. Each firm fi with quota ri is
replicated ri times and each worker wj with quota sj is replicated sj times:

F̃ = {fik | i = 1, . . . ,m; k = 1, . . . , ri} and W̃ = {wkj | j = 1, . . . , n; k = 1, . . . , sj}

with unitary quotas, r̃ik = 1 for all i = 1, . . . ,m and k = 1, . . . , ri, and s̃kj = 1 for all
j = 1, . . . , n and k = 1 . . . , sj. Moreover, given µ ∈ Ma(F,W, r, s), we define a one-to-
one matching µ̃ between F̃ and W̃ in this way: (i) if (fik, wlj) ∈ µ̃, then (fi, wj) ∈ µ
and (ii) if (fi, wj) ∈ µ, there exist one and only one k = 1, . . . , ri and one and only one
l = 1 . . . , sj such that (fik, wlj) ∈ µ̃. This means that if fi hires wj under µ, then one
copy of fi hires one copy of wj under µ̃ and that no other copies of them are matched.
After defining ã, it can be shown that µ̃ is optimal for (F̃ , W̃ , ã).

Then, given µ̃ as defined above, the valuation matrix ã of this related simple assign-
ment game (F̃ , W̃ , α̃) is defined by

ãik,lj =

{
0 if (fi, wj) ∈ µ and (fik, wlj) 6∈ µ̃,
aij otherwise.

(2)

Now, if (u′, v′; µ̃) is a feasible outcome for the simple assignment game (F̃ , W̃ , ã),
we can built a feasible outcome (u, v;µ) for the multiple-partners assignment game
(F,W, a, r, s) in the following way:

if (fik, wlj) ∈ µ̃, then define uij = u′ik, vij = v′lj, and
ui0 = v0j = 0, whenever i or j are matched to a dummy partner.

(3)

Proposition 2 in Sotomayor (1992) shows that (u′, v′; µ̃) is stable for (F̃ , W̃ , ã) if and
only if (u, v;µ) is stable for (F,W, a, r, s).

Since it is well-known that stable outcomes always exist for the simple assignment
game, the above result guarantees also existence for the multiple-partners assignment
game. Moreover, Sotomayor (1999) proves that the payoff vectors of the set of stable
outcomes form a convex and compact lattice and, as a consequence, there exists a unique
optimal stable payoff vector for each side of the market. To this end, the problem that
uij and vij are indexed according to the current matching, that may differ from one
stable matching to another, has to be solved. However, it is also proved in Theorem
1 in Sotomayor (1999) that in every stable outcome a player gets the same payoff in
any nonessential partnership (those partnerships that occur in some but not all optimal
matchings). Because of that, given a stable outcome (u, v;µ) and another optimal
matching µ′, we can reindex uij and vij according to µ′ and still get a stable outcome
compatible with µ′.

As a consequence of all that, to obtain the firms-optimal stable outcome in the
multiple-partners assignment game we only need to obtain the firms-optimal stable
payoff vector in the related simple assignment game. In the simple assignment game,
the maximum stable payoff of a firm fik ∈ F̃ is its marginal contribution, uik(ã) =
wã(Ñ)− wã(Ñ \ {fik}), and similarly for the workers, vlj(ã) = wã(Ñ)− wã(Ñ \ {wlj})
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(see Demange (1982) and Leonard (1983)). Hence, (u(a), v(a)) defined from (u(ã), v(ã))
as in 3 are the optimal stable payoff vectors in the multiple-partners assignment game,
and the maximum total stable payoff of an agent in the multiple-partners assignment
game is

U i(a) =
∑

(fi,wk)∈µ

uik(a) for all fi ∈ F and V j(a) =
∑

(k,j)∈µ

vkj(a) for all wj ∈ W,

given any optimal matching µ. Notice that, for all fi ∈ F ,

U i(a) =
∑

(fi,wk)∈µ

w̃a(Ñ)− w̃a(Ñ \ {fik}) ≤ w̃a(Ñ)− w̃a(Ñ \ {fi1, fi2, . . . , firi})

= wa(N)− wa(N \ {fi}),

where, in contrast to the simple assignment game, the inequality U i(a) ≤ wa(N) −
wa(N \ {fi}) may be strict.

The set of total payoffs (U, V ) to the agents in the multiple-partners assignment game
has been studied in Fagebaume et al. (2010), where it is proved that the maximum of
any pair of stable (total) payoffs for the firms is stable but the minimum need not be,
even if we restrict the multiplicity of partnerships to one of the sides.

The aim of the present paper is to study the properties of stable allocation rules. An
allocation rules selects a feasible outcome for each multiple-partners job market.

Definition 2.3. Fix a set F of firms with quotas r and a set W of workers with quotas s.
An allocation rule ϕ consists of maps (u, v;µ) from valuation profiles a ∈ AF×W to fea-
sible outcomes (u(a), v(a);µ(a)). That is, for each a ∈ AF×W , ϕ(a) ≡ (u(a), v(a);µ(a))
is a feasible outcome for (F,W, a, r, s).

An allocation rule is a stable rule if it always selects a stable outcome.

Definition 2.4. Fix a set F of firms with quotas r and a set W of workers with quotas
s. An allocation rule ϕ ≡ (u, v;µ) is a stable rule if for each valuation profile a ∈ AF×W ,
ϕ(a) ≡ (u(a), v(a);µ(a)) is a stable outcome for (F,W, a, r, s).

In the next section we study some outstanding stable rules: the firms-optimal stable
rules, that for each valuation profile select the firms-optimal stable payoffs together with
a compatible matching, and the workers-optimal stable rules, that select the workers-
optimal stable payoffs with a compatible matching. Notice from the above discussion
of the literature, that for each of these two type of rules the associated payoff vector is
uniquely determined, although the compatible matching may not be unique.

3 Valuation monotonicity properties

We begin by considering some monotonicity properties that are satisfied by the optimal
stable rules in the simple assignment game and we see whether they are satisfied by the
corresponding rules in the multiple-partners assignment game. The first one is pairwise
monotonicity. A rule for the simple assignment game is pairwise monotonic if whenever
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a single valuation of the market weakly increases and the remaining ones do not change,
then the rule decreases the payoff of neither the firm nor the worker related to that
valuation. It turns out that both optimal stable rules, and also the fair division rules,
are pairwise monotonic (Núñez & Rafels, 2002). If we want to discriminate between
these stable rules, we need to consider different changes in the valuation profile. In
van den Brink et al. (2021), a rule for the simple assignment game is said to be firm-
valuation monotonic2 if whenever all valuations of a single firm weakly decrease but this
does not change which worker is hired by this firm, then the payoff to this firm cannot
increase. It turns out that the firms-optimal stable rule is the only stable rule for the
simple assignment game that is firm-valuation monotonic. Of course, parallel definitions
and results follow for the workers-optimal stable rule.

Let us now generalize the definition of the above monotonicity properties to the
multiple-partners assignment game. Notice in the next definition that we can easily
compare the payoffs a firm receives in different matchings since we requiere that the
firm keeps the same partners after decreasing the valuations.

Definition 3.1. Fix a set F of firms with quotas r and a set W of workers with quotas
s. An allocation rule ϕ ≡ (u, v, ;µ) satisfies firm-valuation monotonicity (FVM)
if for all a, a′ ∈ AF×W such that there is a firm ft ∈ F such that a′ij = aij for all
fi ∈ F \ {ft} and all wj ∈ W and a′tj ≤ atj for all wj ∈ W , then

µft(a) = µft(a
′)⇒ utk(a

′) ≤ utk(a) for all k ∈ µft(a).

