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Abstract	
 

 

One of the main factors to control in the development of tissue engineering 

scaffolds is the growth of new blood vessels and the posterior formation of vascular 

networks, which is consider as a critical factor because of the transport of nutrients 

and oxygen to the surrounding cells.  

 

Nowadays, computational modeling is presented as a useful support tool to provide 

a better understanding of vascular networks functionality. Therefore, the analysis of 

large-scale computational fluid flow dynamics (CFD), allows us to obtain the local 

parameters associated to mechanical stimuli affecting the microenvironment 

(scaffolds) and tissue involved (vascular cells). This study has developed a robust 

methodology to perform a quantitative assessment of vascular networks 

functionality based on numerical simulations.  

 

The methodology to perform the CFD analyses presented in this study is based on 

two different samples. The vascular networks were obtained by Synchrotron and 

Micro-Computed Tomography provided by the Swiss Federal Institute of Technology 

Zurich in DICOM file format. 

 

The DICOM files were imported in Simpleware to obtain a three dimensional 

reconstruction, superficial and solid mesh of the vascular networks. Due to the 

complexity of the structure and the amount of data generated, an optimization 

scheme was defined to reduce computing time while maintaining the accuracy of the 

results.  

 

Once the mesh was obtained, the boundary conditions and the properties of the 

fluid were defined in Fluent and Tdyn to simulate blood movement from the 

superior to inferior position. The results allowed us to interpret the mechanical 

phenomenon involved in the angiogenesis process and the importance of cellular 

responses to mechanical stimuli in tissue engineering applications. 
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Resumen	
 

Uno de los principales factores a controlar en el desarrollo de andamios en 

ingeniería de tejidos, es el crecimiento de nuevos vasos sanguíneos y la posterior 

formación de redes vasculares dentro de los mismos. El desarrollo de estos vasos es 

necesario principalmente, para transportar nutrientes y oxígeno a las células 

circundantes y mantener la viabilidad de estas células al interior de los andamios. 

 

Hoy en día, el modelado computacional se presenta como una herramienta útil en el 

campo de la hemodinámica, capaz de proporcionar una mejor comprensión de la 

funcionalidad de las redes vasculares en diferentes campos de la medicina y de la 

bioingeniería. El análisis de la dinámica de fluidos computacional (CFD) a gran 

escala, nos permite la obtención de los parámetros locales asociados a los estímulos 

mecánicos que afectan el microambiente (andamios) y el tejido circundante (células 

vasculares) de las redes vasculares. En este estudio se ha desarrollado una 

metodología robusta para llevar a cabo una evaluación cuantitativa de la 

funcionalidad de redes vasculares basada en simulaciones numéricas. 

 

La metodología para llevar a cabo el análisis CFD presentada en este estudio está 

basada en dos muestras diferentes de redes vasculares obtenidas mediante 

Sincrotrón y Micro-Computer Tomography (μCT), proporcionadas por el Swiss 

Federal Institute of Technology Zurich (ETHZ) en formato DICOM (DC). 

 

Los ficheros DC fueron importados en Simpleware para obtener la reconstrucción 

tridimensional de las redes vasculares, y la construcción de mallas superficiales y 

sólidas de las mismas. Debido a la complejidad de la estructura y a la cantidad de 

datos generados, se definió un esquema de optimización para reducir el tiempo de 

cómputo y calculo mientras que se mantuvo la precisión de los resultados. 

Una vez la malla fue obtenida, las condiciones de frontera y las propiedades del 

fluido fueron definidas en Fluent y Tdyn para simular el movimiento de la sangre 

desde la posición superior a la inferior de la red. Los resultados nos llevan a 

interpretar el fenómeno mecánico involucrado en el proceso de angiogénesis en las 

aplicaciones de ingeniería de tejidos y la importancia de las respuestas celulares a 

los diferentes estímulos mecánicos.  
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Chapter	 1	 Angiogenesis	 in	 Tissue	Engineering:	State	of	the	Art	
 

 

1.1 Introduction 

 

Biomaterials that promote angiogenesis have great potential in regenerative 

medicine for rapid revascularization of damaged tissue, survival of transplanted 

cells, and healing of chronic wounds. Ghannaati et al. have designed biomaterials to 

promote angiogenesis from supra-molecular nanofibers formed by self-assembly to 

evaluate the vascularization within these biomaterials [1]. 

