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In this thesis we build and characterize a portable experimental setup to
perform a Bell test using the CHSH Bell inequality with polarization-entangled
photons. These photons are produced using Type-I Spontaneous Parametric
Down-Conversion with two BBO crystals. We study the theory behind the
CHSH Bell inequality, and the mechanism of Spontaneous Parametric Down-
Conversion and compare a Hidden Variable Theory to Quantum Theory.
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1 Introduction
In the last decades, Quantum Technologies have become of upmost importance. Appli-
cations like Quantum Computing and Quantum Communications promise to accelerate
technological development [ABB+18]. One of the most purely Quantum phenomena we
make use of to realize such technologies is entanglement. For this reason, it is necessary
to find ways of producing entangled systems we can easily reproduce and experiment on.
However, the microscopic nature of entanglement makes it difficult to assess whether what
we are producing are entangled systems or not. Hence, we also need an experiment that can
discriminate Quantum correlations from correlations that can be explained with classical
− thus, less exploitable − theories. That kind of experiment is called a Bell test.

Our objective in this thesis is to build a compact and portable experimental realiza-
tion of a Bell test with polarization-entangled photons produced using Type-I Spontaneous
Parametric Down-Conversion (SPDC). First, we provide a historical and theoretical back-
ground to Bell inequalities and compare a Hidden Variable Theory to Quantum Theory.
Then, we provide a brief insight into the mechanism of Type-I SPDC. Finally, we describe
the experimental setup and present the obtained results.

1.1 Bell’s inequalities. The CHSH Bell’s inequality
At the beginning of the 20th century, as a result of many phenomena that could not
be explained with (now called) classical theories, the Quantum Mechanical description of
reality was born. It introduced many new concepts − such as the quantization of energy
or the wave function formalism − and a notion of a non-deterministic reality. Quantum
Mechanics provides an effective mathematical description to problems such as the black
body radiation problem [Pla00] and the photoelectric effect [Ein05]. However, this theory
fails to give a physical meaning to many of its components. Furthermore, the mathematics
of Quantum Mechanics allows certain phenomena that are not allowed within classical
theories. In particular, one of the most unintuitive of those is entanglement. From a
classical point of view, entanglement allows the properties of a system to entirely depend
on the actions performed on another non-causally-correlated system. This breaks a well-
established rule of the universe: locality.

In this context, Einstein, Podolski and Rosen − EPR for short − wrote in 1935 the pa-
per "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
[EPR35]. There they discussed what they thought to be the conditions every theory should
fulfill in order to be considered natural and satisfactory. The two concepts of discussion
were Completeness and Reality. The first one, as quoted from the original paper, requires
that "Every element of the physical reality must have a counterpart in physical theory".
That is, there must be a one-to-one correspondence between the elements we include and
use in our physical theory and the elements of the reality they are describing. The Reality
condition asks that "If, without in any way disturbing a system, we can predict with cer-
tainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding lo this physical quantity". This last requirement
attacks the non-commutability of operators in the Quantum Theory: two measurements
of the same quantity q of a system performed before and after a measurement of another,
non-compatible quantity p can yield different results, implying that q and p cannot have
simultaneous reality. They argue then that if Quantum Mechanics is a local and real the-
ory it cannot be complete, and state that they believe that such a theory (local, real and
complete) is indeed possible.

This remained a matter of quasi-philosophical debate for almost 30 years until John
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Bell published his paper "On the Einstein Podolsky Rosen Paradox" [Bel64]. In that paper,
Bell provided a series of mathematical conditions (the so-called Bell inequalities) that any
local and real theory should fulfill. Those conditions, when experimentally implemented,
constitute what is known as a Bell test.

A Bell scenario is conformed by two space-like separated parties A and B (Alice and
Bob) that receive a pair of correlated systems from a source. Alice (Bob) can perform α (β)
= 1, ...,m different measurements with a (b) = 1, ..., r possible outcomes. By conducting
a series of measurements and computing the frequency of each result, the parties could
construct the probability distribution p(a, b|α, β). Since the experiments performed by
Alice and Bob are space-like separated, the results on each end can only depend on the
local measurements and the state of the system. This state can be codified in a variable λ
(it can take any form, but the particular form of λ does not change any of the derivations,
so for simplicity we use a scalar to represent it). Thus, a local probability distribution in
this scenario must be of the form [Bel64]

p(α, β|a, b) =
∫
DA(a|α, λ)DB(b|β, λ)ρ(λ)dλ, (1)

where ρ(λ) represents the probability distribution of the preparation variable λ andDA(a|α, λ)
and DB(b|β, λ) are deterministic functions (i.e. can only take the values 0 and 1). This im-
poses the Reality requirement. Note that we have not specified the form of the underlying
theory, so this applies to any local and real theory as described by EPR.

𝜆

Source

BobAlice

+1 -1 +1 -1

𝛼1 𝛼2 𝛽1 𝛽2

Figure 1: Schematic representation of the CHSH Bell scenario. Alice and Bob receive a pair of systems
with a preparation λ. They perform two possible measurements in a black box-like device by pressing
the blue buttons. A light under the box indicates the result of the measurement.

The simplest case of a Bell scenario is realized when reducing the number of possible
measurements and outcomes to just two. It is described in a paper by J. Clauser, M.
Horne, A. Shimony and A. Holt in 1969 [CHSH69] and is illustrated in Fig. 1. This
scenario yields an inequality that can be derived in just a few lines: the CHSH inequality.
For mathematical simplicity, we impose the possible results of both party’s measurements
to be equal to ±1. Let us introduce the quantity

S = a(α1, λ)b(β1, λ) + a(α1, λ)b(β2, λ) + a(α2, λ)b(β1, λ)− a(α2, λ)b(β2, λ), (2)

where a (b) is the results of performing the α (β) measurement. This quantity can be
understood as a measurement of the correlations between the systems. Since the probability
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distribution of both a and b are deterministic given α, β and γ, we can perform a series of
manipulations to proof that the absolute value of S is bounded by 2.

|S| = |a(α1, λ)b(β1, λ) + a(α1, λ)b(β2, λ) + a(α2, λ)b(β1, λ)− a(α2, λ)b(β2, λ)|
= |a(α1, λ) [b(β1, λ) + b(β2, λ)] + a(α2, λ) [b(β1, λ)− b(β2, λ)] |.

