
Accelerator modes and anomalous diffusion in 3D
volume-preserving maps
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Abstract

Angle-action maps that are periodic in the action direction can have accelerator
modes: orbits that are periodic when projected onto the torus, but that lift to un-
bounded orbits in an action variable. In this paper we construct a volume-preserving
family of maps, with two angles and one action, that have accelerator modes created
at Hopf-one (or saddle-center-Hopf) bifurcations. Near such a bifurcation we show
that there is often a bubble of invariant tori. Computations of chaotic orbits near such
a bubble show that the trapping times have an algebraic decay similar to that seen
around stability islands in area-preserving maps. As in the 2D case, this gives rise to
anomalous diffusive properties of the action in our 3D map.

1 Introduction

In this work we consider real-analytic, volume-preserving maps (VPM) F on the cylinder

Td×Rl, where Td = S1× d· · ·×S1, and S1 = R/Z. We think of the variables (x, z) ∈ Td×Rl as
being d-angles and l-actions, and call F an angle-action map. As an important, non-generic
property, we will assume that F is the lift of a smooth map F̃ on the torus Td× Tl; that is,
we assume there is a projection

Π : Td× Rl → Td+l, (1)

such that for each point in Td× Rl,

F̃ ◦ Π = Π ◦ F. (2)

We will simply take Π(x, z) = (x, z mod 1): the unit modulus is applied to each action
variable. Such maps may have special orbits, called accelerator modes that are unbounded
orbits of F whose projections onto the torus become periodic orbits of F̃ [11, 12, 28, 52, 45].
The interest in such orbits is due to the fact that they can have a huge impact on the
properties of chaotic orbits that are unbounded in the action direction—namely normal
diffusion can become super, or anomalous, diffusion [30]. The way these diffusive properties
change due to the presence of accelerator modes depends on the local structure of the phase
space near the projected periodic orbit. And, as we will see, for finite-time simulations the
statistics outside this local structure also plays a leading role.
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Throughout this paper we label an orbit of F by subscripts, so that (xt+1, zt+1) =
F (xt, zt).

Accelerator modes have predominantly been studied for area-preserving maps1 defined
on S1 × R (d = l = 1 above), as exemplified by Chirikov’s standard map [11]

Ck : S1 × R→ S1 × R, Ck :

(
x
z

)
7→
(
x′

z′

)
=

(
x+ z′

z + k sin(2πx)

)
. (3)

As Chirikov showed, when the parameter k = n ∈ N+ := N \ {0} there are 2n accelerator-
mode orbits

Cn(1
4
, p) = (1

4
, p+ n), Cn(3

4
, q) = (3

4
, q − n), p, q ∈ Z,

that project onto two fixed points of C̃n located at P1 = (1
4
, 0) and P2 = (3

4
, 0). When k

is an integer these fixed points are parabolic. This bifurcation can be unfolded, as it will
be explained in §2.1. When κn = k − n > 0, is small, there appear islands of stability.
Chaotic orbits outside these islands of stability may be trapped nearby for many iterations,
a phenomena known as stickiness [28, 27]. In the map Ck this produces large excursions in
the action variable z.

The aim of this paper is to generalize this phenomenon to three-dimensional, volume-
preserving maps (VPM) with two-angles and one-action. More concretely, we will:

1. Construct a one-parameter family of VPM of the cylinder T2×R that has accelerator
modes (see §3).

We restrict ourselves to a family Fε : T2 × R→ T2 × R of the form:

Fε :




x
y
z


 7→




x′

y′

z′


 =




x+ Ω1(z)
y + Ω2(z)

z


+ ε




h1(x, y, z)
h2(x, y, z)
h3(x, y, z)


 . (4)

The preservation of volume is imposed as detDFε(x, y, z) ≡ 1. The generalization from
2D to 3D will be done by constructing the family to mimic some features of Chirikov’s
map (3). Namely:

(a) The parameter ε in (4) represents the deviation from integrability. For ε = 0
all orbits lie on 2D rotational invariant tori (RIT), {(x, y, z) : z = z0}, and the
dynamics is simply a rigid rotation in the angles with rotation vector Ω(z0) =
(Ω1(z0),Ω2(z0))

>. For ε > 0, but small, Fε is assumed to satisfy the hypotheses
of the KAM-like theorems for volume-preserving maps [10, 51]. Hence there is a
Cantor set of RIT.