 

However, the techniques used normally are not enough to induce the rapid 

vascularization necessary for an adequate cellular oxygen supply. Thus, nowadays 

researchers focus on the creation of μ-vascular networks within 3D tissue constructs 

in vitro before implantation using in vivo models (chicken embryo and dorsal 

skinfold chamber) [2]. 

 

After obtaining the vascularization within the scaffolds it is necessary to quantify 

this vasculature. Some approximations have been made to quantify the total volume 

of the capillary network within the scaffolds [3] characterizing μ-vessel within 

scaffolds in physiological in vivo tissue engineering implant context.  

 

However, qualitative studies of growth and performance of these μ-capillaries within 

the scaffolds to report velocity, pressure and wall shear stress (WSS) profiles to 

determine and analyze their functionality have not been done yet. 

 

So far, there are only functional analysis of large vessels and simple networks and 

there are not enough reports from μ-vessels and big networks. Lee et al. [4] have 

done a 3D computational flow modeling of a wide angle bifurcation and they have 

analyzed WSS, blood velocity, and blood pressure profiles in a chicken embryo 

model. 
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Nowadays, measure of WSS, velocity or pressure within tissue constructs to evaluate 

the functionality of μ-vascular networks in vitro or in vivo is difficult and expensive. 

Gödde and Kurz [5] modeled blood flow through capillary networks to determine 

local pressure gradients, which were in turn used to calculate local shear stress. 

Also blood flow, pressures and shear stresses on ECs have been proposed and 

modeled as angiogenic stimuli [5,6]. 

 

Therefore, to perform a quantitative assessment of the functionality of the μ-

vascular network based on the numerical simulations turns out to be a useful 

support tool for predicting the functionality of this new vascular network within the 

scaffolds design in the Angioscaff Project and then to be compared with results 

obtained in vitro and in vivo from the same project. 

 

 

1.2 The Principles Neo-vascular System: Structure and Function of 

Vascular System 

 

The term angiogenesis is reserved to describe the formation of new vessels, usually 

at the capillary level, by proliferation, migration, and assembly of endothelial cells 

from existing capillaries or venules [7]. This new microvasculature is an extremely 

adaptable structure that is capable of architectural and functional adjustments in 

response to multiple biochemical and mechanical stimuli [8]. 

 

The fundamental function of the vascular system is to deliver oxygen and nutrients 

to the cells and remove waste from peripheral tissues. 

 

There are three main types of blood vessels: arteries, veins, and capillaries. All 

blood vessels except capillaries have three distinct layers surrounding a central 

blood carrying lumen (Figure 1) [9]. 
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The role of blood flow in capillary growth was first demonstrated by Clark in the late 

1910s [15] by examining capillaries in the same area in tad-pole tails for many 

consecutive days, Clark was able to prove that capillaries with a high velocity of flow 

(and with a high shear stress) had more sprouts, but capillaries with slow flow 

gradually narrowed and disappeared. 

 

1.5 Tissue Engineering  

 

1.5.1 Vascular TE 	
TE is a multidisciplinary field that applies the principles of biology and engineering 

in order to develop tissue substitutes to restore, maintain, or improve the function 

of diseased or damaged human tissues when the body is not able to do it by itself 

[16].  

 

To date TE has been successful in producing simple avascular tissues, such as skin 

and cartilage, which are thin enough for oxygen and other nutrients to diffuse 

passively through to sustain the cells within them [17]. Sufficient neovascularization 

in scaffold materials can be achieved through coordinated application of angiogenic 

factors with indicator cells types in different biomaterials [18]. 

 

Great advances have been made in identifying the biochemical factors and 

intracellular signaling pathways that mediate the control of the angiogenesis 

process. 

 

 

1.6 Image Acquisition Techniques 

 

1.6.1 Principles Acquisition Techniques in Tissue Engineering  

 

Innovative surface and volume mesh generation techniques have recently been 

developed, which convert 3D imaging data, as obtained from magnetic resonance 

imaging (MRI), computed tomography (CT), micro-CT, synchrotron and ultrasound, 

directly into meshes suitable for use in physics-based simulations. 

