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GAUSSIAN ANALYTIC FUNCTIONS IN THE UNIT BALL

JEREMIAH BUCKLEY, XAVIER MASSANEDA, AND BHARTI PRIDHNANI

ABSTRACT. We study some properties of hyperbolic Gaussian analytic functions of intensityL
in the unit ball ofCn. First we deal with the asymptotics of fluctuations of linearstatistics as
L → ∞. Then we estimate the probability of large deviations (withrespect to the expected value)
of such linear statistics and use this estimate to prove a hole theorem.

INTRODUCTION

Let Bn denote the unit ball inCn and letν denote the Lebesgue measure inCn normalised
so thatν(Bn) = 1. Explicitly ν = n!

πndm = βn, wheredm is the Lebesgue measure and
β = i

2π
∂∂̄|z|2 is the fundamental form of the Euclidean metric.

ForL > n consider the weighted Bergman space

BL(Bn) =
{

f ∈ H(Bn) : ‖f‖2n,L := cn,L

∫

Bn

|f(z)|2(1− |z|2)Ldµ(z) < +∞
}

,

where

(1) dµ(z) =
dν(z)

(1− |z|2)n+1
,

andcn,L = Γ(L)
n!Γ(L−n)

is chosen so that‖1‖n,L = 1.

Let

eα(z) =

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

denote the normalisation of the monomialzα in the norm‖·‖n,L, so that{eα}α is an orthonormal
basis ofBL(Bn). As usual, here we denotez = (z1, . . . , zn) and use the multi-index notation
α = (α1, . . . , αn), α! = α1! · · ·αn!, |α| = |α1|+ · · ·+ |αn| andzα = zα1

1 · · · zαn
n .

Thehyperbolic Gaussian analytic function(GAF) of intensityL is defined as

fL(z) =
∑

α

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα z ∈ Bn,

whereaα are i.i.d. complex Gaussians of mean 0 and variance 1 (aα ∼ NC(0, 1)).
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We choose the orthonormal basis{eα}α for convenience, but any other basis would produce
the same covariance kernel (see below) and therefore the same results.

The sum definingfL can be analytically continued toL > 0, which we assume henceforth.

The characteristics of the hyperbolic GAF are determined byits covariance kernel, which is
given by (see [ST04, Section 1], [Sto94, p.17-18])

KL(z, w) = E[fL(z)fL(w)] =
∑

α

Γ(L+ |α|)
α!Γ(L)

zαw̄α =

∞
∑

m=0

Γ(L+m)

Γ(L)

∑

α:|α|=m

1

α!
zαw̄α

=

∞
∑

m=0

Γ(L+m)

m!Γ(L)
(z · w̄)m =

1

(1− z · w̄)L .

A main feature of the hyperbolic GAF is that the distributionof its zero set

ZfL = {z ∈ Bn; fL(z) = 0}
is invariant under the groupAut(Bn) of holomorphic automorphisms of the ball. Givenw ∈ Bn

there existsφw ∈ Aut(Bn) such thatφw(w) = 0 andφw(0) = w, and all automorphisms are
essentially of this form: for allψ ∈ Aut(Bn) there existw ∈ Bn andU in the unitary group such
thatψ = Uφw (see [Rud08, 2.2.5]). Then thepseudo-hyperbolic distance̺in Bn is defined as

̺(z, w) = |φw(z)|, z, w ∈ Bn ,

and the corresponding pseudo-hyperbolic balls as

E(w, r) = {z ∈ Bn : ̺(z, w) < r}, r < 1 .

There is an immediate relation between the normalised covariance kernel and the pseudo-hyperbolic
distance, given by the identity

(2) 1− |φw(z)|2 =
(1− |z|2)(1− |w|2)

|1− z̄ · w|2 .

The transformations

Tw(f)(z) =

(

1− |w|2
(1− w̄ · z)2

)L/2

f(φw(z))

are isometries ofBL(Bn), hence the random zero setsZfL andZfL◦φw have the same distribution.
More specifically, the distribution of the (random) integration current

[ZfL ] =
i

2π
∂∂̄ log |fL|2 ,

is invariant under automorphisms of the unit ball.

The Edelman-Kostlan formula (see [HKPV09, Section 2.4] and[Sod00, Theorem 1]) gives
the so-calledfirst intensityof the GAF:

E[ZfL] =
i

2π
∂∂ logKL(z, z) = Lω(z) ,
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whereω is the invariant form

ω(z) =
i

2π
∂∂ log

( 1

1− |z|2
)

=
1

(1− |z|2)2
i

2π

n
∑

j,k=1

[(1− |z|2)δj,k + zkzj ]dzj ∧ dzk .

Notice thatµ = ωn is also invariant byAut(Bn) [Sto94, p.19].

In this paper we study some statistical properties of the zero varietyZfL for large values of the
intensityL. The outline of the paper is as follows.

In Section 1 we study the fluctuations of linear statistics asthe intensityL tends to∞. Let
D(n−1,n−1) denote the space of compactly supported smooth forms of bidegree(n − 1, n − 1).
Forϕ ∈ D(n−1,n−1), consider the integral ofϕ overZfL:

IL(ϕ) =

∫

ZfL

ϕ =

∫

Bn

ϕ ∧ [ZfL].

By the Edelman-Kostlan formula,

(3) E[IL(ϕ)] = L

∫

Bn

ϕ ∧ ω .

We compute the leading term in the limit asL → ∞ of Var[IL(ϕ)] and see that the rate of self-
averaging of the integral ofIL(ϕ) increases with the dimension. A quantitative statement is the
following.

Theorem 1. Letϕ ∈ D(n−1,n−1) and letDϕ be the function defined byi
2π
∂∂̄ϕ = Dϕdµ. Then

Var[IL(ϕ)] = n!ζ(n+ 2)

(∫

Bn

(Dϕ)2dµ

)

1

Ln
+ O

(

logL

Ln+1

)

.

Notice that this shows a strong form of self-averaging of thevolumeIL(ϕ), in the sense that

Var IL(ϕ)

(E[IL(ϕ)])2
= O

(

1

Ln+2

)

.

Notice also that the self-averaging increases with the dimension.

The same computations involved in the proof of the this theorem show the asymptotic normal-
ity of IL(ϕ), i.e., that the distributions of

IL(ϕ)− E[IL(ϕ)]
√

Var[IL(ϕ)]

converge weakly to the (real) standard gaussian (Corollary5).

The proofs are rather straight-forward generalisations ofthe proof for the one-dimensional
case given by Sodin and Tsirelson [ST04], or the analogous result in the context of compact
manifolds given by Shiffman and Zelditch.
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Let pN be a Gaussian holomorphic polynomial inCPn or, more generally, a section of a power
LN of a positive Hermitian line bundleL over ann-dimensional Kähler manifoldM . Given a
test formϕ of bidegree(n− 1, n− 1), define

IN (ϕ) =

∫

ZpN

ϕ =

∫

M

ϕ ∧ [ZpN ] .

