Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer’s Disease

Annachiara Gandini, Ana Elisa Gonçalves, Silvia Strocchi, Claudia Albertini, Jana Janočková, Anna Tramarin, Daniela Grifoni, Eleonora Poeta, Ondrej Soukup, Diego Muñoz-Torralba, Barbara Monti, Raimon Sabaté, Manuela Bartolini, Giuseppe Legname, and Maria Laura Bolognesi

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia and one of the most important unmet medical needs worldwide. In 2020, over 50 million people were living with dementia globally, a figure set to increase to 152 million by 2050.1 Importantly, the most alarming data is the lack of truly disease-modifying treatments in the clinic. Actually, the year 2021 set a milestone for the field, with the approval of aducanumab by the Food and Drug Administration (FDA)—the first new medication in 18 years. Aducanumab, which is a monoclonal antibody (mAb) targeting amyloid-β (Aβ), has been approved for the treatment of patients with mild to moderate AD. However, its approval remains controversial, due to ambiguous clinical results on its efficacy and the refusal of marketing authorization by the European Medicines Agency (EMA) in December 2021. Thus, even though its approval has raised hopes for AD patients, postapproval trials will be key to truly understand its clinical benefits.2 Notably, two further anti-amyloid mAbs, lecanemab and donanemab, have been granted breakthrough therapy designation by the FDA.3

The aducanumab story, unfortunately, indicates that it is still difficult to translate promising preclinical data into clinical efficacy.4 Probably, the removal of plaques per se is neither sufficient to clearly improve brain function and to boost cognition nor to delay AD progression in AD patients.5 A possible explanation is that a greater insight into the interrelationship between Aβ and Tau is needed to understand AD pathogenesis and explain the failure of previous therapeutic strategies.5 Aβ and Tau aggregates are well-defined pathological hallmarks and validated targets in AD, but how they interact has been largely unknown. There is accumulating evidence that Aβ and Tau proteins may act synergistically to cause synaptic dysfunction, neurofibrillary tangle-mediated neuronal loss, and behavioral deficits. A recent publication has shed light on how Aβ and Tau might cooperate in causing AD phenotypes.6 Aβ seems to initiate the neuroinflammation...
process, making synapses vulnerable to Tau-associated molecular changes, such as the loss of synaptic proteins. Thus, although Tau may be sufficient to induce neuroinflammation, Aβ plaques could induce inflammatory changes that exacerbate degeneration when Tau is present.6 Another recent seminal study has revealed how Aβ and Tau synergize to damage the functional integrity of neural circuits and provided a likely explanation for the disappointing results from anti-Aβ clinical trials.7 Based on this perspective, the development of multitarget-directed ligands (MTDLs)8 able to target both Aβ and Tau aggregation processes, might be an option to pursue.9 In recent years, few AD drug discovery programs have focused on dual Aβ/Tau inhibitors, able to interfere with protein–protein interactions (PPIs), to avoid propagation, or to prevent fibril formation. However, not many of these inhibitors were purposely designed to target Aβ and Tau aggregation simultaneously; most of the reports focused on acetylcholinesterase (AChE) inhibitors where Aβ and Tau antiaggregation was an activity designed-in by random screening. Indeed, the rationale modulation of PPIs by small molecules has been considered quite challenging for several reasons: lack of druggable active sites or pockets; paucity of high-resolution structural information on amyloid aggregates; and multiple electrostatic, polar, and hydrophobic interactions across a large interface.10 To overcome these issues, knowledge-centric ligand-based strategies may be of help. We noticed that several antiaggregating compounds share a symmetrical bifunctional structure, consisting of two identical amyloid protein recognition motifs (PRMs) joined by an appropriate spacer (Figure 1).11 These symmetrical compounds have been described as bivalent compounds or “palindromic compounds”,12 as their structure can be read in the same way in the forward or reverse direction. Considering

Figure 1. Examples of known palindromic antiaggregating compounds.

Figure 2. Design strategy and general structure of bivalent derivatives 1–24. Two 2,4-thiazolidinedione protein recognition motifs (PRMs) (25–28) were connected via an aromatic linker (a–f).
the oligomeric and repetitive structure of fibrillar aggregates, bivalent compounds have been suggested to interact simultaneously with the two binding surfaces. Thus, bivalent ligands should cross-link fibrils and perturb the aggregation process.

In light of this, we focused on a bivalent strategy to identify novel MTDLs able to inhibit both Aβ and Tau aggregation processes. Herein, we describe the design and synthesis of a library of bivalent 2,4-thiazolidinedione (TZD, \(25\)) derivatives (1–24), together with the in vitro, in cellulo, and in vivo evaluation of their inhibitory activity against the aggregation of Aβ and Tau proteins.

RESULTS AND DISCUSSION

Design. The design strategy for bivalent compounds 1–24 is illustrated in Figure 2. The selection of the TZD moiety \(25\) as PRM was motivated by several observations. Thanks to the presence of two H-bond acceptor and one H-bond donor groups, TZD and rhodanine scaffolds (5-arylidene substituted) have been shown by us and others to selectively recognize amyloid fibrillar structures and display promising antiaggregating properties.\(^{13,14}\) Interestingly, molecular dynamics simulations revealed critical interactions, which account for the tight binding of TZD to the Tau hexapeptide core fragment and allow disruption of the ordered structure of oligomers.\(^{15}\) Considering the role of electrostatic interactions within the architecture of amyloid fibrils,\(^{16}\) we decorated the TZD scaffold with different ionizable groups. Thus, a carboxylic acid and a secondary amine were selected as substituents for the nitrogen of the TZD scaffold (27 and 28). To study the impact of this functionalization on the antiaggregating activity, the corresponding nonionizable ester derivative 26 was also selected.

After the selection of the proper PRMs, we turned our attention to suitable linkers. Several antiaggregating bivalent compounds share a common chemical structure consisting of...
planar, π-conjugated rings able to provide van der Waals and π−π stacking interactions.17,18 Thus, phenyl, biphenyl, diphenylmethane, carbazole, fluorene, and bisthiophene linkers were selected to evaluate the importance of the conjugation system for the antiaggregating activity of the bivalent compounds. Importantly, (bi)-phenyl,19 carbazole, and fluorene derivatives have been reported as inhibitors of Aβ aggregation,20,21 while bisthiophene and pentameric thiophene derivatives are well-known Aβ and Tau fluorescent probes.22−24 The combination of four different TZD-based PRMs with six different aromatic linkers, led to the development of a combinatorial library of 24 bivalent compounds ($1−24$, see Scheme 1 for individual structures).

