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ABSTRACT
We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation
of self-phoretic particles in the presence of liquid–liquid interfaces. Our model features fully resolved solvent hydrodynamics, and, thanks to
its versatility, it can handle important aspects of the multiphysics of the problem, including particle wettability and differential solubility of
the product in the two liquid phases. The method is extensively validated in simple numerical experiments, whose outcome is theoretically
predictable, and then applied to the study of the behavior of active particles next to and trapped at interfaces. We show that their motion can
be variously steered by tuning relevant control parameters, such as the phoretic mobilities, the contact angle, and the product solubility.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087203

I. INTRODUCTION

Artificial micromotors have gained an ever-growing interest,
in recent years, as biomimetic devices and for their manifold
microfluidic applications.1 Being able to convert ambient energy
into autonomous motion, they fall in the realm of active matter.2

A paradigmatic example of model micromotors is provided
by self-phoretic particles (SPPs), which self-propel exploiting the
phenomenon of colloidal phoresis3 in the inhomogeneous solute
distribution generated by a chemical reaction or a phase transition
locally occurring at their surfaces. SPPs include Janus metallic rods4

and catalytic1,5,6 and light-activated Janus colloids,7,8 among others
(see also Refs. 9–11 and references therein for reviews). Extensively
studied are suspensions of platinum coated, micrometer-sized poly-
meric spheres in an aqueous solution of hydrogen peroxide; the
latter undergoes a decomposition reaction, catalyzed by platinum,

into water and oxygen. For this reason, in what follows, we will
often refer to the solute as oxygen; however, as it will be made clear,
the model simply requires the generation and diffusion of a scalar
field. The approach is, therefore, more general and can simulate SPPs
based on different mechanisms, such as the critical water–lutidine
demixing12 or even self-thermophoretic colloids.13,14

Despite the consistent body of theoretical, computational, and
experimental works witnessed, many questions remain still unan-
swered in the physics of SPPs, especially when it comes to more com-
plex environments than the bulk of a fluid, as, e.g., in the presence
of interfaces.11 As a matter of fact, how the motion of these active
particles could be modified or steered by the presence of an inter-
face is not yet totally understood. Recent studies have focused on
solid–liquid interfaces,15–17 liquid–liquid interfaces,18–21 or even on
a combination of both,22 but a theoretical/computational approach
taking into account hydrodynamics and a thermodynamically
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consistent modeling of the multiphase solute–solvent–particle
system is so far missing. Indeed, liquid–liquid interfaces add extra
degrees of freedom to the system, owing to their deformability and
to the solid phase wetting properties, thus significantly enriching
the particle dynamics. Given also the intrinsic out-of-equilibrium
physics of active particles, it appears clear how modeling may
represent a challenging task.

In this paper, we propose a mesoscopic numerical model based
on a multiphase lattice Boltzmann method, featuring a free energy
functional that depends on two phase fields, describing the two
immiscible component mixture (e.g., oil and water) and the product
(oxygen), respectively, and contains a novel coupling between them,
allowing for a tunable affinity of the solute for the two phases. The
suspended solid particles are endowed with the capability of per-
forming diffusiophoretic motion and generating a solute field, which
stems from the activity of the catalytic site. The uniqueness of the
method resides in the capability of handling at the same time solvent
hydrodynamics and particle–solute interactions, giving rise to self-
propulsion, wettability, and preferential solubility of oxygen, which
can, in general, accumulate more in one of the two liquid phases,
thus allowing us to simulate different combination of immiscible
fluids.

