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TOPOLOGICAL AND GEOMETRIC ASPECTS OF ALMOST

KÄHLER MANIFOLDS VIA HARMONIC THEORY

JOANA CIRICI AND SCOTT O. WILSON

Abstract. The well-known Kähler identities naturally extend to the non-
integrable setting. This paper deduces several geometric and topological con-
sequences of these extended identities for compact almost Kähler manifolds.
Among these are identities of various Laplacians, generalized Hodge and Serre
dualities, a generalized hard Lefschetz duality, and a Lefschetz decomposition,
all on the space of d-harmonic forms of pure bidegree. There is also a gen-
eralization of Hodge Index Theorem for compact almost Kähler 4-manifolds.
In particular, these provide topological bounds on the dimension of the space
of d-harmonic forms of pure bidegree, as well as several new obstructions to
the existence of a symplectic form compatible with a given almost complex
structure.

1. Introduction

Kähler manifolds play a central role at the intersection of complex, symplectic
and Riemannian geometry. Their striking set of properties arise most primitively
from a set of purely local commutation relations, known as the Kähler identities.
In the compact setting, the theory of elliptic operators allows one to transfer these
local statements into a set of surprising cohomological properties, called the Kähler
package.

In this paper we consider a set of almost Kähler identities and establish a corre-
sponding almost Kähler package on the spaces of harmonic forms of pure bidegree.
Topological and geometric implications are deduced in the compact case, since
such harmonic forms include into the de Rham cohomology. The package includes
relations among various Laplacians, generalized Hodge and Serre dualities, a gen-
eralized Hodge Theorem and hard Lefschetz duality, as well as a generalized Hodge
Index Theorem for almost Kähler 4-manifolds. Additional results are described in
what follows.

Recall that the exterior differential of an almost complex manifold has four com-
ponents, d = µ̄+∂̄+∂+µ, where µ̄ and µ arise from the Nijenhuis tensor and vanish
if and only if the structure is integrable. In the presence of an almost Hermitian
metric, there are formal adjoints for each component, and associated Laplacians.
Also, the fundamental (1, 1)-form defines a Lefschetz operator L. This leads to a
natural set of almost Kähler identities involving the operators µ̄, µ, ∂̄, ∂, L and
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2 J. CIRICI AND S. WILSON

their adjoints. Such identities have been previously noted by de Barolomeis and
Tomassini in [dBT01] (see also for instance [Don90], [Kot97] for the case of ∂̄, ∂, L
and their adjoints). We remark that similar looking (but very different) identities
are described by Verbitsky in [Ver11] in the nearly Kähler setting, though these do
not apply to the present context.

We show that the almost Kähler identities imply, among other Laplacian rela-
tions, that

∆∂̄ +∆µ = ∆∂ +∆µ̄.

We also show that the Laplacian with respect to the exterior differential satisfies

∆d = 2(∆∂̄ +∆µ) + mixed-bidegree terms.

In the integrable case, the µ̄- and µ-Laplacians as well as the mixed bidegree terms
vanish and one recovers the well-known Kähler identities ∆∂̄ = ∆∂ and ∆d = 2∆∂̄ .

In the compact case, the theory of harmonic forms allows one to translate the
above local results into geometric and topological statements for almost Kähler
manifolds, as we next explain. Let δ denote one of the components µ̄, ∂̄, ∂, µ. Define
the space of δ-harmonic forms in bidegree (p, q) by letting

Hp,q
δ := Ker (∆δ) ∩ Ap,q,

where Ap,q denotes the space of (p, q)-forms. A priori, these spaces depend on the
metric, which is indicated by the use of H, conventional in Hodge theory. Note
that for compact almost Hermitian manifolds, the spaces Hp,q

∂̄
and Hp,q

∂ are finite-

dimensional by elliptic operator theory but in general, the spaces Hp,q
µ and Hp,q

µ̄

are infinite-dimensional whenever they are non-zero.
We will consider the spaces of ∂̄-µ-harmonic forms given by the intersections

Hp,q

∂̄
∩Hp,q

µ .

These are identified with the kernel of the self-adjoint elliptic operator given by
∆∂̄ +∆µ. We will denote by

ℓp,q := dim
(

Hp,q

∂̄
∩Hp,q

µ

)

= Ker (∆∂̄ +∆µ) ∩ Ap,q

the dimensions of these spaces. In the compact integrable case, these are just the
Hodge numbers of the manifold.

Theorem 4.1. For any compact almost Kähler manifold of dimension 2m and for
all (p, q), we have identities

Hp,q
d = Hp,q

∂̄
∩Hp,q

µ = Hp,q
∂ ∩Hp,q

µ̄ .

Also, the following dualities hold:

(1) (Complex conjugation). We have equalities

Hp,q

∂̄
∩Hp,q

µ = Hq,p

∂̄
∩Hq,p

µ .

(2) (Hodge duality). The Hodge ⋆-operator induces isomorphisms

⋆ : Hp,q

∂̄
∩Hp,q

µ → Hm−q,m−p

∂̄
∩Hm−q,m−p

µ .

(3) (Serre duality). There are isomorphisms

Hp,q

∂̄
∩Hp,q

µ
∼= Hm−p,m−q

∂̄
∩Hm−p,m−q

µ .
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The symmetries of the Hodge diamond for compact Kähler manifolds generalize
here, giving

ℓp,q = ℓq,p = ℓm−q,m−p = ℓm−p,m−q.

For almost Kähler manifolds, the spaces of ∂̄-µ-harmonic forms are, in general,
strictly contained in the spaces of d-harmonic forms of total degree p + q. In
particular, in the compact case, we obtain inequalities

∑

p+q=k

ℓp,q ≤ bk,

where bk denote the complex k-Betti number of the manifold.
Let us remark that the numbers ℓ∗,∗ are often non-trivial. For example, for

any left-invariant almost Kähler structure on the Kodaira-Thurston manifold (see
Subsection 6.1), the numbers ℓ∗,∗ are given by

1

1 1

0 3 0

1 1

1

Using Theorem 4.1 together with the various dualities of the spaces Hp,q
d we obtain

better topological bounds:

Theorem 4.3. For any compact almost Kähler manifold of dimension 2m, the
following is satisfied:

(1) In odd degrees, we have
∑

p+q=2k+1

ℓp,q = 2
∑

0≤p≤k

ℓp,2k+1−p ≤ b2k+1.

(2) In even degrees, we have
∑

p+q=2k

ℓp,q = 2
∑

0≤p<k

ℓp,2k−p + ℓk,k ≤ b2k,

with ℓk,k ≥ 1 for all k ≤ m.

The numbers ℓp,q, and more generally the spaces Hp,q
d , relate to various almost

complex invariants studied in the literature. They inject into the cohomology spaces
Hp,q

J of Draghici, Li and Zhang. These consist of those cohomology classes which
can be represented by a complex closed form of type (p, q) (see [DLZ10]). The spaces
Hp,q

d also inject into the Dolbeault cohomology groups Hp,q
Dol for almost complex

manifolds introduced by the authors in [CW18]. In fact, they inject into any page
of the Frölicher-type spectral sequence defined in [CW18] and in particular, into
the de Rham page Hp,q

dR := Ep,q
∞ . All these inclusions are, in general, strict.

The spaces Hp,q
d are also related to other invariants when taking the total degree.

