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Abstract. Mid-resolution Infrared Astronomical Spectrograph (MIRADAS) is a near-infrared
multi-object echelle spectrograph for Gran Telescopio de Canarias. It selects targets from a 5-arc
min field of view using up to 12 deployable probe arms with pick-off mirror optics. The focal
plane where the probe arms move has a diameter around 250 mm. The specific geometry of the
probe arms requires an optimized collision detection algorithm for the determination of the target
assignment and the trajectories determination. We present the general polygonal chain intersec-
tion algorithm, which is used to detect the possible collisions and avoid them. It is a generali-
zation of the Polygonal Chain Intersection algortihm, allowing to work with vertical segments,
providing a solution for the intersection of any class of polygons. Its use has reduced the time
required to detect the collisions between 3 and 4 times compared with a naive solution when used
in MIRADAS. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JATIS.7.1.015003]
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1 Introduction

Multi-object spectroscopy (MOS) is a key technique in modern astronomical instrumentation.
In case of large telescope, the need to improve their efficiency makes necessary to include a
multiplexer (MXS) that selects specific targets in the field of view (FoV). Different solutions
have been proposed and are being used, in the most cases requiring mechanical devices that
need to be coordinated to avoid losing functionality.

Mid-resolution Infrared Astronomical Spectrograph (MIRADAS) is a near-infrared multi-
object echelle spectrograph operating at spectral resolution R ¼ 20; 000 over the 1- to 2.5-μm
bandpass for the Gran Telescopio de Canarias (GTC). MIRADAS selects targets from a 5-arc
min FoV using up to 12 deployable probe arms with pick-off mirror optics, each feeding a
3.7 × 1.2 arc sec2 FoV to the spectrograph. These arms are distributed around the focal plane,
which has ∼250 mm diameter (see Fig. 1). There they have to be choreographed.

We define:

• Assignment. It identifies which probe arm will observe a target.

• Configuration. The set of positions of the different probe arms when an observation is
done. Not all the probe arms have to be observing, hence not all the probe arms have
an assignment. The ones not assigned have a position where they do not collide with
others. This position can be park, or one nearby to park that is calculated ad hoc based
on the nearby assigned probes.

• Movement. The set of positions that a probe arm shall follow to go from one configuration
to another. These movements shall comply with some restrictions in order to optimize
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the instrument usage (e.g., the maximum time allowed to reach from one configuration to
another).

A planning tool will be used by the astronomers to determine the different assignments/
configurations. The requirements of the different targets assignments and the movements to
reach them can lead to collisions between the probe arms.1 The tool shall be able to detect these
collisions and change the planed configurations and movements to avoid them. This will guar-
antee a safe usage of the instrument and optimize its observation time. The number of collision
checks per movement can be between tenths to hundreds, depending on the distance of the
motion.

For all these reasons, a collision detection algorithm (CDA) is required. In case of
MIRADAS, it is based on a polygon intersection algorithm. Each probe arm is described as
an irregular convex hexagon, as shown in Fig. 2.

The hexagons presented include a guard buffer (Fig. 3) whose size will depend on the
mechanical tolerances and numerical errors, minimizing the risk of collision associated. If there
is any intersection between the polygons, it means a collision, indicating that this arrangement is
not valid. The algorithm shall be precise, to allow close targets to be picked by different probe
arms, increasing the instrument efficiency.

The CDA is constantly used to check the feasibility of a configuration or the movements that
are used to go from one configuration to another.1 As a result, it is necessary to optimize it, as this
will reduce significantly the processing time. This will improve also the responsiveness of the
interactive targets–probes planning tools.

(a) (b)

Fig. 1 (a) Drawing of the MXS bench with the 12 probe arms and (b) detail of the pick-off mirrors.

Fig. 2 Example of a probe arm configuration including the guard buffers (see Fig. 3).
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Polygon intersection algorithms are based on line segment intersection algorithms. In the
present application, it can be assumed that all the polygons have the same number of vertices
(n). A naive algorithm, which pairwise checks the intersection of the full set of segments in the
two polygons, will require Oðn2Þ operations to find them. As there are p polygons, and we are
interested only in intersections between polygons (arms), the problem can be reduced to

O
��p

2

�
· n2

�
.

If we focus on convex polygons, it can be reduced to linear complexity2,3 Oð2nÞ, resulting in
O
��p

2

�
· n2

�
for the intersections between polygons. A logarithmic complexity algorithm4 can

be also used, reaching Oðlogðn2ÞÞ in the general case, or O
�
2 ·

�p
2

�
· logðnÞ

�
in case of

polygons.
Considering a polygon as a closed polygonal chain, the polygonal chain intersection (PCI)

algorithm5 can be used. It has a complexity of Oððn · pþ kÞ logðmÞÞ, where m is the number
of Monotone Polygonal Chains (MCs), and k is the number of intersections. The MC is defined6

as “A chain C is said to be monotone with respect to a straight line L if a line orthogonal
to L intersects C in exactly one point.” Without loosing generality, the line L can be the x axis
[Fig. 4(a)].

In this case, all the vertices in the MC will have an increasing value of x (pn:x < pnþ1:x).
A monotone polygon can be divided in two MCs, and any convex polygon is monotone.7 Hence,
in the present scenario, two MC per probe arm polygon can be expected, so the complexity will
become Oððn · pþ kÞ logð2pÞÞ.