According to [SZ10, Theorem 1], asN → ∞,

Var[IN (ϕ)] =
πn−2

4
ζ(n+ 2)‖∂∂̄ϕ‖2L2

1

Nn
+ O(

1

Nn+1/2−ǫ
) .

The proof of this result is based on a bi-potential expression of Var[IN(ϕ)] (see (4)) together
with good estimates of the covariance kernel, something we certainly have for the GAF in the
ball.

In Section 2, we deal with large deviations. We study the probability that the deviation of
IL(ϕ) from its expected value is at least a fixed proportion ofE[IL(ϕ)].

Theorem 2. For all ϕ ∈ D(n−1,n−1) andδ > 0, there existc > 0 andL0(ϕ, δ, n) such that for all
L ≥ L0,

P [{ω : |IL(ϕ)− E(IL(ϕ))| > δE(IL(ϕ))}] ≤ e−cLn+1

.

Replacingδ
∫

Bn
ϕ ∧ ω by δ we get the equivalent formulation:

P

[∣

∣

∣

∣

1

L
IL(ϕ)−

∫

Bn

ϕ ∧ ω

∣

∣

∣

∣

> δ

]

≤ e−cLn+1

.

Following the scheme of [SZZ08, pag.1994] we deduce a corollary that implies the upper bound
in the hole theorem (Theorem 4 below). For a compactly supported functionψ in Bn denote

IL(ψ) =

∫

ZfL

ψωn−1 =

∫

Bn

ψ ∧ ωn−1 ∧ [ZfL] .

Notice that (3) gives here

E[IL(ψ)] = L

∫

Bn

ψ dµ .

In particular, and for an open setU in the ball letχU denote its characteristic function and let
IL(U) = IL(χU). ThenE[IL(U)] = Lµ(U).

Corollary 3. Suppose thatU is an open set contained in a compact subset ofBn. For all δ > 0
there existc > 0 andL0 such that for allL ≥ L0,

P

[∣

∣

∣

∣

1

L
IL(U)− µ(U)

∣

∣

∣

∣

> δ

]

≤ e−cLn+1

.

The casen = 1 of Theorem 2 is given in [Buc13, Theorem 5.7]. Our proof is inspired by
the methods of B. Shiffman, S. Zelditch and S. Zrebiec for thestudy of the analogous problem
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for compact Kähler manifolds. According to [SZZ08, Theorem 1.5], givenδ > 0, and lettingω
denote the Kähler form of the manifold,

P

[∣

∣

∣

∣

∣

1

N

∫

ZpN

ϕ− 1

π

∫

M

ω ∧ ϕ
∣

∣

∣

∣

∣

> δ

]

≤ e−cNn+1

,

where hereN indicates here the power of the positive Hermitian bundle overM .

In the last Section we study the probability thatZfL has a pseudohyperbolic hole of radiusr.
By the invariance by automorphisms of the distribution of the zero variety, this is the same as
studying the probability thatZfL ∩B(0, r) = ∅.

Theorem 4. Let r ∈ (0, 1) be fixed. There existC1 = C1(n, r) > 0, C2 = C2(n, r) > 0 andL0

such that for allL ≥ L0,

e−C1Ln+1 ≤ P [ZfL ∩ B(0, r) = ∅] ≤ e−C2Ln+1

.

This result is inspired again by an analogue for entire functions in the plane given by Sodin
and Tsirelson [ST05]. Let

FL = {f ∈ H(C) :

∫

C

|f(z)|2e−L|z|2dm(z) < +∞}

and consider the Gaussian entire function

fL(z) =

∞
∑

k=0

akek(z) ,

whereak are i.i.d. complex standard Gaussians and{ek(z)}∞k=0 is an orthonormal basis ofFL.

The Edelman-Kostlan formula givesE[ZfL ] =
L

π
dm(z), and for a test functionϕ,

IL(ϕ) = L

∫

C

ϕ(z)
dm(z)

π
=

∫

C

ϕ(w/
√
L)

dm(z)

π
.

In particular

E[#(ZfL ∩D(0, r))] = E[#(Zf1 ∩D(0, r
√
L))],

and therefore studying the asymptotics asL → ∞ is equivalent to replacingL by r2 and letting
r → ∞.

Sodin and Tsirelson proved [ST05, Theorem 1] that, asr → ∞,

e−Cr4 ≤ P[Zf1 ∩D(0, r) = ∅] ≤ e−cr4 .

Zrebiec extended this result toCn [Zre07, Theorem 1.2], showing that the decay rate is then
e−Cr2n+2

, which matches with our Theorem 4.

Shiffman, Zelditch and Zrebiec proved also a hole theorem for sections of powers of a positive
Hermitian line bundle over a compact Kähler manifold [SZZ08, Theorem 1.4]. In that case the
decay rate of the hole probability is againe−CNn+1

.
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A final word about notation. ByA . B we mean that there existsC > 0 independent of the
relevant variables ofA andB for whichA ≤ CB. ThenA ≃ B means thatA . B andB . A.

1. LINEAR STATISTICS

Proof of Theorem 1.The proof is as in [HKPV09, Section 3.5], so we keep it short. By Stokes
and Fubini’s theorems

Var[IL(ϕ)] = E
[

|IL(ϕ)− E(IL(ϕ))|2
]

= E

[

∣

∣

∣

∣

∫

Bn

ϕ ∧ i

2π
∂∂̄ log

( |fL|2
KL(z, z)

)

∣

∣

∣

∣

2
]

= 4E





∣

∣

∣

∣

∣

∫

Bn

log
( |fL|
√

KL(z, z)

) i

2π
∂∂̄ϕ

∣

∣

∣

∣

∣

2




= 4

∫

Bn

∫

Bn

E

[

log
( |fL(z)|
√

KL(z, z)

)

log
( |fL(w)|
√

KL(w,w)

)

]

i

2π
∂∂̄ϕ(z)

i

2π
∂∂̄ϕ(w) .

Consider the normalised GAF

f̂(z) =
fL(z)

√

KL(z, z)
.