They inject into the spaces of symplectic harmonic forms Hp+q
sym introduced by

Brylinski in [Bry88] and further exploited by Tseng and Yau in [TY12a, TY12b].
In fact, there is an identity Hp,q

d = Hp+q
sym ∩Ap,q when restricting to bidegree (p, q)-

forms. In the recent work [TT19], Tardini and Tomassini extend much of the

almost Kähler package developed here to the harmonic spaces Hp+q

∂̄+µ
, defined via
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the Laplacian of the operator ∂̄+µ. These spaces properly contain the spaces Hp,q
d

in the general almost Kähler case.
Theorem 4.3 provides new obstructions for the existence of symplectic struc-

tures compatible with a given almost complex structure, complementing the known
topological-type obstructions arising from the symplectic form and the associated
almost complex structure, as well as the results of Taubes via the theory of Seiberg-
Witten invariants [Tau94], [Tau95] (see also Gompf’s review on symplectic obstruc-
tion theory [Gom01]). For instance, for any almost Kähler structure on a manifold
with the same cohomology as CP2, its numbers ℓ∗,∗ coincide with the classical
Hodge numbers of its canonical Kähler structure.

The new obstructions are most easily exploited by considering the following
metric-independent spaces of holomorphic p-forms, defined by

Ωp

∂̄
:= Ker (∂̄) ∩ Ap,0.

Theorem 4.3 implies that for any almost complex structure on a manifold with
b1 ≤ 1, a necessary condition for it to admit a compatible symplectic structure is
that there are no holomorphic 1-forms. This follows after showing that, for compact
almost Kähler manifolds, the space of holomorphic 1-forms coincides with the space
of (1, 0)-forms that are d-harmonic.

Holomorphic forms on almost Kähler manifolds are shown below to satisfy even
further special properties. Chen gave the first example of how the Hodge numbers
of a compact Kähler manifold affect its fundamental group [Che71], [Che72]. We
extend Chen’s result to the non-integrable case, showing that if M is a compact
connected almost Kähler manifold satisfying

dimΩ1
∂̄
> dimΩ2

∂̄
+ 1,

then π1(M) contains a free subgroup of rank ≥ 2. In particular, π1(M) is not solv-
able. This is an additional obstruction to finding a symplectic structure compatible
with a given almost complex structure.

The almost Kähler identities also lead to a generalization of hard Lefschetz du-
ality on H∗,∗

d . It is well known that symplectic manifolds generally do not satisfy
hard Lefschetz duality in cohomology. In fact, Mathieu points out that a necessary
condition is that all odd Betti numbers must be even [Mat95]. Nevertheless, for
compact almost Kähler manifolds we prove:

Theorem 5.1 (Generalized Hard Lefschetz Duality). For any compact almost
Kähler manifold of dimension 2m, the operators {L,Λ, H = [L,Λ]} define a finite
dimensional representation of sl(2,C) on

⊕

p,q≥0

Hp,q
d =

⊕

p,q≥0

Hp,q

∂̄
∩Hp,q

µ = Ker (∆∂̄ +∆µ).

Moreover, for all 0 ≤ p ≤ k ≤ m,

Lm−k : Hp,k−p
d

∼=
−→ Hp+m−k,m−p

d

are isomorphisms.

Generalized Hard Lefschetz implies that the numbers ℓp,q satisfy

ℓp,q ≤ ℓp+1,q+1 ≤ · · · ≤ ℓp+j,q+j

for all 0 ≤ p, q ≤ m and p+ q + 2j ≤ m. In particular, note that if bk = 0 for some
k ≤ m, then ℓp,q = 0 for all p+ q ≤ k with p+ q ≡ k mod 2.
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In dimension 4, the various symmetries yield only a few interesting numbers ℓ∗,∗

to consider, and the Betti number bounds involving ℓ1,1 can be improved using in
the index of the intersection pairing:

Theorem 5.7 (Generalized Hodge Index Theorem, c.f. [HZ20]). For any compact
4-dimensional almost Kähler manifold M ,

ℓ1,1 = b−2 + 1 and b+2 ≥ 1,

where the intersection pairing on H2(M ;C) has index (b+2 , b
−
2 ).

A proof of the equality ℓ1,1 = b−2 +1 first appeared in the preprint [HZ20], using
Theorem 4.1 below, and following the establishment of an inequality, ℓ1,1 ≤ b−2 +1,
first proved in a preprint of the present paper.

Using this result, we are able to conclude here that for any compact almost
Kähler 4-manifold, all of the numbers ℓp,q are metric-independent among all al-
most Kähler metrics that are compatible with the given almost complex structure.
This is related to a problem listed by Hirzebruch, in [Hir54], and attributed to
Kodaira-Spencer. The problem includes two questions. The first asks whether the
dimensions of Hp,q

∂̄
are metric-independent on any almost complex manifold. This

has been very recently answered negatively by Holt and Zhang in [HZ20]. The
second part of the problem asks for a definition of metric-independent numbers
generalizing Dolbeault cohomology to the non-integrable case. Note that while in
the almost Kähler setting, the numbers ℓp,q are reasonable candidates, for general
almost complex manifolds these numbers do not faithfully generalize Dolbeault co-
homology. Instead, the theory presented in [CW18] seems to exhibit more of the
properties desirable for such a Dolbeault theory.

Finally, in the physics literature, the algebraic structure present on the differen-
tial forms of a Kähler manifold is often referred to as the N = 2 supersymmetry
algebra; see [Zum79], [AGF81], [HKLR87]. It has been noted that when the inte-
grability condition is dropped, the supersymmetry is partially broken [FGR98]. The
almost Kähler identities obtained here show that additional symmetries are indeed
present, albeit in a more subtle and interesting way depending on the failure of
integrability. We hope the results here may open new possibilities for physicists’
construction and study of supersymmetric theories.

This paper is organized as follows. In Section 2 we collect preliminaries on the
differential forms on almost complex and Hermitian manifolds. In Section 3 we
present the fundamental almost Kähler identities. In Section 4 we prove Theorems
4.1 and 4.3 and detail several topological and geometric consequences. Section 5
is devoted to hard Lefshetz (Theorem 5.1) and the Hodge index for 4-manifolds
(Theorem, 5.7). Lastly, in Section 6, we exhibit applications of the theory which
show that the theoretical results allow us to perform new calculations, reaching new
theoretical conclusions even in the case of nilmanifolds. In particular, the numbers
ℓ∗,∗ are computed using the topological bounds, and the failure of the symmetry
∆∂̄ + ∆µ = ∆∂ + ∆µ̄ is shown to detect almost complex structures that do not
admit almost Kähler structures.

Acknowledgments. The authors thank Thomas Holt for pointing out an impor-
tant sign error that appeared in a preprint of this paper. We would also like to
thank the anonymous referee for his suggestions.
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2. Differential forms on almost complex manifolds

Let (M,J) be an almost complex manifold and let

Ak := Ak
dR(M)⊗R C =

⊕

p+q=k

Ap,q

be the bigraded algebra of complex valued differential forms on M . The exterior
differential decomposes as

d = µ̄+ ∂̄ + ∂ + µ,

with the components µ̄ and ∂̄ being complex conjugate to µ and ∂, respectively.
Note that each component of d is a derivation, with bidegrees given by

|µ̄| = (−1, 2), |∂̄| = (0, 1), |∂| = (1, 0), and |µ| = (2,−1).

In particular, µ̄ and µ are linear over functions.
One can show that µ̄ + µ is equal, up to a scalar, to the dual of the Nijenhuis

tensor. In fact,

µ̄+ µ = −
1

4
(NJ ⊗ idC)

∗
,

where the right hand side has been extended over all forms as a derivation. Since
both sides are derivations, it suffices to check this on 1-forms, which can be done us-
ing Cartan’s formula relating the exterior differential and Lie bracket. In particular,
J is integrable if and only if µ̄ ≡ 0.