In many cases, one or more segments of different probes can be parallel to the y axis
(vertical), e.g., one of the segments near the pick-off mirror of probe 9, shown in Fig. 2 con-
figuration. This implies the need to improve the PCI algorithm to take into account vertical
segments, so it can be used with any possible MIRADAS configuration.

One approach could be to detect a priori the vertical segments8 and manage them specifically.
In our case, we will follow a different approach, generalizing the MCs allowing to include
perpendicular segments to the line L, an example is represented in [Fig. 4 (b)]. We will call
them General Monotone Polygonal Chains (GMCs). In this case, a point can have the same
x as the precedent or following point (pn:x ≤ pnþ1:x). In this case, the monotonicity is also
requested on the y axis, henceforth all the perpendicular segments shall follow the same direc-
tion. In the case shown in the figure, we can see that both perpendicular segments go in the
upward direction (pn:y < pnþ1:y). Notice that the oblique have only horizontal monotonicity.

(a) (b)

Fig. 4 (a) Monotone polygonal chain with respect to line L and (b) GMC with respect to line L.

Fig. 3 Example of a probe arm and its guard buffer.
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Therefore, an MC is a GMC that has no perpendicular segments to L or, in this case, vertical
segments. Its usage generalizes the algorithm allowing the detection of intersections with any
class of polygons (Fig. 5). For this reason, we will call the algorithm General Polygonal Chain
Intersection (GPCI). It is described in the next sections.

2 Base Concepts

The GPCI needs some new concepts to generalize the PCI algorithm. They help to improve the
numerical stability of the algorithm and allow to work with vertical segments. They are described
in the following sections.

2.1 Difference

First, the difference between two numbers is defined. Although the calculations are done using
floating-point values with double-precision,9 there are numerical errors. Hence, it is needed to
define how separated two numbers can be and still be considered to have the same value. For this
purpose, the difference between the number a and b with a bits factor is defined as

EQ-TARGET;temp:intralink-;e001;116;307dbitsða; bÞ ¼ bða − bÞ · 2bitse; (1)

where bxe is the rounding to the nearest integer function. Notice that we use bits instead of
decimal digits, as it is optimal when using the functions associated with IEEE floating point
numbers exponent. An approximation can be used to convert from decimal error to number
of bits:

EQ-TARGET;temp:intralink-;e002;116;227bits ¼ d−log2ðϵ10Þe; (2)

where ϵ10 is the decimal error and dxe is the ceil value. In case of MIRADAS, the required
resolution is better than 1 μm. As the focal plane units are millimiters, the maximum allowed
error is 10−4, the bits value will be 14.

2.2 Sorting

The algorithm needs also to sort the elements. For this purpose, a less than operator (<d ½bits�) is
defined. It makes use of this difference, making it more numerically stable:

Fig. 5 An example with ten polygons including different complex geometries whose intersections
can be detected by the GPCI algorithm.
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EQ-TARGET;temp:intralink-;e003;116;735a <d½bits� b ≡ bða − bÞ · 2bitse < 0: (3)

To generate the GMCs, the vertices in the polygon must be also sorted. As indicated in Sec. 1,
the x and y dimensions shall be taken into account, requiring a 2D less than operator (<2D½bits�).
We define it as

EQ-TARGET;temp:intralink-;e004;116;673pa <2D½bits� pb ≡
�
xa <d½bits� xb for xa <d½bits� xb ∨ xb <d½bits� xa
ya <d½bits� yb for xa≮d½bits� xb ∧ xb≮d½bits�xa

; (4)

where the points pa and pb have the coordinates ðxa; yaÞ and ðxb; ybÞ, respectively. The x coor-
dinate is the first used for the sorting. Only if the xa and xb can be considered equal (vertical
segment), the y coordinate is checked.

This would be the case for the chain in Fig. 4(a). The line L follows the x axis. The point pn

has a lower x value than pnþ1 (pn:x ≤ pnþ1:x). In the case of the chain in Fig. 4(b), the segment
between the points p1 and p2 and the one between p3 and p4 are perpendicular to L, and parallel
to the y axis. In case of vertical segments, we impose without any loss of generality that they have
to go upward. For this reason, the operator will be true if the value of the y coordinate of the
starting point is smaller than the one of the ending point (pn:y < pnþ1:y).

2.3 Intersection Detection

The intersection is detected using a half-open segment,10 where the first point of the segment is
included and the last not. The possible intersections and overlaps are represented in Fig. 6.

It can be seen that three types of intersections and overlaps are defined (X, T, and V) depend-
ing on the point and place of the intersection or overlap. Notice that only in the X intersection the
point (pi) is unknown. In all the other cases, it is defined by one or both segments starting points.

The detection of an intersection is done using the orientation between the points11 defined by
the following equation:

EQ-TARGET;temp:intralink-;e005;116;399

orientation ≡ ðpc − pbÞ × ðpb − paÞ ¼ ðpc:x − pb:xÞ
· ðpb:y − pa:yÞ − ðpb:x − pa:xÞ · ðpc:y − pb:yÞ; (5)

where pa, pb, and pc are the points in a 2D plane, and the × operator is the two-dimensional
cross product, resulting in a scalar value.