Chemistry. Target compounds $1−24$ were assembled by condensing dialdehyde linkers with two PRMs via an optimized version of the Knoevenagel reaction (Scheme 1).14 The procedure is green, catalyzed by ethylenediamine diacetate (EDDA) under solvent-free conditions and microwave irradiation (MWI) at 100 °C, for 45 min. In detail, the unsubstituted-(1−6), ethyl ester-(7−12), and N-dimethylamino-derivatives (19−24) were synthesized through the condensation of TZD derivatives 25, 26, and 28 (3 equiv) with aromatic dialdehydes 29−34 (1 equiv), in the presence of EDDA (0.5 equiv). The bivalent derivatives $1−12$ and $19−24$ were obtained with yields varying from 18 to 75%. For the synthesis of carboxyl-derivatives (13−18), the Knoevenagel reaction was followed by acid-catalyzed hydrolysis of the corresponding ester derivatives (Scheme 1). Thus, esters $7−12$ were refluxed in acetic acid and concentrated HCl overnight, yielding the carboxylic acids $13−18$ in good yields (30−86%).

The synthesis of N-substituted TZD intermediates was also developed. Compound 26 was obtained in good yield (87%, Scheme 2) upon N-alkylation of 25 with ethyl-2-bromoacetate (35), under MWI, in acetone at 100 °C for 45 min. The N-alkylation protocol for the synthesis of 28 required the use of a stronger base, i.e., Cs$_2$CO$_3$ instead of K$_2$CO$_3$ (53% yield, Scheme 2).

While dialdehyde intermediates 29 and 30 were commercially available, dialdehydes 31−34 were synthesized, as reported in Scheme 3. Synthesis of 31 was achieved through a two-step sequence (Scheme 3).25 In the first step, dibromomethylation of diphenylmethane 37 with formaldehyde and 33 wt % solution of HBr in acetic acid gave intermediate bis[4-(bromomethyl)phenyl]methane 38 (20%). The second step was a Sommelet reaction in which 38 was converted to 31, using hexamethylenetramine (HMTA), with a moderate yield (42%).26 The synthesis of dialdehydes 32−34 was achieved in moderate to good yields (45−58%) through direct lithiation of the corresponding dibromo derivatives 39−41 and subsequent formylation (Scheme 3).27 To the best of our knowledge, this is the first case in which this

Scheme 2. Synthetic Procedure for the Synthesis of N-Substituted TZD Derivatives 26 and 28

```
25 + 35 → 26 (87%)
```

Scheme 3. Synthetic Procedure for the Synthesis of Dialdehydes 31−34

```
37 → 38 (20%) → 31 (42%)
```

*Reagents and Conditions: (a) K$_2$CO$_3$, acetone, 100 °C, 45 min MWI and (b) Cs$_2$CO$_3$, acetone, 100 °C, 45 min MWI.

Reagents and conditions: (a) formaldehyde, 33 wt % HBr in AcOH, reflux, 12 h; (b) HMTA, CHCl$_3$, reflux, 6 h; and (c) AcOH, reflux, 6 h; (d) nBuLi, DMF, THF dry, −78 °C to rt, 3 h.
reaction is exploited for the synthesis of 9,9-dimethylfluorene and bisthiophene dialdehydes.

All of the final compounds 1–24 were characterized in terms of identity and purity (1H- and/or 13C NMR, LC-MS, HRMS), and collected data are reported in the Experimental Section and SI.

Aβ1-42 and Tau Antiaggregating Activity. As it would have been labor-intensive and expensive to screen such a number of compounds in two separate antiaggregating studies using recombinant Aβ and Tau, we turned our attention to a simple model of protein aggregation, namely, the intact Escherichia coli (E. coli) cells overexpressing Aβ and Tau proteins.28,29 Building on the fact that inclusion bodies produced by overexpression of these proteins in E. coli mainly consist of fibrillar aggregates, this simple screening method uses bacteria as an in vivo reservoir for tracking the inhibition of amyloid-type protein aggregation in real time, using the amyloid dye thioflavin S (ThS). Of note, this screening has already been used for the evaluation of libraries of antiaggregating compounds.24–38

All bivalent derivatives were tested at 10 μM concentration, and the obtained results are reported in Table 1. Synthetic huprine Y (a poor inhibitor of Aβ42 and Tau aggregation),33 HUP7TH (a dual Aβ42/Tau inhibitor),39 and natural antraquinone rhein33 were used as control compounds (Figure S1). Generally, derivatives featuring a phenyl, biphenyl, or diphenylmethylene linker showed poor antiaggregating activity, with percentages of inhibition lower than 30% for both proteins. Only the phenyl derivative 7 resulted moderately active, showing 40% inhibition for Aβ42 aggregation and 30% for Tau. On the other side, carbazole and 9,9-dimethylfluorene derivatives showed more promising results. Carbazoles 10 and 16, carrying, respectively, an ester or a carboxylic acid appendage, showed moderate activity (% inhibition between 30 and 40%), while the N,N-dimethylaminoethyl derivative 22 resulted the most potent compound of the series. Compound 22 showed 74.0% inhibition of Aβ42 aggregation and 66.1% inhibition of Tau aggregation. 9,9-dimethylfluorene derivatives 17 (acetic acid) and 23 (N,N-dimethylaminoethyl) showed an interesting activity on both aggregation processes, with % of inhibition higher than 50 and 40%, respectively.

Interestingly, a different behavior was observed for the bisthiophene derivatives. Indeed, while all the other analogues showed almost comparable activity in inhibiting the aggregation of both Aβ42 and Tau proteins, bisthiophene derivatives showed selectivity toward Aβ42, compared to Tau. This selectivity is exemplified by compounds 6 and 18. Indeed, both resulted poor inhibitors of Tau aggregation (inhibition < 20%), while showing interesting potency toward Aβ42, with a remarkable 65.6% inhibition shown by 18.

Looking at the most active compounds (7, 10, 16–18, 22, and 23), it appears that the decoration of the PRM had an impact on the antiaggregating profile of these compounds.