Then(f̂(z), f̂(w)) has joint gaussian distribution with mean 0 and marginal variances 0. Since
f̂(z) ∼ NC(0, 1) the expectationE(log |f̂(z)|) is constant, and integrated against∂∂̄ϕ gives 0.
Therefore, in the integral above, the expectation can be replaced by

Cov(log |f̂(z)|, log |f̂(w)|) = E[log |f̂(z)| log |f̂(w)|]− E[log |f̂(z)|]E[log |f̂(w)|] .
This yields the following bi-potential expression of the variance, which is our starting point:

Var[IL(ϕ)] =

∫

Bn

∫

Bn

ρL(z, w)
i

2π
∂∂̄ϕ(z)

i

2π
∂∂̄ϕ(w)(4)

=

∫

Bn

∫

Bn

ρL(z, w)Dϕ(z)Dϕ(w)dµ(z)dµ(w) ,

whereρL(z, w) = 4Cov(log |f̂(z)|, log |f̂(w)|). By [HKPV09, Lemma 3.5.2]

ρL(z, w) =

∞
∑

m=1

|θL(z, w)|2m
m2

,

where

(5) θL(z, w) =
KL(z, w)

√

KL(z, z)
√

KL(w,w)
=

(1− |z|2)L/2(1− |w|2)L/2
(1− z̄ · w)L

is the normalised covariance kernel offL.
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We see next that only the near diagonal part of the double integral (4) is relevant. LetεL =
2/Ln+1, and split the integral in three parts

Var[IL(ϕ)] =

∫

ρL(z,w)≤εL

ρL(z, w)Dϕ(z)Dϕ(w)dµ(z)dµ(w)(I1)

+

∫

ρL(z,w)>εL

ρL(z, w)(Dϕ(z)−Dϕ(w))Dϕ(w)dµ(z)dµ(w)(I2)

+

∫

ρL(z,w)>εL

ρL(z, w)(Dϕ(w))
2dµ(z)dµ(w) .(I3)

The bound for the first integral is straight-forward,

|I1| ≤ εL

∫

ρL(z,w)≤εL

|Dϕ(z)Dϕ(w)|dµ(z)dµ(w) ≤ εL

(
∫

Bn

|Dϕ(z)| dµ(z)
)2

.

In order to bound (I2) letφz denote the automorphism ofBn exchangingz and 0, so that
|θL(z, w)|2 = (1− |φz(w)|2)L (see (2). By the uniform continuity ofi∂∂̄ϕ there existsη(t) with
lim
t→1

η(t) = 0 such that for allz, w ∈ Bn,

|Dϕ(z)−Dϕ(w)| ≤ η(1− |φz(w)|2) .
An immediate estimate shows that

x ≤
∞
∑

m=1

xm

m2
≤ 2x x ∈ [0, 1] ,

and therefore

(6) (1− |φz(w)|2)L ≤ ρL(z, w) ≤ 2(1− |φz(w)|2)L .
By the invariance by automorphisms of the measuredµ, we get (after changing appropriately the
value ofCϕ at each step)

|I2| ≤ 2Cϕ

∫

{ρL(z,w)>εL}∩(supp ϕ×supp ϕ)

(1− |φz(w)|2)L η(1− |φz(w)|2)dµ(z)dµ(w)

≤ Cϕ η((εL/2)
1/L)

∫

{ρL(z,w)>εL}∩(supp ϕ×supp ϕ)

(1− |φz(w)|2)Ldµ(z)dµ(w)

≤ Cϕ η((εL/2)
1/L)

∫

supp ϕ

(
∫

z:ρL(z,0)>εL

(1− |z|2)Ldµ(z)
)

dµ(w)

≤ Cϕ η((εL/2)
1/L)

∫

z:ρL(z,0)>εL

(1− |z|2)Ldµ(z) .

Sinceη(t) . |1− t| for t near 1, we see that

η((εL/2)
1/L) . 1− (εL/2)

1/L ≃ logL

L



8 JEREMIAH BUCKLEY, XAVIER MASSANEDA, AND BHARTI PRIDHNANI

and therefore

|I2| . logL

L

∫

z:ρL(z,0)>εL

(1− |z|2)Ldµ(z) .

On the other hand, using again the invariance, we see that

I3 =

(
∫

Bn

(Dϕ(w))2dµ(w)

)
∫

z:ρL(z,0)>εL

(1− |z|2)Ldµ(z) .

Since lim
L→∞

ε
1/L
L = 1 we have thus I2= o(I3) and therefore

(7) Var[IL(ϕ)] = I3
(

1 + O(
logL

L
)
)

+ O(εL) .

It remains to compute the second factor in I3:

J :=

∫

z:ρL(z,0)>εL

ρL(z, 0)dµ(z) =
∞
∑

m=1

1

m2

∫

z:ρL(z,0)>εL

(1− |z|2)mLdµ(z) .

By (6),
{|z|2 < 1− ε

1/L
L } ⊂ {ρL(z, 0) > εL} ⊂ {|z|2 < 1− (εL/2)

1/L}
and therefore

J =

∞
∑

m=1

1

m2

∫

|z|2<1−(
εL
2
)1/L

(1− |z|2)mLdµ(z)−
∫

|z|2<1−(
εL
2 )1/L

ρL(z,0)≤εL

(1− |z|2)mLdµ(z) .

Claim 1: The sum of the negative terms is negligible. More precisely,
∞
∑

m=1

1

m2

∫

|z|2<1−(
εL
2 )1/L

ρL(z,0)≤εL

(1− |z|2)mLdµ(z) = O

(

logn−1L

L2n+1

)

.

Assuming this we have

(8) J =
∞
∑

m=1

1

m2
Im + o(L−n)

where, denotingrL = 1− ( εL
2
)1/L,

Im =

∫

|z|2<rL

(1− |z|2)mLdµ(z) =

∫

|z|2<rL

(1− |z|2)mL−n−1dν(z) .

Integration in polar coordinates ([Rud08, 1.4.3]) shows that Im is a truncated beta function:

Im = n

∫

√
rL

0

(1− r2)mL−n−1r2(n−1)2r dr = n

∫ rL

0

(1− t)mL−n−1tn−1dt .
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A repeated integration by parts yields, forn, k > 0,

n

∫ r

0

(1− t)k−1tn−1dt =

=
n!Γ(k)

Γ(n+ k)

(

1− (1− r)k+n−1
)

−
n−1
∑

j=1

n!Γ(k)

Γ(n− j)Γ(k + j)
(1− r)k+j−1rn−j ,

thus takingk = mL− n we deduce from (8) that

J = n!
∞
∑

m=1

1

m2

[

Γ(mL− n)

Γ(mL)
[1− (1− rL)

mL−1]−

n−1
∑

j=1

Γ(mL− n)

Γ(n− j)Γ(mL− n+ j)
(1− rL)

mL−n+j−1rn−j
L

]

.

Claim 2: The negative terms in this sum are again negligible. Specifically,

∞
∑

m=1

1

m2

n−1
∑

j=1

Γ(mL− n)

Γ(n− j)Γ(mL− n + j)
(1− rL)

mL−n+j−1rn−j
L = O

(

logn+j L

L2n+3

)

.