The calculations use the <d½bits� operator. If the orientation is not less than 0 and 0 is not less
than orientation, the three points are considered collinear. If the result is positive, the vector ~pbpc

is rotated clockwise (CW) relatively to ~papb. If it is negative, the rotation is counter clockwise
(CCW). The detection of the intersection is highly dependent on the resolution used for the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Possible (a)–(d) intersections and (e)–(h) overlaps between two half-open segments:
(a) X intersection; (b), (c) T intersections, (d) V intersection; (e) X overlap; (f), (g) T overlaps; and
(h) V overlap.
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orientation calculation. Taking into account that there is a subtraction of the product of two
subtractions, the number of bits needed to make the calculation without loosing precision is

EQ-TARGET;temp:intralink-;e006;116;499bitsorientation ≡ ðbitsþ 1Þ × 2þ 1: (6)

Example given: in case of MIRADAS, the number of bits is 14 bits (24 bits for the full
mantissa). In this case, the bitsorientation is 39 bits (51 bits full mantissa), just below the limit
(53 bits).

If there is an intersection between two segments a and b, the orientation between the first
point of a (a0), the last point (a1), and the first point of b (b0) shall be different to the one
between a0, a1, and b1, and also the orientation between b0, b1, and a0 shall be different to
the one between b0, b1, and a1. An example is presented in Fig. 7.

The calculation of the intersection between segment a and b requires two specific data types.

• Segment: represents a line segment that starts at point 0 and ends at point 1.

• Result: represents the intersection result. It has the fields.

Algorithm 1 Orientation algorithm

1: procedure ORIENTATION(pa; pb; pc ; bi ts)

2: or ientat ion←ðpb:y − pa:yÞ × ðpc:x − pb:xÞ − ðpb:x − pa:xÞ × ðpc:y − pb:yÞ ▹ Using Eq. (5)

3: obits←ðbits þ 1Þ × 2þ 1 ▹ Using Eq. (6)

4: if or ientat ion <d ½obits� 0 then

5: return Counter Clockwise

6: else if 0 <d ½obits� or ientat ion then

7: return Clockwise

8: else

9: return Collinear

(a) (b)

(d) (e)

(c)

Fig. 7 (a) Intersection detection between segment a and b. The orientation (b) between the point
a0, the point a1, and the point of b0 is CW; (d) between a0, a1, and b1 is CCW; (c) between b0, b1,
and a0 is CCW; and (e) between b0, b1, and a1 is CW.
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• point: resulting intersection point, in case of X intersection.

• type: intersection type, as described in Fig. 6.

Algorithm 2 describes the detection of the different intersection cases indicated in Fig. 6
using the orientation calculation. If two segments are collinear, then Algorithm 3 is called to
check the overlap cases.

When there is an intersection, the associated point (pi) can be calculated using any of the
segments with the following equation:

Algorithm 2 Intersection algorithm

1: procedure INTERSECTION(a; b; bi ts)

2: ▹ Initialization of the result

3: result.point ← empty ▹ Intersection point, initialised as empty

4: result.type ← No intersection

5: ab0 ← ORIENTATION(a0; a1; b0; bi ts)

6: ab1 ← ORIENTATION(a0; a1; b1; bi ts)

7: ▹ If the segments overlap

8: if ðab0 ¼ Coll inear Þ ∧ ðab1 ¼ Coll inear Þ then

9: result.type ← overlap(a; b; bits)

10: return result

11: ▹ If the segments do not overlap

12: ba0 ← ORIENTATION(b0; b1; a0; bi ts)

13: ba1 ← ORIENTATION(b0; b1; a1; bi ts)

14: if ðab0 ¼ Coll inear Þ ∧ ðba0 ¼ Coll inear Þ then

15: result.type ← V intersection ▹ Fig. 6(d)

16: return result

17: if ðab0¼Coll inear Þ∧ðab1≠Coll inear Þ∧ ðba0≠Coll inear Þ∧ðba1≠Coll inear Þ∧ðba0≠ba1Þ then

18: result.type ← T intersection with a ▹ Fig. 6(c)

19: return result

20: if ðab0≠Coll inear Þ∧ðab1≠Coll inear Þ∧ ðba0¼Coll inear Þ∧ðba1≠Coll inear Þ∧ðab0≠ab1Þ then

21: result.type ← T intersection with b ▹ Fig. 6(b)

22: return result

23: if ðab1 ≠ Coll inear Þ ∧ ðba1 ≠ Coll inear Þ ∧ ðab0 ≠ ab1Þ ∧ ðba0 ≠ ba1Þ then

24: ua←
ðb1−b0Þ×ða0−b0Þ
ða1−a0Þ×ðb1−b0Þ ▹ Eq. (8)

25: result :point←a0 þ uaða1 − a0Þ ▹ Eq. (7)

26: result.type ← X intersection ▹ Fig. 6(a)

27: return result

28: return result ▹ No intersection
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EQ-TARGET;temp:intralink-;e007;116;424pi ¼ a0 þ uaða1 − a0Þ: (7)

In this case, the segment a has been used, and ua is the parameter. If an X intersection is
detected using the orientations (Fig. 7), the values of the parameters ua and ub can be calculated
using the following equations:

EQ-TARGET;temp:intralink-;e008;116;365ua ¼
ðb1 − b0Þ × ða0 − b0Þ
ða1 − a0Þ × ðb1 − b0Þ

; (8)

EQ-TARGET;temp:intralink-;e009;116;308ub ¼
ða1 − a0Þ × ða0 − b0Þ
ða1 − a0Þ × ðb1 − b0Þ

: (9)

In all the cases, we will consider there is an intersection or overlap only if ua and ub are in
the interval ½0;1Þ. As indicated previously, only when there is an X intersection pi is unknown.