FVM means that if all valuations of a firm weakly decrease but this does not modify
which workers it is assigned to, then the rule cannot give this firm a higher payoff in
any of its partnerships.

When defining a pairwise monotonicity property for the multiple-partners assignment
game, in order to be able to compare the payoffs before and after the change of a value,
we also need to require that the two agents related to the value that has increased or
decreased keep the same partners after this change. Hence, when applied to rules for the
simple assignment game, this property is weaker than the usual pairwise monotonicity
for these games.

Definition 3.2. Fix a set F of firms with quotas r and a set W of workers with quotas
s. An allocation rule ϕ ≡ (u, v, ;µ) satisfies pairwise monotonicity (PM) if for all
a, a′ ∈ AF×W such that there is a firm-worker pair (ft, wk) ∈ F ×W such that a′ij = aij
if (fi, wj) 6= (ft, wk) and a′tk ≤ atk, then µft(a) = µft(a

′) and µwk
(a) = µwk

(a′) imply

utj(a
′) ≤ utj(a) for all j ∈ µft(a) and vik(a

′) ≤ vik(a) for all i ∈ µwk
(a).

The next example shows that the firms-optimal stable rule does not satisfy any of
the above monotonicity properties.

2The market considered in van den Brink et al. (2021) is formed by buyers and sellers and hence
this property is called there buyer-valuation monotonicity
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Example 3.3. Let be a multiple partner assignment game with three firms, F = {f1, f2, f3}
and three workers, W = {w1, w2, w3}, all agents with quota 2, and valuation matrix

a =

 4.5 20 4
5 3 1
2 3 2

 .

There is only one optimal matching µ = {(f1, w2), (f1, w3), (f2, w1), (f2, w2), (f3, w1), (f3, w3)},
and hence any stable rule must select this matching µ. The worth of the grand coalition
is wa(N) = 36.

Assume the value a11 increases in 0.1, that is a′11 = 4.6 and the other values remain
unchanged. Hence, the new valuation matrix is

a′ =

 4.6 20 4
5 3 1
2 3 2


and notice that µ is also the only optimal matching for (F,W, a′, r, s).

To compute the payoffs in the firms-optimal stable rule, we obtain a related sim-
ple assignment game as in Sotomayor (1992): F̃ = {f11, f12, f21, f22, f31, f32}, W̃ =
{w11, w21, w12, w22, w13, w23} and

ã =


4.5 4.5 20 0 0 0
4.5 4.5 0 0 4 0
5 0 0 0 1 1
0 0 0 3 1 1
0 2 3 3 0 0
0 0 3 3 0 2

 .

Here, u11(ã) = 36 − 17.5 = 18.5 = u12(a). If we replace in ã the 4.5 entries with 4.6,
the resulting matrix ã′ is a simple assignment game related to the valuation matrix a′

and we can easily check that

u11(ã
′) = 36− 17.6 = 18.4 = u12(a

′) < u12(a).

As a consequence, the firms-optimal stable rule is not firm-valuation monotonic nor
pairwise monotonic.

One may also ask about the behaviour of the total payoff of a firm in front of these
changes. But in this example it is easy to check that u12(ã

′) = u12(ã) = 36 − 32 = 4 =
u13(a

′) = u13(a). Hence, U1(a
′) = 22.4 < 22.5 = U1(a).

At the sight of the example above, we strengthen the requirement of firm-monotonicity
by assuming that all valuations of a given firm are decreased by the same constant
amount. Analogously, we will study a new worker-monotonicity property assuming the
valuations of all firms with respect to a given worker decrease by the same constant
amount. We will see how the two optimal stable rules react to these changes in the
valuations.
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Firm-covariance of the firms-optimal stable rules

We consider a multiple-partners assignment game (F,W, a, r, s) that is “balanced”, in
the sense that

∑
i∈F ri =

∑
j∈W sj. This assumption is without loss of generality since

we could always add a fake dummy agent with the necessary quota. We analyse the
behaviour of an allocation rule when the valuations of a firm fi0 decrease by the same
amount c ≥ 0, under the assumption that values that become negative are truncated
at zero: aci0j = max{0, ai0j − c} for all wj ∈ W . These values are allowed to decrease
in this way as long as no optimal matching of the initial problem becomes non-optimal.
We then say that a rule for the multiple-partners assignment game is firm-covariant if
the firm pays this cost c in each of its partnerships.

This property can be interpreted by saying that if a constant fee c is applied to some
firm whenever it hires a worker, then this fee is completely paid by the firm, and not
shared with the workers that it hires.

Definition 3.4. A rule ϕ ≡ (u, v;µ) is firm-covariant (FC) if for all (F,W, a, r, s),
all fi0 ∈ F and all c ≥ 0 such that

(i) aci0j = max{0, ai0j − c} for all wj ∈ W and acij = aij for all fi ∈ F \ {fi0},

(ii) c ≤ ai0j for all (fi0 , wj) ∈ µ and µ ∈Ma(F,W ) and

(iii) Ma(F,W ) ⊆Mac(F,W ),

then,

ui0j(a
c) = ui0j(a)− c for all (fi0 , wj) ∈ µ, and

uij(a
c) = uij(a), for all fi ∈ F \ {fi0} and (fi, wj) ∈ µ.

Notice that conditions (ii) and (iii) together imply that the worth of the grand
coalition is still attained at the original optimal matchings.

As we remark after Definition A.1 in the Appendix, requiring that c satisfies condi-
tions (ii) and (iii) in Definition 3.4 is equivalent to requiring c ≤ c∗ where this threshold
c∗, as defined in (5), is the minimum c ≥ 0 such that there is an optimal matching of
(F,W, ac, r, s) with a zero entry.

When we analyse if the firms-optimal stable rules satisfy this property, we may
consider the firms-optimal stable rules of the related simple assignment game and study
there how the payoff of such a rule changes when all the copies of a given firm decrease
their valuations by the same amount c ≥ 0. To this end, in the Appendix we introduce
the property of strong firm-covariance for stable rules of the simple assignment game,
by requiring that several firms decrease their valuations in a given constant, and we
provide an axiomatic characterization of their firms-optimal stable rules making use of
this property. This strong firm-covariance can be defined analogously for the multiple-
partners assignment game.

An analogous covariance property can be defined when all the valuations of a given
worker are decreased by a constant amount.

Definition 3.5. A rule ϕ ≡ (u, v;µ) is worker-covariant (WC) if for all (F,W, a, r, s),
all wj0 ∈ F and all c ≥ 0 such that
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(i) acij0 = max{0, aij0 − c} for all fi ∈ F and acij = aij for all wj ∈ W \ {fj0},

(ii) c ≤ aij0 for all (fi, wj0) ∈ µ and µ ∈Ma(F,W ) and

(iii) Ma(F,W ) ⊆Mac(F,W ),

then,

uij0(a
c) = vij0(a)− c for all (fi, wj0) ∈ µ, and

uij(a
c) = uij(a), for all wj ∈ W \ {wj0} and (fi, wj) ∈ µ.