This paper is organized as follows: In Sec. II, the thermo-
hydrodynamic model is introduced and tested together with the
description of the fluid–solid coupling and of the implementation
of the self-diffusiophoresis. In Sec. III, we present the model val-
idation against controlled setups, starting with that of an isolated
SPP in a single phase fluid and then moving to the case of mixtures,
distinguishing between active and inactive particles, in order to
disentangle the effects of capillary and phoretic forces. We report
results showing that the relative position and orientation of a self-
phoretic Janus particle and an interface depend, in a non-trivial way,
on wettability, phoretic mobilities, and oxygen solubility. Our find-
ings suggest, then, that a proper tuning of such parameters may
enable the guidance of active particles in non-homogeneous fluid
media. Conclusions and perspectives are drawn in Sec. IV

II. COMPUTATIONAL MODEL
A suspension of active particles in the presence of liquid–liquid

interfaces consists of a fluid phase (solvents + solute) and a solid
phase (the active particles). To model such a multiphase (and mul-
ticomponent) system, we resort to a mesoscopic approach based
on the lattice Boltzmann (LB) method23–26 in the phase field
formulation.27–29

A. Phase field model: The free energy functional
The fluid phase is a ternary mixture made of two immiscible

liquids (say, water and oil) and a solute, which is the product of
the reaction occurring at the catalytic site on the particle surface
(the oxygen). We associate with the water–oil system a scalar field
ψ(r, t) standing for the local composition, that is, ψ = ρW−ρO

ρW+ρO
, where

ρW and ρO are the density fields of water and oil, respectively. As
in the standard Cahn–Hilliard theory,30 the thermodynamics of the
oil–water mixture is controlled by a quartic in ψ double-well free
energy density of Landau type, fOW[ψ] = A

4 ψ
4 + B

2ψ
2 (with A > 0

and B < 0). This free energy has to be extended to embrace the

dynamics of the oxygen, that is, in principle, miscible with each
of the two other components; therefore, we need to add a term
characterized by a single minimum that disregards the energetic
cost associated with the concentration gradients31 such that in the
case of a single component solvent ( fOW = 0 identically), a diffusive
equation for the solute is recovered. A simple parabolic potential
is appropriate to this aim (as we will show shortly), namely, f (0)O2

[ϕ]
= C

2 ϕ
2 (C > 0), having introduced the field ϕ(r, t). In actual

systems, though, the oxygen may display, in general, a greater affin-
ityzz for one of the two liquids (it can be more soluble in water
than in oil, or vice versa). To account for this preferential concen-
tration, an “interaction” term, coupling ϕ and ψ, has to be included.
We propose to do so by simply shifting the global minimum of
f (0)O2

in ϕ = 0 to a ψ-dependent minimum, i.e., f (0)O2
[ϕ] = C

2 ϕ
2 → fO2

[ϕ,ψ] = C
2 (ϕ − ϕ0(ψ))2. For ϕ0(ψ), we choose the form ϕ0(ψ)

= ϕb + E tanh(ψ), where the parameter E tunes the oxygen solubility
and ϕb sets the average oxygen concentration. The full free energy
functional then reads

F[ψ,ϕ] = ∫ dr[A
4
ψ4 + B

2
ψ2 + κ

2
∣∇ψ∣2

+ C
2
(ϕ − E tanh(ψ) − ϕb0)2]. (1)

Hereafter, we set B = −A such that the ψ minima, corresponding
to the bulk water and oil phases, are located in ψ = ±1. The mini-
mization of the functional (1) yields the chemical potentials μϕ = δF

δϕ

and μψ = δF
δψ ,

μϕ = C(ϕ − E tanh(ψ) − ϕb0)

μψ = A(ψ3 − ψ) − κ∇2ψ − C E
(ϕ − E tanh(ψ) − ϕb0)

cosh2(ψ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (2)

The dynamics of the ternary mixture system is, then, described
by the following equations:

∂tϕ +∇ ⋅ (uϕ) = Dϕ∇2(ϕ − ϕ0(ψ))+𝒟 ϕ − kd(ϕ − ϕ0(ψ))

∂tψ +∇ ⋅ (uψ) = Dψ∇2(ψ3 − ψ − κ
A
∇2 ψ − E

ϕ − ϕ0(ψ)
cosh2(ψ)