If the segments are collinear, it will be necessary to determine if the segments overlap. This is
the purpose of the overlap procedure (Algorithm 3).

The parameters ua and ub can be calculated using the following equations:

EQ-TARGET;temp:intralink-;e010;116;224ua ¼
ðb0 − a0Þ · ða1 − a0Þ
ða1 − a0Þ · ða1 − a0Þ

; (10)

EQ-TARGET;temp:intralink-;e011;116;167ub ¼
ða0 − b0Þ · ðb1 − b0Þ
ðb1 − b0Þ · ðb1 − b0Þ

; (11)

where the · operator is the inner product. As indicated previously, ua and ub shall be in the
interval ½0;1Þ to consider it is an overlap. The dbits function ensures the numerical stability
of the algorithms.

Algorithm 3 Overlap algorithm

1: procedure OVERLAP(a; b; bi ts) ▹ Returns the type of overlap

2: ua←
ðb0−a0Þ·ða1−a0Þ
ða1−a0Þ·ða1−a0Þ ▹ Eq. (10)

3: ub←
ða0−b0Þ·ðb1−b0Þ
ðb1−b0Þ·ðb1−b0Þ ▹ Eq. (11)

4: ua0←dbitsðua;0Þ ¼ 0 ▹ ua can be considered 0

5: ub0←dbitsðub;0Þ ¼ 0 ▹ ub can be considered 0

6: ua1←dbitsðua;1Þ ¼ 0 ▹ ua can be considered 1

7: ub1←dbitsðub;1Þ ¼ 0 ▹ ub can be considered 1

8: uaWithin←ð¬ua0Þ ∧ ð0 < ua ∧ ua < 1Þ ∧ ð¬ua1Þ ▹ ua ∈ ð0;1Þ

9: ubWithin←ð¬ub0Þ ∧ ð0 < ub ∧ ub < 1Þ ∧ ð¬ub1Þ ▹ ua ∈ ð0;1Þ

10: if uaWithin ∧ ubWithin then return X overlap ▹ Fig. 6(e)

11: if ua0 ∧ ub0 then return V overlap ▹ Fig. 6(h)

12: if ubWithin then return T overlap with b ▹ Fig. 6(f)

13: if uaWithin then return T overlap with a ▹ Fig. 6(g)

14: return No intersection ▹ Non-overlapping parallel segments
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3 General Polygonal Chain Intersection Algorithm

As said previously, the GPCI algorithm follows a sweep line (SL) strategy.12 It introduces
the use of the GMC that generalizes the algorithms defined by the Monotone Chain
Intersection 13 and the PCI,5 allowing to use it with any class of polygons, like the ones presented
in Fig. 5.

An SL can be represented as a vertical line that moves horizontally on a plane. The SL moves
from the left side of the plane to the right side, in a quantified process. It will only visit the
x positions where there is an GMC vertex or where an intersection is detected. In the present
algorithm, every GMC has a token. At the beginning, the token is associated with the first vertex
of the GMC. When the SL reaches a vertex in one GMC, the token is passed to the following
vertex in the same GMC.

The vertices can have one of the following types.

• Leftmost: the first and minimum vertex in a GMC.

• Rightmost: the last and maximum vertex in a GMC.

• Internal: any other vertex in the GMC.

• Intersection: a vertex that is in the intersection between two or more GMCs.

• Rightmost intersection: a rightmost vertex in one or more GMCs it belongs that is also an
intersection. This case is needed as the segments are considered half-open.

The type of a vertex can evolve as the algorithm progresses, starting with one of the first
three types.

All the GMCs are stored in the active chain list (ACL). The ACL indicate the next point in the
GMC that will be visited by the SL. To optimize the process, a second list is used, the sweeping
chain list (SCL). This list stores the GMCs that intersect with the SL at the present x position.

The algorithm uses the following data types.

• Point: represents a 2D point with the x and y coordinates.

• Polygon: a circular list of points representing a polygon.

• Vertex (v): contains the polygon point, its type, and a list with the GMCs with which it
belongs.

• GMC: It is a list of vertex elements. The GMC includes a field indicating the polygon with
which it belongs and the token.

• ACL: It is a list of GMCs.

• SCL: It is also a list of GMCs.

The algorithm has two main processes: the determination of the GMCs and the intersections
determination. This are described in the following sections.

3.1 General Monotone Polygonal Chains Determination Algorithm

The first step of the algorithm is determined the GMCs of every polygon and storeed them in the
ACL. This will be used as the starting point of the GMC, as presented in Algorithm 4. The
algorithm can be used for any type of polygon (convex or complex). At least, two GMCs will
be generated per polygon.

First, notice that this algorithm ensures that all the chains have a monotone increase, as
defined by the <2D½bits� operator. Second, the first and last vertices of the different chains are
shared with other chains of the same polygon. This has to be taken into account to avoid
detecting these points as intersections.