Expanding the equation d2 = 0 we obtain the following set of equations:

µ2 = 0

µ∂ + ∂µ = 0

µ∂̄ + ∂̄µ+ ∂2 = 0

µµ̄+ ∂∂̄ + ∂̄∂ + µ̄µ = 0(△)

µ̄∂ + ∂µ̄+ ∂̄2 = 0

µ̄∂̄ + ∂̄µ̄ = 0

µ̄2 = 0

For any almost Hermitian manifold (M,J, 〈 , 〉) of dimension 2m there is an
associated Hodge-star operator

⋆ : Ap,q → Am−q,m−p defined by α ∧ ⋆β̄ = 〈α, β〉vol

where vol is the volume form determined by the metric.
There is an associated fundamental (1, 1)-form defined by

ω(X,Y ) := 〈JX, Y 〉

and Lefschetz operator

L : Ap,q −→ Ap+1,q+1, defined by L(η) := ω ∧ η.

It has adjoint Λ = L∗ = ⋆−1L⋆. It is well known that {L,Λ, H = [L,Λ]} defines a
representation of sl(2,C), with Lefschetz decomposition on complex k-forms

Ak =
⊕

i≥0

LiP k−2i,
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where P j = Ker (Λ) ∩Aj . The map

Lm−k : P k −→ A2m−k

is injective for k ≤ m (see for instance [Wei58]).
The operators δ = µ̄, ∂̄, ∂, µ, and d have L2-adjoint operators δ

∗, and when M
is closed, one may check that

µ̄∗ = − ⋆ µ ⋆ and ∂̄∗ = − ⋆ ∂ ⋆ .

The latter equation is well known. The first equation is checked similarly, by using
the definition of ⋆ and the fact that µ is a derivation.

Define the δ-Laplacian by letting

∆δ := δδ∗ + δ∗δ.

It satisfies
⋆∆δ̄ = ∆δ ⋆ .

For all p, q, we will denote by

Hp,q
δ := Ker (∆δ) ∩ Ap,q = Ker (δ) ∩Ker (δ∗) ∩ Ap,q

the space of δ-harmonic forms in bidegree (p, q).
Note that Hp,q

µ and Hp,q
µ̄ are infinite dimensional whenever they are non-zero,

since µ and µ̄ are linear over functions, but Hp,q

∂̄
and H∂ are finite dimensional on

a compact manifold, by elliptic theory. Likewise, the space

Hp,q
d := Ker (∆d) ∩Ap,q

is finite-dimensional and there is an inclusion
⊕

p+q=n

Hp,q
d ⊆ Hp+q

d .

which in general is strict. In the compact case, this inclusion gives topological
bounds

∑

p+q=k

dimHp,q
d ≤ bn for all k ≥ 0.

In contrast with the above inclusion, note that if δ is any of the operators µ̄, ∂̄,
∂ or µ, there is an orthogonal direct sum decomposition

Ker (∆δ) ∩Ak =
⊕

p+q=k

Hp,q
δ ,

since now both δ and δ∗ are of pure bidegree. Note that a priori, all the spaces
H∗,∗

δ and H∗,∗
d depend on the chosen metric.

Remark 2.1. In [CW18] we define Dolbeault cohomology groups Hp,q
Dol(M) as-

sociated to any almost complex manifold M . Moreover, there is a Frölicher-type
spectral sequence {E∗,∗

r (M)} converging to complex de Rham cohomology and in
particular, one obtains a bigrading on de Rham cohomology. The spaces Hp,q

d are
easily proven to inject in Ep,q

r (M) for any r ≥ 1. In particular, we always have
inequalities

dimHp,q
d ≤ hp,q

dR where hp,q
dR := dimEp,q

∞ .

These inequalities refine the above topological bounds by almost complex invariants.

The following lemmas concerning almost Hermitian manifolds will be used later
to deduce topological consequences for almost Kähler manifolds.
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Lemma 2.2. For any compact almost Hermitian manifold of dimension 2m and
for all 0 ≤ p, q ≤ m the following dualities hold:

(1) (Complex conjugation). We have equalities

Hp,q
d = Hq,p

d .

(2) (Hodge duality). The Hodge ⋆-operator induces isomorphisms

⋆ : Hp,q
d −→ Hm−q,m−p

d .

(3) (Serre duality). There are isomorphisms

Hp,q
d

∼= Hm−p,m−q
d and Hp,q

δ → Hm−p,m−q
δ for δ = µ̄, ∂̄, ∂, µ.

Proof. The first duality follows from the identity

Ker (∆δ) ∩ Ap,q = Ker (∆δ̄) ∩ Aq,p

for any δ = µ̄, ∂̄, ∂, µ. Hodge duality follows from this same identity together with
the relation ⋆∆δ̄ = ±∆δ⋆, which also proves the Serre dualities. �

Lemma 2.3. For any compact almost Hermitian manifold we have equalities

(1) Hp,q
d = Ker (∆µ̄+∆∂̄+∆∂+∆µ)∩A

p,q = Ker (∆µ̄+∆∂̄)∩(∆∂+∆µ)∩A
p,q,

(2) Hp,q

∂̄
∩Hp,q

µ = Ker (∆∂̄ +∆µ) ∩ Ap,q and

(3) Hp,q
∂ ∩Hp,q

µ̄ = Ker (∆∂ +∆µ̄) ∩ Ap,q.

Proof. If a form α of type (p, q) satisfies dα = 0 and d∗α = 0, then the four
components of d and d∗ also vanish by bidegree reasons. Therefore, for any almost
Hermitian manifold we have

Hp,q

∂̄
∩Hp,q

µ ∩Hp,q
∂ ∩Hp,q

µ̄ = Hp,q
d ,

since the space on the left is in the eightfold intersection of kernels of µ̄, ∂̄, ∂, µ and
their adjoints.

Let S be a subset of {µ̄, ∂̄, ∂, µ}, then

α ∈ Ker

(

∑

δ∈S

∆δ

)

if and only if

0 =
∑

δ∈S

〈∆δα, α〉 =
∑

δ∈S

(

||δα||2 + ||δ∗α||2
)

so all the components δ and δ∗, for all δ ∈ S, vanish on α. This proves the remaining
identities. �

We will consider the spaces of ∂̄-µ-harmonic forms given by the intersections

H∗,∗

∂̄
∩H∗,∗

µ .

By the previous lemma, these are identified with the kernel of the self-adjoint elliptic
operator given by ∆∂̄ +∆µ. We denote by

ℓp,q := dim
(

Hp,q

∂̄
∩Hp,q

µ

)

the dimensions of these spaces. Note that in the integrable case, these are just the
Hodge numbers of the manifold.
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3. Almost Kähler identities

An almost Kähler manifold is by definition an almost Hermitian manifold such
that the associated (1, 1)-form is closed. Equivalently, an almost Kähler manifold
is a symplectic manifold with a compatible metric, i.e. there is an induced almost
complex structure which is compatible with both the symplectic form and the
metric.

On an almost Kähler manifold, the so-called Kähler identities, involving the
differential operator ∂̄, the Lefschetz operator L, and their complex conjugates and
adjoints, hold just as in the case of Kähler manifolds. These are proven in Weil’s
book [Wei58], where indeed, the integrability condition is not used. More recent
references often prove the Kähler identities by reducing the proof to a computation
in Cm, thus restricting to the integrable setting (see for instance [GH94], [Voi07],
see also Remark 3.1.14 of [Huy05]).