)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (3)

where Dϕ = C Mϕ and Dψ = A Mψ are the diffusivities for the oxygen
and the water–oil mixture, respectively, and Mϕ and Mψ are the
mobility constants for ϕ and ψ. The equation for ϕ has been
equipped with a source term, 𝒟 ϕ, that accounts for the generation
of oxygen in a reaction catalyzed by the particles (see Sec. II B for
further details). This production needs to be balanced by a sink
term, kd(ϕ − ϕ0(ψ)), in order to allow the attainment of a steady
state. Physically, the sink mimics the degradation of the produc-
tion or its loss in the environment.31 Figure 1 displays the effect of
changing the solubility parameter from negative to positive values
by plotting the average oxygen concentration, ⟨ϕ⟩O,W , in oil or water
as a function of E at equilibrium and in the absence of particles
(hence of oxygen production). Since, by virtue of Eq. (2), the
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FIG. 1. Equilibrium oxygen concentration, averaged over the water (orange
squares) and oil (blue crosses) phases, as a function of the E parameter. The
solid lines represent the expectations from the thermodynamic model, ⟨ϕ⟩W ,O
≈ ±E tanh(1), where the positive/negative sign corresponds to water/oil and is
depicted in violet/yellow. The simulation were run with ϕb0 = 0.

equilibrium profile of ϕ is ϕ = E tanh(ψ) (the background value
having been set to zero here, ϕb = 0), the average, up to terms of
infinitesimal order in ξ/L (ξ being the interface width and L the
system size), is ⟨ϕ⟩W,O ≈ ±E tanh(1), where the positive/negative
sign corresponds to the average being taken over the water or oil
phase, respectively; this prediction is reported in Fig. 1 with solid
lines and agrees well with the numerical data.

B. Particles
Particles are modeled as solid spheres defined by a set of bound-

ary “links” between inner and outer nodes. The fluid–solid cou-
pling is realized by means of the so-called “bounce-back-on-links”
algorithm that guarantees the proper momentum–torque exchange
between particles and solvent.32–36 Colloidal phoresis is introduced
by imposing at the particle surface an effective slip velocity profile
that depends on the local solute concentration3 as

vs = μ(rs)(1 − n̂ × n̂) ⋅ ∇ϕ, (4)

where rs is a point on the surface of the particle, n̂(rs) is the normal
to the surface in rs, and μ(rs) is the phoretic mobility at rs, which
carries the molecular details of the solute–colloid interaction.3 As a
consequence, in the presence of concentration gradients, particles
gain a net propulsion velocity Vp ∼ −μ∇ϕ [for uniform phoretic
mobility, μ(rs) ≡ μ]; hence, if μ < 0, they are attracted by the solute,
else if μ > 0, they are repelled. To achieve self-propulsion, particles

are, then, endowed with the property of generating the solute;37 this
is done by simply adding a production term that injects ϕ with a
given rate at nodes neighboring the particles surfaces, thus model-
ing the catalytic activity of Pt-coated colloids. In particular, a Janus
activity profile is chosen,

Π(rs) =
⎧⎪⎪⎨⎪⎪⎩

α if m̂ ⋅ n̂(rs) ≤ 0,

0 if m̂ ⋅ n̂(rs) > 0,
(5)

where α is the constant production rate and m̂ is the particle char-
acteristic unit vector [see the sketch in Fig. 2(a)]. Note that the
superposition of such activities associated with various particles is
precisely what gives rise to the production term 𝒟 ϕ appearing in
Eq. (3). Analogously, for the phoretic mobility μ(rs), we set

μ(rs) =
⎧⎪⎪⎨⎪⎪⎩

μ− if m̂ ⋅ n̂(rs) ≤ 0,

μ+ if m̂ ⋅ n̂(rs) > 0.
(6)

For an isolated Janus particle with the above activity and mobility
profiles, we expect a motion with constant velocity of magnitude37–39

vp =
∣(μ+ + μ−)∣α

8Dϕ
. (7)