 

These techniques have several key advantages, including the ability to robustly 
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generate meshes for topologies of arbitrary complexity (such as bioscaffolds or 

composite micro-architectures) providing meshes in which the geometric accuracy of 

mesh domains is only dependent on the image accuracy and the ability for certain 

problems to model material inhomogeneity by assigning the properties based on 

image signal strength [19]. 

 

1.6.2 Computer Tomography (CT) 

 

CT is a powerful nondestructive evaluation (NDE) technique for producing two 

dimensional (2D) and 3D cross-sectional images of an object from flat X-ray images.  

Characteristics of the internal structure of an object such as dimensions, shape, 

internal defects, and density are readily available from CT images.  The imaging 

system produces a 2D shadowgraph image of the specimen just like a film 

radiograph [20] 

 

1.6.3 Magnetic Resonance Imaging (MRI)  

 

In MRI the study object is placed within a high intensity magnetic field. This causes 

the magnetic moments of the molecules within the object to become aligned. The 

object is then irradiated with pulses of low-level microwave radiation (excitation 

pulses) that cause some of the magnetic moments of the molecules to oscillate and 

re-emit microwaves after each pulse. These re-emissions are measured and stored 

digitally  

 

1.6.4 Synchrotron Radiation (SR) 

 

SR refers to an electromagnetic radiation produced when ultra-relativistic electrons 

circulating in a storage ring are deviated by strong magnetic fields. The storage ring 

consists of a succession of bending magnets and straight sections including 

insertion devices (Figure 5) [21]. 

 

SR benefits from increased brilliance that is orders of magnitude greater than 

conventional X-ray sources. This improves image quality, reduces scan time, enables 

higher resolution and facilitates, also the use of monochromatic and tunable energy 

(single energy) X-rays of the beam is a key point since this condition is a basic 
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With the appearance of powerful and fast computers, new possibilities for replacing 

time-consuming model testing and field-testing have arisen. This involves solving 

the differential equations describing fluid motion, using either a finite volume or a 

FE method. These methods applied for the solution of the fluid equations of motion 

are named computational fluid dynamics (CFD).  

 

CFD essentially takes the momentum, heat and mass balance equations, along with 

other models describing the equipment performance, and solves them to give 

information such as pressure, velocity and wall shear stress (WSS) profiles. 

 

The basic principle of the CFD modeling method is that the simulated flow region is 

divided into small cells within each of which the flow either kept under constant 

conditions or varies smoothly. 

 

In hemodynamic applications, CFD simulation of blood has been a subject of 

significant research effort. Over the last decade great progress has been made in 

computational modeling of blood flows to measure hemodynamic variables [27-29] 
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Chapter	2	Objective	
 

 

Develop a methodology to perform a quantitative assessment of the functionality of 

micro-vascular networks from synchrotron and μ-CT data in two different samples, 

based on numerical simulation to estimate the mechanical stimulus that promote 

the angiogenesis process in tissue engineering constructs. 
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3.1 Image Acquisition  

 

The first step to perform the computational fluid dynamic (CFD) analyses presented 

in this study is the image acquisition.  

 

It was obtained by the corrosion casting method, two different samples of vessel 

networks formed in the tail and the lower hind limb of a mouse, provided by ETHZ 

from synchrotron and μCT data in DC files format.  

 

Table 1 shows the technical acquisition specifications of each sample. 

 

Table 1 Sample technical specifications 

 Sample 1 (Tail) Sample 2 (Limb) 

Technique acquisition Synchrotron* micro-CT** 

Resolution 1.4 μm 3 μm 

Pixels 788 x 756 x1021 894 x 894 x 894 

Nº of DICOMS 1021 894 

Slice thickness (mm) 3,699219e-3 1 

Sample real size (mm)  2,914x2,796x3,78 4,844x4844x4,844 

Mouse section Tail*** Limb**** 

 

*Synchrotron at the Swiss Light Source (PSI, Villigen, Switzerland) 

**μCT 50 (Scanco Medical AG, Bruttisellen, Switzerland) 

***Proximal part  

****Lower hind limb 

 

 

Figure 9 shows an overview of the image acquisition process. The image acquisition 

was made by the ETHZ. They have done and In vivo μ-computed tomography and 

Synchrotron radiation tomography of different mice using the corrosion casting 

method. They have obtained the geometry of the vessels in image slides and in 

DICOM format. 
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3.2 Segmentation and 3D Reconstruction 

 

Vascular segmentation and 3D reconstruction of the vascular networks geometry 

were accomplished by Thresholding and FloodFill within different image processing 

software: MIMICS 13.1: Materialise, Haasrode, Belgium, and Simpleware 4.2: Scan IP 

module, United Kingdom. 