(b) Accelerator modes of Fε are born at ε = n ∈ N+. These project to isolated fixed
points of F̃ε.

(c) When 0 < ε − n � 1 there is a neighborhood of some of the accelerator modes
that contains a bubble of trapped orbits that exhibit regular motion.

1But some higher-dimensional symplectic maps have also been studied, see [29].
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The requirement (c) is mandatory since we are interested in accelerator modes that
give rise to anomalous diffusion along the z coordinate. To ensure this, we will assume
that the parameter κn = ε− n unfolds a “Hopf-one” or “saddle-center-Hopf” bifurca-
tion at the accelerator modes. This bifurcation, a discrete analogue of the Hopf-zero
bifurcation for ODEs, corresponds to the creation of a fixed point with multipliers
λ1 = 1 and λ2,3 = e±2πiω on the unit circle. The unfolding of this bifurcation gives rise
to a pair of saddle-focus fixed points. There is a rich structure around the stability
region where orbits may be trapped for a long time so that they affect the diffusion in
the action variable. See §2.4 for more discussion.

The proposed family of maps Fε seems to be the first studied example of VPM with
accelerator modes.

2. Study the effect of these accelerator modes on the diffusive properties of the action
(see §4).

We perform a numerical exploration based on long-term simulations of Fε to study, on
the one hand, the diffusive properties of the action, and on the other hand, the trapping
statistics due to the passages near the stability region that appears in a vicinity of the
accelerator modes. Here, by trapping statistics we mean the distribution of trapping
times in a neighborhood of the accelerator mode stability region. Our experiments
suggest that this behaves as t−b, b ∈ (2, 3), which is consistent with the behavior
observed in the area-preserving case. Furthermore, the action exhibits an anomalous,
super-diffusive behavior.

This paper is organized as follows. In §2 we recall some preliminary facts and set the
problem in the proper context by discussing the well-known analogous area-preserving set-
ting. We summarize some relevant facts on the Hopf-one bifurcation in the volume-preserving
context. The rest of the paper is separated into two distinct parts according to the previous
enumeration. In §3 we construct a family of VPM with accelerator modes and we study the
scaling properties of the local dynamics. In §4, we numerically study the diffusive properties
and trapping statistics due to these accelerator modes for an example. In §5 we discuss these
results, taking into account geometrical and statistical facts. Finally, in §6 we summarize
our results and propose new lines of research that emerge from this study.

2 Preliminaries

In this section we introduce the main ideas on which this paper is based. In §2.1 we review
well-known facts about the accelerator modes of Chirikov’s standard map: the mechanism of
their creation, their local dynamics, and their effect on the action diffusion due to stickiness.
This map serves as inspiration for the construction of our main model. In §2.2 we generalize
the concept of accelerator mode to higher-dimensional maps. In §2.3 we define a VPM that
can possess accelerator modes as a composition of simple shears. We finish this preliminary
section by reviewing some facts on the Hopf-one bifurcation in volume-preserving maps in
§2.4. This is a mechanism that can create a region of stable motion in a vicinity of an
accelerator mode.
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2.1 Accelerator modes in area-preserving maps

One of the most studied area-preserving models with accelerator modes is Chirikov’s stan-
dard map Ck (3) [11]. This map has three properties that we will generalize to higher
dimensions.

1. Accelerator modes. As we noted in §1, the backward and forward orbits of the points
P1 = (1

4
, 0) and P2 = (3

4
, 0) are unbounded under Cn for n ∈ N+. These points are unstable,

parabolic fixed points of the projection C̃n, and their properties are equivalent under a re-
flection symmetry of the map. The parameter κn = k−n unfolds a saddle-center bifurcation
at P1 (resp. P2) giving rise to an elliptic fixed point P1,e and a hyperbolic fixed point P1,h

(resp. P2,e and P2,h) of C̃n+κn . The positions of these fixed points depend on κn, but, to
simplify the notation, we do not make this explicit. These four fixed points are projections
of accelerator modes of Ck.