Table 1. Inhibitory Activity of Bivalent Derivatives 1–24 toward Aβ42 and Tau Aggregation, Together with Neurotoxicity Data on Differentiated CGNs (24 h Treatment)

<table>
<thead>
<tr>
<th>cmp</th>
<th>linker</th>
<th>R</th>
<th>% inhibition Aβ42 aggregation @ 10 μM</th>
<th>% inhibition Tau aggregation @ 10 μM</th>
<th>% survival neurotoxicity @ 10 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>phenyl</td>
<td>-H</td>
<td>25.4 ± 1.9</td>
<td>19.4 ± 3.6</td>
<td>77.6 ± 6.1</td>
</tr>
<tr>
<td>2</td>
<td>biphenyl</td>
<td>-H</td>
<td>20.2 ± 2.1</td>
<td>16.5 ± 3.1</td>
<td>81.3 ± 6.5</td>
</tr>
<tr>
<td>3</td>
<td>diphenylmethylene</td>
<td>-H</td>
<td>12.9 ± 3.4</td>
<td>5.2 ± 2.7</td>
<td>62.4 ± 9.6</td>
</tr>
<tr>
<td>4</td>
<td>carbazole</td>
<td>-H</td>
<td>24.7 ± 4.1</td>
<td>21.2 ± 2.6</td>
<td>73.4 ± 5.1</td>
</tr>
<tr>
<td>5</td>
<td>9,9-dimethylfluorene</td>
<td>-H</td>
<td>23.6 ± 2.6</td>
<td>14.8 ± 3.0</td>
<td>67.9 ± 5.4</td>
</tr>
<tr>
<td>6</td>
<td>bishiophene</td>
<td>-H</td>
<td>42.4 ± 4.5</td>
<td>19.4 ± 3.9</td>
<td>89.9 ± 1.2</td>
</tr>
<tr>
<td>7</td>
<td>phenyl</td>
<td>-CH₂COOCH₂CH₃</td>
<td>40.7 ± 4.4</td>
<td>30.6 ± 3.6</td>
<td>90.1 ± 2.1</td>
</tr>
<tr>
<td>8</td>
<td>biphenyl</td>
<td>-CH₂COOCH₂CH₃</td>
<td>14.3 ± 3.5</td>
<td>18.1 ± 3.2</td>
<td>87.2 ± 3.1</td>
</tr>
<tr>
<td>9</td>
<td>diphenylmethylene</td>
<td>-CH₂COOCH₂CH₃</td>
<td>14.5 ± 4.1</td>
<td>19.9 ± 3.6</td>
<td>88.7 ± 4.1</td>
</tr>
<tr>
<td>10</td>
<td>carbazole</td>
<td>-CH₂COOCH₂CH₃</td>
<td>31.9 ± 3.0</td>
<td>37.7 ± 4.1</td>
<td>84.2 ± 6.3</td>
</tr>
<tr>
<td>11</td>
<td>9,9-dimethylfluorene</td>
<td>-CH₂COOCH₂CH₃</td>
<td>17.5 ± 4.5</td>
<td>33.1 ± 4.5</td>
<td>85.8 ± 6.9</td>
</tr>
<tr>
<td>12</td>
<td>bishiophene</td>
<td>-CH₂COOCH₂CH₃</td>
<td>7.0 ± 3.7</td>
<td>9.2 ± 5.0</td>
<td>90.2 ± 2.1</td>
</tr>
<tr>
<td>13</td>
<td>phenyl</td>
<td>-CH₂COOH</td>
<td>16.1 ± 3.9</td>
<td>25.3 ± 4.2</td>
<td>82.3 ± 2.9</td>
</tr>
<tr>
<td>14</td>
<td>biphenyl</td>
<td>-CH₂COOH</td>
<td>35.1 ± 1.9</td>
<td>27.1 ± 2.5</td>
<td>89.0 ± 2.2</td>
</tr>
<tr>
<td>15</td>
<td>diphenylmethylene</td>
<td>-CH₂COOH</td>
<td>26.2 ± 1.9</td>
<td>3.8 ± 5.2</td>
<td>90.9 ± 1.5</td>
</tr>
<tr>
<td>16</td>
<td>carbazole</td>
<td>-CH₂COOH</td>
<td>32.1 ± 3.1</td>
<td>37.9 ± 3.5</td>
<td>90.0 ± 2.8</td>
</tr>
<tr>
<td>17</td>
<td>9,9-dimethylfluorene</td>
<td>-CH₂COOH</td>
<td>51.4 ± 2.7</td>
<td>55.6 ± 3.2</td>
<td>89.3 ± 2.3</td>
</tr>
<tr>
<td>18</td>
<td>bishiophene</td>
<td>-CH₂COOH</td>
<td>65.6 ± 3.3</td>
<td>15.8 ± 4.7</td>
<td>90.9 ± 3.1</td>
</tr>
<tr>
<td>19</td>
<td>phenyl</td>
<td>-CH₂CH₂N(CH₃)₂</td>
<td>8.1 ± 4.4</td>
<td>19.4 ± 3.6</td>
<td>89.4 ± 2.0</td>
</tr>
<tr>
<td>20</td>
<td>biphenyl</td>
<td>-CH₂CH₂N(CH₃)₂</td>
<td>26.4 ± 4.2</td>
<td>34.9 ± 1.9</td>
<td>91.1 ± 0.9</td>
</tr>
<tr>
<td>21</td>
<td>diphenylmethylene</td>
<td>-CH₂CH₂N(CH₃)₂</td>
<td>16.1 ± 3.8</td>
<td>38.7 ± 3.3</td>
<td>91.1 ± 1.5</td>
</tr>
<tr>
<td>22</td>
<td>carbazole</td>
<td>-CH₂CH₂N(CH₃)₂</td>
<td>74.0 ± 4.3</td>
<td>66.1 ± 3.9</td>
<td>94.3 ± 1.8</td>
</tr>
<tr>
<td>23</td>
<td>9,9-dimethylfluorene</td>
<td>-CH₂CH₂N(CH₃)₂</td>
<td>44.8 ± 4.7</td>
<td>41.9 ± 3.9</td>
<td>87.9 ± 3.4</td>
</tr>
<tr>
<td>24</td>
<td>bishiophene</td>
<td>-CH₂CH₂N(CH₃)₂</td>
<td>20.3 ± 4.8</td>
<td>17.3 ± 4.5</td>
<td>88.8 ± 2.3</td>
</tr>
<tr>
<td>Huprine Y</td>
<td>-</td>
<td></td>
<td>4.6 ± 2.3</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>HUP7TH</td>
<td>-</td>
<td></td>
<td>77.6 ± 1.5</td>
<td>69.5 ± 1.6</td>
<td>n.d.</td>
</tr>
<tr>
<td>Rhein</td>
<td>-</td>
<td></td>
<td>n.d.</td>
<td>39.2 ± 2.1</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

n.d. not determined.