The next characterization of the firms-optimal stable rules of the multiple-partners
assignment game follows from the results on the simple assignment game developed
in the Appendix. We could also state this result replacing firm-covariance (worker-
covariance) with strong firm-covariance (strong worker-covariance), since in any case it
relies on the strong covariance of the optimal stable rules of the simple assignment game.

Theorem 3.6. 1. The firms-optimal stable rules are the only stable rules for the
multiple-partners assignment game that are firm-covariant.

2. The workers-optimal stable rules are the only stable rules for the multiple-partners
assignment game that are worker-covariant.

Proof. Let (F,W, a, r, s) be a multiple-partners assignment game. Let fi0 ∈ F and
c ≥ 0 that satisfies the conditions in Definition 3.4. Take some µ ∈ Ma(F,W, r, s) and
let (F̃ , W̃ , ã) be a related simple assignment game where firms and workers have been
replicated according their capacity and the valuations are as described in (2), given that
µ ∈ Ma(F,W, r, s). Let (F,W, ac, r, s) be the multiple-partners assignment game with
ac as in Definition 3.4. Notice that when we replicate this market we obtain (F̃ , W̃ , ãc)
and the valuations satisfy ãc = ãc,I , as in Definition A.1 in the Appendix, where I
consists of the ri0 copies of firm fi0 .

As a consequence, if uik(ã) and uik(ãc) are the maximum stable payoffs of the k copy
of firm fi in (F̃ , W̃ , ã) and (F̃ , W̃ , ãc), respectively, then from Proposition A.3 in the
Appendix,

ui0k(ã
c) = ui0k(ã)− c and uik(ãc) = uik(ã) if i 6= i0.

Hence, if (fi0 , wj) ∈ µ and (fi0k, wlj) ∈ µ̃,

ui0j(a
c) = ui0k(ã

c) = ui0k(ã)− c = ui0j(a)− c.

Similarly, if fi ∈ F \ {i0}, (fi, wj) ∈ µ and (fik, wlj) ∈ µ̃, then

uij(a
c) = uik(ãc) = uik(ã) = ui0j(a),

which shows that the firms-optimal stable rules of the multiple-partners assignment
game are firm-covariant.

The converse implication is straightforward since any stable rule for the multiple-
partners assignment game that is FC induces a stable rule for the simple assignment
game that is strong firm-covariant, and by Theorem A.4 in the Appendix we know this
can only be a firms-optimal stable rule.
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If we are interested in the maximum total payoff of the firms in a stable outcome,
then we have

U i0(a
c) =

ri0∑
k=1

ui0k(ã
c) =

ri0∑
k=1

(ui0k(ã)− c) = U i0(a)− ri0c

and for all fi ∈ F \ {fi0}

U i(a
c) =

ri∑
k=1

uik(ãc) =

ri∑
k=1

uik(ã) = U i(a),

Notice now that, as a consequence of Theorem 3.6, we deduce that the firms-optimal
stable rules of the multiple partners assignment game satisfy a weaker form of valuation
monotonicity. We strengthen the conditions under which a decrease of the valuations
of the firm should imply a decrease in that firm’s payoffs: we only require monotonicity
when all valuations are decreased by the same amount.

Definition 3.7. A rule ϕ ≡ (U, V ;µ) is weak firm-valuation monotonic (WFVM)
if for all (F,W, a, r, s), all fi0 ∈ F and all c ≥ 0 such that

(i) aci0j = max{0, ai0j − c} for all wj ∈ W and acij = aij for all fi ∈ F \ {fi0},

(ii) c ≤ ai0j for all (fi0 , wj) ∈ µ and µ ∈Ma(F,W ) and

(iii) Ma(F,W ) ⊆Mac(F,W ),

then,

ui0j(a
c) ≤ ui0j(a) for all (fi0 , wj) ∈ µ.

Since the firms-optimal stable rules are firm-covariant, they trivially satisfy weak
firm-valuation monotonicity.

Corollary 3.8. On the domain of multiple-partners assignment game, the firms-optimal
stable rules satisfy weak firm-valuation monotonicity.

We can analogously define weak worker-valuation monotonicity (WWVM). A rule for
the multiple-partners assignment game is weak worker-valuation monotonic if whenever
the values all firms obtain with a given worker decrease by the same amount (with
truncation to avoid negative valuations), in such a way that all optimal matchings of
the initial market still remain optimal, then the payoff this worker obtains in each
partnership does not increase. It is then obtained that the workers-optimal stable rules
are weak worker-valuation monotonic.
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4 Non-manipulability properties

Given a multiple-partners job market, when an allocation rule is to be adopted, then
firms and workers are required to report their valuations and this induces a strategic
game. Recall that each firm fi values in hij ≥ 0 the possibility of hiring worker wj
and each worker wj has a reservation value tj ≥ 0 and will not accept being hired
with a salary below his/her reservation value. Once agents report their valuations, an
allocation rule ϕ(h, t) selects a matching µ ∈M(F,W, r, s) and determines how to split
the net profit aij = max{hij − tj, 0} of each partnership (fi, wj) ∈ µ. We may assume
the rule simply determines the salary mij that firm fi pays to worker wj if they are
matched. Then, in the partnership (fi, wj), the payoff of the firm is uij = hij −mij and
the payoff of the worker is vij = mij − tj.

The question is whether a firm (or a worker) has incentives not to report its true
valuations, once known which allocation rule will be applied. In particular, we want to
study whether firms (workers) have incentives to manipulate the firms-optimal (workers-
optimal) stable rule, since it is something they cannot do in the simple assignment game.

For this strategic analysis, and since population will not change, we may consider
the sets of firms and workers, F and W , and their capacities fixed. Then, for any
reported valuations (h, t), the firms-optimal stable rule selects an optimal matching µ
and for all (fi, wj) ∈ µ determines a salary mij such that v(h, t)ij = mij − tj, where
(u(h, t), v(h, t)) is the firms-optimal stable payoff vector. Similarly, the workers-optimal
stable rule selects an optimal matching µ and for all (fi, wj) ∈ µ determines a salary mij

such that v(a)ij = mij − tj, where (u(h, t), v(h, t)) is the workers-optimal stable payoff
vector according the reported valuations.

From Pérez-Castrillo & Sotomayor (2017), that studies the manipulability of the
optimal competitive equilibrium rules of the multiple-partners assignment game, and
taking into account that every firms-optimal stable rule coincides with a firms-optimal
competitive equilibrium rule, we deduce that these rules are manipulable by any firm
with capacity greater than one. However, in the example provided in Pérez-Castrillo
& Sotomayor (2017), the firm that manipulates the firms-optimal stable rule increases
its valuations in a non-constant way, that is, it increases some valuations but not all of
them by the same amount.

We may think that “naive” firms, when trying to manipulate an allocation rule, only
consider whether to increase or decrease all its valuations by the same constant amount.
This idea leads to a weaker non-manipulability property.

Definition 4.1. Let F be a set of firms with capacities r = (ri)i∈F and W a set of
workers with capacities s = (sj)j∈W . A firm fi0 ∈ F manipulates a rule ϕ ≡ (m;µ)
in a multiple-partners job market (F,W, h, t, r, s) by constantly over-reporting its
valuations if there exists c > 0 such that fi0 gets a higher payoff at (v(h′, t);µ(h′, t))
than at (v(h, t);µ(h, t)), where h′i0j = hi0j + c for all wj ∈ W and h′ij = hij for all
fi ∈ F \ {fi0} and all wj ∈ W .