In this section, we retake Weil’s approach and give analogous identities involv-
ing the operators µ and µ̄. From these, we obtain several commutation relations
involving the four components µ̄, ∂̄, µ and ∂ of the differential, as well as various
relations between Laplacians.

In what follows we define the graded commutator of operators A and B by

[A,B] = AB − (−1)deg(A)deg(B)BA

where deg(A) denotes the total degree of A.

Proposition 3.1. For any almost Kähler manifold the following identities hold:

(1) [L, µ̄] = [L, µ] = 0 and [Λ, µ̄∗] = [Λ, µ∗] = 0.

(2) [L, ∂̄] = [L, ∂] = 0 and [Λ, ∂̄∗] = [Λ, ∂∗] = 0.

(3) [L, µ̄∗] = iµ, [L, µ∗] = −iµ̄ and [Λ, µ̄] = iµ∗, [Λ, µ] = −iµ̄∗.

(4) [L, ∂̄∗] = −i∂, [L, ∂∗] = i∂̄ and [Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗.

Proof. Since ω ∈ A1,1 is d-closed we have µ̄ ω = 0, and since µ̄ is a derivation,
[µ̄, L] = 0. The remaining cases in the first statement follow by taking complex
conjugates and adjoints, since ω is real. The proof for the second statements is
identical and well known.

For the third and fourth statements, using the primitive decomposition of the
exterior algebra of the manifold, and the fact that dω = 0, it is well known that

[Λ, d] = ⋆ I−1 d I ⋆,

where I is the operator that acts on (p, q)-forms by multiplication by ip−q (c.f.
[Huy05] Proposition 3.1.12, p.121-122). In bidegree (p, q) we have I−1

p,q = (−1)p−qIp,q,

so conjugating an operator of bidegree (r, s) by I acts by multiplication by (−i)r−s.
Then using δ̄∗ = − ⋆ δ⋆ for δ = µ̄, ∂̄, ∂, and µ, it follows that

⋆ I−1 µ̄ I ⋆ = iµ∗,

⋆ I−1 ∂̄ I ⋆ = −i∂∗,

⋆ I−1 ∂ I ⋆ = i∂̄∗,

⋆ I−1 µ I ⋆ = −iµ̄∗.

Then d = µ̄+ ∂̄ + ∂ + µ implies the third and fourth statements involving Λ. The
statements involving L follow by taking adjoints. �
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Remark 3.2. The above almost Kähler identities were also previously established
by de Bartolomeis and Tomassini (c.f. [dBT01], Lemma 3.4) by first proving [d,Λ] =
ds, where ds is the symplectic adjoint of d. In this way, they also obtain the first
two identities in Proposition 3.3 below, (c.f. [dBT01], Lemma 3.7).

We next deduce the following relations concerning the various components of d
and their adjoints. It is helpful to use the graded Jacobi identity:

[A, [B,C]] = [[A,B], C] + (−1)deg(A)deg(B)[B, [A,C]].

Proposition 3.3. For any almost Kähler manifold the following identities hold:

(1) [µ̄, µ∗] = [µ, µ̄∗] = 0.

(2) [µ̄, ∂∗] = [∂̄, µ∗] and [µ, ∂̄∗] = [∂, µ̄∗].

(3) [∂, ∂̄∗] = [µ̄∗, ∂̄] + [µ, ∂∗] and [∂̄, ∂∗] = [µ∗, ∂] + [µ̄, ∂̄∗].

Proof. For the first statement

[µ̄, µ∗] = i[µ̄, [µ̄,Λ]] = 0,

and the second follows by conjugation or adjoint.
Next we have

[µ̄, ∂∗] = i[µ̄, [Λ, ∂̄]] = i[[µ̄,Λ], ∂̄] + i[Λ, [µ̄, ∂̄]]

by the graded Jacobi identity. Since [µ̄, ∂̄] = 0, and [µ̄,Λ] = −iµ∗, this becomes

[µ̄, ∂∗] = [µ∗, ∂̄] = [∂̄, µ∗].

Then [µ, ∂̄∗] = [∂, µ̄∗] by conjugation or adjoint.
The next two claims are also equivalent by conjugation and adjoint. We’ll prove

the first one. First, using [Λ, ∂] = i∂̄∗, we compute

[∂, ∂̄∗] = −i[∂, [Λ, ∂]] = i[∂2,Λ] = i[Λ, [µ, ∂̄]]

where in the last step we used [µ, ∂̄] + ∂2 = 0. By the graded Jacobi identity,

[∂, ∂̄∗] = i[[Λ, µ], ∂̄] + i[µ, [Λ, ∂̄]].

Now using [Λ, µ] = −iµ̄∗ and [Λ, ∂̄] = −i∂∗ the result follows. �

Note that in the first statement [µ̄, µ∗] = 0 is a zeroth-order (metric-dependent)
condition which obstructs an almost Hermitian manifold from being symplectic,
whereas dω = 0 is a first order (metric-independent) condition. We next deduce
several relations concerning various Laplacians.

Proposition 3.4. For any almost Kähler manifold the following identities hold:

(1) ∆µ̄+µ = ∆µ̄ +∆µ.

(2) ∆∂̄ +∆µ = ∆∂ +∆µ̄.

(3) ∆d = 2
(

∆∂̄ +∆µ + [µ̄, ∂∗] + [µ, ∂̄∗] + [∂, ∂̄∗] + [∂̄, ∂∗]
)

.

Proof. The first claim follows by direct calculation using [µ̄, µ∗] = [µ, µ̄∗] = 0. For
the second claim, by Proposition 3.1,

∆µ̄ = µ̄µ̄∗ + µ̄∗µ̄ = i (µ̄[Λ, µ] + [Λ, µ]µ̄)

= i (µ̄Λµ− µ̄µΛ + Λµµ̄− µΛµ̄)
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and similarly

∆µ = µµ∗ + µ∗µ = −i (µ[Λ, µ̄] + [Λ, µ̄]µ)

= −i (µΛµ̄− µµ̄Λ + Λµ̄µ− µ̄Λµ)

so that

∆µ̄ −∆µ = i (Λ(µµ̄+ µ̄µ)− (µµ̄+ µ̄µ)Λ)

= −i
(

Λ(∂∂̄ + ∂̄∂)− (∂∂̄ + ∂̄∂)Λ
)

= ∆∂̄ −∆∂ .

The last equality follows from a similar calculation as is done above for ∆µ̄ −∆µ.
Finally, expanding ∆d = [d, d∗] and using d = µ̄+ ∂̄ + ∂ + µ, we have

∆d = ∆µ̄ +∆∂̄ +∆∂ +∆µ

+ [µ̄, ∂̄∗] + [µ̄, ∂∗] + [µ̄, µ∗]

+ [∂̄, µ̄∗] + [∂̄, ∂∗] + [∂̄, µ∗]

+ [∂, µ̄∗] + [∂, ∂̄∗] + [∂, µ∗]

+ [µ, µ̄∗] + [µ, ∂̄∗] + [µ, ∂∗],

so the final statement follows using Proposition 3.3 and the previous part. �

We have one more set of useful relations, which are related to hard Lefschetz
duality.

Corollary 3.5. For any almost Kähler manifold the following identities hold:

(1) [L,∆∂̄ ] = [L,∆µ̄] = −[L,∆∂] = −[L,∆µ] = −i[∂̄, ∂] = i[µ̄, µ].