To simplify things, the default type of a vertex is internal. When an GMC is added to the
ACL, the type of the first and last vertices (v0 and vn−1) of the GMC are updated to leftmost and
rightmost types, respectively, and the token is initialized with the v0 handle. Finally, the GMC
gets the present polygon handle, to manage the GMCs sharing of vertices from the same poly-
gon. The algorithm will consider two leftmost or two rightmost vertices that are close an inter-
section only if they belong to different polygons.
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Algorithm 4 GMC determination algorithm

1: procedure GMCDETERMINATION(polygon; ACL; bi ts) ▹ Determines the GMCs of the polygon and stores
them in the ACL

2: pmin←min2DðpolygonÞ ▹ The minimum point is found using the <2D½bits� operator

3: p−1←pmin

4: idx←0

5: gmc← new GMC ▹ create a new GMC

6: add pmin to back gmc ▹ Append to the end of the GMC

7: direct ion←increase

8: for p i←polygon:af ter ðpminÞ do ▹ Loop over the polygon points,

9: ▹ starting with point just after pmin

10: if p−1 <2D½bits� p i then

11: if direct ion ¼ increase then

12: add p i to back gmc

13: else

14: add gmc to ACL

15: gmc← new GMC

16: add p−1 to back gmc

17: add p i to back gmc

18: direct ion←decrease

19: else

20: if direct ion ¼ decrease then

21: add p i to front gmc ▹ Insert at the beginning of the GMC

22: else

23: add gmc to ACL

24: gmc← new GMC

25: add p−1 to front gmc

26: add p i to front gmc

27: direct ion←increase

28: p−1←p i

29: if direct ion ¼ increase then

30: add gmc to ACL

31: gmc← new GMC

32: add p−1 to front gmc

33: add pmin to front gmc

34: add gmc to ACL
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3.2 General Polygonal Chain Intersection Description

In this section, we will describe the full GPCI process, step by step, following Fig. 8 sequence.
The contents of the state variables for the firsts steps and the last are explicitly indicated in
Table 1.

In the PCI algorithm, the slope is used to calculate the precedence of the MCs. In GPCI,
the sine of the angle (α) is used, to avoid the infinite value of the slope when there is a vertical
segment. For simplicity, we will refer to it as α.

Fig. 8 An example with three GMCs and the GPCI algorithm evolution. The black dots are GMC
vertices, yellow ones are intersections that the SL is scanning, whereas the red are the intersec-
tions found.

Table 1 GPCI state variables for steps 1 to 5 and the last (15), the ∧ operator indicates the inter-
section calculation in this case.

1 2 3 4 5 15

X 0 1 1 1.6 2 8

Vertex v ð1;0Þ v ð2;0Þ v ð3;0Þ i1 v ð2;1Þ v ð3;2Þ

Token v ð1;1Þ i1 v ð3;1Þ
v ð1;1Þ
v ð2;1Þ

v ð2;1Þ ∅

ACL[0] gmc1 gmc2 gmc3 gmc1 gmc1 gmc3

SCL gmc1
gmc2
gmc1

gmc3
gmc2
gmc1

gmc3
gmc1
gmc2

gmc3
gmc1
gmc2

gmc3

Checks gmc2 ∧ gmc1 gmc2 ∧ gmc3 gmc1 ∧ gmc3 gmc2 ∧ gmc1

Intersection i1 i2

Chains
gmc1
gmc2

gmc1
gmc3
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1. The first step can be seen in the second plot of Fig. 8. The SL starts with x value 0. This is
where the leftmost vertex of the first GMC in the ACL (gmc1) is placed. The vertex vð1;0Þ
(where the first subindex is the GMC and the second the associated vertex index)
becomes active, and token to the next vertex of the current GMC, which is vertex
vð1;1Þ. Afterward, the gmc1 is stored in the SCL. As there are no other GMC in the
SCL, no intersection is considered.

2. The ACL is sorted taking into account the tokens positions [vð1;1Þ, vð2;0Þ, vð3;0Þ]. The SL
moves to gmc2. The token is passed to vð2;1Þ. The gmc2 is stored in the SCL. As there are
two GMCs, a possible intersection with the upper GMC (gmc1) is checked. In the second
plot of Fig. 8, it can be seen that the segments associated with the present SL position
intersect in i1. This point will be added as a new vertex to both gmc1 and gmc2, and the
token from vð1;1Þ, vð2;1Þ will be passed back to i1.

3. The SL moves to the next GMC in the ACL, in this case, the gmc3. The token is passed to
vð3;1Þ. The gmc3 is stored in the SCL. There are three GMCs, but only gmc2 is a nearest
neighbor. For this reason, only the possible intersection between gmc3 and gmc2 is
checked with a negative result, as the segments associated with the present SL position
do not intersect.

4. The SL moves to gmc1, as it is the GMC that has the highest α at the intersection i1. Also,
all the GMCs that intersect pass the token to the following vertex [in this case vð1;1Þ and
vð2;1Þ]. The segments that start in the point i1 are analyzed (in this case only the ones
associated with gmc1 and gmc2). The segment with the highest α is checked with the
upper GMC, and the one with the lowest α is checked with the lower GMC. In this case,
only the gmc1 segment and the gmc3 one are checked, which do not intersect.

5. The SL continues to gmc2, on the vertex vð2;1Þ. The token is passed to vð2;2Þ. An inter-
section between gmc1 and gmc2 is checked (upper GMCs), but none is found.