"Inhibition of Aβ42 and Tau aggregation in intact E. coli cells upon treatment with a compound concentration of 10 μM. Values are expressed as the mean ± SEM of four independent experiments. "Viability of cerebellar granule neurons (CGNs) after 24 h of incubation with the test compound at a 10 μM concentration. The results are expressed as a percentage of healthy nuclei on the total nuclei counting number, after Hoechst staining, and are the mean ± SEM of three different experiments; n.d. not determined."
Indeed, the addition of both ionizable (compare 16–18 vs 4–6) and nonionizable (7 vs 1, 10 vs 4) moieties on the TZD fragment led to more potent compounds. The most striking effect was for carbazole 22, where the introduction of a protonatable group increased the activity from 24.7 and 21.2% (for unsubstituted 4) to 74.0 and 66.1%, respectively. Of note, although the most potent compounds have two groups that should be mostly ionized at physiological pH, they are effectively internalized within E. coli cells. Thus, it might be anticipated that permeation across the two-membrane bacterial cell envelope, which might have reduced their effective concentrations in E. coli and, hence, their activities, should not be an issue for these compounds.

Toxicity in Cerebellar Granule Neurons. In parallel with the evaluation of the antiaggregating potential, we assessed the neurotoxicity of all bivalent derivatives (1–24) on rat primary cultures of cerebellar granule neurons (CGNs), by healthy vs total nuclei counting after Hoechst staining. In this way, we aimed to remove potentially toxic compounds from consideration early in the screening process. CGNs were established a few decades ago, and since then have become one of the most useful in vitro models to study neuronal death.40 The compounds were tested at 10 μM concentration after 24 h treatment, and results are reported in Table 1.

Generally, all of the compounds were well tolerated, with 17 analogues out of 24 showing cell viability higher than 85%. Interestingly, the only four compounds (1, 3–5) showing some neurotoxic effect (cell viability < 80%), shared the unsubstituted TZD moiety. Thus, the addition of the appendage moiety on TZD seems favorable also in terms of potential neurotoxic effects.

Both the collected Aβ and Tau antiaggregating activities and neurotoxicity data were considered for compound progression. Particularly, requirements for further evaluation were (i) lack of neurotoxicity and (ii) inhibition of both Aβ and Tau aggregation higher than 30%. Thus, compounds 7, 10, 16,17, 22, and 23 progressed to the next assay.

Blood–Brain Barrier Permeability Prediction. One of the main problems in developing a CNS-active compound relies on the ability of such a compound to permeate the blood–brain barrier (BBB) at its therapeutic concentration. Thus, to reduce attrition in the development process, the evaluation of BBB penetration at a very early drug discovery stage is of crucial importance. In light of this, the ability of the previously selected compounds to cross the BBB was predicted by a parallel artificial membrane permeability assay (PAMPA)-BBB,41 a high-throughput technique widely used as an indicator of a molecule’s passive diffusion through the BBB. Six commercially available drugs were used to validate the assay. A good correlation between reported and experimentally described values were obtained (see Supporting Information, Table S1). Thus, in accordance with data from the literature, compounds presenting an effective permeability (Pe) > 4.0 × 10^-6 cm/s were classified as CNS permeable (CNS+). Based on this, the acetic acid derivatives 16 and 17 were classified as CNS-. However, as a very encouraging result, the ethyl esters 7 and 10, and the dimethylamino analogues 22 and 23 were predicted to passively diffuse across the BBB. Notably, 9,9-dimethylfluorene 23 showed a Pe value similar to those of standard AD drugs donepezil and rivastigmine (Table S1).

Interaction with Aβ- and Tau-Isolated Proteins. After assessing the potential of the compounds to cross the BBB, we wanted to investigate the ability of the two most active and BBB-permeable compounds, 22 and 23, to interfere with the Aβ42 and Tau aggregation process in vitro, using isolated peptides and previously developed/validated aggregation assays.42 These assays allow us to indirectly monitor fibril formation, thanks to changes in the emission intensity of the fluorescent dye ThT when aggregates are formed.42 The achievement of reproducible and trustable data requires the final amount of organic solvents, and solubility issues are carefully prechecked.43 Hence, to assess antiaggregation properties toward Aβ42, these aspects were investigated in dedicated solubility assays. The results showed that compound solubility in the assay condition was too limited to grant trustable results, thus preventing their evaluation on the commonly used ThT-based assay.

The interaction of a fluorescent compound with three-dimensionally organized Aβ42 fibrils may lead to a change in its fluorescent properties as a consequence of either a reduction of flexibility due to multiple-interaction points and/or of a change in compound–solvent interactions because of the insertion of the compound within fibril helices. Hence, a change in the spectral properties of a fluorescent compound potentially able to bind Aβ42 protofibrils/fibrils can be used as indirect proof that the two entities (amyloid and ligand) interact. This assay setup allows the use of a slightly higher amount of DMSO, which is sufficient to grant compound solubility, because addition of the tested compound to Aβ42 samples is performed when fibrillation has already occurred.

Thus, we recorded the emission spectra of compound 23 in the absence and presence of preaggregated Aβ42. While the excitation/emission maxima for the bound and unbound 23 did not significantly differ (i.e., λex = 374 nm; λem maximum = 473 nm), a strong hyperchromic effect upon binding was observed, thus providing a proof of the interaction between the compound and the aggregated protein (Figure 3).

Figure 3. Fluorescence emission spectra of 23 (0.375 μM) in Gly–NaOH buffer (50 mM, pH 8.5) in the absence (blue line) and presence (green line) of preaggregated Aβ42 (0.75 μM). [Aβ42]/[23] = 2/1. λex = 374 nm.
derivative 22, which prevented us to obtain reliable trends. Conversely, compound 23 showed a strong antiaggregating activity (51.8 ± 11.7% inhibition), resulting only slightly less potent than the known Tau inhibitor doxycycline (61.5 ± 0.8% inhibition) (Figure 4 and Table S2). Though, it was not able to significantly delay the oligomerization phase (lag phases in the absence and presence of the inhibitor only slightly differ) and some dye displacement might contribute to some extent to a lower fluorescent signal.

Taken collectively, the data from E. coli, PAMPA, neurotoxicity, and aggregation assays were considered encouraging enough to further explore the potential of our bivalent compounds 22 and 23 in an in vivo AD model.

Activity Profile in a Drosophila melanogaster Model of AD. Drosophila melanogaster is a powerful in vivo model for the initial screening of AD drug candidates. In the last years, several transgenic flies expressing human Aβ42 and Tau proteins have been developed, and they are now providing new insights into disease mechanisms, as well as assisting in the identification of novel AD drugs. Specifically, expression of the Arctic mutant (Glu22Gly) Aβ42 in Drosophila neural tissue favors oligomer formation and results in different symptoms reminiscent of AD, including defective locomotion and memory, as well as markedly reduced longevity. Moreover, fly brains display characteristic amyloid plaques and amyloid pathology. Based on the good correlation between Aβ aggregation and the severity of the various AD phenotypes, we used Arctic Aβ42Drosophila flies to preliminarily test the effect of our bivalent derivatives 22 and 23.