(3)

Since b = ±1, either the b(β1, λ) + b(β2, λ) or the b(β1, λ)− b(β2, λ) term cancels and the
other term takes a value of ±2. Thus, since a = ±1 as well, then we can state

|S| = 2→ S = ±2. (4)

And finally, it is easy to see that

| 〈S〉 | ≤ 2. (5)

Eq. (5) is known as the CHSH inequality. This inequality presents a limit for S for any
set of measures in any possible local and real theory. However, it is violated by Quantum
Mechanics. It was proved by Cirel’son [Cir80] that the maximum value this inequality
can take in Quantum Mechanics is 2

√
2. The maximum mathematical value that S can

take is 4. This is the limit to the so-called No-Signaling correlations. These three sets
are represented in Fig. 2. It is interesting to note that part of the Quantum (Q) and the
No-Signaling (NS) sets lie under the Bell inequality limiting hyperplane. This shows that
there are some elements out of the local set that cannot be detected by a Bell’s inequality.
From this we can conclude that a Bell test is an effective way of discriminating the nature
of an experiment − i.e., determining if it can be explained with a local and real theory or
if a different type of theory is needed. Note that a violation of a Bell inequality does not
otherwise imply the veracity of Quantum Theory, nor its fulfillment rejects it.

Figure 2: Sketch of the No-Signaling (NS), Quantum (Q), and local (L) sets. Notice the strict
inclusions L ∈ Q ∈ NS. The hyperplanes delimiting the set L correspond to Bell inequalities. Image
taken from Ref. [BCP+14].

In the Quantum formalism, the observable S has an associated operator of the form

Ŝ = Â1 ⊗ B̂1 + Â1 ⊗ B̂2 + Â2 ⊗ B̂1 − Â2 ⊗ B̂2. (6)

The maximum violation of the CHSH Bell inequality can be obtained with the state of
Eq. (7) and the set of observables in Eq. (8).

|Ψ〉 = |00〉+ |11〉√
2

. (7)
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Â1 = σ̂x, Â2 = σ̂z,

B̂1 = σ̂x + σ̂z√
2

, B̂1 = σ̂x − σ̂z√
2

.
(8)

These state and observables can be experimentally implemented in a number of ways,
the most common of which is using polarization-entangled photons. It is also simple, since
laser sources and linear polarizers are standard lab equipment that can be found easily.

1.2 The CHSH inequality with polarization-entangled photons
As indicated in section 1.1, to perform a CHSH Bell test we need a source of correlated
systems and a set of measures with outputs ±1. Since we are interested in studying
polarization-entangled photons, polarization is the physical property we measured for this
experiment. The measure of the polarization is done by setting two detection systems − A
and B, one for each photon − consisting on a polarizer at an angle α (β) from the vertical
and a Single Photon Counting Module (SPCM). For a fixed position of a polarizer at an
angle γ, we assign the value +1 to the photon going through and being detected (we call
this Vγ) and −1 to the photon going through the polarizer rotated 90◦ from its original
position (Hγ). The possible combinations are VαVβ , VαHβ , HαVβ and HαHβ . The first
and the latter events yield a combined result of +1 and the second and third yield −1. By
choosing 2 angles for each polarizer, we can build the S quantity as described in Eq. (2).

The expectation value of S can be computed as follows. First, we define

E(α, β) = 〈a(α)b(β)〉 , (9)

where a(α) and b(β) are the results of the measurements in detectors A and B. The
expectation value of S is

〈S〉 = E(α, β) + E(α, β′) + E(α′, β)− E(α′, β′), (10)

E(α, β) = PV V (α, β)− PV H(α, β)− PHV (α, β) + PHH(α, β), (11)

where Pij(α, β) is the probability of iαjβ (i, j = V,H) occurring. These probabilities can
be computed by counting the coincidence detections at angles α, β, α⊥ and β⊥.

PV V (α, β) = N(α, β)
Ntot(α, β) , PV H(α, β) = N(α, β⊥)

Ntot(α, β) , (12)

PHV (α, β) = N(α⊥, β)
Ntot(α, β) , PHH(α, β) = N(α⊥, β⊥)

Ntot(α, β) , (13)

where Ntot = N(α, β) +N(α, β′) +N(α′, β) +N(α′, β′).
As discussed in Sec. 1.1, the maximal violation of the CHSH Bell inequality can be

obtained with the state described in Eq. (7) and the set of observables in Eq. (8). This
corresponds to a polarization state

|ψ〉 = |V V 〉+ |HH〉√
2

, (14)

and a set of angles

α = 0◦ α′ = 45◦

β = 22.5◦ β′ = −22.5◦.
(15)
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These angles correspond to a transformation 2π → π from the set of operators given in
Eq. (8) due to the 180◦ periodicity of polarization.

𝜎𝑥

𝜎𝑧

𝜎𝑥 + 𝜎𝑧

2

𝜎𝑥 − 𝜎𝑧

2

(a) 𝛼

𝛼′

𝛽′𝛽
(b)

Figure 3: Sketch of the angles needed for maximal violation of CHSH Bell’s inequality. Blue continuous
arrows for Alice’s operators, red dashed arrows for Bob’s operators. (a) Configuration of the Quantum
operators. (b) Configuration of the polarizers angles.