We intend to make use of the firm-covariance property that we introduced in the
previous section. But notice that the fact that h′i0j = hi0j + c for all wj ∈ W does
not imply a′i0j = max{h′i0j − tj, 0} = ai0j + c, since for some wj ∈ W it may happen
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that hi0j − tj < 0. Because of that, we will restrict the study to the domain of multiple-
partners job market where all firm-worker pairs are mutually acceptable, that is, hij−tj ≥
0 for all (fi, wj) ∈ F ×W .

Proposition 4.2. On the domain of multiple-partners job market where all firm-worker
pairs are mutually acceptable, no firm can manipulate the firms-optimal stable rule by
constantly over-reporting its valuations.

Proof. Let (F,W, h, t, r, s) be a multiple-partners job market such that hij−tj ≥ 0 for all
(fi, wj) ∈ F×W . If firm fi0 reports h′i0j = hi0j+c for some c > 0, then a′i0j = max{h′i0j−
tj, 0} = ai0j+c and both markets have the same set of optimal matchings. From Theorem
3.6 and the proof of Proposition A.3 the salaries m′ij determined by ϕ(h′, t), where ϕ
is the firms-optimal stable rule, are the same as the salaries mij determined by ϕ(h, t),
since vij(a

′) = vij(a), for each (fi, wj) in an optimal matching µ ∈Ma(F,W, r, s). Then,

hi0j−m′i0j = hi0j−(vi0j(a
′)+tj) = hi0j−(vi0j(a)+tj) = hi0j−mi0j, for all (fi0 , wj) ∈ µ.

Hence, the total payoff of firm fi0 does not improve when reporting h′i0 :

U i0(a
′) =

∑
(i0,j)∈µ

hi0j −m′i0j =
∑

(i0,j)∈µ

hi0j −mi0j = U i0(a).

Notice that, because each firm may value differently each worker in the market, firms
may have more sophisticated strategies than the constant over-reporting of Definition
4.1. Take for instance Example 4.2 in Pérez-Castrillo & Sotomayor (2017) that consists
in a market with three workers with capacity one and null reservation value and two
firms, the first of them with capacity two, with valuations h1 = (7, 6, 4) and h2 = (8, 6, 3).
Notice that all firm-worker pairs are acceptable. Since there is only one optimal match-
ing, this is the matching selected by any stable rule, µ = {(f1, w2), (f1, w3), (f2, w1)}.
In the firms-optimal stable rule, f1 pays salaries v12(a) = 1 and v13(a) = 0, with a net
profit of U1(a) = 9. If f1 reports h′1 = (8, 7, 7), which is a non-constant over-report of
its valuations, then the optimal matching does not change but now the salaries paid by
f1 in the firms-optimal stable rule are v12(a

′) = v13(a
′) = 0 and the payoff of f1, taking

into account its true valuations, is 10.
Instead, the reservation value of a worker does not depend on which firm he/she

is matched to. Hence, when a worker under-reports his reservation value, his/her net
valuations with all firms increase by the same amount, provided all firm-worker pairs
are acceptable.

Definition 4.3. Let F be a set of firms with capacities r = (ri)i∈F and W a set of
workers with capacities s = (sj)j∈W . A worker wj0 ∈ W manipulates a rule ϕ ≡
(m;µ) in a multiple-partners job market (F,W, h, t, r, s) by under-reporting his/her
reservation value if there exists 0 ≤ c ≤ tj0 such that wj0 gets a higher payoff at
(v(h, t′);µ(h, t′)) than at (v(h, t);µ(h, t)), where t′j0 = tj0 − c and t′j = tj for all wj ∈
W \ {wj0}.
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Notice that given a multiple-partners job market where all firm-worker pairs are
acceptable, then all firm-worker pair in the market that results when some worker under-
reports his/her reservation value are also acceptable.

Proposition 4.4. On the domain of multiple-partners job market where all firm-worker
pairs are mutually acceptable, no worker can manipulate the workers-optimal stable rule
by under-reporting his/her reservation value.

Proof. Let (F,W, h, t, r, s) be a multiple-partners job market such that hij−tj ≥ 0 for all
(fi, wj) ∈ F×W . If worker wj0 reports t′j0 = tj0−c for some c > 0, then a′ij0 = max{h′ij0−
tj0 , 0} = aij0 + c and both markets have the same set of optimal matchings. From
Theorem 3.6 and the proof of Proposition A.3 the salary m′ij0 determined by ϕ(h, t′),
where ϕ is the workers-optimal stable rule is the same as the salary mij0 determined by
ϕ(h, t):

m′ij0 = vij0(h, t
′) + t′j0 = vij0(h, t) + c+ tj0 − c = mij0 .

Hence, given any µ ∈ Ma(F,W, r, s), the payoff to worker wj0 in each partnership
(fi, wj0) ∈ µ is m′ij0 − tj0 = mij0 − tj0 and wj0 has no incentives to report t′j0 instead of
tj.

This may not be the case when a worker over-reports his/her reservation value.
Example 4.1 in Pérez-Castrillo & Sotomayor (2017) shows that in that case such a
worker may manipulate the workers-optimal stable rule.

However, the above non-manipulability properties do not characterize neither the
firms-optimal stable rules nor the workers-optimal stable rules on the domain where all
firm-worker pairs are acceptable. Notice for instance that the workers-optimal stable
rule is also non-manipulable by constant over-reporting of one firm’s valuations. Take
(F,W, a, r, s) where all pairs are acceptable, a firm fi0 ∈ F and an optimal matching
µ ∈Ma(F,W ). Assume h′i0j = hi0j + c for some c > 0, while h′ij = hij for i ∈ F \ {fi0}
and j ∈ W . This implies a′i0j = ai0j+c for all j ∈ W , while a′ij = aij otherwise. Consider

the related simple assignment game (F̃ , W̃ , ã) and the corresponding optimal matching
µ̃. If wj0 ∈ W is such that (fi0k, wlj0) ∈ µ̃, where fi0k and wlj0 are copies of fi0 and
wj0 respectively, then vi0j0(a

′) = vlj0(ã
′) = wã′(F̃ ∪ W̃ )−wã′(F̃ ∪ (W̃ \ {wlj0})) is either

vi0j0(a)+c or vi0j0(a), since µ′ ∈Mã′(F̃ , W̃ \{wlj0}) if and only if µ′ ∈Mã(F̃ , W̃ \{wlj0}).
This means vi0j0(a

′) ≥ vi0j0(a) and hence hi0j0 − vi0j0(a′) ≤ hi0j0 − vi0j0(a) and i0 has no
incentives to constantly over-report its valuations.

5 The fair division rules

In some situations, specially in two-sided markets without money, it is usual to im-
plement an allocation rule that favours one side of the market. Take for instance the
allocation of students to colleges or resident doctors to hospitals. But in a job market,
and also in a market with buyers and sellers, it makes sense to assume that matched
agents enter a negotiation and agree on a price or salary that is in between those that
are optimal for each side.