(2) [Λ,∆∂̄ ] = [Λ,∆µ̄] = −[Λ,∆∂ ] = −[Λ,∆µ] = −i[∂̄∗, ∂∗] = i[µ̄∗, µ∗].

Proof. Using Propostion 3.1, we calculate

[L,∆∂̄ ] = [∂̄, [L, ∂̄∗]] = −i[∂̄, ∂] = i[µ̄, µ] = [µ̄, [L, µ̄∗]] = [L,∆µ̄],

and all remaining relations follow from taking conjugates or adjoints. �

In conclusion, for any almost Kähler manifold, there is a Z2-graded Lie algebra
of operators acting on the (p, q)-forms, generated by eight odd operators

∂̄, ∂, µ̄, µ, ∂̄∗, ∂∗, µ̄∗, µ∗

and even degree operators L,Λ, H , from which all relations can be deduced from
those given above. In the integrable case, this reduces to the so-called N = 2
supersymmetry algebra of a Kähler manifold (see for instance [Zum79], [AGF81],
[HKLR87]), also referred to as the N = (2, 2) supersymmetry algebra in [FGR98].

4. Topological and geometric consequences in the compact case

From the almost Kähler identities and the symmetries of the Laplacians, we
deduce in this section several results giving combined geometric/topological re-
strictions in the compact case. Recall that ℓp,q = dimHp,q

∂̄
∩ Hp,q

µ denotes the

dimension of the space of ∂̄-µ-harmonic forms of type (p, q). First, we have the
following identities.
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Theorem 4.1. For any compact almost Kähler manifold of dimension 2m and for
all (p, q), we have identities

Hp,q
d = Hp,q

∂̄
∩Hp,q

µ = Hp,q
∂ ∩Hp,q

µ̄ .

Also, the following dualities hold:

(1) (Complex conjugation). We have equalities

Hp,q

∂̄
∩Hp,q

µ = Hq,p

∂̄
∩Hq,p

µ .

(2) (Hodge duality). The Hodge ⋆-operator induces isomorphisms

⋆ : Hp,q

∂̄
∩Hp,q

µ → Hm−q,m−p

∂̄
∩Hm−q,m−p

µ .

(3) (Serre duality). There are isomorphisms

Hp,q

∂̄
∩Hp,q

µ
∼= Hm−p,m−q

∂̄
∩Hm−p,m−q

µ .

Proof. The identity

Hp,q
d = Hp,q

∂̄
∩Hp,q

µ = Hp,q
∂ ∩Hp,q

µ̄ .

follows from Lemma 2.3 together with the almost Kähler identity

∆∂̄ +∆µ = ∆∂ +∆µ̄

of Proposition 3.4. This identity implies that the various dualities of Lemma 2.2
are also satisfied for the spaces H∗,∗

∂̄
∩H∗,∗

µ of ∂̄-µ-harmonic forms. �

Let bk := dimHk(M,C) denote the Betti numbers of a manifoldM . Theorem 4.1
implies that, for a compact almost Kähler manifold, the numbers ℓ∗,∗ are bounded
above by the Betti numbers and satisfy the Hodge diamond-type symmetries,

ℓp,q = ℓq,p = ℓm−p,m−q = ℓm−q,m−p.

Next, note that all powers of an almost Kähler form are pure d-harmonic.

Lemma 4.2. If ω is an almost Kähler form on a compact manifold, then ωk ∈ Hk,k
d

for all k ≥ 0.

Proof. Since dω = 0 we also have d(ωk) = 0 for all k ≥ 0. Using the fact that
⋆wk = wn−k, we have d∗(wk) = 0 for all k ≥ 0. �

With this, we obtain the following inequalities:

Theorem 4.3. For any compact almost Kähler manifold of dimension 2m, the
following is satisfied:

(1) In odd degrees, we have
∑

p+q=2k+1

ℓp,q = 2
∑

0≤p≤k

ℓp,2k+1−p ≤ b2k+1.

(2) In even degrees, we have
∑

p+q=2k

ℓp,q = 2
∑

0≤p<k

ℓp,2k−p + ℓk,k ≤ b2k,

with ℓk,k ≥ 1 for all k ≤ m.
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Proof. The inclusion Hp,q
d ⊆ Hp+q

d together with the equalitities Hp,q
d = Hp,q

∂̄
∩Hp,q

µ

of Theorem 4.1 give inequalities
∑

p+q=k

ℓp,q ≤ bk for all k ≥ 0.

The inequalities now follow from the dualities of Theorem 4.1 together with Lemma
4.2, which ensures that ℓk,k ≥ 1. �

We deduce various combined geometric/topological obstructions to the almost
Kähler condition. An immediate corollary is:

Corollary 4.4. For any compact almost Kähler manifold, if ℓp,q 6= 0 for some
p 6= q, then bp+q ≥ 2 if p+ q > 0 is even, and bp+q ≥ 3 if p+ q > 0 is odd.

Example 4.5. For any almost Kähler structure on a 4-dimensional manifold with
the same cohomology as CP2, the numbers ℓ∗,∗ are given by

1

0 0

0 1 0

0 0

1

Likewise, for any almost Kähler structure on a 4-dimensional manifold with the
same cohomology as S2 × S2, the numbers ℓ∗,∗ are given by

1

0 0

0 k 0

0 0

1

where k ∈ {1, 2}. Using intersection pairings we see using Theorem 5.7 below that
in fact k = 1.

By restricting to 1-forms, we obtain the following metric-independent statements.
Denote by

Ωp

∂̄
:= Ker (∂̄) ∩Ap,0

the space of holomorphic p-forms. As was previously known for compact Kähler
manifolds, the space of holomorphic 1-forms coincides with the space of d-harmonic
forms of pure type (1, 0). Indeed, by bidegree reasons together with Theorem 4.1,
we have

Ω1
∂̄
= H1,0

∂̄
= H1,0

∂̄
∩H1,0

µ = H1,0
d .

This immediately gives:

Corollary 4.6. A necessary condition for a compact almost complex manifold to
admit a compatible symplectic form is that

2 dimΩ1
∂̄
≤ b1.

In particular, compact simply connected almost Kähler manifolds (and actually
any compact almost Kähler manifold with b1 ≤ 1) have no holomorphic 1-forms.

We next extend Chen’s results [Che71], [Che72] on fundamental groups of Kähler
manifolds, to the almost Kähler case.
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Lemma 4.7. If M is a compact connected almost Kähler manifold and if

dimΩ1
∂̄
> dimΩ2

∂̄
+ 1,

then π1(M) contains a free subgroup of rank ≥ 2. In particular, π1(M) is not
solvable.

Proof. Theorem 3.2 of [Che71] states that if there exist closed 1-forms α and β
such that α ∧ β = 0 and [α] and [β] are linearly independent classes in H1(M,C),
then π1(M) is not solvable. In Theorem 4.1 of [Che72], it is shown that the same
conditions imply that π1(M) contains a free subgroup of rank≥ 2. We adapt Chen’s
Corollary on Kähler manifolds. Let α1, · · · , αr generate Ω1

∂̄
. Since by assumption

we have dimΩ2
∂̄
< r − 1, the forms α1 ∧ αi, for i > 1, must be linearly dependent.

Hence there is a holomorphic 1-form α such that α1 ∧ α = 0, and α1 and α are
linearly independent in Ω1

∂̄
. Since Ω1

∂̄
= H1,0

d and the map

H1,0
d → H1

dR(M,C)

is injective, the classes [α1] and [α] are linearly independent. �

Example 4.8. Take for instance a solvable finitely presented group G. Then G can
be realized as the fundamental group of a symplectic 4-manifold M by a result of
Gompf [Gom95]. The above result tells us that for any compatible almost complex
structure, the inequality dimΩ1

∂̄
≤ dimΩ2

∂̄
+ 1 is satisfied.