1.3 A Hidden Variable Theory
A Hidden Variable Theory (HVT) is a theory that attempts to explain the results of a
Quantum experiment by adding new, non-contemplated − hidden − variables. These kind
of theories can be ruled out by a Bell test, since they are bounded by classical limits
as the one in Eq. (5). In 2002, D. Dehlinger and M. W. Mitchell published two papers
[DM02a, DM02b] where they described a setup like the one on this thesis. They also briefly
discussed a reasonable HVT that could get close to the Quantum predictions. In Quantum
Theory, the probability of a coincidence detection in directions α and β of a two photon
system in the state |Ψ〉 is given by

p(α, β) = | 〈α, β|Ψ〉 |2, (16)

where |α, β〉 corresponds to a state with one photon polarized in α direction and one photon
polarized in β. For the states that can be constructed with this setup, described in Eq. (30),
this probability reads

p(α, β) = sin2 α sin2 β cos2 θl + cos2 α cos2 β sin2 θl + 1
4 sin 2α sin 2β sin 2θl cosφ. (17)

For this HVT, we consider a source that produces pairs of photons polarized in a
random direction λ. The probability of a photon going through a polarizer set at angle γ
is

p
(HVT)
V (γ, λ) =


1 |γ − λ| 6 π/4
1 |γ − λ| > 3π/4
0, otherwise.

(18)

When considering coincidence detections, we need to compute the probability of a
photon with polarization λ going through two polarizers set at angles α and β. This can
be computed graphically by considering the overlap between two 90◦ sections centered at
α, α+ 180◦, β and β + 180◦. The coincidence probabilities for HVT are

p
(HV T )
V V = p

(HV T )
HH = 1

2 −
|β − α|
π

, (19)
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p
(HV T )
V H = p

(HV T )
HV = |β − α|

π
. (20)

To compare this theory with the Quantum Theory, we programmed a simulation that
computes S numerically from the individual probability of Eq. (18). The full code can
be found in Appendix C. Plots for different configurations can be found in Fig. 4. As we
expected, the HVT does not violate Bell’s inequality. It actually presents a plateau right
when it is about to surpass the classical limit for Eq. (15) configuration. We can see that
the S curve computed with the HVT is not smooth and presents changes in its slope at
β′ = α, α′, α+ 90◦, α′ + 90◦. This is due to changes in the curvature of the absolute values
that constitute the individual probabilities. Maximum and minimum values of S also
depend on the difference between α and α′. Maximum span is obtained when α′ = α+ 45◦
Changes in β do not change the position of the curvature changing points, but displace the
curve vertically. This is due to the fact that β and β′ are never in one same absolute value
element. It is interesting to see that the two curves can become similar at some regions.
However, considering the overall discrepancies, we can state a clear incompatibility between
both theories that would be easy to discriminate with experimental data.

1.4 Second-Harmonic Generation and Spontaneous Parametric Down-Conversion
Nonlinear optics studies the effects that arises when electromagnetic fields strongly modify
the structure of the medium it is being transmitted through [Boy08]. Some of those
phenomena are used to manipulate light in many different ways. One of such ways is the
generation of entangled photons through a process called Parametric Down-Conversion.
To better understand this process, let us briefly introduce some notions of the interactions
between matter and strong EM fields.

The polarization of matter in linear optics depends linearly on the applied field as

P (t) = ε0χ
(1)E(t), (21)

where ε0 is the permitivity of free space and χ(1) is known as the linear susceptibility of
the medium. However, the relation between P and E can take different, more complex
forms. This can be expressed by taking the power series of P as a function of E

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

]
= P (1)(t) + P (2)(t) + P (3)(t) + ...

(22)

where χ(2) and χ(3) are the second-order and third-order susceptibilities. These factors
introduce new light-matter interactions. Let us consider an electric field of the form

E(t) = Ee−iωt + c.c., (23)

that is incident on a crystal with χ(2) 6= 0. Then the polarization of the crystal is

P (2)(t) = 2ε0χ(2)EE∗ +
(
ε0χ

(2)E2e−i2ωt + c.c.
)
. (24)

We see in Eq. (24) a term at zero frequency and a term at frequency 2ω. This last term
is related to a process called second-harmonic generation. Second-Harmonic Generation
(SHG) describes the production of photons at a frequency 2ω from an input beam at a
frequency ω. It can be understood as the destruction of two photons of frequency ω and
the simultaneous creation of a single photon of frequency 2ω through the excitation and
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Figure 4: Comparison of the S−β′ curve for the HVT (dot-dashed blue line) and the Quantum prediction
(continuous green line). Dashed grey lines mark β′ = α, α′, α+ 90◦, α′ + 90◦. Dashed red line marks
the classical S = 2 limit. (a), (c) and (e): α = 0◦, α′ = 45◦. (b), (d) and (f): α = 30◦, α′ = 50◦. (a),
(b): β = 22.5◦. (c), (d): β = 45◦. (e), (f): β = 67.5◦.
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de-excitation of a crystal ion into virtual energy levels represented by the dashed lines in
Fig. 5.

Figure 5: Sketch representation of Second-Harmonic Generation. (a) Geometry of the process. (b)
Representation of the energy levels of the ion. The continuous line represents the real energy level. The
dashed lines represent the virtual energy levels after the excitation. Image taken from Ref. [Boy08].

The efficiency of this process depends on a condition known as phase-matching. Let us
introduce the phase missmatch ∆k as

∆k = 2k1 − k2, (25)

where k1 is the wavevector of the incident field and k2 is the wavevector of the resulting
field. The maximum intensity of the outcoming beam is reached when the condition ∆k = 0
is fulfilled, and rapidly decays as we move away from perfect phase-matching. Phase-
matching depends on factors such as the structure of the crystal, the wavelength of the
incident field and temperature [Boy08].