We extend to the multiple-partners job market the notion of fair division payoff
vector that was introduce by Thompson (1981) for the simple assignment game as the
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midpoint between the two optimal stable payoff vectors. That is, given a set F of firms
with quotas r and a set of workers W with quotas s, and a valuation profile a ∈ AF0×W0 ,
a fair division rule is ϕτ ≡ (uτ (a), vτ (a);µ) where

uτij(a) =
1

2
uij(a) +

1

2
uij(a) and vτij(a) =

1

2
vij(a) +

1

2
vij(a) for all (fi, wj) ∈ µ

and µ is a compatible matching. Notice that there may be several compatible matchings
but the payoff vector is uniquely defined.

In van den Brink et al. (2021), and for the simple assignment game, the fair division
rule is characterized as the only stable rule that satisfies grand valuation fairness and
weak derived consistency. Our aim is to extend these two properties to the multiple-
partners job market and see whether they also individualize the fair division rules. To
extend the notion of (derived) consistency, that reflects how a solution behaves when
some agents leave the market, we will allow in this section for positive values ai0 and a0j,
for all fi ∈ F and wj ∈ W . Hence, now a valuation profile is (aij) i∈F0

j∈W0

with a00 = 0, and

we denote by AF0×W0 the set of all valuation profiles. We assume again that all firm-
worker pairs are mutually acceptable, which in the notation just introduced translates
to saying that for all (fi, wj) ∈ F 0 ×W 0, aij ≥ ai0 + a0j.

Roughly speaking, grand valuation fairness requires that if all firm-worker valuations
decrease by a same amount c ≥ 0, as long as all optimal matchings of the initial market
remain optimal, the payoff all agents receive from each partnership decreases equally.

Definition 5.1. A rule ϕ ≡ (u, v;µ) satisfies great valuation fairness (GVF) if for all
(F,W, a, r, s) and all c ≥ 0 such that

(i) acij = max{0, aij − c} for all fi ∈ F and wj ∈ W ,

(ii) c ≤ aij for all (fi, wj) ∈ µ and µ ∈Ma(F,W, r, s) and

(iii) Ma(F,W ) ⊆Mac(F,W, r, s),

then,
uij(a

c)− uij(a) = vij(a
c)− vij(a) for all (fi, wj) ∈ µ. (4)

From firm-covariance and worker-covariance of the two optimal stable rules, it follows
quite straightforwardly that the fair division rules satisfy GVF.

Proposition 5.2. On the domain of multiple-partners assignment markets, the fair
division rules satisfy GVF.

Proof. Recall that the minimum c satisfying (i), (ii) and (iii) is the c∗ defined in (5). As
a consequence, if a multiple-partners job market (F,W, a, r, s) is “unbalanced”, in the
sense that

∑
fi∈F ri 6=

∑
wj∈W sj, then c∗ = 0 and GVF does not impose any restriction.

Hence, we may focus on markets where the sum of capacities of firms equals those of
workers.

Let (F,W, a, r, s) be a multiple-parters job market with
∑

fi∈F ri =
∑

wj∈W sj, µ an

optimal matching and c ≥ 0 satisfying (i), (ii), and (iii) in Definition 5.1. By strong firm-
covariance of the firms-optimal stable rules, taking I = F , that is, assuming all firms
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decrease their valuations in c, we have that uij(a
c) = uij(a)− c and vij(a

c) = uij(a) for
all (fi, wj) ∈ µ. Similarly, from worker-covariance of the workers-optimal stable rule,
taking I = W , we have vij(a

c) = vij(a)− c and uij(a
c) = vij(a) for all (fi, wj) ∈ µ. As

a consequence,

uτij(a
c) = uτij(a)− c

2
and vτij(a

c) = vτij(a)− c

2
for all (fi, wj) ∈ µ

which implies uτij(a
c)− uτij(a) = c

2
= vτij(a

c)− vτij(a) and GVF holds.

The idea now is to proceed as in the simple assignment game (van den Brink et al.
, 2021). In that case, we decrease all firm-worker values until reaching the threshold c∗;
at this point there is a firm-worker pair (fi, wj) whose payoff is fixed, and equal to their
individual values ai0 and a0j, at any stable outcome. Then, these two agents leave the
market with their fixed payoff and we must define the reduced game in such a way that
the fair division rule is consistent with respect to this reduction.

For the simple assignment game, a notion of reduced game is introduced in Owen
(1992) with the name of derived game. Several solution concepts, such as the core, the
optimal stable rules for any side of the market or the nucleolus (Llerena et al. , 2015),
are derived consistent, that meaning that when we restrict the solution payoff vector to
the agents that remain in the derived market game, we get a solution payoff vector of
the derived market game. The fair-division rules are not derived consistent, unless the
agents that leave the market have a unique stable payoff.

We now propose how to reduce a multiple-partners job market when an individual
or a firm-worker pair have a unique stable payoff. Since agents may have capacities
that allow for multiple partnership, the firm and worker in that pair may not leave the
market but simply reduce their capacities in one unit.

Definition 5.3. Let (F,W, a, r, s) be a multiple-partner assignment market, µ an opti-
mal matching, T = {fi, wj} with (fi, wj) ∈ µ such that aij = ai0 + a0j and z = (u, v;µ)
a stable outcome.

The derived assignment market relative to T at z is (F T ,W T , aT,z, rT , sT ) where

F T =

{
F \ {fi} if fi ∈ F, ri = 1,
F otherwise

and W T =

{
W \ {wj} if wj ∈ W, sj = 1,
W otherwise

,

aT,zkl = akl for all fk ∈ F T , wl ∈ W T ,

(i) aT,zk0 = max(fk,wj) 6∈µ {ak0, akj − vij} , for all fk ∈ F T ,

(ii) aT,z0k = max(fi,wk) 6∈µ {a0k, aik − uij} , for all wk ∈ W T ,

and rTk = rk − 1 if fk ∈ T ∩ F T , rTk = rk if fk ∈ F T \ T ,
sTk = sk − 1 if wk ∈ T ∩W T , sTk = sk if wk ∈ W T \ T .

In the derived assignment market relative to a coalition T = {fi, wj} such that
aij = ai0 + a0j, (i) values for the firm-worker pairs ‘that are still in the market’ are
the same as in the original market, (ii) the individual values are modified taking into
account the possibilities to trade with agents outside the derived market and (iii) the
capacity of each agent in T decreases in one unit.
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Notice that the above definition allows for T to contain a dummy agent, like T =
{fi, w0} if (fi, w0) ∈ µ.

The next example illustrates the definition of derived market.

Example 5.4. Let us consider a market with two firms, F = {f1, f2}, the first with
capacity 2 and the second with capacity 1, and three workers, W = {w1, w2, w3}, each
of them with unitary capacity. The valuation matrix is

a =
w1 w2 w3

f1
f2

(
5 1 0
5 4 2

)
,

with individual reservation values ai0 = a0j = 0 for all fi ∈ F and wj ∈ W .
Notice there is only one optimal matching µ = {(f1, w1), (f1, w3), (f2, w3)} for a total

value of 9. Any stable payoff vector (u, v) must be compatible with this matching and
hence u13 = v13 = 0.

We now consider the derived gamed at coalition T = {f1, w3} and at any stable payoff,
since the stables payoffs of f1 and w3 at this partnership are fixed at u13 = v13 = 0.

In this derived game, these agents establish the partnership (f1, w3) and are paid
according the only possible stable payoff, in that case each of them gets 0. Then, w3 has
exhausted his capacity and leaves the market, while f1 remains with its capacity reduced
by one unit.