As longevity is a phenotype that can be rapidly measured in this in vivo AD model, we first assessed changes in Drosophila’s lifespan with and without treatment with 22 and 23 (20 μM). We screened different concentrations, from 10 to 100 μM, to assess the most effective dose. At the concentration of 20 μM, we obtained the best results in combination with a low toxicity rate. We again used as control the antibiotic doxycycline, which is capable of halting amyloid aggregation of several disease-associated proteins (including Aβ and Tau). Doxycycline was tested at 50 μM, a concentration used in similar previous experiments. As shown in Figure 5A, after 20 days, only 50% of Aβ42 flies were still alive. Importantly, treatment with both 22 and 23 resulted in an increase in longevity, being comparable to that of the reference compound doxycycline (at a higher concentration).

Locomotor effects in Aβ42Drosophila flies are clearly associated with Aβ42 overexpression and in particular, climbing is a strong and reproducible behavior. Thus, we performed behavioral tests to assess the climbing abilities of Aβ42Drosophila flies with and without treatment with 22 (20 μM), 23 (20 μM), and doxycycline (50 μM), compared to control flies. As shown in Figure 5B, Aβ42Drosophila flies showed an important decline in their climbing ability compared to control flies, being almost immobile after day 21. Compound 23 showed a promising effect, with a partially recovered phenotype that lasted until day 14. Unfortunately, the effect was not sustained further, as there was no difference between the treated and untreated flies on day 21. On the other hand, treatment with 22 showed extremely promising results. Indeed, the positive effect of 22 was sustained for all of the different time points, greatly improving the climbing performances of Aβ42Drosophila flies. Importantly, 22 resulted to be even more active than doxycycline. On day 21, good climbing performances of flies treated with 22 persisted, while they strongly declined in doxycycline-treated flies. We should again remark that the testing concentration for 22 was lower (20 μM) compared to doxycycline (50 μM). Finally, data collected on Drosophila nicely reflected the antiaggregating activity profile of our bivalent compounds 22 and 23.

Figure 5. (A) Lifespan analysis comparing treated and untreated Aβ42Drosophila flies, together with w1118 flies as control (CTR flies), on days 5, 10, and 20 post-eclosion (∗p-value < 0.05). (B) Behavioral test measuring the climbing abilities of treated and untreated Aβ42Drosophila flies, together with w1118 flies as control (CTR flies), on days 7, 14, and 21 post-eclosion. Values are expressed as the mean ± SEM. Unpaired t-test resulted statistically different (∗∗p-value < 0.005; ∗∗∗p-value < 0.001; and ∗∗∗∗p-value < 0.0001 compared to Aβ42 flies).
results obtained in E. coli, with carbazole 22 being more active than 9,9-dimethylfluorene 23.

Motivated by these positive results, we decided to study the ability of the most promising to reduce the presence of amyloid plaques and aggregates in the brain of Aβ42 flies. Indeed, these flies are characterized by intracellular Aβ42 accumulation, followed by non-amyloid aggregates that resemble diffuse plaques. Thus, the brains of treated and untreated flies, together with the control, were dissected and analyzed at 15 days post-hatching. Confocal microscopy of untreated Aβ42 Drosophila flies showed diffuse peptide aggregates distributed throughout the brain, especially within the Drosophila mushroom body (Figure 6A,B). Importantly, such deposits were nearly absent in the brains of Aβ42 Drosophila flies treated with 22 (Figure 6C,D). Quantification analysis showed an 80% reduction of aggregates in Aβ42 Drosophila adult brains treated with carbazole 22, compared with untreated ones (Figure 6E). This result might confirm that the increased life span and locomotive ability were linked to a direct antiaggregating effect.

In addition, the observed Drosophila profile might be encouraging because after administration in the fly food, 22 is able to exert its effect on Aβ42 expressed in the CNS of a whole organism.

CONCLUSIONS

The complex nature of AD, together with a still poor understanding of its pathophysiological mechanisms, seems to be responsible for the lack of effective treatments in the clinic. However, several studies are now shedding light on the interconnected role of two pathognomonic proteins in AD: Aβ and Tau. Available evidence suggests these proteins can act synergistically, causing synaptic dysfunction, neuronal loss, and behavioral deficits. In light of this, we decided to apply an MTDL approach directed to both these protein aggregates in AD. We believe that the development of a dual Aβ/Tau aggregation inhibitor should be more effective, compared to existing single-target treatments (e.g., aducanumab). Thus, we presented here the design and synthesis of a focused library of 24 bivalent TZD derivatives (1−24), aiming to inhibit both Aβ42 and Tau protein aggregation. The most promising compound from this series is the carbazole derivative 22, which showed positive antiaggregating results in intact E. coli cells overexpressing Aβ42 and Tau proteins, no neurotoxicity in primary CGNs, and BBB permeability in a PAMPA−BBB assay. Moreover, compound 22 ameliorated AD-like phenotypes in a transgenic Drosophila melanogaster model of Alzheimer’s disease/Aβ toxicity, being even more effective than the dual inhibitor doxycycline. Carbazole 22 was able not only to improve the lifespan and climbing abilities of Aβ42 expressing flies but also to reduce the presence of amyloid aggregates in their brains. It is important to highlight, however,

![Figure 6. Immunofluorescence staining of Aβ42 aggregates within flies’ brains.](https://doi.org/10.1021/acschemneuro.2c00357)
that the poor solubility of compound 22 prevented us from studying in more depth its in vitro interaction with the isolated proteins.

In this respect, we cannot exclude that the mechanism of amyloid aggregation modulation by 22 may occur by its self-assembly into aggregates and consequent interactions with the aggregating protein\(^{23,24}\), in a manner characteristic of colloidal inhibition. This is a potential mechanism of many compounds inhibiting aggregation of diverse amyloid-type proteins.\(^{20}\)

In conclusion, this new class of dual nonaggregating compounds could represent a promising starting point for the design of the second generation of analogues, where improved solubility and elucidation of the molecular mechanism of action would be key needed steps to allow compounds to be progressed for further studies.