The time-reversed process of SHG is called Spontaneous Parametric Down-Conversion
(SPDC). It is one of the most extended processes to produce polarization-entangled pho-
tons. In this process, a single photon interacts with the crystal, producing a pair of photons
(called signal and idler) of half the frequency of the pump photons. The down-converted
photons exit the crystal at a cone of aperture 2θwo known as walkoff angle. Due to conser-
vation of energy and momentum, these two photons have correlations in their polarization
degree of freedom [KWW+99]. Depending on how the phase-matching condition is fulfilled,
the down-converted photons can have the same polarization, which is perpendicular to that
of the pump photons (called Type-I SPDC) or have perpendicular polarizations. In that
way, a nonlinear crystal that supports SHG with Type-I phase-matching, can down-convert
photons as

|↔〉 → |l〉 ⊗ |l〉 , (26)

where |↔〉 indicates a polarization state in an arbitrary direction and |l〉 a polarization
state perpendicular to the first one. It was proposed in 1999 [KWW+99] to use two Type-I
nonlinear crystals − in particular, β-Barium Borate (BBO) crystals −, mounted face-to-
face and rotated 90◦ to produce polarization-entangled photons. The pump photons can
be down-converted in either crystal, since the crystals are indistinguishable [KWW+99]

|V 〉 → |HH〉 , (27)

|H〉 → ei∆ |V V 〉 , (28)
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where ∆ is a relative phase due to effects such as dispersion and birefrigence. This allows
the creation of polarization-entangled states using linearly polarized light. To do so, one
can send photons polarized an angle θl from the vertical through a birefringent crystal to
obtain the state

|ψl〉 = cos θl |V 〉+ eiφl sin θl |H〉 , (29)

where φl is the relative phase due to the birefringent crystal. By sending these photons
into a set of crystals as the one mentioned above, we can obtain a polarization-entangled
state

|Ψ〉 = cos θl |HH〉+ eiφ sin θl |V V 〉 , (30)

where φ = φl + ∆ is the total phase shift. By adequately choosing the angle of incidence
of the pump photons in the birefringent crystal, we can correct the phase shift to obtain
the desired state. In particular, when φ = 0 and θl = 45◦, we obtain one of the so-called
Bell states

|Ψ〉 = |V V 〉+ |HH〉√
2

, (31)

which is the same as the one in Eq. (7). By adding additional optical elements, we can
obtain any of the four Bell states.

Type-I SPDC has been found to have an efficiency of ∼ 10−6 − that is, one conversion
per 106 incident photons [BLCB16]. It is one of the best entangled photon sources and is
widely used to produce entanglement and run Bell tests in academia.

Figure 6: Representation of the entangled photon source. Image taken from Ref. [DM02b].
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2 Experimental setup
There are many simple and easy to perform experiments that explore purely Quantum
phenomena, but only a Bell test can discriminate whether classical theories are fit to
explain a given experiment or not. For that reason, our objective was to construct a
compact and portable realization of a Bell test that can be used to test different entangled
photon sources for both advanced research and undergrad labs. This experiment is based
on the apparatus designed by D. Dehlinger and M. W. Mitchell [DM02a, DM02b]. We
aimed to use standard lab equipment that can be easily obtained through any optics
material manufacturer. We used 405 nm laser light to produce 810 nm photons through
Type-I SPDC with two BBO crystals cut at 44.3◦ and Single Photon Counting Modules
connected to a coincidence detection circuit to count the number of coincidences at the
desired angles of polarization. All the setup is build inside of a 90×60 cm box to achieve
low-light conditions in a portable manner.

Figure 7: Photograph of the apparatus. From left to right: detection ensemble and its mechanical
components, production ensemble, laser and its cage system.

2.1 Optics
The optical system is build on an optical breadboard inside of the 90×60 cm box. The box
has its insides covered with black paper that reduces reflections and background light. It
has a set of holes drilled on the sides to pass the necessary cables, after which are sealed
using black electrical tape. This ensemble was tested to reduce noise from saturated Single
Photon Counting Modules (> 109 counts per second) to less than 103 counts per second in
a normally lit room. It, however, presents a limitation to the geometry of the setup, since
all the optical elements need to fit inside of the box. Pictures of the final apparatus can
be found in Fig. 7 and a sketch of the montage can be found in Fig. 8.
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The setup can be divided into two parts: the photon production part and the photon
detection part. The photon production part consists of a 405 nm B Pin Code Laser Diode
in a temperature-controlled casing. The casing’s front plate is equipped with tapped holes
to mount a 30 mm cage system. This allows to place a focusing aspheric lens (f =
4.52 mm), a BG25 Colored Glass band-pass filter, an iris diaphragm and a polarizer in
a rotation mount. The laser light then travels through free space and is reflected by a
∅1” broadband dielectric mirror into a 10x10x0.5 mm X-cut quartz crystal used to adjust
the phase difference between the vertical and horizontal components. Finally, the photons
reach two BBO crystals, rotated 90◦ with respect to each other. This allows the incoming
photons to be downconverted in either crystal, producing − with the correct positioning
of the quartz crystal − the desired state.

The photon detection part consists of two identical arms that rotate around the BBO
crystal. Each arm is constituted by a linear polarizer (which acts as the "measurement
button" in our Bell scenario), a RG-780 colored glass long-pass filter and a Single Photon
Counting Module (model SPCM-AQR-12) which incorporates a focusing lens mounted on
an aluminum tube. Due to one of the filters being damaged, it was substituted by a 800
nm centered band-pass filter with a band width of 40 nm. Since this filter has a narrower
transmission band, it blocks more light than the long-pass filter, but the frequency of the
down-converted photons − 810 nm − lies within the band, allowing the detection of said
photons. The arms form an angle θA and θB with the beam. For maximum coincidence
detections, these angles must be equal [DM02a], and at 2.7◦, which is the walkoff angle
indicated by the manufacturer.