When solid surfaces are involved, the presence of a three-phase
contact line calls for a specific treatment of the interaction of the
two liquids with the solid boundaries. Contact lines are relevant in
various experimental contexts, where they play a crucial role, e.g.,
in the guidance of the motion of active particles.22 A solid–liquid
interaction determines also the particle wetting properties, and it is,
therefore, needed even when confining walls are absent, as in the
cases studied here. An extra boundary term is, then, added to the
free energy functional,

Ftot[ϕ,ψ] = F[ϕ,ψ] + ∫
S
Hψ(rs)drs, (8)

where the integral is over the solid surface. The parameter H controls
the wetting through the following boundary condition that can be
derived by minimization of the surface term in (8),

H = κ∣∇ψ ⋅ n̂∣, (9)

and therefore, it sets the particle contact angle θc, to which it is
related by40

cos(θc) =
1
2
[−(1 − h)3/2 + (1 + h)3/2], (10)

where h = H
√

1/(κA).
To the best of our knowledge, our method is the first imple-

menting self-diffusiophoresis of active particles in multiphase fluids
with the effective slip velocity formulation, which is, as a matter of
fact, the only way to properly deal with the physical scale separation
of the phenomena involved.
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FIG. 2. (a) Sketch of a spherical self-
diffusiophoretic particle. The particle is
characterized by a Janus profile of both
the activity (it produces solute only over
one hemisphere) and the phoretic mobil-
ity, see Eqs. (5) and (6) (b) Active particle
in the presence of an interface: depend-
ing on the value of the contact angle, θc,
it tends to stay preferentially in the bulk
of the water phase (θc > 90○), of the
oil phase (θc < 90○), or adsorbed at the
interface (θc = 90○).

C. Numerical details
We numerically simulate the model just introduced on three-

dimensional periodic lattices of sizes ranging between 323 to 64 × 96
× 96 (with unit spacing, Δx = 1). The two liquids have the same
kinematic viscosity, equal to ν = 1/6, and the same density ρ = 1
given in lattice Boltzmann units as the other parameters here-
after (unless differently specified). The free energy parameters are
set to A = C = 0.0625, κ = 0.04, such that the surface tension is σ
= (2/3)

√
2κA ≈ 0.047, and the mobilities are Mψ = 0.4 and Mϕ

= 0.8, giving the diffusion coefficients Dψ = 0.025 and Dϕ = 0.05.
The particle radius is fixed to R = 4.5. The activity is varied in
the range α ∈ [0, 10−2] and the phoretic mobilities in μ± ∈ [0, 0.6]
(we consider only oxyrepulsive particles). Correspondingly, the
largest propulsion speeds attained are such that the particle scale
Reynolds number (Re = vpR/ν), the Mach number (Ma = vp/cs, cs
being the speed of sound), and the Péclet number (Pe = vpR/Dϕ)
never exceed the values Re ≈ 0.1, Ma ≈ 0.03, and Pe ≈ 3 (although
in most of the simulations, we have Pe ≈ 0.1), respectively, and thus,
we are legitimately in an incompressible creeping flow regime.

Unless otherwise specified, the system is initialized with two
slabs of oil and water separated by a flat interface (actually two
due to the periodic boundary conditions), corresponding to the
equilibrium hyperbolic tangent profile ψ(r, 0) = tanh(x/ξ). The
oxygen field is initially set to ϕ(r, 0) = 0, everywhere, and then let
equilibrate.

III. RESULTS AND DISCUSSION
A. Motion of a Janus particle in a single phase fluid

As a validation of the model, we first consider the motion
of an isolated active particle in the bulk of a single phase fluid
(A = E = κ = 0 and ψ = 0, identically). Figure 3(a) reports the results
of a set of simulations aimed at tuning the degradation rate
kd. We note, first of all, that the introduction of the sink term
works as expected and a steady state is reached. The station-
ary value, ⟨ϕ − ϕ0⟩∞, will depend, of course, on both the particle
activity and the degradation rate, as shown in Fig. 3(a). In par-
ticular, it grows with α and decreases with kd. The presence of a
linear degradation term implies that the concentration field does
not decay purely algebraically with the distance from the source
(the particle surface), but it is modulated by an exponential factor,
ϕ(r) ∼ e−r/ℓ/r, with screening length ℓ =

√
Dϕ/kd. In the remainder

of this paper, the value of the degradation rate is kept fixed to
kd = 10−3, which gives a screening length of approximately one
particle diameter, ℓ ≈ 2R.