 

The geometric models are generated from medical image data (Synchrotron and μCT 

data). The first step in the process of model creation is the generation of a mask 

that defines the region of interest (ROI). This process is known as segmentation and 

can be carried out manually or automatically.  

 

By segmentation the image is divided into parts or objects that comprise it. The 

extent to which this subdivision is done depends on the particular application, when 

the segmentation process have finished, it is possible to work with the objects of 

interest of the application. The segmentation will lead ultimately to success or 

failure of the process of analysis. In most cases, a good segmentation gives rise to a 

right solution, so that should make every effort possible at the stage of 

segmentation. 

 

In this case the segmentation process was done carefully to ensure an interconnect 

network. Only the connected elements of the geometry resulting of the 

segmentation process were used and the non-connected structures were removed to 

proceed with the construction of the superficial and volumetric mesh. 

 

 

3.3 Superficial and Solid Mesh Construction 

 

Once the 3D reconstructions of the networks are obtained, the next step it is to 

construct the triangle model of the geometries in STL format. However, these 

models cannot be applied by CFD packages for the generation of the required 

geometric mesh. One more process is needed to convert the triangle model into 

surface or solid model to facilitate CFD simulations.  

 

The superficial mesh was obtained using different image processing software: 

MIMICS 13.1 and Simpleware (Scan IP module). And the solid or volumetric mesh 
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To obtain the mesh density required the “Resample” tool from Simpleware was used, 

which is used to reduce the size of the images by lowering resolution but without 

modifying sizes or features of the object. Resampling can also be useful to 

artificially increase the resolution by supersampling the data.  

 

 

3.4 CFD Analysis  

 

Once the mesh was obtained the CFD analysis was performed using two different 

commercial softwares: Ansys-Fluent 12.1 (United States) and Tdyn 11.0.5 (Spain). 

Table 2 shows the properties of blood that were used [30] to simulate the fluid 

within the different vascular networks. It was supposed a laminar Newtonian fluid  

 

Table 2 Blood Properties 

Fluid Properties (Blood)

Viscosity 0.0022 Kg.m-1s-1 * 

Density  1060 Kg.m-3 ** 

 

 

The boundary conditions were defined in Fluent and Tdyn to simulate blood 

movement from the superior to inferior position Table 3 shows the boundary 

conditions used to the CFD analysis in the samples. The velocity was applied in the 

superior region of the networks and the pressure outlet was applied in the inferior 

region of the network (Figure 12). 

 

 

Table 3 Boundary Conditions 

Boundary Conditions

Velocity (inlet) 1 mm s-1  

Pressure (Outlet) 0 Pa 
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In both types of meshes, the number of nodes decrease when the value of 

resampling increase in a similar way. Both cases pass to 5 million (without resample) 

to around 700,000 nodes at resample from 2 times (Table 7, Table 8). 

 

Table 7 Results Resample. Tet_Hex Mesh 

DICOMS Resample Number ele. Nº Tet Nº Hex Nodes Volumen
(mm3) 

1-100 

W/O 12.965.527 10.434.756 2.530.771 5.227.177 1,89E-01 

1,1 10.139.959 8.302.720 1.837.239 3.992.863 1,88E-01 

1,2 8.110.333 6.744.622 1.365.711 3.127.902 1,78E-01 

1,3 6.644.638 5.593.585 1.051.053 2.522.301 1,88E-01 

1,4 5.445.852 4.634.108 811.744 2.038.914 1,86E-01 

1,5 4.544.994 3.900.913 644.081 1.684.046 1,86E-01 

1,6 3.885.296 3.359.525 525.871 1.430.184 1,88E-01 

1,7 3.297.241 2.874.161 423.080 1.201.527 1,86E-01 

1,8 2.850.326 2.499.305 351.021 1.031.512 1,87E-01 

1,9 2.491.161 2.199.341 291.820 894.803 1,87E-01 

2 2.204.834 1.957.575 247.259 786.397 1,89E-01 
 

Table 8 Result Resamples. Tet_Mesh 

DICOMS Resample Elements Nodes Volumen (mm3) 