LD

FL

MI

BF

BA

LP

BA QP
CR

IF

IF

LP

LPFL

FL

BS

DB

DA

𝜃𝐴

𝜃𝐵

Figure 8: Schematic representation of the optical elements of the apparatus. LD: laser diode. FL:
focusing lens. BF: blue filter. BA: beam aperture. LP: linear polarizer. MI: mirror. QP: quartz plate,
tilted with respect to the beam trajectory. CR: set of BBO crystals. IF: infrared filter. DA: detector A.
DB: detector B. BS: beam stop.
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2.2 Mechanics
Since the downconverted photons exit the BBO crystals in a small aperture angle cone,
the aligning of the systems is hard to make in the discrete matrix of holes of an optical
breadboard or table. For that reason, we designed and constructed a series of elements
to easily align the components. All the pieces were designed using Autodesk Fusion 360.
Sketches can be found in Appendix B.

Central arm: the central arm consists of an anchor-like piece with a 25 mm diameter
hole in the middle that allows it to rotate around a standard ∅25 mm post holder. One
end of the arm is a rounded bar designed to fit inside of a 66 mm double dovetail rail,
allowing to mount the desired optical elements over a rail and then rotate them freely
without realigning them. The other end consists of an arc with notches every 0.5◦. This is
used as a goniometer to align the detection systems. See Fig. 13.

Rotation arm: the rotation arm consists of a 685 mm bar with a ∅25 mm hole in one
end to pivot around the same post holder. The other end is also designed to fit inside a
66 mm double dovetail rail. The length of the bar is such that the two detection branches
can be aligned in angles as small as 2◦. This angle is limited by the finite width of the
rails. The rotation arm is designed so that it can be rotated 180◦ around its length axis
and be used in the second branch of the detection system. See Fig. 14.

The thickness of the central arm and the rotation arms are chosen so that when they
are stacked on top of each other the optical rails lay flat on the breadboard and slide over
it. This three-piece setup also provides a way of exploring the behavior of the coincidence
and single counts profile for each angle. Furthermore, despite the covering box limiting the
angles achievable in this particular setup, these pieces can be used to test many different
entangled photon sources as long as they can be mounted on standard optical equipment.

Detector support plate: to hold the detectors vertically, we designed a 114 × 200 ×
10 mm plate with a matrix of taped holes to screw the detectors using M3.5 screws. The
distribution of the holes is such that the detectors can be fixed at four possible heights,
each one 7 mm higher than the previous one. At the bottom of the plate, there are two ∅6
mm holes and two ∅3 mm holes to attach this plate to the rail support using both screws
and dowel pins for a firmer hold. See Fig. 15.

Rail support: the rail support is a 114 mm long piece designed to attach the detector
support plate to the optical rails. The bottom part has the same profile as a 66 mm taped
dovetail so that it can be directly attached to the rails using 66 mm rail clamps. The top
part is asymmetrical so that the active area of the SPCMs is aligned in the middle of the
optical rail. The extruded part of the top side has two M6 screw holes and two ∅3 mm
holes for the dowel pins. See Fig. 16.

2.3 Electronics
To consider a detection to be valid, we need to be able to confirm that both photons
were produced and arrived at the same time. This helps eliminate unwanted detections
produced by the background. For that reason, a coincidence circuit was developed following
the design in Ref. [DM02a] shown in Fig. 9(a). The circuit is build on a printed circuit
board and makes use of two 74ACT74 dual D-type positive edge-triggered flip-flops, two 51
Ω and three 1 kΩ resistors and three 220 pF capacitors. The components were added and
welded to the printed circuit board. The readout of the circuit is recorded and processed
with a Python program. The circuit and the programs needed to control it were developed
by a previous student Martí Pedemonte. The circuit has a coincidence window of 2.5 ns,
which is roughly the duration of the pulse generated by a detection of the SPDC modules.
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(a)

BA

OUT(b)

Figure 9: Coincidence circuit. (a): Schematic of the circuit from Ref. [DM02a]. (b): Final implementation
of the coincidence circuit.

2.4 Mounting and aligning
We cut a 1 m rail into two 30 cm pieces and one 10 cm piece and drilled four M3 holes
on the sides. The rotation arms were inserted in the 30 cm pieces and the central arm
was inserted in the 10 cm piece. Then, all the rails were secured with 3 mm M3 grub
screws. Having four holes allows for better aligning of the rails. A ∅25 mm post holder
acts as a pivot axis for the three arms. This post holder holds the BBO crystals. To mount
the optical components in the rails, we placed ∅12.7 mm post holders on top of 20 mm
mounting platforms and fixed these to the rails using 20 mm double dovetail clamps. The
optical components were mounted in optical posts.

The laser diode casing is mounted directly on the optical breadboard. The focusing
lens, the blue filter, the iris diaphragm and the polarizer are mounted on the cage system
attached to the casing. The mirror, the crystal and the iris diaphragm − which acts as a
beam aperture − are mounted on the central arm rail.

The infrared filters are mounted on a Ø1" adjustable lens tube threaded into the ro-
tation mount that holds the polarizer. Finally, the detectors are fixed to the detector
support plate with M3.5 screws. The aluminum lens mount tubes in conjunction with the
adjustable lens tube enclose the path of the photons between the polarizer and the detector
active area, reducing the noise by one order of magnitude.