The asymptotics of theΓ-function

(9) lim
m→∞

Γ(m+ n)

Γ(m)mn
= 1

and the fact that(1− rL)
mL = (εL/2)

m tends to 0 asL→ ∞ yield

J = n!
∞
∑

m=1

1

m2

Γ(mL− n)

Γ(mL)
+ o(L−n) = n!

∞
∑

m=1

1

m2

1

(mL)n
+ o(L−n)

= n!
1

Ln
ζ(n+ 2) + o(L−n).

Plugging this in (7) we finally obtain the stated result. �
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Proof of Claim 1. Denote byN the sum we need to estimate. Using thatεL = 2L−(n+1),
unwinding the conditionρL(z, 0) ≤ εL a rough estimate yields

N =

∞
∑

m=1

1

m2

∫

(
εL
2
)1/L≤1−|z|2≤ε

1/L
L

(1− |z|2)mL−n−1dν(z)

.

∞
∑

m=1

1

m2
(ε

1/L
L )L−n−1 ν

(

{1− ε
1/L
L ≤ |z|2 ≤ 1− (

εL
2
)1/L}

)

. ε
1− n

L
L

(

1− 1

21/L

)

(

1− (
εL
2
)1/L

)n−1

≤ 2

Ln+1

(

log 2

L
+ o(L−1)

)(

n+ 1

L
logL+ o(

logL

L
)

)n−1

= O

(

logn−1 L

L2n+1

)

.

Proof of Claim 2. We have

(1− rL)
mL−n+j−1rn−j

L = L−n+1
L

(mL−n+j−1)

(

n+ 1

L
logL+ o(L−n)

)n−j

= O

(

logn+j L

L(n+1)m+n+j

)

.

On the other hand, the number of terms in the sum inj is independent ofL, so by (9), forL big
enough and for allj

lim
L→∞

Γ(mL− n)

Γ(mL− n+ j)
=

1

(mL)j
.

Thus, denoting byM the double sum inm andj we see that

M ≃
∞
∑

m=1

1

m2

n−1
∑

j=1

1

(mL)j
logn+j L

L(n+1)m+n+j
= O

(

logn+j L

L2n+3

)

.

As an immediate consequence of the results of M. Sodin and B. Tsirelson and the previous
computations we obtain the asymptotic normality ofIL(ϕ).

Corollary 5. AsL→ ∞ the distribution of the normalised variables

IL(ϕ)− E[IL(ϕ)]
√

Var(IL(ϕ))

tend weakly to the standard (real) gaussian.

Proof. Consider the normalised GAF̂fL(z), whose covariance kernel isθL(z, w). Notice that

JL(ϕ) :=

∫

Bn

log |f̂L(z)|2Dϕ(z) dµ(z) = IL(ϕ)−
∫

Bn

logKL(z, z) Dϕ(z) dµ(z) ,
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and that the second term has no random part. Hence(JL(ϕ) − E[JL(ϕ)])/
√

Var[JL(ϕ)] and
(IL(ϕ)−E[IL(ϕ)])/

√

Var[IL(ϕ)] have the same distribution, and according to [ST04, Theorem
2.2], to prove the asymptotic normality ofIL(ϕ) it is enough to see that

(a) lim inf
L→∞

∫

Bn

∫

Bn
|θL(z, w)|2Dϕ(z)Dϕ(w) dµ(z) dµ(w)

sup
w∈Bn

∫

Bn
|θL(z, w)| dµ(z)

> 0

(b) lim
L→∞

sup
w∈Bn

∫

Bn

|θL(z, w)| dµ(z) = 0 .

By the invariance under automorphisms of the measureµ
∫

Bn

|θL(z, w)| dµ(z) =
∫

Bn

(1− |z|2)L/2 dµ(z) ,

and (b) follows.

On the other hand the double integral in the numerator of (a) is essentially the same we have
found in the proof of the previous theorem (see (4)), and the same computations show that (a)
holds. �

2. LARGE DEVIATIONS

We begin with the proof of Corollary 3 (assuming Theorem 2).

Proof of Corollary 3.Sinceωn−1∧ [ZfL] is a positive current, the functionalIL(ψ) is monotone,
i.e., if ψ1 ≤ ψ2 thenIL(ψ1) ≤ IL(ψ2).

Let ψ1, ψ2 be smooth compactly supported functions inBn such that0 ≤ ψ1 ≤ χU ≤ ψ2 ≤ 1
and

∫

Bn

ψ1 dµ ≥ µ(U)(1− δ) ,

∫

Bn

ψ2 dµ ≤ µ(U)(1 + δ).

Outside an exceptional set of probabilitye−cLn+1
we have, by Theorem 2,

IL(U) ≤ IL(ψ2) ≤ (1 + δ)E[IL(ψ2)] = (1 + δ)L

∫

Bn

ψ2dµ ≤ (1 + δ)2Lµ(U) .

Similarly, usingψ1, we see that

IL(U) ≥ (1− δ)2Lµ(U)

outside another set of probabilitye−cLn+1
, which after appropiately changing the value ofδ com-

pletes the proof. �

A different proof of Corollary 3 can be obtained by followingthe scheme of [HKPV09, Theo-
rem 7.2.5], using the Poisson-Szegö representation of theaverages

∫

|ξ|=1
log |fL(ξ)|dσ(ξ) instead

of Jensen’s formula.
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Proof of Theorem 2. Applying Stokes’ theorem, we have

IL(ϕ)− E [IL(ϕ)] =

∫

Bn

ϕ ∧ i

2π
∂∂ log

|fL|2
KL(z, z)

=

∫

Bn

log
|f̂L|2

KL(z, z)

i

2π
∂∂ϕ.

Thus,

|IL(ϕ)− E[IL(ϕ)]| ≤ ‖Dϕ‖∞
∫

suppϕ

∣

∣

∣
log |f̂L(z)|2

∣

∣

∣
dµ(z).

By (3), the proof of Theorem 2 will be completed as soon as we prove the following Lemma.

Lemma 6. For any regular compact setK and anyδ > 0 there existsc = c(δ,K) such that

P

[
∫

K

∣

∣

∣
log |f̂L(z)|2

∣

∣

∣
dµ(z) > δL

]

≤ e−cLn+1

.

The key ingredient in the proof of this lemma is given by the following control on the average
of
∣

∣log |f̂L|2
∣

∣ over pseudo-hyperbolic balls.

Lemma 7. There exists a constantc > 0 such that for a hyperbolic ballE = E(z0, s), z0 ∈ Bn,
s ∈ (0, 1),

P

[

1

µ(E)

∫

E

∣

∣

∣
log |f̂L(ξ)|2

∣

∣

∣
dµ(ξ) > 5Lµ(E)1/n

]

≤ e−cLn+1

.