EXPERIMENTAL SECTION

Chemistry. All of the commercially available reagents and solvents were purchased from Sigma-Aldrich, Alpha Aesar, and VWR, and used without further purification. Reactions were followed by analytical thin-layer chromatography (TLC), on precoated TLC plates (layer 0.20 mm silica gel 60 with a fluorescent indicator UV254, from Sigma-Aldrich). Developed plates were air-dried and analyzed under a UV lamp (UV 254/365 nm). A CEM Discover SP-focused microwave reactor was used for microwave-mediated reactions. All melting points (m.p.) were determined in open glass capillary tubes using a Büchi Melting Point B-540 apparatus. Nuclear magnetic resonance (NMR) experiments were run on a Varian VXR 400 (400 MHz for \(^1\)H, 100 MHz for \(^13\)C).\(^{25}\)\(^{1}\)H and \(^13\)C NMR spectra were acquired at 300 K using deuterated dimethyl sulfoxide (DMSO-\(d_6\)), chloroform (CDCl\(_3\)), or trifluoroacetic acid (TFA-\(d_2\)) as solvents. Chemical shifts (\(\delta\)) are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as the internal reference, and coupling constants (\(J\)) are reported in hertz (Hz). The spin multiplicities are reported as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Exchangeable NH or OH protons were not observed in the \(^1\)H spectra of I, 3, 15, 17, and 18. Low-resolution and high-resolution mass spectra were recorded on a VG707E HF or a Xevo G2-QS QTof apparatus, and electrospray ionization (ESI) both in positive and negative modes was applied. All the final compounds showed \(>95\%\) purity by analytical HPLC. Compounds were named following IUPAC rules as applied by ChemBioDraw Ultra (version 14.0). As already reported,\(^{25}\) final compounds 1–24 were obtained as white \(Z\) isomers. Indeed, their \(\text{H}^1\) NMR spectra show only one signal attributable to the resonance of the \(5\)-methylidene proton in the range 7.50–7.80 ppm, while in their \(\text{C}^{13}\) NMR spectra the \(5\)-methylidene carbon and the \(S\)-carbon of the TZD ring resonated in the ranges 130.5–140.7 and 117.5–128.0 ppm, respectively.

General Procedure for the Synthesis of Compounds 1–12 and 19–24. The corresponding dialdehydes (1 mmol) reacted with the corresponding TZD derivative (3 mmol), using EDDA (0.5 mmol) under microwave irradiation at 100 °C for 45 min. The reaction mixture was diluted with water and the solid was collected by filtration. After washing the solid with water, all of the final compounds were purified through crystallization or column chromatography. For compounds 1, 6, and 18 only \(\text{H}^1\) NMR spectra were recorded, due to their extremely low solubility.

\(\text{H}^1\) NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 12.63 (br s, 2H); 7.93 (d, \(J = 8.1, 4\)H); 7.84 (s, 2H); 7.71 (d, \(J = 8.1, 4\)H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 168.3; 168.0; 140.7; 133.3; 131.4; 131.2; 128.0; 124.5 (\(\delta\) 162.73, 36.2, 31.2 residual DFM from recrystallization). MS (ESI\(^{2\prime}\)) \(\text{m/z}\) for \(\text{C}_{27}\text{H}_{24}\text{N}_{8}\text{O}_{13}\): 407 \([\text{M} + \text{H}]^{\text{=}\text{+}}\).

\(\text{H}^1\) NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 17.79 (s, 2H); 7.72 (s, 4H). \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 168.9; 168.8; 143.6; 131.7; 131.3; 130.7; 130.1; 41.1; one carbon missing from the aromatic region. MS (ESI\(^{2\prime}\)) \(\text{m/z}\) for \(\text{C}_{38}\text{H}_{20}\text{N}_{8}\text{O}_{14}\): 421 \([\text{M} + \text{H}]^{\text{=}\text{+}}\).

Research Article

ACS Chemical Neuroscience

ACS Chemical Neuroscience 2022, 13, 3314–3329
The title compound 11 was obtained as a yellow solid, according to the general procedure using 26 and diiodoacetylene 33. Yield 58%. m.p. 305 °C (dec.). 1H NMR (400 MHz, DMSO-d6): δ 13.43 (br s, 2H); 7.28 (d, J = 7.7, 4H); 7.17 (d, J = 6.8, 4H); 4.40 (s, 4H); 4.37 (s, 4H). 13C NMR (100 MHz, DMSO-d6): δ 168.4; 167.3; 165.5; 144.3; 131.4; 131.3; 120.5; 42.7; 41.1. MS (EI) m/z for C22H18N2O2S: 537 [M + H]−.

2.5.1.5.1.5′-(9,9-Dimethyl-9H-fluorene-2,7-diyldi(bis(methylenylidyne))bis(2,4-dioxothiazolidin-3-yl-5-ylidene))acetic acid (16). The title compound 16 was obtained as a yellow solid, according to the general procedure using 10. Yield 58%. m.p. 306 °C (dec.). 1H NMR (400 MHz, DMSO-d6): δ 8.11 (d, J = 8.0, 2H); 8.08 (s, 2H); 7.88 (s, 2H); 7.69 (d, J = 8.0, 2H); 4.41 (s, 4H); 1.53 (s, 6H). 13C NMR (100 MHz, DMSO-d6): δ 168.4; 167.3; 155.5; 140.4; 134.4; 133.4; 125.4; 124.0; 47.9; 42.8. MS (EI) m/z for C22H18N2O2S: 563 [M + H]−.

2.5.1.5.1.5′-(9,9-Dimethyl-9H-fluorene-2,7-diyldi(bis(methylenylidyne))bis(2,4-dioxothiazolidin-3-yl-5-ylidene))acetic acid (17). The title compound 17 was obtained as a yellow solid, according to the general procedure using 11. Yield 58%. m.p. 306 °C (dec.). 1H NMR (400 MHz, DMSO-d6): δ 8.11 (d, J = 8.0, 2H); 8.08 (s, 2H); 7.88 (s, 2H); 7.69 (d, J = 8.0, 2H); 4.41 (s, 4H); 1.53 (s, 6H). 13C NMR (100 MHz, DMSO-d6): δ 168.4; 167.3; 155.5; 140.4; 134.4; 133.4; 125.4; 124.0; 47.9; 42.8. MS (EI) m/z for C22H18N2O2S: 563 [M + H]−.

2.5.1.5.1.5′-(9,9-Dimethyl-9H-fluorene-2,7-diyldi(bis(methylenylidyne))bis(2,4-dioxothiazolidin-3-yl-5-ylidene))acetic acid (18). The title compound 18 was obtained as a red solid, according to the general procedure using 12. Yield 30%. m.p. 333 °C (dec.). 1H NMR (400 MHz, DMSO-d6): δ 8.16 (d, J = 4.0, 2H); 7.61 (d, J = 4.0, 2H); 4.34 (s, 4H). MS (EI) m/z for C22H18N2O2S: 559 [M + Na]+. HR-MS calc for C22H18N2O2S: m/z 534.9404, found 534.9402 [M + Na]+.