To align the system and obtain the maximum angular span, first we fixed one of the
rails to the breadboard. Then, we aligned the center of the goniometer with a mark on
the center of the rotation arm and fixed it. Then we rotated this arm and fixed it at 3.5◦
from the center of the goniometer. Finally, we rotated the central arm to align it with the
rotation arm. The height of the diode casing was set by directing the beam to the active
area of the detector. To make sure the incident beam was properly aligned, we positioned
one closed iris diaphragm after the mirror and one at the tip of the rail of the fixed rotation
arm. When the beam goes through both irises, the beam is well aligned. We can align the
beam by rotating both the mirror and the diode casing.
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3 Calibration and Test
3.1 Counts profile
We measured the number of counts in a single SPCM for the whole range of angles available.
This experiment was performed using detector A and the bandpass filter, which blocks more
stray light considering we expect to find photons of a wavelength of 810 nm. The polarizer
was removed to let any possible down-converted photons in − when the BBO crystals were
placed in the system − regardless of their polarization.
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Figure 10: Counts per 500 ms at an angle ϕ from the beam. Grey circles correspond to the background
(i.e. laser off). Blue triangles corresponds to the counts with the BBO crystal dismounted. Red squares
correspond to the counts with the BBO crystal mounted. Error bars correspond to ±1 standard deviation.
The subplots left and right of the main plot show the [-7,-1.5] and [1.5,7] ranges. Vertical black dashed
lines mark the optimal position ϕ = ±2.5◦. Horizontal grey dashed line marks the background average.

The experiment was performed by making repeated sets of counts over a period of 500
ms. The total capture time for each experimental point was 250 s. We observe that in
front of the beam, the number of counts naturally ascends to ∼ 106 counts per 500 ms even
with the filter on, with or without the crystals. Close to the center, the number of counts
with the crystal on stays below the number of counts without the crystals. This is due to
reflections and dispersion in the crystals. As we move away from the center, this reverses,
showing more counts with the crystal. This can be due to (1) the detection of dispersed
blue light from the laser or (2) the detection of down-converted infrared photons. Since the
number of counts is very low, we cannot observe this light using an infrared laser viewing
card, so we cannot discriminate between these two options visually. We do not see any
different behavior around ϕ = 2.5◦. This could be explained by considering that SPDC
does not only produce photons at θwo, but at other angles too [DM02b]. These photons
have different wavelengths than the target 810 nm, but a filter with a wide enough band
could let these photons through. To find the optimal angular position of the detectors,
similar experiments [DM02a, DM02b] perform an analysis of the coincidences by fixing the
position of detector A and scanning the rest of the angles available for detector B. However,
due to the compact nature of our experiment, we could not perform that kind of analysis.
For that reason, we decided to follow the instructions of the crystal’s manufacturer and
place the detectors at θA = θB = 2.5◦.
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3.2 Dependency with Laser Power
Parametric Down-Conversion’s efficiency lies around 10−6 [BLCB16]. For that reason we
study the dependence of the number of counts and coincidences with the power of the
incident laser beam. We measured the power of the laser at the position of the BBO
crystals using a wavelength tunable power meter, see Fig. 11. The accidental coincidences
are also represented. The number of accidental coincidences is computed as Nacc = NANBτ

T
[DM02a], where NA and NB are the individual counts of detectors A and B, τ is the
coincidence window of 25 ns programmed in the circuit and T is the total acquisition time,
which is 200 s.

We see a linear behavior for all the magnitudes measured. The number of total coinci-
dences Ntot = Nc−Nacc grows linearly as well, leading us to believe that higher powers of
the laser could yield better results, as more photons interact with the crystal.
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Figure 11: Number of counts as a function of the pump beam power. The represented lines are linear
fits to the experimental data. (a): Individual detections of detectors A (blue squares, R2 = 0.98) and B
(red triangles, R2 = 0.998). (b): Coincidences (purple crosses, R2 = 0.991), accidental coincidences
(grey inverted triangles, R2 = 0.998) and total coincidences (green circles, R2 = 0.951).

3.3 Validating the produced state. Measure of S

A procedure to properly tune the state is given in Ref. [DM02b]. However, given the low
efficiency of our system and the absence of a goniometer on the mount of the quartz plate,
this tuning was not possible. We decided to rotate the quartz plate roughly 25◦, close
to what is indicated in the mentioned paper. We will see that the disagreement between
the results obtained and the theory cannot be explained by the wrong positioning of the
quartz plate.

To compare the experimental results with the theory, we performed a series of mea-
surements of the number of coincidences as a function of the angles of the polarizers. For
that, we chose four values of α = −45◦, 0◦, 45◦, 90◦ which coincide with the values needed
to compute S and scanned β from 0◦ to 180◦. The number of coincidences should have a
behavior of the form

NC(α, β) = NG p(α, β) +N0, (32)
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where NG is the number of generated pairs, p(α, β) is the probability of coincidence detec-
tion given by Eq. (17) and N0 is a correction factor needed to account for the coincidences
detected at α = 0, β = 90. Fig. 12 shows the experimental data for α = −45◦, 0◦, 45◦, 90◦
compared with the theoretical prediction of the probability of coincidence given by Eq. (17)
for various values of the relative phase φ. We find great discrepancy in the four cases. We
can see that a variation in the relative phase cannot explain the discrepancy observed, since
the data does not approximate any of the represented curves. The measured coincident
photons do not seem to be entangled, at least not in the way we think.

The data obtained in the previous experiment allows the computation of S. The values
are shown in Table 1. The value of S we obtain is

S = −0.2± 0.2, (33)

where the uncertainty in S is computed by propagation of errors from the uncertainty in
the measures of coincidences. The value is far away from a violation of Bell’s inequality.
This is a confirmation of the absence of entangled photons. Since we observe an increase
in detections when the BBO is present, we can conclude that the light we are measuring
is dispersed and stray light. We can confirm that the efficiency of our experiment is not
high enough to overcome the effects of noise.