5. Lefschetz duality, decomposition, and Hodge index theorem

We next prove a generalized Lefschetz duality and Lefschetz decomposition for
compact almost Kähler manifolds. We also give a generalized Hodge index theorem
in the four dimensional case.

Theorem 5.1 (Generalized Hard Lefschetz Duality). For any compact almost
Kähler manifold of dimension 2m, the operators {L,Λ, H = [L,Λ]} define a finite
dimensional representation of sl(2,C) on

⊕

p,q≥0

Hp,q
d =

⊕

p,q≥0

Hp,q

∂̄
∩Hp,q

µ = Ker (∆∂̄ +∆µ).

Moreover, for all 0 ≤ p ≤ k ≤ m,

Lm−k : Hp,k−p
d

∼=
−→ Hp+m−k,m−p

d

are isomorphisms.

Proof. For any almost Hermitian manifold of dimension 2m there are isomorphisms

Lm−k : Ap,k−p ∼=
−→ Ap+m−k,m−p

for every 0 ≤ p ≤ m and all p ≤ k ≤ m. By Corollary 3.5, [L,∆∂̄ + ∆µ] = 0 and
[Λ,∆∂̄ +∆µ] = 0, so L and Λ preserve H∂̄ ∩Hµ. It follows the maps

Lm−k : Hp,k−p
d

∼=
−→ Hp+m−k,m−p

d

are well defined, and are injective, since they are isomorphisms before restricting
the domain. By Hodge duality of Lemma 2.2, the domain and codomain have the
same dimension, so the map is an isomorphism. �
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Remark 5.2. Benson and Gordon showed that if a symplectic nilmanifold M
satisfies that L : H1 → H2n−1 is an isomorphism, then M is a torus [BG88]. On
the other hand, there are many non-toral symplectic nilmanifolds, so the above
generalized Lefschetz duality has a large family of non-trivial examples which are
computable.

Remark 5.3 (Comparison with symplectic Hodge theory). In [Bry88], Brylinski
proposed a Hodge theory for compact symplectic manifolds, by introducing a sym-
plectic Hodge star operator ⋆s, defined using the symplectic form. The space of
symplectically-harmonic k-forms is

Hk
sym := Ak ∩Ker (d) ∩Ker (ds)

where ds = ⋆s◦d◦⋆s. Brylinski showed that in an almost Kähler manifold, a form of
pure type (p, q) is in Hp+q

sym if and only if it is in Hp+q
d . This follows from Brylinski’s

formula for almost Kähler manifolds: if α ∈ Ap,q then ⋆s(α) = ip−q ⋆ (α). In
particular, by (1) of Theorem 4.1, when restricted to forms of pure type, all notions
of harmonics agree:

Hp,q

∂̄
∩Hp,q

µ = Hp,q
d = Hp+q

sym ∩Ap,q.

This gives an inclusion
⊕

p+q=k

Hp,q
d →֒ Hp+q

sym

which is strict in general. Indeed, Yan [Yan96] showed that for k = 0, 1, 2, every
cohomology class has a symplectically-harmonic representative. This is not true for
∂̄-µ-harmonic forms (see the example in 6.1 below).

As a consequence of Theorem 5.1, we have the following generalized Lefschetz de-
composition, which sheds some light on the relative scarcity of examples of compact
symplectic 2m-manifolds whose Betti numbers are not monotone, i.e. bj < bj−2 for
some j ≤ m.

Corollary 5.4. For any compact almost Kähler manifold of dimension 2m, and
any p, q we have an orthogonal direct sum decomposition

Hp,q
d =

⊕

j≥0

Lj
(

Hp−j,q−j
d

)

prim

where

(Hr,s
d )

prim
:= Hr,s

d ∩KerΛ.

This may be deduced directly, as a finite dimensional representation of sl(2,C).
It follows that one can also express the dimensions of the primitive spaces in terms
of successive differences of the numbers ℓp,q.

We have inequalities

ℓp,q ≤ ℓp+1,q+1 ≤ · · · ≤ ℓp+j,q+j

for all 0 ≤ p, q ≤ m and p+ q + 2j ≤ m. In particular, note that if bk = 0 for some
k ≤ m, then ℓp,q = 0 for all p+ q ≤ k with p+ q ≡ k mod 2.

We give some applications below.
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Remark 5.5. The Hodge-Riemann pairing yields the analogous bilinear Hodge-
Riemann relations. Namely, for any compact almost Kähler manifold of dimension
2m, if α ∈ (Hp,q

d )
prim

is a non-zero form, then

ip−qQ(α, ᾱ) > 0,

where the Hodge-Riemann pairing Q is given by

Q(α, β) := (−1)
(p+q)(p+q−1)

2 )

∫

M

α ∧ β ∧ ωm−p−q.

This follows from Corollary 5.4, since any primitive (p, q)-form α on any almost
Hermitian manifold,

ip−q(−1)
(p+q)(p+q−1)

2 )α ∧ ᾱ ∧ ωm−p−q

is a positive multiple of the volume form ωm

m! at any point where α is non-vanishing
(c.f. [Huy05], p.39 Corollary 1.2.36).

For the remainder of this section, we restrict to dimension 4, where there is a
version of the Hodge Index Theorem for almost Kähler 4-manifolds. First, for any
almost Hermitian 4-manifold, we have the following result:

Lemma 5.6. For any almost Hermitian 4-manifold with a non-integrable almost
complex structure, H2,0

d = 0. In particular, for any compact non-integrable almost
Kähler 4-manifold we have ℓ2,0 = ℓ0,2 = 0.

Proof. Since Hp,q
d injects into the cohomology groups Hp,q

J , triviality of H2,0
d follows

directly from Lemma 2.12 of [DLZ10], where it is shown that H2,0
J = 0. We include

an argument for completeness. If the almost complex structure is not integrable,
there is an open set U on which µ : T 0,1M →

(

T 1,0M ∧ T 1,0M
)

is pointwise
nonzero, and therefore pointwise surjective for all points in U , since M is a four
manifold. Therefore,

µ∗ : ∧2T 1,0M → T 0,1M

is pointwise injective on U . If η ∈ H2,0
d , then µ∗η = 0, which implies η is zero on

U , hence η is zero everywhere [Bär97]. The identities ℓ2,0 = ℓ0,2 = 0 follow from
Theorem 4.1. �

Theorem 5.7 (Generalized Hodge Index Theorem, c.f. [HZ20]). For any compact
4-dimensional almost Kähler manifold M , we have

ℓ1,1 = b−2 + 1 and b+2 ≥ 1,

where the intersection pairing on H2(M ;C) has index (b+2 , b
−
2 ).

A proof of the equality ℓ1,1 = b−2 + 1 first appeared in the preprint [HZ20],
following the inequality ℓ1,1 ≤ b−2 + 1 first established in a preprint of the present
paper. The proof of equality in [HZ20] follows arguments previously developed in
[DLZ10], [LZ09], and [FT10], and strongly depends on Theorem 4.1. We include a
proof here for completeness.

Proof. Recall that on a 4-manifold, the Hodge star operator induces a decompo-
sition on the space of 2-forms into self-dual A+ and anti-self-dual A− spaces (as
eigenspaces ±1). Since the Laplacian commutes with the Hodge star operator, the
d-harmonic 2-forms decompose as

H2
d = H+

d ⊕H−
d , where ⋆H±

d = ±H±
d .
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The intersection pairing is positive definite on H+
d , and negative definite on H−

d .