1-100 

W/O  23.149.531 5.227.177 1,89E-01 

1,1 16.995.056 3.852.017 1,80E-01 

1,2 13.060.842 2.982.006 1,78E-01 

1,3 10.089.351 2.307.677 1,74E-01 

1,4 8.717.743  2.038.914 1,88E-01 

1,5 7.142.543  1.684.046 1,86E-01 

1,6 5.948.193  1.414.231 1,87E-01 

1,7 4.978.765  1.193.347 1,86E-01 

1,8 4.252.708  1.027.209 1,87E-01 

1,9 3.629.084  883.920  1,86E-01 

2 3.184.789  780.818  1,89E-01 
 

It was verified that volume was kept constant whatever the amount of mesh density 

and the type of element mesh. In both cases the volume remained constant with 

small differences between the values obtained, ranging from 0,174 mm3 to 0,189 

mm3. 

It was necessary to check the mesh quality in both cases to ensure the accuracy of 

the results to decide the mesh density used to perform the CFD analysis. The quality 

of a mesh depends on the quality of its elements, which in turn depends on the 

application.  
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resample of 1.6 times with a reduction of 71% of elements and 69% of nodes density 

in the full sample 1 (tail). 

 

With the limb sample, a full tetrahedral mesh was obtained with 16 million of 

elements, and 4 millions of nodes without loss of volume of structures futures 

(1,27) with a resample of 1.6 times with a reduction of 71% of elements and 69% of 

nodes density in the full limb sample .Table 10  

 

Table 10 Elements, nodes, and volume values (Tail and limb samples) 

  Elements Nodes Volume (mm3) 

w/o Resample Sample 1 279.148.673 63.981.293 2,28 
Sample 2 57.683.223 12.962.545 1,58 

Resample 1,6 Sample 1 81.250.605  19.781.737  2,28 
Sample 2 16.789.608 4.007.760 1,55 

Reduction (%) Sample 1 71 69 0,17 
Sample 2 71 69 1,27 

 

 

4.4 CFD Analysis 

 

4.4.1 Tail sample 

 

4.4.1.1 Sub-volume (5%)  

 

In order to better understand the behavior of the vascular network of tail sample, it 

was extracted a volume corresponding to 5% and it was analyzed the results of 

blood velocity and WSS. In this case we used the same boundary condition proposed 

above. 

 

Using CFD analysis, we visualized velocity profiles and calculated wall shear stress 

along the vessels wall.  

 

I. Velocity profile 

 

The velocity profile of this network shows a distribution of fluid flow on different 

planes. We can see the heterogeneity of fluid flow distribution in the vessels, and 

the direction of the blood movement. This is the highest velocity is 3 times higher 



52   

than the i

 

Velocity v

observe c

vascular s

velocity d

increase 

velocity eq

 

 

In conclus

in a 2D cr

vessels, a

velocity in

 

II. Wa

 

Figure 25

sub-volum

large vess

Sample

nlet veloci

values insid

changes in

sections. F

decreases 

in the velo

quals to ze

Figure

sion, the v

ross-sectio

and the dir

nlet. 

all Shear S

5 shows th

me, with a 

sels with va

-Specific Com

ty. 

de the ves

n the vasc

For examp

in this se

ocity was 

ero.  

e 24 Contour

velocity pro

on. We can

rection of 

Stress 

he distribu

maximum

alues arou

mputational F

ssels range

cular netwo

le we can 

ection and

observed.

s of Velocity 

ofile of this

n see the h

the blood

ution of th

m value of 1

nd to 0.5 

Fluid Dynam

e from 1 t

ork veloci

see that i

d, in the 

. Finally it

magnitude (

s network 

heterogene

d’s movem

he wall she

1.039 Pa a

Pa.  

ics of Vascul

to 3 m.s-1

ty with th

ncreasing 

region wi

t was obse

(m.s-1) (5% of 

shows a d

eity of fluid

ent. This 

ear stress

and a distr

ar Network F

(Figure 24

e change 

the vesse

th a sma

erved in s

Tail sample)

istribution

d flow dist

is a scale 

(WSS) in t

ribution ins

Functionality 

4) Also we

in size o

l diameter

ll diamete

some vess

 
) 

n of fluid fl

tribution in

of 3 time

the tail sa

side one o

e can 

f the 

r, the 

er an 

els a 

low a 

n the 

s the 

mple 

of the 



Samp

 

4.4.