Considering this disagreement with the theory, we decided to review the material and
found that the BBO crystals we used were not adequate. As mentioned in Sec. 1.4, the
efficiency of SPDC depends on the angle cut of the crystal. The optimal angle cut for a
wavelength of 450 nm is around 29.2◦, which is far from the 44.3◦ angle of our crystals.
Furthermore, for the crystals to be indistinguishable, they need to be in optical contact,
which our crystals were not. The results obtained are reasonable under these conditions.

α (◦) β (◦) NA NB N Nacc Ntot ∆Ntot

-45 -22.5 367.80 750.24 65.01 52.41 12.59 3.45
-45 22.5 326.72 728.87 52.03 45.00 7.00 4.30
-45 67.5 363.23 1156.29 109.45 79.80 29.20 10.30
-45 112.5 397.33 1485.76 174.8 107.88 66.92 5.60
0 -22.5 460.33 1272.11 146.13 111.26 34.74 5.70
0 22.5 320.59 751.14 63.25 45.75 17.25 3.40
0 67.5 387.70 1272.60 125.54 93.72 31.28 7.81
0 112.5 397.33 1485.76 174.8 107.88 66.92 10.25
45 -22.5 339.40 817.78 66.12 52.74 13.26 1.34
45 22.5 369.24 873.62 87.13 61.30 26.70 5.67
45 67.5 385.69 1195.34 101.12 87.60 14.40 2.13
45 112.5 337.77 1299.61 113.63 84.34 28.66 1.34
90 -22.5 334.59 1054.58 83.12 67.05 16.95 2.34
90 22.5 343.05 661.72 61.35 43.14 18.86 5.34
90 67.5 525.40 1628.30 203.32 162.59 40.41 5.34
90 112.5 359.43 1257.58 103.17 85.90 17.10 5.15

Table 1: Data obtained for the computation of S. NA and NB correspond to the average number of
counts over 500 ms. The error in Ntot corresponds to 1 standard deviation. The acquisition time for
each measure is T = 1900 s, and three iterations were made for each pair of angles.
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Figure 12: Coincidences and probability of coincidence as a function of the angle of polarizer β for
different values of α. (a) and (b): α = −45◦. (c) and (d): α = 0◦. (e) and (f) α = 45◦. (g) and (h):
α = 90◦. Measurement of experimental points in (a), (c), (e) and (g) were performed with a capture
time T = 1900 s and averaged over 3 sets of measurements. Error bars correspond to 1 standard
deviation. Different curves of figures (b), (d), (f) and (h) show the values for different values of the
relative phase φ between 0 and π.

19



4 Conclusions
We have built, characterized and performed a Bell test in a compact, portable system. The
mechanics and electronics developed proved to be effective for the experiments performed.
The reported value S = −0.2 ± 0.2 is reasonable considering that the photons we are
detecting seem not to be in the desired state. We are led to believe that the detections
are purely due to stray light and electronic noise of the detectors and coincidence circuit.
Finer adjustment of the other parameters of the experiment, such as the distance between
the lenses and the detectors and the angle of the quartz plate, as well as faster experiments
are needed to be able to tune the Quantum state of the photons.

We have studied the theory behind the apparatus, including the CHSH Bell’s inequal-
ity and Spontaneous Parametric Down-Conversion to perform a Bell test experimentally.
We have reviewed a Hidden Variable Theory and compared it to the predictions of Quan-
tum Theory, finding an incompatibility between the two throughout the whole angular
spectrum.

Due to long manufacture and shipping times, we could not substitute the BBO crystals
in time for this thesis. Independently from the specific source of entangled photons, the
apparatus allows testing polarization-entangled infrared-photons of any kind, which has
great applications in fields such as Quantum Information Theory and Quantum Cryptog-
raphy. We expect that by changing the crystals, the apparatus should be able to obtain
a violation of Bell’s inequality. Higher efficiencies will lead to shorter experiments such as
the ones described in Refs. [KWW+99, DM02a, DM02b].
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A Material list

ITEM SUPPLIER CODE #
B Pin Code Laser Diode Thorlabs DL5146-101S 1
Laser Diode Socket for Ø5.6 mm Laser, 3 Pin Thorlabs S7060R 1
Laser Diode Starter Set Thorlabs LTC56A/M 1
Benchtop Laser Diode/TEC Controller, 1 A /
96 W

Thorlabs ITC4001 1

Connection Cable for LDC4000/ITC4000,
13W3 to D-Sub-9, 5 A

Thorlabs CAB4005 1

Connection Cable for TED4000/ITC4000,
17W2 to D-Sub-9, 5 A

Thorlabs CAB4000 1

Connection Cable for TED4000/ITC4000,
17W2 to D-Sub-9, 5 A

Thorlabs CAB4000 1

Cage Assembly Rod, 4" Long, Ø6 mm Thorlabs ER4 4
Mounted Aspheric Lens Thorlabs C230TMD-A 1
16 mm Cage Plate for Ø11 mm Optic, 2
SM11RR Retaining Rings Included

Thorlabs SP13 1

SCHOTT BG-25 (UV-VIS), 25.4mm Dia.,
Colored Glass Bandpass Filter

Edmund
Optics

84-901 1

30 mm Cage System Iris Diaphragm (Ø0.8 -
Ø20 mm)

Thorlabs CP20D 1

30mm Dia. High Performance Glass Linear
Polarizer

Edmund
Optics

49-078 1

Cage Rotation Mount for Ø1" Optics, SM1
Threaded, 8-32 Tap

Thorlabs CRM1 1

Quartz single crystal, X-cut, 10x10x0.5mm,
2SP

MTI Corpora-
tion

SOX101005S2 1

Ø1" Broadband Dielectric Mirror, 400 - 750
nm

Thorlabs BB1-E02 1

Fixed Ø1" Mirror Mount, M4 Tap Thorlabs FMP1/M 1
Mounted Standard Iris, Ø25 mm Max Aper-
ture, TR75/M Post