In Fig. 3(b), we check the dependence of the particle speed on
the phoretic mobilities at fixed activity α = 10−3, plotting vp vs μ−
(the mobility value on the active side) for various values of mobility
on the opposite cap, μ+. As expected from the theoretical prediction
[Eq. (7)], the speed grows linearly with μ− (and μ+). The linearity
deteriorates a bit as μ± increase, probably due to the fact that
the Péclet number is also increasing and tends to approach unity
[we recall that the result (7) is derived under the assumption of
vanishing Pe37,38].

B. Inactive Janus particles at liquid–liquid interfaces
Before facing the problem of active particle motion, a needed

preliminary step is to investigate the interaction of an inactive
diffusiophoretic particle with the interface in order to analyze the
competing effect of capillary and phoretic forces. To this aim, first
we focus on a particle with α = 0 and uniform phoretic mobility,
μ+ = μ− = μ, initially placed in oil, water, or at the interface, depend-
ing on whether it is hydrophobic (θc = 0○), neutral (θc = 90○), and
hydrophilic (θc = 180○), respectively. Because of the imbalance of
capillary and phoretic forces, the particle will relax from its initial
position toward or away from the interface. We then monitor its
equilibrium position relative to the interface, (XCM − Xint)/R, as a
function of μ and the oxygen solubility parameter E. The results
are shown in Fig. 4. When particles are placed in the bulk of the
oil or water phases, being the surrounding solute homogeneous,
diffusiophoretic forces vanish and μ and E do not affect the particle
motion.

Conversely, particles initially trapped at the interface are sur-
rounded by an inhomogeneous solute field, and diffusiophoretic
forces become relevant. In particular, the larger is the difference of
solute concentration in the two phases (i.e., for growing ∣E∣), the
stronger are these forces and the further they push the particle away
from the interface. At the same time, phoretic forces depend on
the strength of the particle–solute interaction; therefore, increasing
∣μ∣ has the same effect as increasing ∣E∣. More formally, at mechanical
equilibrium, phoretic and capillary forces balance each other along
the normal to the interface, that is, Fcap = Fph. The phoretic force is
proportional to the concentration gradient, Fph ∼ −μ∇ϕ; next to the
interface, we can approximate ϕ with a linear profile, by virtue of
ϕ = E tanh(ψ) = E tanh(−tanh(x/ξ)) ≈ −Ex/ξ, such that the force
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FIG. 3. Motion of an active Janus particle
in a single phase fluid. (a) Steady state
value of the space-averaged increase
(with respect to the initial time) of oxygen
concentration, ⟨ϕ − ϕ0⟩∞, as a function
of the production rate α (in lbu) for vari-
ous degradation rates, kd . The rest of the
data shown in this paper were obtained
from simulations with α = 10−3 and
kd = 10−3. (b) Particle speed as a func-
tion of the phoretic mobility μ− for differ-
ent values of μ+ [see Eq. (6)], showing
a linear dependence as predicted by
Eq. (7).

reads Fph ≈ μE/ξ ∝ μE. For small interface deformations, capillarity
acts as a Hookean restoring force, with an effective elastic constant
proportional to the surface tension,41 i.e., Fcap ∝ σΔX, hence

ΔX ≡ XCM − Xint ∝
μE
σ

, (11)

which explains the behavior emerging from Fig. 4.
We next consider the case of inhomogeneous phoretic mobil-

ities, μ− ≠ μ+, when an oxygen concentration gradient is present
at the interface, E ≠ 0. We set E = −0.5, which leads to a larger
oxygen concentration in the oil phase, and impose neutral wetting
(θc = 90○). The particle is initially placed at the interface and aligned

with it, i.e., its characteristic vector m̂ lies in the interface plane and
it is, then, orthogonal to the concentration gradient, m̂�∇ϕ. Con-
sequently, due to the phoretic mobility mismatch, the particle is
subject to a torque. We will consider here, therefore, both the equi-
librium displacement and the equilibrium orientation angle, θ, with
respect to the interface as functions of μ− for different μ+ values.