Since ω ∈ H+
d , it follows that b

+
2 ≥ 1. We now show that

H1,1
d = H−

d + C[ω]

by checking both inclusions. First, by Lemma 4.2 we have ω ∈ H1,1
d . Furthermore,

any form in H−
d must be of pure type (1, 1) since a local computation shows there

is an orthogonal sum A1,1 = A− ⊕ C[ω].
To prove the converse containment, we write any d-harmonic (1, 1)-form uniquely

as η = γ + fω, where f is a complex valued function and γ is anti-self dual. Since
⋆ commutes with ∆d, it follows that both γ and fω are d-harmonic. Since L is
injective in degree one and L(df) = df ∧ ω = 0, it follows that f is constant. This

proves the remaining inclusion H1,1
d ⊆ H−

d + C[ω]. �

Remark 5.8. In the case that the containment
⊕

p+q=2k H
p,q
d ⊆ H2k

d is an equality,

such as for Kähler manifolds, one also has the second identity 2ℓ2,0 + 1 = b+2 .

Corollary 5.9. For any compact almost Kähler 4-manifold all of the numbers ℓp,q

are metric-independent among all almost Kähler metrics that are compatible with
the given almost complex structure.

Proof. We may as well assume the almost complex structure is not integrable. By
Lemma 5.6 we have ℓ2,0 = ℓ2,0 = 0. By Theorem 5.7, ℓ1,1 is a topological invariant.
Lastly, note that

H1,0
d = H1,0

∂̄
∩H1,0

µ = Ker (∂̄) ∩ A1,0

which is metric independent. The dualities ℓ0,1 = ℓ1,0 = ℓ2,1 = ℓ1,2 give metric-
independence for all remaining bidegrees. �

Remark 5.10. Arguing as in the corollary above we obtain metric-independence
for all numbers hp,q

∂̄
:= dimHp,q

∂̄
except for h0,1

∂̄
= h2,1

∂̄
. Indeed, for bidegree reasons

we have h1,1

∂̄
= ℓ1,1 and Hp,0

∂̄
= Ker (∂̄) ∩ Ap,0 which, together with the Hodge

dualities hp,0

∂̄
= h2−p,2

∂̄
give metric-independence for h1,0

∂̄
= h1,2

∂̄
and h2,0

∂̄
= h0,2

∂̄
.

In [HZ20], Holt-Zhang construct an example of an almost complex structure whose

h0,1

∂̄
varies with different choices of Hermitian metrics. However, it remains an open

question to know whether h0,1

∂̄
is metric-independent among almost Kähler metrics

only.

6. Applications

In general it is very difficult to compute the dimension of the kernel of a self
adjoint elliptic operator. In this section we show the above theory can be used to
compute harmonic spaces, and give other applications involving the above obstruc-
tions to almost Kähler structures. For some examples we use nilmanifolds, which
are a quotient of a nilpotent real Lie group G by an integral subgroup Γ. For this
purpose, we first briefly describe how the above theory applies in that setting.

An almost complex structure on the Lie algebra g of G defines a left-invariant
almost complex structure on the associated nilmanifold. Also, it defines a bigrading
on the Chevalley-Eilenberg dg-algebra A∗

gC
associated to the complexification gC of

g and M inherits an almost complex structure. The algebra A∗
gC

may be regarded
as the complex algebra of Γ-invariant forms on G and it includes into the complex
algebra of forms of M via a quasi-isomorphism compatible with bigradings. The
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theory of harmonic forms for almost complex nilmanifolds is developed in [CW18].
For our purposes here, it suffices to note that, given a left-invariant Hermitian
metric, we have an inclusion

LHp,q
δ := Ker (∆δ) ∩ A∗

gC
⊆ Hp,q

δ

of left-invariant δ-harmonic forms into all δ-harmonic forms, and that the almost
Kähler package is equally valid on these subspaces. We see below that, in some
situations, the dimensions of the left-invariant harmonics, and the bounds offered by
the almost Kähler package and topology, provide sufficient information to compute
the dimensions ℓp,q of the true harmonic spaces.

6.1. Kodaira-Thurston manifold. The Kodaira-Thurston manifold was origi-
nally studied by Kodaira as a complex manifold [Kod64], and by Thurston as the
first example of a symplectic manifold which is non-Kähler, [Thu76]. We follow the
presentation in [BMn16] as a nilmanifold, giving here an almost Kähler structure.

The Kodaira-Thurston manifold is the 4-dimensional nilmanifold defined as the
quotient

KT = HZ × Z\H × R

where H is the 3-dimensional Heisenberg Lie group, and HZ is the integral sub-
goup. The Lie algebra is spanned by X,Y, Z,W where the only non-zero bracket
is [X,Y ] = −Z. It has Betti numbers b1 = 3 and b2 = 4 and topological index
(2, 2). We remark that L : H1 → H3 is not an isomorphism, i.e. the hard Lefschetz
duality does not hold on cohomology.

Proposition 6.1. For any left-invariant almost Kähler structure on the Kodaira-
Thurston manifold, the numbers ℓp,q are given by

1

1 1

0 3 0

1 1

1

Remark 6.2. To contrast, for any left-invariant integrable structure on the Kodaira-
Thurston manifold, the numbers ℓp,q = hp,q

∂̄
:= dimHp,q

∂̄
are given by

1

2 1

2 4 2

1 2

1

Proof. By Lemma 5.6 we have ℓ2,0 = ℓ0,2 = 0, and by Theorem 5.7 we have ℓ1,1 = 3.
By Theorem 4.3 we know that 2ℓ1,0 ≤ b1 = 3 and so ℓ1,0 ∈ {0, 1}. To prove that
ℓ1,0 6= 0, note that for any almost Kähler manifold we may identify the space
H1,0

d = Ker (∂̄) ∩ A1,0 with the Dolbeault cohomology

H1,0
Dol := Ker (µ̄) ∩Ker (∂̄) ∩ A1,0

introduced in [CW18]. Note that this identification is special to the almost Kähler
case since, for a general almost complex structure,

Ker (∂̄) ∩A1,0 6= Ker (∂̄) ∩Ker (µ̄) ∩A1,0.
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The Dolbeault cohomology has the advantage that there is a Frölicher-type spectral
sequence, with E1 = HDol, and which converges to complex de Rham cohomology.

We will not need the full details and machinery, but rather compute just one
page and use the convergence to complex de Rham cohomology to conclude that
there is a non-zero left invariant (1, 0)-form which is in H1,0

Dol, and therefore ℓ1,0 = 1.
First, we can compute the groups

Hp,q
µ̄ :=

Ker
(

µ̄ : Ap,q
L → Ap−1,q+2

L

)

Im
(

µ̄ : Ap+1,q−2
L → Ap,q

L

)

for left invariant forms, to obtain

H0,1
µ̄ = C

2 and H1,0
µ̄ = C.

To see this, note as in the proof of Lemma 5.6, that µ̄ : A1,0
L

∼= C2 → A0,2
L

∼= C is

surjective and that µ̄ is trivial on A0,1
L

∼= C
2. Since Hp,q

Dol
∼= Hq(Hp,∗

µ̄ , ∂̄), we have
inequalities

2 = dimH0,1
µ̄ ≥ dimH0,1

Dol and 1 = dimH1,0
µ̄ ≥ dimH1,0

Dol.