Thorlabs ID25/M 1
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6 x 6 x 0.2mm, 800nm THG, Type I BBO
Nonlinear Crystal

Edmund
Optics

11-170 2

Rotation Mount for ∅1" Thorlabs RSP1 3
Ø1" Linear Polarizer with N-BK7 Windows,
600-1100 nm

Thorlabs LPNIRE100-B 2

Ø1" Adjustable Lens Tube, 0.81" Travel Range Thorlabs SM1V10 2
SCHOTT RG-780, 25.4mm Dia., Longpass
Filter

Edmund
Optics

32-757 1

SPCM-AQR-12 PerkinElmer N/A 2
Compact Variable Height Clamp, M6 Tapped,
5 Pack

Thorlabs CL3/M-P5 2

Ø12.7 mm Post Holder, Spring-Loaded Hex-
Locking Thumbscrew, L=50 mm, 5 Pack

Thorlabs PH50/M-P5 1

Ø12.7 mm Post Holder with Hex-Locking
Thumbscrew, L = 75 mm, Vacuum Compati-
ble

Thorlabs PH75V/M 1

M6 Tapped Dovetail for 66 mm Rails, 20 mm
Long

Thorlabs XT66DM1 8

20 mm Long Double Dovetail Clamp for 66
mm Rails

Thorlabs XT66C1 10

66 mm Double Dovetail Rail, L = 1000 mm Thorlabs XT66DP-1000 1
Ø12.7 mm Optical Post, SS, M4 Setscrew, M6
Tap, L = 100 mm

Thorlabs TR100/M 5

Analog Power Console, Si Sensor, 200 nm -
1100 nm, 50 nW - 50 mW

Thorlabs PM120VA 1
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B Pieces sketches
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Figure 13: Central arm sketch.
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Rotation arm.
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Figure 14: Rotation arm sketch
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Detector support plate.
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Figure 15: Detector support plate sketch.
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Rail support.

1

A

2
3

4
5

6
7

8

1
2

3
4

5
6

7
8

BCDEF

ABCDEF

D
e

p
t.

T
e

ch
n

ica
l re

fe
re

n
ce

C
re

a
te

d
 b

y
A

p
p

ro
ve

d
 b

y

D
o

cu
m

e
n

t typ
e

D
o

cu
m

e
n

t sta
tus

T
itle

D
W

G
 N

o
.

R
e

v.
D

a
te

 o
f issu

e
S

h
e

e
t

2
4/0

5
/2

02
2

1
/1

R
a

il sup
port

1
14

20

M
6

M
6

H
7

H
7

3
4.4

3
±

.01

1.02

3.04

Ø
6

Ø3

Ø
6

Ø3

10

5
.1

1

Figure 16: Rail support sketch.
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C Hidden Variable Theory simulation code
pip install qutip
from qutip import *
import numpy as np
import matplotlib.pyplot as plt
import random as rnd

def probs(a,b,nfot):
# Function that computes the probabilities for each configuration
using booleans

gamma = np.random.rand(nfot)*2*np.pi
closertosmallA = abs(gamma-a) <= np.pi/4
closertobigA = (abs(gamma-a) > 3*np.pi/4)*(abs(gamma-a) <= 5*np.pi/4)
closertoBiggA = abs(gamma-a) >= 9*np.pi/4
closertoA = closertosmallA+closertobigA+closertoBiggA

closertosmallB = abs(gamma-b) <= np.pi/4
closertobigB = (abs(gamma-b) > 3*np.pi/4)*(abs(gamma-b) <= 5*np.pi/4)
closertoBiggB = abs(gamma-b) >= 9*np.pi/4
closertoB = closertosmallB+closertobigB+closertoBiggB

#print(closertoB)
#print(1-closertoB)

probs = np.array([np.count_nonzero(closertoA*closertoB),
np.count_nonzero(closertoA*(1-closertoB)),
np.count_nonzero((1-closertoA)*closertoB),
np.count_nonzero((1-closertoA)*(1-closertoB))])/nfot

return probs

def Eopt(a,b,nfot):
# Expectation value

return probs(a,b,nfot)[0]+probs(a,b,nfot)[3]-probs(a,b,nfot)[1]
-probs(a,b,nfot)[2]

def S(a1,a2,b1,b2,nfot):
return Eopt(a1,b1,nfot)+Eopt(a1,b2,nfot)+Eopt(a2,b1,nfot)
-Eopt(a2,b2,nfot)

# Number of photons we will use
nfot = 500000

# Angles
a1 = rad(0)
a2 = rad(45)
b1 = rad(22.5)
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# Number of points that will be computed
ndot = 200
b2 = np.linspace(0,np.pi,ndot)

Sval = 0.0*b2
pvv = 0.0*b2

for i in range(ndot):
Sval[i] = S(a1,a2,b1,b2[i],nfot)

# QUANTUM

state = 1/np.sqrt(2)*(tensor(basis(2,0),basis(2,0))+
tensor(basis(2,1),basis(2,1)))
A1 = sigmax()*np.cos(a1*2)+sigmaz()*np.sin(a1*2)
A2 = sigmax()*np.cos(a2*2)+sigmaz()*np.sin(a2*2)
B1 = sigmax()*np.cos(b1*2)+sigmaz()*np.sin(b1*2)

beta = np.linspace(0 ,2*np.pi,ndot)

Squant = np.array([0.0]*ndot)

for i in range(ndot):
B2 = np.cos(2*b2[i])*sigmax()+np.sin(2*b2[i])*sigmaz()
Spre = state.dag()*(tensor(A1,B1)+tensor(A1,B2)+tensor(A2,B1)-
tensor(A2, B2))*state
Squant[i] = np.real(Spre[0][0][0])
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