Ethyl 2,2′-(4,4-Dioxothiazolidin-3-ylidene)acetic acid (26). A mixture of 25 (2 mmol), 35 (2 mmol), and anhydrous K2CO3 (3 mmol) in ace tone (12 mL) was reacted under microwave irradiation at 100 °C for 45 min. After the reaction, the solid was removed by filtration, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography eluting with DCM/ethyl
acetate (9.6:0.4). Yield 87%. ¹H NMR (401 MHz, CDCl₃): δ 4.24 (s, 2H); 4.13 (q, J = 7.2, 2H); 3.97 (s, 2H); 1.20 (t, J = 7.2, 3H).

3-(2-Dimethylamino)ethoxy)thiocaldine-2,4-dione (28). A mixture of 25 (2 mmol), 36 (2 mmol), and Cs₂CO₃ (2 mmol) in acetone (12 mL) was reacted under microwave irradiation at 100 °C for 45 min. After the reaction, the solid was removed by filtration, and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography eluting with DCM/ethanol/aqueous NH₄OH (9:5:0.5:0.05). Yield 53%. ¹H NMR (401 MHz, CDCl₃): δ 4.87 (s, 2H); 3.89 (s, 2H); 3.65 (t, J = 6.5, 2H); 2.42 (t, J = 6.5, 2H); 2.17 (s, 6H).

3-(4-(Bromomethyl)phenyl)methane (2 mmol) were separately dissolved into 4 mL of hexane and paraformaldehyde (42 mmol) were dissolved in 8 mL of glacial acetic acid containing 33 wt % HBr. After being refluxed for 12 h, the reaction flask was immersed in an ice bath. The white greasy solid was separated by decantation and washed three times with water. The residue at its N terminus. For overnight culture preparation, an overnight culture was inoculated with a colony of BL21 (DE3) bearing the plasmid to be expressed at 37 °C. It was grown overnight at 37 °C and 600 rpm using a thermomixer (Eppendorf, Hamburg, Germany). As the control of the amyloid presence (maximal amyloid presence), the same amount of DMSO without the drug was added to the sample. In parallel, noninduced samples (in the absence of IPTG) were also prepared and used as controls of the non-amyloid presence. In addition, the absorbance at 600 nm of the samples was checked to assess the potential intrinsic toxicity of the compounds and to confirm the correct bacterial growth.

Cloning and Overexpression of Tau Protein. E. coli BL21 (DE3) competent cells were transformed with pTARA containing the RNA-polymerase gen of the T7 phage (T7RP) under the control of the promoter PBAD. E. coli BL21 (DE3) with pTARA competent cells were transformed with the pRKT42 vector encoding four repeats of the ThS fluorescence of the bacterial cells nonexpressing the peptide was recorded. To normalize the ThS fluorescence as a function of the bacterial concentration, ABS₆₀₀nm was recorded using a Shimadzu UV-2401 PC UV–Vis spectrophotometer (Shimadzu, Japan). Note that the fluorescence normalization was carried out considering as 100% the THS fluorescence of the bacterial cells expressing the peptide or protein in the absence of the drug and 0% the THS fluorescence of the bacterial cells notexpressing the peptide or protein.

Neurotoxicity Evaluation on Primary Cultures of Cerebellar Granule Neurons. Primary cultures of CGNs were prepared from Sigma (St. Louis, MO). THS stock solution (25 μM) was prepared in double-distilled water purified through a Milli-Q system (Millipore). For the fluorescence assay, the THS spectra were measured on an AMINCO-Bowman series 2 luminescence spectrophotometer (Aminco-Bowman AB2, SLM Amino, Rochester, NY) from 460 to 600 nm at 25 °C using an excitation wavelength of 440 nm and slit widths of 4 nm. The emission at 485 nm (fluorescence peak of ThS in the presence of amyloids) was recorded. To normalize the THS fluorescence as a function of the bacterial concentration, ABS₆₀₀nm was obtained using a Shimadzu UV-2401 PC UV–Vis spectrophotometer (Shimadzu, Japan). Note that the fluorescence normalization was carried out considering as 100% the THS fluorescence of the bacterial cells expressing the peptide or protein in the absence of the drug and 0% the THS fluorescence of the bacterial cells notexpressing the peptide or protein.
A 1.5 M stock solution of 23 in methanol was prepared and diluted in 50 mM glycine—NaOH buffer (pH 8.5) to a final concentration of 0.375 μM. Excitation and emission fluorescence spectra in the absence and in the presence of preaggregated Aβ42 (0.75 μM) were recorded using the following instrument setup: λex = 374 nm, emission range = 400–600 nm; λem = 473 nm; excitation range = 250–460 nm; bandwidth (Ex) = 5 nm; bandwidth (Em) = 5 nm; scanning speed = 500 nm.

Inhibition of Tau(306–336) Peptide Aggregation. Briefly, 1 mg of Tau(306–336) (Bachem AG, Germany) was dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), gently vortexed, sonicated, and kept overnight at room temperature. Subsequently, the sample was aliquoted, dried, and stored at −20 °C. Stock solutions of Tau(306–336) peptide (500 μM) were prepared in ultrapure water and immediately used. Stock solution of Thioflavin T (ThT, 500 μM) was prepared in 56.3 mM phosphate buffer (pH = 7.4), while stock solutions of inhibitors (20 mM) and of the reference compound doxycycline (10 mM) were prepared in DMSO/methanol 10/90. Tau(306–336) aggregation was monitored at 30 °C in a black, clear bottom 96-well plate (Greiner) by the EnSpire multiplate reader (Perkin Elmer) using the ThT fluorimetric assay with some variations. The excitation and emission wavelengths were set at 446 and 490 nm, respectively. Assay samples were prepared by diluting Tau(306–336) stock solution to 50 μM in the assay mixture which consisted of 20 μM ThT, 48.1 mM PB (final concentrations) in the final 100 μL volume (final DMSO and MeOH contents: 0.05 and 0.45%, respectively). Inhibition experiments were performed by incubating Tau(306–336) peptide in the given conditions in the presence of tested inhibitors at 50 μM. Fluorescence data were recorded every 10 min overnight with 1 min shaking at 800 rpm prior to each reading. Each inhibitor was assayed in triplicate in at least two independent experiments. Estimation of the inhibitory potency (%) was carried out by comparing fluorescence values at the plateau (average fluorescence intensity value in the 12–16 h range). Inhibition % is expressed as the mean ± SEM. Quenching of ThT fluorescence was evaluated by preparing blank solutions containing the inhibitor/reference compound and preformed fibrils of Tau(306–336) peptide.