6. The SL continues to gmc1, on the vertex vð1;1Þ. The token is passed to vð1;2Þ. The
intersections with gmc3 and gmc2 are checked (upper and lower GMCs). The intersection
i2 is found. It is added to gmc1 and gmc3. The tokens are brought to i2 for both
GMCs.

7. The SL continues on gmc1, on the intersection i2, as it has the segment with the highest α.
The token is passed to the following vertices in the GMCs [vð1;2Þ and vð3;1Þ]. As there is
no upper GMC over i2, only the intersection between gmc3 and gmc2 is checked.
Although the segments intersect in the final points, it is not taken into account, as the
segments are considered half-open.

8. The SL continues on gmc1, on the vertex vð1;2Þ. The token is passed to vð1;3Þ. As there
is no upper GMC, only the intersection with gmc3 is checked, giving a negative
result.

9. The SL continues to gmc2, on the vertex vð2;2Þ. The token is passed to vð2;3Þ. An inter-
section is found with gmc3 (i3) and a second with gmc1 (i4). The tokens are passed from
vð2;2Þ and vð3;1Þ back to i3 and to i4 from vð1;3Þ.

10. The SL continues on gmc2, on the intersection i3. The token is passed to vð3;2Þ and i4.
No intersection with gmc1 is found, as the gmc2 segment ends on i4.

11. The SL continues on gmc2, on the intersection i4. The token is passed to vð2;3Þ and vð1;3Þ.
No intersection with is found.

12. And following. The SL continues scanning all the rightmost vertices, finding no inter-
section. Once done, the present GMC is removed from the SCL and the ACL.

The different steps of the algorithm are detailed in the following section.

3.3 General Polygonal Chain Intersection Algorithm

The full GPCI is resumed in Algorithm 5. It is based on the previous description.
Notice that the proposed implementation of the GPCI (Algorithm 3.3) forces the token

to be in the following vertex of the GMC. The different steps are detailed in the following
sections.
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Algorithm 5 GPCI algorithm

1: procedure GPCI(ACL) ▹ Determines the intersection between the GMCs

2: while ACL is not empty do

3: sort the GMCs in ACL

4: gmca← ACL[0]

5: v front←gmca½token�
6: advance the token in gmca

7: switch v front:type do

8: case Leftmost

9: add gmca in SCL

10: sort SCL at v front point

11: find intersection between gmca and upper GMC

12: find intersection between gmca and lower GMC

13: case Internal

14: sort SCL at v front point

15: find intersection between gmca and upper GMC

16: find intersection between gmca and lower GMC

17: case Rightmost

18: sort SCL at v front point

19: find intersection between gmca and upper GMC

20: find intersection between gmca and lower GMC

21: find intersection between gmca’s upper and lower GMC

22: remove gmca from SCL

23: remove gmca from ACL

24: case Rightmost intersection

25: mcs← v front chains

26: sort the mcs chains by the segment gradient

27: gmcmax← GMC from mcs with maximum segment gradient

28: gmcmin← GMC from mcs with minimum segment gradient

29: find intersection between gmcmax and upper GMC

30: find intersection between gmcmin and lower GMC

31: if gmcmax ¼ gmca ∨ gmcmin ¼ gmca then

32: find intersection between gmca’s upper and lower GMC

33: remove gmca from SCL

34: remove gmca from ACL

35: case Intersection

36: mcs← v front chains

37: sort the mcs chains by the segment gradient

38: gmcmax← GMC from mcs with maximum segment gradient

39: gmcmin← GMC from mcs with minimum segment gradient

40: find intersection between gmcmax and upper GMC

41: find intersection between gmcmin and lower GMC

42: return inter sec t ions
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3.4 ACL and SCL Sorting

The SL displaces from the leftmost vertex to the rightmost one. This process is done in a quan-
tified manner, moving from one vertex, or intersection to another of the different GMCs. In the
PCI algorithm, once all the GMCs of the different polygons have been added to the ACL, it is
sorted by the x value of the first vertex on every GMC. The first element would be the one that
has the leftmost x value. Also the type of vertex is used, making the left most go before. In the
example with three GMCs shown in Fig. 8, it can be seen that a vertical segment has two vertices
at the same x, requiring a modification to the algorithm.

To solve this issue, the GPCI uses the y for the sorting, having preference the ones with lower
value. Also the rightmost intersection type is taken into account, as it shall have precedence over
the rightmost type. These aspects have to be taken into account while the ACL is sorted,
as it indicates the following vertex/intersection where the SL shall stop. For this purpose, a new
less than (<ACL) operator has been defined. It is described in Algorithm 6. As said, it uses not
only the position of the right-hand side (RHS) and left-hand side (LHS) vertices, but also
their type.

The SL makes also a scan in the y direction, starting from the upper GMC in the present SL
x position. The SCL is used for this purpose, as it stores the GMCs that are active on the present SL
position. As in the PCI algorithm, the SCL is sorted by the y position in the present x, and the angle
α of the segment associated with the present position. In case of vertical segments, the y value is not
determined. For this reason, two modifications have been made, fixing the y on vertical segments
to its lowest y (remember that segments are half-open), and adding to the sorting of the SCL the
ending vertex of the present segment. The intersections are checked between the GMC of the
present vertex or the GMCs of the present intersection and the upper and lower one. The SCL
sorting uses a different less than operator (<SCL). It is described in Algorithm 7.