The individual reservation values are now modified to take into account the possibility
of reaching an agreement with the worker that has left the market. That is,

a′10 = max{a10} = 0, a′20 = max{a20, a23 − v13} = max{0, 2− 0} = 2, since (f2, w3) 6∈ µ,
a′01 = max{a01} = 0, a′02 = max{a02, a12 − v13} = max{0, 1− 0} = 1, since (f1, w2) 6∈ µ.

This means that whenever it is unmatched in the derived game, f2 has a value of 2, and
hence any stable payoff vector must allocate f2 at least this amount. Similarly, w2 has
now a reservation value of 1. The valuations of the derived game can be represented in
a table, with the reservation values of firms in a first column, and the reservation values
of workers in a first row:

a′ =

w1 w2

f1
f2

 0 1
0 5 1
2 5 4

 ,

Weak derived consistency means that in a derived market at a coalition T = {fi, wj}
such that aij = ai0+a0j, the payoffs for the firms and workers that remain in the market
do not change. For instance, when computing the firms-optimal stable payoff vector in
the above example, we get (u(a), v(a)) = (u11(a), u13(a), u22(a);u11(a), u13(a), u22(a)) =
(3, 0, 3; 2, 0, 1), and when we compute it in the derived market we get (u(a′), v(a′)) =
(u11(a

′), u22(a
′);u11(a

′), u22(a
′)) = (3, 3; 2, 1). The formal definition of weak derived

consistency follows below.
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Definition 5.5. On the domain of multiple-partners job markets, a stable allocation
rule ϕ is weak derived consistent (WDC) if for all market (F,W, a, r, s) and all
coalition T = {fi, wj} with (fi, wj) ∈ µ and aij = ai0 + a0j, it holds

(i) µ′ = µ \ {(fi, wj)} is optimal for (F T ,W T , aT,(u,v), rT , sT ),
(ii) ukl(F

T ,W T , aT,(u,v), rT , sT ) = ukl for all (fk, wl) ∈ µ′ and
(iii) vkl(F

T ,W T , aT,(u,v), rT , sT ) = vkl for all (fk, wl) ∈ µ′

where ϕ(F,W, a, r, s) = (u, v;µ).

Let us first argue in the next lemma that condition (i) in the above definition always
holds, since it is necessary to guarantee that ukl and vkl are well-defined.

Lemma 5.6. Let (F T ,W T , aT,z, rT , sT ) be the derived game at T = {fi, wj} with (fi, wj) ∈
µ such that aij = ai0 + a0j and z = (u, v;µ) is a stable outcome. Then,

1. a
T,(u,v)
k0 = ak0 if (fk, w0) ∈ µ (and a

T,(u,v)
0l = a0l if (f0, wl) ∈ µ),

2. (u′, v′;µ′) is a stable outcome for (F T ,W T , aT,(u,v), rT , sT ), where µ′ = µ\{(fi, wj)},
u′kl = ukl and v′kl = vkl for all (fk, wl) ∈ µ′.

3. µ′ = µ \ {(fi, wj)} is optimal for (F T ,W T , aT,(u,v), rT , sT ).

Proof. Notice that (fk, w0) ∈ µ, implies ak0 = uk0 ≥ akj−vij for all (fk, wj) 6∈ µ because
of the stability of (u, v). In the same way, (f0, wl) ∈ µ implies a0l = v0l ≥ ail − uij for
all (fi, wl) 6∈ µ, and statement 1) is proved.

To prove 2) notice that for all (fk, wl) ∈ µ′, it holds (fk, wl) ∈ µ and hence u′kl+v
′
kl =

ukl+vkl = akl = a
T,(u,v)
kl . This includes the case where (fk, w0) ∈ µ′ and then u′k0 = ak0 =

a
T,(u,v)
k0 , and similarly for (f0, wl) ∈ µ. This means that (u′, v′) is feasible with respect to
µ′. Now, if (fk, wl) ∈ F T×W T with (fk, wl) 6∈ µ′ then either (fk, wl) 6∈ µ and in this case

u′kq + v′pl = ukq + vpl ≥ akl = a
T,(u,v)
kl for (fk, wq), (fp, wl) ∈ µ′, or (fk, wl) = (fi, wj). In

this second case, if (fi, wq), (fp, wl) ∈ µ′, we have u′iq + v′pj = uiq + vpj ≥ ai0 + v0j = aij,
where the last equality follows from the assumption. Finally, if (fk, wl) ∈ µ′, then

ukl ≥ max{ak0, akj − vij} = a
T,(u,v)
k0 , and similarly vlk ≥ a

T,(u,v)
0k for all (fl, wk) ∈ µ′. As a

consequence, (u′, v′;µ′) satisfies all stability constraints.
Once known that (u′, v′;µ′) is a stable outcome for the market (F T ,W T , aT,(u,v), rT , sT ),

it follows from Sotomayor (1992) that µ′ is optimal for this market.

Notice that statement 2) in Lemma 5.6 crucially depends on the fact that aij =
ai0 + a0j. This condition is also important to notice that for all stable payoff vec-
tors it holds uij = ai0 and vij = a0j. Then, a sort of converse of statement 2)
holds: under the assumptions of Lemma 5.6, if (u′′, v′′) is a stable payoff vector for
(F T ,W T , aT,(u,v), rT , sT ), then, by completing it with the payoffs uij and vij we obtain
a payoff vector of the initial market (F,W, a, r, s). As an immediate consequence, if
(u, v) is a stable payoff vector of (F,W, a, r, s), then the set of stable payoff vectors of
(F T ,W T , aT,(u,v), rT , sT ) is precisely the restriction of the set of stable payoff vectors of
(F,W, a, r, s) to F T ∪W T . In particular, the restrictions of (u(a), v(a)), (u(a), v(a)) and
(uτ (a), vτ (a)) to F T ∪W T are, respectively, the firms-optimal stable payoff vector, the
workers-optimal stable payoff vector and the fair division payoff vector of the derived
game (F T ,W T , aT , rT , sT ). This proves the next proposition.
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Proposition 5.7. On the domain of multiple-partners job markets, the firms-optimal
stable rules, the workers-optimal stable rules and the fair division rules are weak derived
consistent.

We have seen until now that the fair division rules satisfy GVF and WDC. It only
remains to see that these two properties characterize these rules among all stable rules.
We only sketch the proof, since it is very similar to the one for the simple assignment
game in van den Brink et al. (2021).

Theorem 5.8. On the domain of multiple-partners job markets, the fair division rules
are the only stable rules that satisfy GVF and WDC.

Proof. Let ϕ be a stable rule that satisfies GVF and WDC, and take a multiple-
partners assignment game (F,W, a, r, s). Let c1 ≥ 0 be the maximum c ≥ 0 such that
Ma(F,W, r, s) ⊆Mac(F,W, r, s), and c ≤ aij (and thus acij = aij− c) for all (fi, wj) ∈ µ
for some µ ∈ Ma(F,W, r, s). Then, there is some fi1 , wj1) in an optimal matching of
(F,W, ac1 , r, s) such that ac1i1j1 = ai10+a0j1 , which means that ui1j1 = ai10 and vi1j1 = a0j1
for each stable payoff vector (u, v) of (F,W, ac1 , r, s). Define T1 = {fi1 , wj1}.