Let us see first how this allows to complete the proof of Lemma 6, and therefore of Theorem 2.

Proof of Lemma 6.CoverK with pseudohyperbolic ballsEj = E(λj , ǫ), j = 1, . . . , N of fixed
invariant volumeµ(Ej) = η (to be determined later on). A direct estimate shows thatN ≃
µ(K)/η.

By Lemma 7, outside an exceptional event of probabilityNe−cLn+1 ≤ e−c′Ln+1
,

∫

K

∣

∣

∣
log |f̂L(ξ)|2

∣

∣

∣
dµ(ξ) ≤

N
∑

j=1

∫

Ej

∣

∣

∣
log |f̂L(ξ)|2

∣

∣

∣
dµ(ξ) ≤

N
∑

j=1

5Lη1+1/n ≃ Lµ(K)η1/n.

Choosingη such thatµ(K)η1/n = δ we are done. �

Now we proceed to prove Lemma 7. A first step is the following lemma.

Lemma 8. Fix r < 1 andδ > 0. There existsc > 0 andL0 = L0(r, δ) such that for allL ≥ L0

and allz0 ∈ Bn

(a) P
[

max
E(z0,r)

log |f̂L(z)|2 < −δL
]

≤ e−cLn+1
,

(b) P
[

max
E(z0,r)

log |f̂L(z)|2 > δL
]

≤ e−ceLδ/2
.

Combining both estimatesP
[

max
E(z0,r)

∣

∣

∣
log |f̂L(z)|2

∣

∣

∣
> δL

]

≤ e−cLn+1
.
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Proof. By the invariance of the distribution of̂f , it is enough to consider the casez0 = 0.

(a) Consider the event

E1 =
{

max
|z|≤r

log |f̂L(z)|2 < −δL
}

.

Note that

log |f̂L(z)|2 = log
|fL(z)|2
KL(z, z)

= log |fL(z)|2 − log
1

(1− |z|2)L ,

hence, by subharmonicity,

E1 ⊂
{

max
|z|≤r

log |fL(z)|2 ≤ L log
1

1− r2
− Lδ

}

=

{

max
|z|=r

log |fL(z)|2 ≤ L
(

log
1

1− r2
− δ
)

}

.

Therefore, letting̃δ = δ
2
[log( 1

1−r2
)]−1,

P[E1] ≤ P

[

max
|z|=r

log |fL(z)|
L

≤
(1

2
− δ̃
)

log
1

1− r2

]

.

The estimate ofP[E1] will be done as soon as we prove the following lemma, which is the
analogue of the upper bound in [HKPV09, Lemma 7.2.7].

Lemma 9. For 0 < δ < 1/2 andr ∈ (0, 1) there existc = c(δ, r) andL0 = L0(δ, r) such that
for all L ≥ L0

P

[

max
|z|=r

log |fL(z)|
L

≤
(1

2
− δ
)

log
1

1− r2

]

≤ e−cLn+1

Proof of Lemma 9.Under the event we want to estimate

max
|z|=r

|fL(z)| ≤ (1− r2)−L( 1
2
−δ) .

We shall see that this implies that some coefficients of the series offL are necessarily “small”,
something that only happens with a probability less thane−cLn+1

. Since

fL(z) =
∑

α

∂αfL(0)

α!
zα =

∑

α

aα

(

Γ(|α|+ L)

α!Γ(L)

)1/2

zα,

we have

aα =

(

α!Γ(L)

Γ(L+ |α|)

)1/2
∂αfL(0)

α!
,

and by Cauchy’s formula [Rud08, pag.37]

∂αfL(0)

α!
=

Γ(n+ |α|)
Γ(n)α!r|α|

∫

S

fL(rξ)ξ
α
dσ(ξ).
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Hence

|aα| ≤
(

α!Γ(L)

Γ(L+ |α|)

)1/2
Γ(n + |α|)
Γ(n)α!r|α|

(

max
ξ∈S

|ξα|
)(

max
|z|=r

|fL|
)

Since form ∈ N,

(10)
∑

|α|=m

αα

α!|α||α| =
1

m!
,

we have

|aα| ≤
(

Γ(L)

Γ(L+ |α|)

)1/2
Γ(n+ |α|)

Γ(n)

(

αα

α!|α||α|
)1/2

(1− r2)−L( 1
2
−δ)r−|α|.

Using

(11)
∑

|α|=m

αα

α!|α||α| =
1

m!
,

Stirling’s formula and the asymptotics for the Gamma function (9), we get (form≫ n)

∑

|α|=m

|aα|2 ≤
Γ(L)

Γ(L+m)

Γ2(n+m)

Γ2(n)m!
r−2m(1− r2)−L(1−2δ)

.
Γ(L)Γ(n +m)

Γ(L+m)
mn−1r−2m(1− r2)−L(1−2δ)

.
LL(m+ n)m+n

(L+m)L+m
mn−1r−2m(1− r2)−L(1−2δ)

.
LL(m+ n)m

(L+m)L+m
m2nr−2m(1− r2)−L(1−2δ)

(We use this lemma (and Lemma 8) in the proof of Lemma 7, which is in turn used in Lemma 6
with a radiusr = ǫ such thatµ(E(λj, ǫ)) = (δ/µ(K))n. Since in Lemma 6 it is enough to
considerδ small, here it is enough to considerr close to 0. We assume thus thatr is close to 0,
although the proof seems to work for allr ∈ (0, 1)).

For the indicesm such that

(12) m ≤ r2L− n

1− r2

we have(1− r2)m ≤ r2L− n and thereforem+n
L+m

r−2 ≤ 1. Hence

∑

|α|=m

|aα|2 ≤
LL

(L+m)L
m2n

(1− r2)L(1−2δ)
=

[

Lm
2n
L

(L+m)(1− r2)1−2δ

]L

.
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Fix ǫ (possibly very small) and let us find conditions onm so that the term in the brackets is
smaller than(1 + ǫ)−1. Assume thatm satisfies (12) and

(13) m ≥ (1− δ)
r2L

1− r2
,

ThenlimL→∞m
2n
L = 1 and we can takeL0 such thatm

2n
L ≤ 1 + ǫ for L ≥ L0. Then, for the

term in the brackets to be smaller than(1 + ǫ)−1 it is enough to have

L(1 + ǫ)

(L+m)(1− r2)1−2δ
≤ 1

1 + ǫ
,

that is
(1 + ǫ)2L ≤ (L+m)(1− r2)1−δ .

This will occur for them’s in our range if

(1 + ǫ)2 <
(

1 +
(1− δ)r2

1− r2
)

(1− r2)1−δ .