But convergence of the spectral sequence gives

dimH0,1
Dol + dimH1,0

Dol ≥ bk = 3.

Combining the two inequalities we deduce that H1,0
Dol 6= 0.

The remaining numbers follow from the various dualities. �

Note that we used left-invariant forms to compute dimensions of complete (not
necessarily left invariant) harmonic spaces, via the comparison with Dolbeault co-
homology and its induced bigrading. Similarly, one can use a comparison with
the bigrading of de Rham cohomology. Recall from Remark 2.1 that there are
inequalities ℓp,q ≤ hp,q

dR, where h∗,∗
dR := dimE∗,∗

∞ is given by the dimensions of the
de Rham page of the Frölicher-type spectral sequence of [CW18]. It follows from
Nomizu’s Theorem [Nom54] that there are equalities Lh∗,∗

dR = h∗,∗
dR, so one may

compute these numbers using only left-invariant forms. Therefore, the inequality
ℓp,q ≤ hp,q

dR allows one, in good circumstances, to determine the true numbers ℓp,q

from the left-invariant numbers.

6.2. Generalized Hard Lefschetz Theorem. As noted after Corollary 5.4, the
hard Lefschetz Theorem implies that the space of pure d-harmonics forms are zero
when certain higher Betti numbers vanish. For example, if M is a compact sym-
plectic manifold of dimension 2m, and any of the Betti numbers b3, b5, . . . , b2j+1

are zero, with 1 < 2j+1 < 2m, then for any compatible almost complex structure,
we must have Ω1

∂̄
= 0.

Equivalently, on any compact 2m-manifold, if some J has Ω1
∂̄

6= 0 and any

of b3, b5, . . . b2j+1 are zero, with 1 < 2j + 1 < 2m, then there is no compatible
symplectic form.

We conclude with a nil-manifold example, which shows that the generalized hard
Lefschetz theorem detects non-existence of invariant almost Kähler structures. Con-
sider the real 4-dimensional nilpotent filiform Lie algebra with basis X1, X2, X3, X4

and only non-zero brackets

[X1, Xi] = Xi+1 for i = 2, 3.
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One can check that the Betti numbers of the compact quotient filiform manifold
Γ\G, where Γ is a discrete subgroup of the simply connected Lie group G, are
b1 = b2 = b3 = 2.

Consider the non-integrable left invariant almost complex structure given by
JX1 = X2 and JX3 = X4. Letting A = X1 − iJX1 and B = X3 − iJX3, the dual
elements a and b are a basis for the invariant (1, 0)-forms. One can check that the
only non-zero components of the exterior differential are

µ̄b =
1

2i
āb̄, ∂̄b =

1

2i

(

ab̄− bā
)

− iaā, ∂b =
1

2i
ab,

and their conjugates. We’ll use hard Lefschetz duality to show there is no left
invariant metric making this almost complex manifold into an almost Kähler man-
ifold.

First, independent of metric we have a ∈ H1,0

∂̄
∩ H1,0

µ , so if there were a metric

making this almost Kähler, then also ā ∈ H0,1

∂̄
∩ H0,1

µ , and since b1 = 2, it follows

that for any almost Kähler metric ℓ0,1 = ℓ1,0 = 1. Also, by duality, ℓ2,1 = ℓ1,2 = 1
as well.

It is straightforward to check that a real basis for the left invariant real (1, 1)-
forms is given by

{iaā, ibb̄, i
(

ab̄+ bā
)

,
(

ab̄− bā
)

}.

and that a basis for the ∂̄-closed left invariant real (1, 1)-forms is given by

{iaā, i
(

ab̄+ bā
)

}.

Then any compatible invariant symplectic form can be written as ω = iαaā +
iβ
(

ab̄+ bā
)

, for some constants α, β.
The hard Lefschetz duality theorem implies that

L(a) = iβabā ∈ H2,1

∂̄
∩H2,1

µ .

But, ∂̄(ab) = i
2abā, so that L(a) ∈ Im(∂̄) and therefore ∂̄∗L(a) 6= 0, unless β = 0.

But then ω = iαaā is degenerate, which is a contradiction.
We note that this manifold does admit a symplectic form. One example is

ω = x1x4 + x2x3, which is almost Kähler for the metric making {Xi} orthonormal,
and has J ′X1 = X4 and J ′X2 = X3. This manifold does not admit any integrable
almost complex structure, as pointed out to us by Aleksandar Milivojevic. In this
case, the numbers ℓ∗,∗ are given by

1

0 0

0 2 0

0 0

1

.

6.3. Laplacian identity detects symplectic manifolds with almost complex

structures that admit no compatible almost Kähler structure. Consider
the 6-dimensional nilpotent real Lie algebra with basis {X1, . . . , X6} and only non-
zero brackets given by

[X1, X3] = [X2, X4] = X5 and [X1, X4] = −[X2, X3] = X6
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This is considered in [CFGU00], denoted as h5, and induces a nilmanifold with
nilpotent complex structure. Let G be the simply connected group associated to
h5, and let Γ\G be a nilmanifold where Γ is a discrete lattice.

Note Γ\G is a symplectic manifold, with symplectic form given by

ω = x1x5 + x2x6 + x3x6,

where xi is dual to Xi.
Consider the almost complex structure given by

JX1 = X2 JX3 = −X4 JX5 = −X6.

Define generators A := X5 − iJX5 = X5 + iX6, B := X1 − iJX1 = X1 − iX2, and
C := X3 − iJX3 = X3 + iX4 so that

[B,C] = [X1 − iX2, X3 + iX4] = 2(X5 + iX6) = 2A.

Letting a, b, c denote the duals of A,B,C respectively, we have

da = −
1

2
bc = ∂a.

Therefore, a ∈ Ker (∆∂̄ +∆µ) but a /∈ Ker (∆∂ +∆µ̄). Hence,

∆∂̄ +∆µ 6= ∆∂ +∆µ̄,

so by Theorem 3.4, we can conclude that this almost complex structure does not
admit a compatible symplectic structure. Of course, db = dc = 0 as well, so that J
is integrable. So, one could arrive at this same conclusion since Γ\G is not Kähler,

since for example ℓ1,0 ≥ 3 > b1

2 = 2.
But, the example shows even more: if (M,J ′) is any almost complex manifold

(integrable or not), then the Cartesian product Γ\G × M with product almost
complex structure J×J ′, does not admit any metric making the product an almost
Kähler manifold. Indeed, the pullback of the form a to the product still exhibits
that ∆∂̄ +∆µ̄ 6= ∆∂ +∆µ on Γ\G×M .

In particular, if M is symplectic then Γ\G×M always admits a symplectic form,
but never a symplectic form compatible with this almost complex structure.
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[FGR98] J. Fröhlich, O. Grandjean, and A. Recknagel. Supersymmetric quantum theory and
differential geometry. Comm. Math. Phys., 193(3):527–594, 1998.

[FT10] A. Fino and A. Tomassini. On some cohomological properties of almost complex man-
ifolds. J. Geom. Anal., 20(1):107–131, 2010.

[GH94] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library.
John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.

[Gom95] R. E. Gompf. A new construction of symplectic manifolds. Annals of Math., 142:527–
595, 1995.

[Gom01] R. E. Gompf. The topology of symplectic manifolds. Turkish J. Math., 25(1):43–59,
2001.

[Hir54] F. Hirzebruch. Some problems on differentiable and complex manifolds. Ann. of Math.
(2), 60:213–236, 1954.

[HKLR87] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček. Hyper-Kähler metrics and
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