As expected, Fig. 5(a) shows that the particle relaxes to a posi-
tion progressively further from the interface as the phoretic mobil-
ities are increased. Interestingly, though, the equilibrium position
saturates at a finite distance from the interface when μ− > μ+ > 0.
These observations are better understood looking at Fig. 5(b), where
the equilibrium orientation angle θ is plotted. The phoretic torque
induced rotation undergone by the particle is faster if the difference

FIG. 4. Equilibrium position, relative to the interface, of an inactive (α = 0) particle with uniform phoretic mobility as a function of E for various μ’s [panel (a)] and as a
function of μ for various E’s [panel (b)]. Data for three different contact angles are shown; particles are initially placed in oil (hydrophobic, θc = 0○), water (hydrophilic,
θc = 180○), or at the interface (neutral, θc = 90○).
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FIG. 5. Equilibrium position [panel (a)]
and orientation angle [panel (b)] relative
to the interface of an inactive particle
(α = 0) with a Janus phoretic mobility
profile (μ+ ≠ μ−) and neutral wetting
(θc = 90○) as a function of the rear
mobility μ− for various values of the
front mobility μ+. The particle, initially
placed at the interface with the charac-
teristic vector m̂ in the interface plane,
tends to escape from the plane by effect
of phoretic repulsion and to rotate due
to the mismatching mobilities inducing a
torque [in the inset of panel (b), a typical
time evolution of the orientation angle].

between both mobilities is larger, as expected [see inset of Fig. 5(b)].
Because particles reorient fast with the stronger phoretic mobility
facing the water region, the side facing the oil is the more important
input to displace the particle from the interface. Hence, this explains
why in Fig. 5(a) we reach a saturation when μ− > μ+.

C. Active Janus particles and liquid–liquid interfaces
Once the inherent behavior of capillarity and wetting prop-

erties on passive Janus colloids has been established, we focus on
the behavior of active Janus colloids, α ≠ 0, with a uniform phoretic
mobility profile (μ− = μ+ ≡ μ). Initially, we consider neutrally
wetting particles trapped at the interface and analyze their motion
at varying μ and the oxygen solubility parameter E, quantifying
the product concentration ratio at the two sides of the interface.
The values μ = 0.3 and μ = 0.5 and E = −0.5, E = −0.25, and E = 0
(corresponding to no concentration mismatch) are used. We run
simulations starting with different particle orientations defined by
θp, which is the angle between the particle characteristic vector and
the interface (see Fig. 6).

When the difference of the product in the two phases is high
(E = −0.5), Janus particles move along the interface. Interestingly,
if the simulations are initialized with different θp, particles stabilize
at a unique angle, which depends on the particle surface mobility.
A theoretical explanation of the origin and precise values of these
attractors is not easy due to the many different mechanisms that
come into play: hydrodynamic torques, diffusiophoretic torques,
and wetting particle–interface interaction. A qualitative argument
can be provided, though, about the dependence of the steady state
angle on the phoretic mobility. The existence of an equilibrium value
suggests that the total torque acting on the particle must vanish.
Among the various contributions to it, let us single out the phoretic
torque, Tph. Due to the larger solubility of oxygen in the oil phase,
when the particle is oriented with an angle θp with respect to the
interface, the axial symmetry of the concentration profile around
it is broken. A portion of the catalytic cap, in fact, is exposed to a
region (within the oil phase) with more oxygen. As a consequence,
the active hemisphere can be schematically divided in three sectors

that contribute to the total torque as (an analogous expression can
be written, by symmetry, for the inactive hemisphere)