Let zϕ(a) = (uϕ(a), vϕ(a)) and zϕ(ac1) = (uϕ(ac1), vϕ(ac1)) be the payoff vectors
selected by the rule ϕ when applied to (F,W, a, r, s) and (F,W, ac1 , r, s) respectively,
and zτ (a) = (uτ (a), vτ (a)) and zτ (ac1) = (uτ (ac1), vτ (ac1)) the payoff vectors selected
by any fair division rule in these markets. Trivially, because of the selection of T1,
uϕi1j1(a

c1) = uτi1j1(a
c1) and vϕi1j1(a

c1) = vτi1j1(a
c1). And by GVF of both ϕ and τ ,

uϕi1j1(a) = uϕi1j1(a
c1) +

c1
2

= uτi1j1(a
c1) +

c1
2

= uτi1j1(a)

vϕi1j1(a) = vϕi1j1(a
c1) +

c1
2

= vτi1j1(a
c1) +

c1
2

= vτi1j1(a)

Consider now

F1 =

{
F \ {fi1} if fi1 ∈ F and ri1 = 1,
F otherwise

and ;

W1 =

{
W \ {wj1} if wj1 ∈ W and sj1 = 1,
W otherwise

,

and the derived market at T1 and zϕ(a). That is, a1 = aT1,z
ϕ(a), r1 = rT1 and s1 = sT1 ,

as in Definition 5.3. By WDC of ϕ, uϕij(a1) = uϕij(a
c1) and vϕij(a1) = vϕij(a

c1) for all
(fi, wj) ∈ µ1 = µ \ {(fi1 , wj1)}.

We now repeat the procedure, that is, given (F1,W1, a1, r
1, s1) we take c2 ≥ 0 the

maximum c ≥ 0 such that Ma1(F
1,W 1, r1, s1) ⊆ Mac1

(F 1,W 1, r1, s1), and c ≤ (a1)ij
(and thus (a1)

c
ij = (a1)ij − c) for all (fi, wj) ∈ µ for some µ ∈ Ma1(F

1,W 1, r1, s1).
Then, there is some (fi2 , wj2) in an optimal matching µ1 of (F 1,W 1, ac21 , r

1, s1) such
that (a1)

c2
i2j2

= (a1)i20 + (a1)0j2 , which means that ui2j2 = ai20 and vi2j2 = a0j2 for each
stable payoff vector (u, v) of (F 1,W 1, (a1)

c2 , r1, s1). And we define T2 = {fi2 , wj2}.
Notice at this point that, from Sotomayor (1999), the components of any stable payoff
vector can be reindexed according to the new optimal matching µ1.
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Since at each step the aggregated capacity strictly decreases, we can guarantee that
the procedure is finite. Moreover, at each step, some payoffs uij and vij, for (fi, wj)
optimally matched, are proved to coincide in ϕ and in τ , and by GVF and WDC they
also coincide in the initial market.

The above theorem shows that the known axiomatic characterization of the fair
division rules in the simple assignment game extends to the multiple-partners assignment
games. As a consequence, it also follows the logical independence of the two axioms.

6 Concluding remarks

The axiomatic characterizations given in this paper for the two-optimal stable rules and
the fair-division rules, on the domain of multiple-partners job markets, have in common
that all of them rely on the behaviour of the rules when some firm-worker valuations
decrease in a constant amount. This provides a unifying approach to all these stable
rules.

Furthermore, from the discussion at the end of Section 4, it follows that on the
domain where all firm-worker pairs are acceptable, the fair-division rules are also non-
manipulable by constant over-reporting of one firm’s valuations. Although this is a
weak non-manipulability property, we find it interesting since it rules out a kind of
manipulation that is frequently observed in experiments.

A Strong firm-covariance for stable rules in the sim-

ple assignment game

We analyse the behaviour of an allocation rule for the simple assignment game when the
valuations of an arbitrary set I of firms decrease by the same amount c ≥ 0, under the
assumption that values that become negative are truncated at zero: acij = max{0, aij−c}
for all (fi, wj) ∈ I ×W . These row values are allowed to decrease in this way as long
as no optimal matching of the initial problem becomes non-optimal. A rule is covariant
with respect this change if all firms that have seen their values decreased in c, also see
their payoff decreased in c.

Definition A.1. A rule ϕ ≡ (u, v;µ) for the simple assignment game is strong firm-
covariant (SFC) if for all (F,W, a), all I ⊆ F and all c ≥ 0 such that

(i) ac,Iij = max{0, aij − c} for all (fi, wj) ∈ I × W and acij = aij for all (fi, wj) ∈
(F \ I)×W ,

(ii) c ≤ aij for all fi ∈ I, (fi, wj) ∈ µ and µ ∈Ma(F,W ) and

(iii) Ma(F,W ) ⊆Mac,I (F,W ),

then,

ui(a
c,I) = ui(a)− c, for all fi ∈ I and

ui(a
c,I) = ui(a), for all fi ∈ F \ I.
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We can give a threshold for those c ≥ 0 on the conditions of the above definition.

Lemma A.2. Conditions (ii) and (iii) in Definition A.1 are equivalent to considering
c ≤ c∗, where

c∗ = min{c ≥ 0 | there exist µ ∈Mac,I (F,W ) and (fi, wj) ∈ µ with fi ∈ I and aij = 0}.
(5)

Proof. Let us define mI
a = min{aij | (fi, wj) ∈ µ for some µ ∈ Ma(F,W ) and fi ∈ I}.

It is quite clear that c∗ ≤ mI
a. Otherwise, if mI

a < c∗, taking c = mI
a, by definition

of c∗, we have that for any µ ∈ Mac,I (F,W ) it holds ac,Iij > 0 for all (fi, wj) ∈ µ and
fi ∈ I. This implies that there is an optimal matching µ′ of the initial market that
is not optimal in (F,W, ac,I), since by definition of mI

a, µ
′ will have a null entry. But∑

(fi,wj)∈µ a
c,I
ij >

∑
(fi,wj)∈µ′ a

c,I
ij implies

∑
(fi,wj)∈µ aij >

∑
(fi,wj)∈µ′ aij, and contradicts

µ′ ∈Ma(F,W ).
We now show that if 0 ≤ c ≤ c∗, then c satisfies (ii) and (iii) in Definition A.1.

First, since c ≤ c∗ ≤ mI
a, a

c,I
ij = aij − c ≥ 0 for all (fi, wj) ∈ µ, for all µ ∈ Ma(F,W ),

and (ii) is satisfied. Moreover, since c ≤ c∗, by definition of c∗, we have ac,Iij = aij−c ≥ 0
for all (fi, wj) ∈ µ ∈ Mac,I (F,W ). This implies that all µ ∈ Ma(F,W ) is also optimal
for (F,W, ac,I). Otherwise, if there exists µ′ ∈ Mac,I (F,W ) such that

∑
(fi,wj)∈µ′ a

c
ij >∑

(fi,wj)∈µ a
c,I
ij , then∑
(fi,wj)∈µ′

aij − |I|c =
∑

(fi,wj)∈µ′
ac,Iij >

∑
(fi,wj)∈µ

ac,Iij =
∑

(fi,wj)∈µ

aij − |I|c,

in contradiction with µ ∈Ma(F,W ).
Conversely, if c satisfies (ii) and (iii), we show that c ≤ c∗. Indeed, (ii) implies that

c ≤ mI
a. To see that c ≤ c∗, if we assume on the contrary that c∗ < c ≤ mI

a, we know
that none of the matchings µ ∈ Ma(F,W ) has a null entry neither in (F,W, ac

∗,I) nor
in (F,W, ac,I). Instead, by definition of c∗ there is µ′ ∈Mac∗,I (F,W ) with (fi0 , wj0) ∈ µ′
and ac

∗,I
i0j0

= 0 ≥ ai0j0 − c∗. Then, since c∗ < c ≤ mI
a,
∑

(fi,wj)∈µ′ a
c,I
ij >

∑
(fi,wj)∈µ a

c,I
ij for

all µ ∈Ma(F,W ), in contradiction with (iii).