The operator assumes that the GMC object is able to determine the y and sine of α at the
present x position (gmc½x�:y andmc½x�:sine, respectively). Also in case two segments are vertical

Algorithm 6 <ACL algorithm

1: procedure <ACL ðvrhs; v lhsÞ ▹ RHS and LHS vertex objects

2: if v lhs:x < vrhs:x then return t rue

3: if vrhs:x < v lhs:x then return f alse

4: if v lhs:y < vrhs:y then return t rue

5: if vrhs:y < v lhs:y then return f alse

6: if v lhs:type ¼ Leftmost ∧ vrhs:type ≠ Leftmost then return t rue

7: if vrhs:type ¼ Leftmost ∧ v lhs:type ≠ Leftmost then return f alse

8: if v lhs:type ¼ Rightmost intersection ∧ vrhs:type ≠ Rightmost intersection then return t rue

9: if vrhs:type ¼ Rightmost intersection ∧ vlhs:type ≠ Rightmost intersection then return f alse

10: if vlhs:type ¼ Rightmost ∧ vrhs:type ≠ Rightmost then return t rue

11: if vrhs:type ¼ Rightmost ∧ v lhs:type ≠ Rightmost then return f alse

12: if vlhs:type ¼ Intersection ∧ vrhs:type ≠ Intersection then return t rue

13: if vrhs:type ¼ Intersection ∧ v lhs:type ≠ Intersection then return f alse

14: if vlhs:type ¼ Internal ∧ vrhs:type ≠ Internal then return t rue

15: if vrhs:type ¼ Internal ∧ vlhs:type ≠ Internal then return f alse

16: return f alse
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and start at the same vertex, they are ordered starting from the one that goes further down, ensur-
ing that no intersection is lost.

To ensure the consistency of the sine the operator ≮d½bits� is also used to check the verticality
of the segment:

EQ-TARGET;temp:intralink-;e012;116;443sine ¼
�
1; if û:x≮d½bits�0 ∧ 0≮d½bits�û:x
û:y; otherwise

; (12)

where both components of the segment unit vector (û) are used.

3.5 Finding Intersections

To find the intersections between GMCs, three different scenarios are considered as follows.

• General case. The present point is not a rightmost point in the GMC it belongs, and it is
checked against a second GMC (Algorithm 8).

• Rightmost general case. The present point is the rightmost vertex of the present GMC and
is checked against a segment in a second GMC (Algorithm 9).

• Rightmost close case. The rightmost vertex of the present GMC is close enough to the
rightmost vertex of the second GMC segment to be considered the same vertex. In this
case, the half-open segment rule is broken to avoid loosing the intersection (Algorithm 10).

As described in Algorithm 8, the intersections have always to come from the present GMC.
For this reason, the T intersection that is the starting point of the second GMC and the same case
for the T overlap are not considered. If any of these intersections is detected, it shall be con-
sidered an error.

Notice also the behaviour for an X intersection. There are pathological cases where the
intersection vertex is inside the segment ss, but the operator <2D indicates that it is just after
the token vertex vts. When this is found, the token vertex is substituted by the detected
intersection.

In Algorithm 9, only the rightmost vertex of the present GMC is available. For this reason,
a trick is used to detect the intersection, using the token vertex in the second GMC as the second
vertex of the present segment. With this configuration, only the T overlap with s is feasible.
Any other result shall be considered an error.

This three procedures (Algorithms 8 to 10) should be called depending on the vertex type,
as indicated previously.

Algorithm 7 <SCL algorithm

1: procedure <SCL ðgmcrhs; gmclhs; xÞ ▹ RHS and LHS GMCs objects, the position x

2: if gmcrhs½x �:y < gmclhs½x �:y then return true

3: if gmclhs ½x �:y < gmcrhs½x �:y then return false

4: if gmcrhs½x �:sine < gmclhs ½x �: sine then return true

5: if gmclhs ½x �:sine < gmcrhs ½x �: sine then return false

6: if gmclhs ½token�:x < gmcrhs ½token�:x then return true

7: if gmcrhs½token�:x < gmclhs ½token�:x then return false

8: if gmclhs ½token�:y < gmcrhs ½token�:y then return true

9: if gmcrhs½token�:y < gmclhs ½token�:y then return false

10: return false
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Algorithm 8 General intersection case

1: procedure generalInter sec t ionðgmcp; gmcs; inter sec t ionsÞ ▹ Present and second GMCs, and
the intersections list

2: vp←gmcp ½token − 1�

3: vs←gmcs ½token − 1�

4: vtp←gmcp ½token�

5: vts←gmcs ½token�

6: sp←segmentðvp; v tpÞ

7: ss←segmentðvs; v tsÞ;

8: inter sec t ion←inter sec tðsp; ssÞ

9: switch inter sec t ion:type do

10: case No intersection

11: return

12: case V intersection ∨ V overlap ▹ Figs. 6(d), 6(h)

13: vs:type← Intersection

14: add gmcp to vs:chains

15: substitute vp by vs in gmcp

16: if gmcp and gmcs are from different polygons then

17: add vs to inter sec t ions

18: case X intersection ▹ Fig. 6(a)