Tph(θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+T0 if − π ≤ θ < −π/2,

−(T0 + ΔT) if π/2 < θ ≤ π − θp,

−T0 if π − θp < θ < π,

(12)

where a scalar form (piecewise constant for simplicity) is assumed
since the problem is effectively two-dimensional. T0 is the basic
torque contribution due to the produced field, and ΔT is the excess
torque to the solubility induced oxygen gradient at the interface.
Both quantities, of course, are proportional to the phoretic mobility.
The total torque will be, then,

Tph = T0
π
2
− (T0 + ΔT)(π

2
− θp) − T0θp = −ΔT(π

2
− θp). (13)

The phoretic torque, then, tends to rotate the particle out of the
interface. In particular, then, the larger ∣ΔT∣ ∝ μ, the more the equi-
librium angle approaches π/2, which agrees with the observation
reported in the left panel of Fig. 6.

When the ratio of products in both phases is closer to 1 (e.g.,
E = −0.25), particles continue their motion at interfaces, although
they are slower, and a unique angle is no longer observed. For some
mobilities, as in μ = 0.3, a single angle is observed, but for others,
as for μ = 0.5, we observe the appearance of competing attractors.
Thus, both the asymmetric accumulation of the product in both
sides and the surface mobility of the particle change the torque the
particle feels at the interface and that stabilizes at a certain θp. Finally,
in the last scenario where both phases are symmetric with respect
to the solute solubility, E = 0, particles move very slowly along the
interface, and additional attractors for θp appear. Consequently,
the asymmetric accumulation of the product is also responsible for
the particle speed at the interface.

We next analyze the impact of wetting when a particle is ini-
tially placed at the interface and moves along it. We consider both
active and inactive particles and monitor the steady displacement of
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FIG. 6. Angle between the particle characteristic vector and the interface, θp, as a function of time for an active colloid with θc = 90○ (neutral wetting), trapped at the
interface. The datasets correspond to various initial orientation angles, two different surface mobilities (μ = 0.3 and μ = 0.5), and three different oxygen-oil/water affinities:
E = −0.5 (left panel), E = −0.25 (middle panel), and E = 0 (right panel). The insets below the curves indicate the progression of the particles along the interface for the
case with initial θp = 60○ for the 8 × 104 time steps simulated.

the particle from the interface plane at changing the contact angle,
the phoretic mobilities, and the oxygen solubility parameter. The
results are reported in Fig. 7(a).

Inactive, non-phoretic (μ = 0) particles are, of course, insensi-
tive to variations of the oxygen field configuration and, hence, to E;
this is reflected in the full overlap of the data for E = 0 (red plus)
and E = −0.5 (orange cross). In both cases, though, as expected for

passive colloids, the more the contact angle departs from 90○, the
further the particle settles away from the interface.

Remarkably, instead, for finite, large enough phoretic mobility
(μ = 0.5), phoretic repulsion is capable to overcome interfacial
forces and the particle tends to stay away from the phase richer
in oxygen, be it water, E > 0 (pink empty square), or oil, E < 0
(blue asterisk), irrespective of its wettability. More precisely,

FIG. 7. (a) Steady particle displacement with respect to the interface as a function of the contact angle for various combinations of μ, E, and α = 0 (inactive) or α = 10−3

(active). In the active case, data for two different values of the initial orientation angle are shown: θ(0)
p = 30○ (green filled square) and θ(0)

p = 60○ (gray empty circle). (b)
Trajectory (in a plane orthogonal to the interface) of an active particle initially placed in water and oriented toward the interface (indicated with the dashed line); the initial
orientation angle is θ = 30○ and the colloid is neutral (θc = 90○). Three combinations of phoretic mobilities (μ+, μ−) are considered: (0.5, 0.5) (red), (0.5, 0.3) (blue),
and (0.3, 0.5) (green).
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taking, for instance, the case E < 0, if phoretic and capillary forces
have opposite directions (θc < 90○), the particle can be stabilized,
roughly, at the interface, but if they point toward the same side,
the particle leaves the interface plane and there is, basically, no
dependence on the contact angle.