If a rule ϕ satisfies Definition A.1 for |I| = 1, we will say ϕ is firm-covariant
(FC). And notice that this definition coincides with Definition 3.4 when applied to a
rule for the simple assignment game. We first prove that the firms-optimal stable rules
are strong firm-covariant.

We could similarly define when an allocation rule is strong worker-covariant and we
would obtain, in an analogous way, that the workers-optimal stable rules are strong
worker-covariant.

Proposition A.3. The firms-optimal stable rules of the simple assignment game are
strong firm-covariant.

Proof. We can assume without loss of generality that there are as many firms as workers
(otherwise we only need to add dummy agents with null valuations in the short side of
the market). If aij = 0 for some fi ∈ I such that (fi, wj) ∈ µ and µ ∈ Ma(F,W ), then
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only c = 0 satisfies the conditions on Definition A.1, and SFC is trivially satisfied in
that case. So, assume aij > 0 for all (fi, wj) ∈ µ such that fi ∈ I and µ ∈Ma(F,W ).

Let c ≥ 0 be a constant under the conditions of Definition A.1, that is, c ≤ aij for

all (fi, wj) ∈ µ with fi ∈ I and µ ∈ Ma(F,W ) (and thus ac,Iij = aij − c), and moreover
any matching µ that is optimal for (F,W, a) is also optimal for (F,W, ac,I).

From now one, to simplify notation, we will write just ac instead of ac,I .
Consider the two optimal stable payoff vectors, (u(a), v(a)) and (u(a), v(a)), for

(F,W, a). Let (uc(a), v(a)) be given by

uc(a) = ui(a)− c for all fi ∈ I; uc(a) = ui(a) for all fi ∈ F \ I.

We show that (uc(a), v(a)) is stable for (F,W, ac), that is, we show individual rationality
for each firm and worker, and the stability requirements for each firm-worker pair.

(i) Individual rationality for the workers (i.e. vj ≥ 0 for all wj ∈ W ) follows trivially
from the stability of (u(a), v(a)).

(ii) The stability requirements for every firm-worker pair (i.e. uc(a)i + v(a)j ≥ acij
for all fi ∈ F and wj ∈ W ) follows trivially from the stability of (u(a), v(a)) (under the
assumption that uci(a) ≥ 0, which we show next under (iii)).

(iii) It only remains to show individual rationality for the firms. It is obvious that
uci(a) = ui(a) ≥ 0 for all fi ∈ F \ I, so we only need to prove that uci(a) = ui(a)− c ≥ 0
for all fi ∈ I. This implies to show that any c on the conditions of Definition A.1 satisfies
c ≤ mini∈I ui(a). Let us denote by fi1 ∈ I the firm such that ui1(a) = mini∈I ui(a).

Notice first that trivially if c′ = ui1(a), then (uc
′
(a), v(a)) is stable for (F,W, ac

′
).

Let k be the cardinality of I, µ ∈Ma(F,W ) and µ′ ∈Ma(F \ {fi1},W ). Then,

ui1(a) =
∑

(fi,wj)∈µ

aij −
∑

(fi,wj)∈µ′
aij. (6)

Furthermore, ∑
(fi,wj)∈µ′

ac
′

ij ≥
∑

(fi,wj)∈µ′
aij − (k − 1)c′.

On the other hand,
∑

(fi,wj)∈µ aij −
∑

(fi,wj)∈µ a
c′
ij = kc′, and then∑

(fi,wj)∈µ

ac
′

ij =
∑

(fi,wj)∈µ

aij−kc′ =
∑

(fi,wj)∈µ′
aij+c

′−kc′ =
∑

(fi,wj)∈µ′
aij−(k−1)c′ ≤

∑
(fi,wj)∈µ′

ac
′

ij,

where the second equality follows from (6). This implies that µ′ is also optimal for
(F,W, ac

′
) and, as a consequence, if wj2 ∈ W is the worker unmatched by µ′, then

ac
′
i1j2

= 0. Otherwise, ac
′
i1j2

> 0 would contradict the optimality of µ in (F,W, ac
′
).

We finally show that c ≤ ui1(a). On the contrary, suppose that c > c′ = ui1(a).
Since ac

′
i1j2

= 0, we have ai1j2−c < 0. Then, {fi1 , wj2} belonging to an optimal matching

of (F,W, ac
′
) and c > c′ implies that the optimal matchings of (F,W, a), which entries

have not been truncated, are no longer optimal in (F,W, ac). This contradicts that c
satisfies the conditions of Definition A.1. So, we have proved that c ≤ ui1(a), and as a
consequence individual rationality for the firms is satisfied.

Since we showed individual rationality for the firms and the workers ((i) and (iii)
above), and the stability requirements for all firm-worker pairs ((ii) above), we have
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that (uc(a), v(a)) is a stable payoff vector for (F,W, ac), for all c under the conditions of
Definition A.1. Analogously, it can be shown that (u(a), vc(a)) is a stable payoff vector
for (F,W, ac).

Notice that, by (uc(a), v(a)) being a stable payoff vector of (F,W, ac), it is the op-
timal stable payoff vector of (F,W, ac). Otherwise, one can derive a contradiction with
(u(a), v(a)) being the optimal stable payoff vector of (F,W, a). This completes the proof
of SFC for the firms-optimal stable rule.

The converse implication also holds. In fact, it is even stronger. Any stable rule that
satisfies Definition A.1 for |I| = 1 (any single row) must be the firms-optimal stable rule.
We state the result for both optimal stable rules but only prove it for the firms-optimal
one.

Theorem A.4. 1. The firms-optimal stable rules are the only stable rules for the
simple assignment game that are firm-covariant.

2. The workers-optimal stable rules are the only stable rules for the simple assignment
game that are worker-covariant.

Proof. It has already been proved in Proposition A.3 that any firms-optimal stable rule
is SFC. We need to prove the converse implication. Let ϕ ≡ (uϕ, vϕ;µ) be a stable
rule that satisfies FC. If ϕ is not the firms-optimal stable rule, there exists fi0 ∈ F
and a simple assignment game (F,W, a) such that 0 ≤ uϕi0(a) < ui0(a). Take then
I = {fi0} ⊆ F and c∗ = ui0(a), where c∗ as defined in (5) satisfies the requirements of
Definition A.1.

Then, by firm-covariance of ϕ, we get uϕi0(a
c∗) = uϕi0(a)− c∗ < ui0(a)− c∗ = 0 which

contradicts the stability of ϕ.

The combination of the above results leads to the next straightforward characteri-
zation.

Corollary A.5. 1. The firms-optimal stable rules are the only stable rules for the
simple assignment game that are strong firm-covariant.

2. The workers-optimal stable rules are the only stable rules for the simple assignment
game that are strong worker-covariant.
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