 

Here

optim

 

I. 

 

F

ple-Specific C

1.2 Sub

e we can 

mization p

Velocit

Figure 26 Co

Computationa

F

-volume 

see the 

process des

ty profile

ntours of Ve

al Fluid Dyna

igure 25. Dis

(10%)-10

results f

scribed ab

locity magnit

Tetrah

amics of Vasc

stribution of 

00 DICOM

for the tw

bove (Sectio

tude (m.s-1) (

hedral an hex

cular Networ

WSS (5% Tail

MS 

wo types 

on 3.3 Mes

10% of Samp

xahedral mes

k Functionali

 sample) 

of meshe

sh Density 

ple 1)_Tetrahe

h 

ity   

es obtaine

Requires)

edral and mi

53

ed in the

. 

xture of 

 

e 

 



54   Sample-Specific Computational Fluid Dynamics of Vascular Network Functionality 

Velocity values inside the vessels range from 1 and 3 m.s-1. As it was showed in the 

Sample 1 sub-volume of 5%, in some vessels the velocity is equal to zero.  

 

To perform the CFD analysis we have used a Window Server 2008 R2 Enterprise with 

two processors Intel (R) Xeon(R) 3GHz and 48GB of memory RAM. Finally it was 

observed similar qualitatively results in the CFD analysis of these two meshes; we 

decided to use tetrahedral elements to perform the CFD analysis of the other 

samples. 

 

4.4.1.3 Full Sample 

 

I. Velocity profile 

 

The velocity profile of this network shows a distribution of fluid flow on different 

planes. (Figure 27) We can see the heterogeneity of fluid flow distribution in the 

vessels, and the direction of the blood’s movement. This is a scale of 3 times the 

velocity inlet. 

 

Velocity values inside the vessels range from 1 and 3 m. s-1. As it was showed in 5% 

and 10% sub-volume, in some vessels the velocity is equal to zero, mainly in the 

small lateral vessels.  

 

It was observed that the velocity is higher inside the small capillaries than the larger 

ones. 
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Chapter	5	Discussion	and	Limitations	
 

5.1 Discussion 

 

 

In the velocity results in both samples, it was observed in some vessels a velocity 

equals to zero. This possibly means that these vessels are not well trained and 

connected to the rest of the network, and the blood cannot pass through these 

vessels. Theoretically the cells that surround these "non-functional" vessels do not 

receive the nutrients and oxygen from the blood necessary to survive. 

 

The values of WSS obtained with the CFD analysis were within the physiological 

range found in the human body reported in literature [36]. There is a vast amount of 

experimental evidence demonstrating that externally applied mechanical stresses 

(fluid shear stress, stretch, and pressure) regulate cytoskeletal organization, signal 

transduction, gene expression, and a wide variety of EC functions, including 

migration, proliferation, and ECM remodeling, which suggests a role of extrinsic 

stresses in angiogenesis.  

 

In fact, many studies have shown that fluid shear stress and stretch can affect the 

production and/or activity of the endogenous biochemical factors, although most of 

these investigations were not conducted in the context of angiogenesis. [9] 

 

With numerical simulations we can measure the WSS in each point of the network 

and we can predict that the cells surround this vessels could be stimulated 

mechanically and in response to this stimulus, the angiogenesis process could be 

continue.  

 

This is a promising study that involves concurrent research groups either by 

analyzing the profiles of cellular and molecular biology of the process of 

angiogenesis, another investigation group the process behind the regenerative 

engineering of angiogenesis in the physiological phenomena and we systematizing 

the study as a computational model and its potential applications in improving the 

understanding of the process of new blood vessels. 
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5.2 Limitations  

 

 

Some limitations were found in the development of this project. 