Active particles (α ≠ 0), for which only the case E < 0 is shown,
manifest a similar behavior. However, the activity introduces an
extra force that has a component normal to the interface (for the
steady orientation angle differs, in general, from zero) and pushes
the particle closer to the oxygen-rich region. To check if the ini-
tial orientation θ(0)p plays a role, simulations are run with θ(0)p = 60○

(green filled square) and θ(0)p = 30○ (gray filled square). The absence
of significant differences indicates that θ(0)p does not impact the
steady state particle motion.

Finally, we study the motion of neutral (θc = 90○) active par-
ticles that approach the interface from the aqueous phase when the
oxygen is more concentrated in oil (E < 0), as displayed in Fig. 7(b).
We consider both uniform (μ+ = μ− = μ = 0.5, red) and Janus-like
phoretic mobilities [μ+ = 0.5, μ− = 0.3 (black) and μ+ = 0.3, μ−
= 0.5 (yellow)].

Janus particles tend to reorient such to minimize the interfacial
overlap of the more repulsive side (larger μ) with the solute-rich liq-
uid. Thus, the particle with higher front mobility (μ+ > μ−, in black)
faces the water phase (depicted as a blue area in the inset), attaining a
value of the orientation angle θp ≈ −90○, whereas the opposite occurs
when μ+ < μ− (θp ≈ 90○, in yellow). In both cases, since their direc-
tor vector m̂ is orthogonal to the interface and phoretic forces cannot
overcome the capillary trapping, they get stuck. On the contrary,
for uniform diffusiophoretic mobilities (red particle), orthogonal
interfacial alignment is lacking, and particles displace along the
interface.

IV. CONCLUSIONS
In this work, we have introduced a new model based on the lat-

tice Boltzmann method to study the interaction of active particles
with liquid–liquid interfaces. The model facilitates the study of the
full hydrodynamics of the system, on the same footing as diffu-
siophoretic and wetting forces suspended particles are subject to.
The model allows us to switch on and off easily these forces and
to modify the particle properties, such as wetting and the diffusio-
phoretic forces, differentiating for this last scenario two parts on the
particle with its own activity and mobility. These contributions are
formulated locally and can then be adapted to particles of arbitrary
shape, with a general inhomogeneous treatment of their surfaces.
Moreover, the liquid mixture can show asymmetric solubility to the
chemicals produced by the particles.

We have tested the interaction of inactive particles trapped at
the interface under different wetting angles θc (0○, 90○, and 180○)
and different particle surface mobilities. We have seen that while
wetting dominates over diffusiophoretic forces, when the wetting is
neutral (90○), diffusiophoretic properties are important, and inac-
tive particles with homogeneous surface mobility displace from the
interface. This interaction is proportional to the surface mobility and
to the different of products between both phases. When the surface
has an asymmetric mobility, particles reorient to have their more
repulsive face toward the liquid phase with less product and displace

from the phase of high accumulation of product. The reorientation
depends on the strength of the mobility. The more repulsive the
particles are, the faster they reorient.

Active particles at the interface with neutral wetting move along
the interface. The larger the asymmetry between product accumu-
lation in both phases and the more repulsive is their surface to
products, the faster the particles move. Particles reorient themselves
to a specific angle, no matter the angle at which particles are placed.
However, if the asymmetry of products between both phases is
reduced, particles find different equilibrium positions depending on
the initial angle. This effect is seen for different surface mobilities.
Hydrophobic and hydrophilic active particles tend to stay closer to
the interface than their passive counterparts. Particles initially placed
in a fluid, for which they have high affinity, and moving towards
the interface will eventually touch it, rotate and displace along it.
Depending on the ratio of the surface mobilities, particles can stop
or continue their motion.

Overall, the proposed model has huge capabilities to explain
many phenomena occurring at these interfaces, and that sets a new
start line where to study these and more complex systems.
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