Thus for the existence of anǫ > 0 with this property it is enough to have

1 <
(

1 +
(1− δ)r2

1− r2
)

(1− r2)1−δ = (1− r2)1−δ +
(1− δ)r2

(1− r2)δ
.

The functionf(x) = (1− x)1−δ + (1−δ)x
(1−x)δ

hasf(0) = 1 andf ′(x) = δ(1−δ)x
(1−x)1+δ > 0, thusf(x) > 1

for x > 0.

All combined, for the indicesm satisfying (12) and (13), i.e. in the set

A :=
{

m : (1− δ)
r2L

1− r2
≤ m ≤ r2L− n

1− r2
}

the following estimate holds
∑

|α|=m

|aα|2 . (1 + ǫ)−m

Let us see next that this happens with very small probability. Note that

P





∑

|α|=m

|aα|2 ≤ (1 + ǫ)−m, ∀m ∈ A



 =
∏

m∈A
P





N(n,m)
∑

j=1

|ξj|2 ≤ (1 + ǫ)−m



 ,

whereξj ∼ NC(0, 1) are independent andN(n,m) = Γ(n + m)/(m!Γ(n)) is the number of
indicesα with |α| = m. The variable

∑N(n,m)
j=1 |ξj|2 follows a Gamma distribution of parameter

N(n,m), therefore,

P





N(n,m)
∑

j=1

|ξj|2 ≤ (1 + ǫ)−m



 =
1

Γ(N(n,m))

∫ (1+ǫ)−m

0

xN(n,m)−1e−xdx

≤ 1

Γ(N(n,m))

1

N(n,m)
(1 + ǫ)−mN(n,m).
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Observe that form ∈ A, m ≃ L and, by (9),N(n,m) ≃ mn−1 ≃ Ln−1. With this and
Stirling’s formula we get

logP





N(n,m)
∑

j=1

|ξj|2 ≤ (1 + ǫ)−(m+n)



 . − log Γ(Ln−1)− logLn−1 − L · Ln−1 log(1 + ǫ)

≃ −Ln log(1 + ǫ) [1 + o(1)] ≤ −CLn.

Therefore, changing appropiately the valueC at each step, we finally see that

P





∑

|α|=m

|aα|2 ≤ (1 + ǫ)−m, ∀m ∈ A



 ≤
(

e−CLn)#A
=
(

e−CLn)L+o(1) ≤ e−CLn+1

.

This finishes the proof of (a) in Lemma 8. �

(b) Let now

E2 :=
{

max
|z|≤r

log |f̂L(z)|2 > δL

}

=

{

max
|z|≤r

[

log |fL(z)| −
L

2
log

1

1− |z|2
]

> δL

}

.

We estimate the probability of this event by controlling thecoefficients of the series offL. Let
C be a constant to be determined later on. Split the sum defining|fL| as

|fL(z)| ≤
∑

|α|≤CδL

|aα|
(

Γ(|α|+ L)

α!Γ(L)

)1/2

|zα|+
∑

|α|>CδL

|aα|
(

Γ(|α|+ L)

α!Γ(L)

)1/2

|zα|(14)

=: (I) + (II).

We shall estimate each part separately.

Let us begin with the first sum. Using Cauchy-Schwarz inequality, (10) and (11) we obtain

(I) ≤





∑

|α|≤CδL

|aα|2




1/2



∑

|α|≤CδL

Γ(|α|+ L)

α!Γ(L)

αα

|α||α| |z|
2|α|





1/2

=





∑

|α|≤CδL

|aα|2




1/2
(

∑

m≤CδL

Γ(m+ L)

m!Γ(L)
|z|2m

)1/2

≤





∑

|α|≤CδL

|aα|2




1/2

(1− |z|2)−L/2 =





∑

|α|≤CδL

|aα|2




1/2

√

KL(z, z).
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Now we shall see that, except for an event of small probability, (II) is bounded (ifC is
choosen appropiately). For|z| ≤ r,

(II) ≤
∑

|α|>CδL

|aα|
(

Γ(|α|+ L)

α!Γ(L)

)1/2(
αα

|α||α|
)1/2

r|α| ≤
∑

|α|>CδL

|aα|
(

Γ(|α|+ L)

|α|!Γ(L)

)1/2

r|α|

Let β > 0 be such thatr = e−β and considerγ ∈ (0, β) andǫ > 0 such that0 < γ < γ + ǫ < β.
Define the following event:

A =
{

|aα| ≤ eγ|α|, ∀α : |α| ≥ CδL
}

.

If A occurs, by the asymptotics (9),

(II) ≤
∑

m>CδL

eγm
(

Γ(m+ L)

m!Γ(L)

)1/2

rm
Γ(m+ n)

Γ(n)m!

.
1

√

Γ(L)

∑

m>CδL

m
L−1
2 mn−1eγmrm ≤ 1

√

Γ(L)

∑

m>CδL

mn+L/2(eγr)m .

Lemma 10. Givenǫ > 0 there existsC > 0 big enough so that for allm > CδL

mn+L/2

√

Γ(L)
≤ Ceǫm.

Proof. It is enough to see that there exists a constantD such that forx > CδL

f(x) := ǫx− (n+
L

2
) log x+

1

2
log Γ(L) +D ≥ 0 .

Note thatlimx→∞ f(x) = +∞ and thatf is increasing forx ≥ ǫ−1(n + L/2). ChooseC with
CδL > ǫ−1(n+ L/2), so thatf is increasing forx > CδL. Then, by Stirling’s formula,

f(CδL) = ǫCδL− (n+
L

2
) log(CδL) +

1

2
log Γ(L) + logD

= ǫCδL− (n+
L

2
) log(Cδ)− n logL+

1

2
log(

2π

L
)1/2 − L

2
+ O(1)

= [ǫCδ − 1

2
log(Cδ)− 1

2
]L+ o(L) .

ChooseC big enough so that the term in the brackets is positive, and thereforef(x) > 0 for
x > CδL. �

TakingC as in this lemma we obtain

(II) .
∑

m>CδL

e−[β−(γ+ǫ)]m ≤ 1

1− e−[β−(γ+ǫ)]
.
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Now we show that the eventA has “big” probability. The variables|aα|2 are independent
exponentials, hence

P[A] =
∏

|α|≥CδL

1− P[|aα| ≥ eγ|α|] =
∏

m≥CδL

[

1− e−e2γm
]

Γ(n+m)
Γ(n)m!

.

Sincex = e−e2γm is close to 0, we can use the estimatelog(1 − x) ≃ −x. Thus, using (9) once
more,

logP[A] =
∑

m≥CδL

Γ(n +m)

Γ(n)m!
log
[

1− e−e2γm
]

≃ −
∑

m≥CδL

mn−1e−e2γm .