Drosophila Melanogaster Model of AD. Flies w118 (control flies indicated as CTR) and Elav > Gal4; UAS-ArcticAbeta42 (experimental population) were maintained at 25 °C and flipped into new vials every 2 days. The experimental flies take advantage of the UAS-Gal4 binary system, where these two are not found in the fly genome, and thus their introduction permits extremely specific control of the transgene expression.53 The transactivating protein GAL4 is placed under the control of a specific promotor, with its own spatial and temporal patterns, in this case, Elav, whereas the upstream activation sequence (UAS) localized upstream, the locus controlled by the UAS-Gal4; in our study, UAS expresses construct for the E22G variant of Aβ42 (Arctic A/42) (Ala22Arg). 54,56 Around 150 flies (half female/male) for each compound tested were collected and divided into groups of 25 flies. At the top of the media, 25 μL of doxycycline (50 μM), 22 (20 μM), or 23 (20 μM) were added fresh anytime the flies were flipped.

Climbing Assay and the Survival Rate. The behavioral assays follow the protocol illustrated in Albertini et al. Briefly, males and females 25 per vial were kept at 25 °C. The climbing test was performed on days 7, 14, and 21 after birth. Flies were placed inside a 50 mL transparent glass cylinder and, once acclimatized, the cylinder was tapped down hard enough to knock all of the flies down to the bottom; after 10 s the number of flies able to reach three pre-established levels (below 5 cm—between 5 and 7.5 cm-above 10 cm) was counted. The protocol was repeated 10 times at 5-min intervals.

Immunofluorescence on Adult Brain. The tissue dissection analyzed was performed through the use of thin forceps in a dissection dish filled with 1% PBS solution, following a published protocol. After fixation in PFA 4% (paraformaldehyde) for 20 min, the samples were cleaned from fat bodies and tracheal tube residues, in 1% PBS solution. In the end, they were moved to a 1.5 mL Eppendorf tube for the subsequent steps. The permeabilization of the
membranes used PBS Triton (PBST) 0.3% solution, which is a detergent used also in tissue culture analysis. The primary antibody anti-Aβ complexes (Alexa Fluor 954 #803018) were added to the blocking solution, at the concentration suggested 1:1000 and moved at 4 °C overnight. After washes in PBST for 20 min, each of the brains was stained with the secondary antibody (mouse FITC 1:250 Invitrogen #F2761). The samples were mounted in Fluoromount and the images were captured using a Leica confocal microscope, acquired with a 20× air objective, and a 60× mineral oil objective. The magnifications used the Nyquist theorem not to exceed the zoom and capture false signals. FluoView software was used for acquisition and Fiji (ImageJ) software for analysis.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acschemneuro.2c00357.

Prediction of BBB penetration of compounds 7, 10, 16, 17, 22, and 23; chemical structures of reference compounds; inhibition of Tau_{306-336} self-aggregation by 22 and 23; compounds’ purity and copies of representative chromatograms (7, 10, 22 and 23); and copies of 1H NMR and 13C NMR spectra for final compounds (1–24) (PDF)

AUTHOR INFORMATION

Corresponding Author
Maria Laura Bolognesi — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy; orcid.org/0000-0002-1289-5361; Phone: +39 0512099718; Email: marialaura.bolognesi@unibo.it

Authors
Annachiara Gandini — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy; Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy; orcid.org/0000-0002-2888-9636
Ana Elisa Gonçalves — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy; Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, 88302-202 Itajaí, Santa Catarina, Brazil
Silvia Strocchi — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy
Claudia Albertini — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy
Jana Janočková — Biomedical Research Center, University Hospital Hradec Kralove, 500 00 Hradec Kralove, Czech Republic
Anna Tramarin — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy
Daniela Grifoni — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy; Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy

Eleonora Poeta — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy
Ondrej Soukup — Biomedical Research Center, University Hospital Hradec Kralove, 500 00 Hradec Kralove, Czech Republic; orcid.org/0000-0001-6376-8701
Diego Muñoz-Torrej — Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain; orcid.org/0000-0002-8140-8555
Barbara Monti — Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, 88302-202 Itajaí, Santa Catarina, Brazil; orcid.org/0000-0003-0330-482X
Raimon Sabaté — Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, E-08028 Barcelona, Spain; orcid.org/0000-0003-3894-2362
Manuela Bartolini — Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, I-40126 Bologna, Italy; orcid.org/0000-0002-2890-3856
Giuseppe Legname — Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy; orcid.org/0000-0003-0716-4393

Complete contact information is available at: https://pubs.acs.org/10.1021/acschemneuro.2c00357

Author Contributions
M.L.B. conceived the study; A.G. performed compound synthesis and A.G. and C.A. performed compound characterization; A.E.G., E.P., and B.M. performed neurotoxicity experiments and analyzed data; J.J. and O.S. performed pharmacokinetic experiments; J.J., A.T., and M.B. performed the in vitro aggregation studies and analyzed data; R.S. performed the E. coli aggregation studies and R.S. and D.M.T. analyzed data; S.S., A.E.G., and D.G. performed Drosophila experiments and analyzed data; and M.L.B. and G.L. supervised A.G.’s work. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding
This work was conducted by A.E.G during a scholarship at the University of Bologna, Italy, supported by the International Cooperation Program CAPES / PDSE Process #88881.187586/2018-01. O.S. acknowledges the Ministry of Education, Youth and Sports of the Czech Republic (project ERDF no. CZ.02.1.01/0.0/0.0/18_069/0010054). D.M.T: grant PID2020-118127RB-I00 funded by MCIN/AEI/10.13039/501100011033. M.L.B. and M.B. would also like to acknowledge the University of Bologna (RFO 2019) and the Italian Ministry of Education, Universities and Research (MIUR), for financial support.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge Damian C. Crowther and the University of Cambridge, Department of Genetics Fly Facility
for the generous gift of Arctic Aβ42 flies. The technical support of Mr. Corrado Niro is also acknowledged.

■ ABBREVIATIONS USED

Aβ, amyloid β; AD, Alzheimer’s disease; BBB, blood–brain barrier; CGNs, cerebellar granule neurons; DMF, dimethylformamide; E. coli, Escherichia coli; EDDA, ethylenediamine diacetate; EMA, European Medicines Agency; ESI, electrospray ionization; FDA, Food and Drug Administration; HMTA, hexamethylenetetramine; IPTG, isopropyl 1-thio-β-d-galactopyranoside; MTDL, multitarget-directed ligand; MWI, microwave irradiation; NMR, nuclear magnetic resonance; PB, phosphate buffer; Pe, effective permeability; PPIs, protein–protein interactions; PRMs, protein recognition motifs; THβ, thioflavin S; THβ, thioflavin T; TLC, thin-layer chromatography; TMS, tetramethylsilane; TZD, 2,4-thiazolidinedione

■ REFERENCES

(40) Testablecute, A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. Cerebellum 2002, 1, 41−55.