 

Both the time meshing as the CFD analysis time was quite long due to the density 

and quality of the mesh required in both samples. To make starting the simulation it 

was required the use of servers with special technical features. 

 

On the other hand, the results of CFD analysis cannot be interpreted entirely as a 

physiological behavior, since the boundary conditions were imposed on the 

development of the methodology does not correspond to “real” conditions in both 

samples, because in the process of image acquisition, was not taken into account 

the position of the sample, which could not be identified clearly the direction of 

movement of the blood. 

 

In addition, the samples that were sent to us to perform the CFD analysis 

correspond to sub-groups of larger samples, so it may have been lost of information 

from the actual geometry of both samples. 

 

Similarly, the method used for the acquisition of such data (corrosion casting ) have 

certain limitations when it comes to micro-capillary samples, like in this case, since 

the polymer sometimes fails to fully invade the vessels and the images acquired 

reported vessels not connected when it really should be in the original sample. 

 

It is also important to note that our computational simulation treated the blood as a 

Newtonian fluid and discounted the mechanical effects of blood cells or biochemical 

molecules, which it will take it into account in the future work to continue whit this 

project. 
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Chapter	6	Conclusions	and	Future	Work	
 

6.1 Conclusions 

 

 

• A methodological approach for automatic 3D geometric analysis and 

generation of a tetrahedral computational mesh from Synchrotron and μCT data of 

vascular networks from a tail and a limb of a mouse was defined. The computational 

mesh is intended for numerical analysis of blood flow within these vascular vessels. 

 

• This methodology was applied to images from Synchrotron and μCT but it 

can be applied in general to other volumetric data, especially where the DICOM 

standard is used. The methodology we set up for mesh generation allowed 

producing computational mesh that shows good resolution and element skewness. 

 

• The proposed technique is fast, accurate and reproducible, and can be a 

useful tool for the evaluation of micro-vascular networks fluid dynamics. 

 

• Results in different networks indicate the heterogeneity of fluid flow 

distribution within the vessels with values ranging between 0 and 3 times the inlet 

velocity. Respect to the vessels with a velocity equal to zero m s-1 means that these 

vessels are not well connected to the rest of the network, and the blood cannot pass 

through them and in this case the cells that surround these "non-functional" vessels 

do not receive the nutrients and oxygen from the blood necessary to survive. 

 

• The values of WSS obtained are within the physiological range found in the 

human body reported in literature. Results indicate the heterogeneity of WSS 

distribution within the vessels. These mechanical stimuli play an important role in 

angiogenesis regulating the cytoskeletal organization, as a signal transduction, in 

gene expression, and a wide variety of EC functions, including migration, 

proliferation, and ECM remodeling. 

 

 



60   Sample-Specific Computational Fluid Dynamics of Vascular Network Functionality 

6.2 Future work 

 

 

The short term future plan to continue with the development of this project involves 

some important task. 

 

Task 1: The next step will be to make a comparison of in silico results with in vivo 

results on many different samples to determine the functionality of the angiogenic 

process in tissue regeneration. 

 

Task 2: Also it is necessary to obtain data in different time points of growth to 

validate the methodology and to define realistic and accurate boundary conditions 

to ensure a proper physiological interpretation of the results. Then it will necessary 

to perform several analyses on different vascular networks to investigate the 

angiogenic functionality of the scaffolds  

 

Task 3: Once the methodology has been assessed in different samples it will be 

define a validation of the model building a scale prototype of a sub-volume network, 

to quantify the fluid flow distribution inside the vessels to compare the obtained 

results, with the CFD results.  

 

Task 4: Simulate the behavior of endothelial cells around blood vessels included in 

the angiogenesis process using numerical simulation, to quantify the exchange of 

oxygen from the vessels into the cells, in order to relate the functionality of vascular 

networks during angiogenesis in different scaffolds with the gas exchange 

necessary for the preservation of cells and tissue surrounding these vessels. 

 

Task 5: In order to evaluate the functionality of the vascular networks development 

within the scaffolds design in the Angioscaff Project, it will perform CFD analysis of 

the resulting samples in different points of growth to quantify the volume of 

functional network. 
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