There existsL0 such that for allL ≥ L0 andm ≥ CδL,

mn−1e−e2γm ≤ e−eγm ,

and therefore

logP[A] ≥ −
∑

m≥CδL

e−eγm ≃ −e−eγCδL

.

ChoosingC big enough so that, in addition to the previous conditions,γC > log 1
1−r2

we have

−e−e(2γ−η)CδL

> −e−(1−r2)−δL

and therefore

P[A] ≥ e−e−(1−r2)−δL

.

So far we have proved that, after choosingγ appropriately, and under the eventA:

|fL(z)| ≤





∑

|α|≤CδL

|aα|2




1/2

√

KL(z, z) + Cr.

Therefore, the condition
|fL(z)|2
KL(z, z)

> eδL

imposed inE2 implies that, for|z| ≤ r andL big,

∑

|α|≤CδL

|aα|2 ≥
(

e
δ
2
L − Cr

√

KL(z, z)

)2

>
1

2
eδL.

Let

ML = # {α : |α| ≤ CδL} =
∑

m≤CδL

Γ(n+m)

Γ(n)m!
≤ CδL

Γ(n+ CδL)

Γ(n)(CδL)!
≃ CnδnLn.
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Hence,

P[A ∩ E2] ≤ P





{

∑

|α|≤CδL

|aα|2 ≥
1

2
eδL
}



 ≤
∑

|α|≤CδL

P

[

|aα|2 ≥
eδL

2ML

]

=MLe
−( eδL

2ML
) ≤ e−e

δ
2L

.

Using this last estimate and the bound forP[A], we have finally that

P[E2] ≤ e−eLδ/2

.

�

It remains to prove Lemma 7. Before we proceed we need the following mean-value estimate
of log |f̂L(λ)|2.
Lemma 11. Letλ ∈ Bn, s > 0 and consider the pseudo-hyperbolic ballE(λ, s). Then

log |f̂L(λ)|2 ≤
1

µ(E(λ, s))

∫

E(λ,s)

log |f̂L(ξ)|2dµ(ξ) + Lǫ(n, s),

where

ǫ(n, s) =
n

µ(E(0, s))

∫ s2

1−s2

0

xn−1 log(1 + x)dx ≤ s2

1− s2
= µ(E(λ, s))1/n.

Proof. By the subharmonicity oflog |fL(z)|2 we have

log |f̂L(λ)|2 ≤
1

µ(E(λ, s))

∫

E(λ,s)

log |fL(ξ)|2dµ(ξ) + L log(1− |z|2)

=
1

µ(E(λ, s))

∫

E(λ,s)

log |f̂L(ξ)|2dµ(ξ)+

+ L

[

log(1− |λ|2)− 1

µ(E(λ, s))

∫

E(λ,s)

log(1− |ξ|2)dµ(ξ)
]

.

Identity (2) and the pluriharmonicity oflog |1− λ̄ · ξ|2 yield

1

µ(E(λ, s))

∫

E(λ,s)

log(1− |ξ|2)dµ(ξ) = 1

µ(B(0, s))

∫

B(0,s)

log(1− |φλ(ξ)|2)dµ(ξ)

= log(1− |λ|2) + 1

µ(B(0, s))

∫

B(0,s)

log(1− |ξ|2)dµ(ξ).

Changing into polar coordinates and performing the change of variablex = r2

1−r2
we get

∫

B(0,s)

log(1−|ξ|2)dµ(ξ) = 2n

∫ s

0

log(1− r2)
r2n−1

(1− r2)n+1
dr = −n

∫ s2

1−s2

0

xn−1 log(1+x) dx.
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This and the fact thatµ(B(0, s)) = s2n

(1−s2)n
([Sto94] (4.4)) finish the proof. �

Proof of Lemma 7.According to Lemma 8(a), except for an exceptional event of probability
e−cLn+1

, there isλ ∈ E := E(z0, s) such that

−L(µ(E))1/n < log |f̂L(λ)|2.
Therefore, using Lemma 11,

−L(µ(E))1/n < 1

µ(E)

∫

E

log |f̂L(ξ)|2dµ(ξ) + L(µ(E))1/n.

Hence

0 <
1

µ(E)

∫

E

log |f̂L(ξ)|2dµ(ξ) + 2L(µ(E))1/n.

Separating the positive and negative parts of the logarithmwe obtain:

1

µ(E)

∫

E

log− |f̂L(ξ)|2dµ(ξ) ≤
1

µ(E)

∫

E

log+ |f̂L(ξ)|2dµ(ξ) + 2L(µ(E))1/n.

Hence,

1

µ(E)

∫

E

∣

∣

∣
log |f̂L(ξ)|2

∣

∣

∣
dµ(ξ) ≤ 2

µ(E)

∫

E

log+ |f̂L(ξ)|2dµ(ξ) + 2L(µ(E))1/n.

Again by Lemma 8, outside another exceptional event of probability e−cLn+1
,

1

µ(E)

∫

E

∣

∣

∣
log |f̂L(ξ)|2

∣

∣

∣
dµ(ξ) ≤ 2max

E
log+ |f̂L(ξ)|2 + 2L(µ(E))1/n ≤ 5Lµ(E)1/n.

�

3. THE HOLE THEOREM

Here we prove Theorem 4.

The upper bound is a direct consequence of the results in the previous section. LettingU =
B(0, r) and applying Corollary 3 withδµ(U) instead ofδ we get

P [ZfL ∩ B(0, r) = ∅] ≤ P [|IL(U)− Lµ(U)| > δLµ(U)] ≤ e−C2Ln+1

.

The method to prove the lower bound is by now standard (see forexample [HKPV09, Theorem
7.2.3] and [ST04]): we shall choose three events forcingfL to have a holeB(0, r) and then we
shall see that the probability of such events is at leaste−C1Ln+1

. Our starting point is the estimate

|fL(z)| ≥ |a0| −

∣

∣

∣

∣

∣

∣

∑

0<|α|≤CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∑

|α|>CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

,

whereC will be choosen later on.
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The first event is

E1 := { |a0| ≥ 1} ,

which has probability

P[E1] = P[|a0|2 ≥ 1] = e−1.

The second event corresponds to the tail of the power series of fL. Let

E2 :=

{

|aα| ≤
√

α!Γ(n)

Γ(n+ |α|) |α|
n, ∀α : |α| > CL

}

.

We shall see next thatP[E2] is big, and that under the eventE2 the tail of the power series of
fL is small.

Using (10) we have:

∣

∣

∣

∣

∣

∣

∑

|α|>CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

≤
∑

|α|>CL

|aα|
[

Γ(L+ |α|)
Γ(L)α!