19: create v i

20: vi :point←inter sec t ion:point

21: vi :type← intersection

22: add gmcp to v i :chains

23: add gmcs to v i :chains

24: insert vi in gmcp

25: if v i <2D vts then

26: insert v i in gmcs

27: else

28: substitute vts by vi in gmcs

29: add v i to inter sec t ions

30: caseT intersection with s ∨ T overlap with s ▹ Figs. 6(b), 6(f)

31: vp:type← Intersection

32: add gmcs to vp:chains

33: insert vp in gmcs

34: add vp to inter sec t ions

35: return ▹ The definition of the GMC makes the cases c, e and g in Fig. 6 not valid
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4 Results

The GPCI algorithm has been compared with the naive one (pairwise checking the segments) on
two platforms: MacOS and Linux. Both algorithms have been programmed in C++ using the
same intersection algorithm (2) and have been run in the same program sequentially. The number
of intersections detected is the same for the GPCI and naive algorithms. The points are coincident
within the precision margin. The algorithm implementations make extensive use of the Standard
Template Library (STL). In both cases, the native compiler has been used: clang in MacOS and
gcc in linux. The optimization flag “–O3” has been used also in both platforms. The hardware
is different, so we are going to focus on the ratios between both algorithms running times.

Algorithm 9 Rightmost general case

1: procedure r ightmostInter sec t ionðgmcp; gmcs; inter sec t ionsÞ ▹ Present and second GMCs, and
the intersections list

2: vp←gmcp ½token − 1�

3: vs←gmcs ½token − 1�

4: vts←gmcs ½token� sp←segmentðvp; v tsÞ ▹ There are no more points in the present GMC. For this
reason, we use the following vertex from the second GMC (vts) and we only consider three cases.

5: ss←segmentðvs; v tsÞ

6: inter sec t ion←inter sec tðsp; ssÞ;

7: switch inter sec t ion:type

8: case No intersection

9: return

10: case T overlap with s ▹ Fig. 6 (f)

11: vp:type← Intersection

12: add gmcs to vp:chains

13: insert vp in gmcs

14: add vp to inter sec t ions

15: return ▹ The cases a, b, c, d, e, g and h in Fig. 6 are not valid

Algorithm 10 Rightmost close case

1: procedure r ightmostsCloseðgmcp; gmcs; inter sec t ionsÞ ▹ Present and second GMCs, and the
intersections list

2: vs←gmcs ½token�

3: vs:type← Rightmost Intersection

4: add gmcp to vs:chains

5: substitute vp by vs in gmcp

6: add vs to inter sec t ions

7: return
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The results are similar, as seen in Table 2. For this reason, the following values shown will be the
MacOS ones.

In the test polygons, the algorithm finds the intersections for a complex scenario like the one
shown in Fig. 9. In this case, the number of polygon segments is 52, whereas the number of
chains is 26, and there are 60 intersections. It is a worse case scenario for the GPCI, and the naive
algorithm has slightly better results: 1.0 and 0.7 ms, respectively. A profile analysis shows that
this difference mainly comes from the time required by the sorting processes that are done on
every step on the ACL and the SCL.

Table 2 GPCI results compared with naive algorithm ones.

OS Algorithm
Polygons

(Fig. 9) (ms)
No intersection
(Fig. 2) (ms)

Collision
(Fig. 10) (ms)

MacOS Naive 0.7 0.93 0.99

GPCI 1.0 0.16 0.28

Linux Naive 0.6 0.99 1.02

GPCI 0.9 0.22 0.35

Fig. 9 Intersections calculated for 10 complex polygons.

Fig. 10 Intersections calculated in a collision configuration for the MIRADAS probe-arms. In the
inset there is a detail of the intersection between probe-arms 9 and 10, and the error limits (dashed
square). The results is that two intersections are considered one.
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To validate the algorithm, a Fuzz test14 has been done. Random configurations for the
MIRADAS MXS have been generated, and the results compared. In this case (e.g., Fig. 2),
the number of segments is 72 and the number of chains 24, which helps the GPCI.

In all the cases tested, the calculation times are better for the GPCI algorithm compared to the
naive one. If there is no intersection (Fig. 2), the time needed by the GPCI is 0.16 ms, whereas
the naive one needs around 0.93 ms. In the case presented in Fig. 10, the number of intersections
is 22, being the collision between five probes (3 to 7) an unlikely situation. In this extreme case,
these values are 0.28 ms for the GPCI, whereas the naive is similar, 0.99 ms.

The Fuzz test also showed intersections like the one between the arms 9 and 10 (zoomed in
Fig. 10 inset). The determination of the number of intersections depends on the required pre-
cision. In this case, two intersection points are considered one, as both are inside the vertex
error limits (showed as a dashed square). The use of Eq. (6) ensures that the points determined
are coherent with the precision required, ensuring the same results for the GPCI and naive
algorithms.

5 Conclusions

The GPCI algorithm has been presented. It allows to calculate intersection between multiple
complex polygons. Its usage to calculate the collisions between the probes of an MXS has been
presented. The different steps have been described, and improvements added to the PCI to allow
its usage in complex polygons provided. We can conclude that GPCI performs best when the
number of segments per GMC is over 2. On the contrary, in a scenario where this ratio is lower,
the performance of the naive solution is slightly better. In the particular case of the robotic arms
of MIRADAS, where the number of segments per chain is equal to or larger than this threshold,
the performance improvement using the GPCI has been found to be between 3 and 4 times better,
depending on the number of intersections.
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