αα

|α||α|r
2|α|
]1/2

≤
∑

m>CL

[

Γ(L+m)

Γ(L)
r2m
]1/2

∑

|α|=m

|aα|
(

αα

α!|α||α|
)1/2

.

Thus, using Cauchy-Schwarz inequality and (11):

∣

∣

∣

∣

∣

∣

∑

|α|>CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

≤
∑

m>CL

[

Γ(L+m)

Γ(L)m!
r2m
]1/2





∑

|α|=m

|aα|2




1/2

.

Using the asymptotics of the Gamma function (9), we estimate

Γ(m+ L)

Γ(L)m!
≃ mL−1

Γ(L)
≤
[

mL/m

Γ(L)1/m

]m

.

Note that the functiong(x) :=
(

xL/Γ(L)
)1/x

is decreasing forx ≥ L. Thus ifm > CL Stirling’s
formula yields

mL/m

Γ(L)1/m
≤ (CL)1/C

Γ(L)1/(CL)
=
C1/CL1/(2CL)e1/C

(2π)1/(2CL)
[1 + o(1)] ≤ (eC)

1
CK

1
2C ,

whereK = max
x>0

x1/x = e−1/e.
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Let h(C) = (eC)
1
CK

1
2C and note thath(C) > 1 and lim

C→∞
h(C) = 1. Hence, there existsC

big enough so thath(C)r2 ≤ (1− δ)2 and therefore,
∣

∣

∣

∣

∣

∣

∑

|α|>CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

≤
∑

m>CL

[

h(C)r2
]m/2





∑

|α|=m

|aα|2




1/2

≤
∑

m>CL

(1− δ)m





∑

|α|=m

|aα|2




1/2

.

Under the eventE2,
∑

|α|=m

|aα|2 ≤
∑

|α|=m

|α|!Γ(n)
Γ(n + |α|) |α|

2n = m2n,

hence the tail offL is controlled by the tail of a convergent series and there existsC big enough
so that:

∣

∣

∣

∣

∣

∣

∑

|α|>CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

≤
∑

m>CL

(1− δ)mm2n <
1

4
.

Now we prove that the probability ofE2 is big. Since the variablesaα are independent we
have, again by (9):

P[Ec
2] ≤

∑

|α|>CL

P

[

|aα|2 >
|α|!Γ(n)
Γ(n+ |α|) |α|

2n

]

=
∑

m>CL

P

[

|ξ|2 > m!Γ(n)

Γ(n+m)
m2n

]

Γ(n+m)

Γ(n)m!

.
∑

m>CL

P
[

|ξ|2 > cnm
n+1
]

mn−1 =
∑

m>CL

e−cnmn+1

mn−1.

Thus forL big enough,P[Ec
2] ≤ 1/2, andP[E2] ≥ 1/2.

The third event takes care of the middle terms in the power series offL. Let

E3 :=

{

|aα|2 <
1

16CL

|α|!Γ(n)
Γ(n + |α|)(1− r2)L ∀α : 0 < |α| ≤ CL

}

.

Using Cauchy-Schwarz’s inequality, (10) and(11) we get, asin previous computations:
∣

∣

∣

∣

∣

∣

∑

0<|α|≤CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

≤





∑

0<|α|≤CL

|aα|2




1/2



∑

0<|α|≤CL

Γ(|α|+ L)

Γ(L)α!

αα

|α||α| r
2|α|





1/2

≤





∑

0<|α|≤CL

|aα|2




1/2
(

∑

0<m≤CL

Γ(m+ L)

Γ(L)m!
r2m

)1/2

≤





∑

0<|α|≤CL

|aα|2




1/2

(1− r2)−L/2.



GAUSSIAN ANALYTIC FUNCTIONS IN THE UNIT BALL 23

Under the eventE3,

∑

0<|α|≤CL

|aα|2 ≤
∑

0<m≤CL

1

16CL
(1− r2)L =

1

16
(1− r2)L,

and therefore
∣

∣

∣

∣

∣

∣

∑

0<|α|≤CL

aα

(

Γ(L+ |α|)
α!Γ(L)

)1/2

zα

∣

∣

∣

∣

∣

∣

≤ 1

4
.

On the other hand,

P[E3] =
∏

0<m≤CL

[

1− e−
1

16CL
m!Γ(n)
Γ(m+n)

(1−r2)L
]

Γ(n+m)
m!Γ(n)

Note that ifL is big enough then the term appearing in the exponential is small. Since1− e−x ≥
x/2 for x ∈ (0, 1/2), we get

P[E3] ≥
∏

0<m≤CL

[

1

32CL

m!Γ(n)

Γ(m+ n)
(1− r2)L

]
Γ(n+m)
m!Γ(n)

=

[

Γ(n)

32CL
(1− r2)L

]

∑

0<m≤CL

Γ(n+m)
m!Γ(n) ∏

0<m≤CL

(

m!

Γ(m+ n)

)
Γ(n+m)
m!Γ(n)

.

Now we estimate each term of the product and the sum by the “worst” term. DenoteM = [CL].
The exponent in the first factor is controlled by

M
∑

m=1

Γ(n+m)

m!Γ(n)
≤M

Γ(n+M)

M !Γ(n)
=

Γ(n +M)

Γ(M)Γ(n)
≤Mn ≤ (CL)n.

Similarly, for the second factor we have

M
∏

m=1

(

m!

Γ(m+ n)

)
Γ(n+m)
m!Γ(n)

≥
(

M !

Γ(M + n)

)M
Γ(n+M)
M!Γ(n)

≥
(

M !

Γ(M + n)

)
Γ(n+M)
Γ(M)

≥
(

Γ(CL+ 1)

Γ(CL+ n)

)
Γ(n+CL)
Γ(CL)

.
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Then, using again (9),

logP[E3] ≥ (CL)n log

[

Γ(n)

32CL
(1− r2)L

]

+
Γ(n+ CL)

Γ(CL)
log

[

Γ(CL+ 1)

Γ(CL+ n)

]

% (CL)n log

[

Γ(n)

32CL
(1− r2)L

]

+ (CL)n log(CL)1−n

= CnLn

[

log
Γ(n)

32Cn
− n logL− L log

1

1− r2

]

= −CnLn+1 log
1

1− r2

[

1 +
n logL

L log 1
1−r2

− log Γ(n)
32Cn

L log 1
1−r2

]

= −CnLn+1 log
1

1− r2
[1 + o(1)] .

Finally,

P[E2 ∩ E3 ∩ C] ≥ e
−C(n) log

(

1
1−r2

)

Ln+1[1+o(1)]
,

and under this event|fL(z)| ≥ 1− 1/4− 1/4 > 0.
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