2. Stability islands around elliptic accelerator modes and limit local dynamics. When
0 < κn � 1, islands of stability appear around P1,e and P2,e. The area of these islands
decreases with n as 1/n2 + O(n−6). The orbits P1,e and P2,e undergo a period-doubling
bifurcation at k = n + 2/(nπ2) + O(n−3). Chirikov and Izraelev [12] showed that these
scalings hold for a larger class of maps (where the force sin(2πx) in (3) is generalized to an
odd periodic function of x). In [41] it was proved that the leading terms of the suitably scaled
Taylor expansions of Cn around the accelerator modes could be written as the quadratic area-
and orientation-preserving Hénon map (which we just call the Hénon map from now on) in
Karney’s form [28]

Hκ :

(
ξ
η

)
7→
(
ξ′

η′

)
=

(
ξ + η′

η + κ− 2π2ξ2

)
. (5)

The corrections to this map are O(n−2) in each variable. Hence the Hénon map becomes
asymptotically accurate as n→∞. Furthermore, the coefficients of O(n−2) corrections are
small [42], so that even when n = 1, the Hénon map is a fairly good approximation.

3. Statistics of chaotic orbits in the presence of accelerator modes. The stability islands
around the accelerator modes are responsible for the anomalous transport of the action of
Cn+κn . There are two interconnected problems of interest in this situation. Let us restrict
ourselves to the island around P1,e, though by the reflection symmetry, the following also
applies to the island around P2,e.

(a) Trapping statistics around stability islands. Let K be a compact subset of the phase
space that contains the stability island around P1,e for C̃k. Initial conditions in K that
are not confined by an invariant curve of the stability island or any of its satellites
will escape from K, but have a trapping probability that decays asymptotically as t−γ,
where γ ∈ (1, 2) [28, 27, 37, 25, 38, 52, 16, 48, 15, 42]. Equivalently, the density of
the exit-time distribution Pk(t), the probability that an orbit leaves K after exactly t
iterates [36], decays as

Pk(t) ∼ t−b, b ∈ (2, 3), (6)
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where b = 1 + γ and ∼ denotes asymptotic behavior as t → ∞. The numerical
simulations—for finite times—show that b depends on k. Note that the probability
density Pk(t) has bounded average but all higher-order moments are unbounded.

(b) Anomalous diffusion of the action. The action diffusion is computed from the standard
deviation σT (k) of the action z after T iterates over an ensemble of orbits that are not
confined in stability islands. Without accelerator modes, one expects [30]

σT (k) ∼
√
T ,

but when there is an elliptic accelerator mode, for example, when κn ∈ (0, 2/(nπ2) +
O(n−3)), one observes super-diffusion:

σT (k) ∼ T χ, χ > 1
2
. (7)

Again, it is observed that the exponent χ depends on k in a complicated way.

The dependence of the exponents b and χ on k—for finite time simulations—is primarily
due to the structure of the invariant sets (Cantori, satellite islands, etc.) surrounding the
main accelerator-mode island [38]. The variation of the exponents is most prominent just
after the breakdown of an outermost invariant curve that had confined a large region of
chaos. The corresponding values of κn where larger variations are expected are related to
the breakdown of the invariant curves around elliptic periodic islands of moderate period,
as can be seen in the Hénon map [41]. Even though this geometrical fact is well known,
and forms the basis for most of the models of trapping statistics [38, 16, 47, 3, 2], it is still
not completely understood theoretically and requires extensive numerical explorations for
confirmation. We refer to [13, 14, 52, 42] for dedicated numerical explorations focusing on
concrete Cantori with a prescribed rotation number.

It is natural to think that the exponents in σT (k) and Pk(t) are related. Under some
simplifying assumptions, it has been shown that 2χ+ b = 4 [27]. This was also later derived
in [21, 26, 53, 54, 50], see the review [1] and references therein. A similar result, obtained in
[42], shows that σT (k) is bounded from below by T 2−(b+1/b)/2 for large enough T .

2.2 Accelerator modes for higher-dimensional maps

As in §1, let F : (x, z) 7→ (x′, z′) be a volume-preserving map of Td × Rl that smoothly
projects to a map F̃ on the torus Td × Tl, as defined by (2).

As in the area-preserving case, an accelerator mode of F is an orbit with unbounded
action that projects to a periodic orbit of F̃ , due to the periodicity of the map in the action
direction. This implies that the action increases linearly under iteration of F .

Definition 1. The orbit of a point (x, z) under F is an accelerator mode if there exist q ≥ 1
and n ∈ Zl \ {0} such that F q(x, z) = (x, z + n).

Note that the projection of an accelerator mode is a q-periodic orbit of F̃ . In §2.3 we
present a simple way to generate VPM on the cylinder T2 × R with accelerator modes. We
are mainly interested in those accelerator modes that project onto fixed points of F̃ , i.e., for
q = 1. We refer to these kind of orbits as “fixed point” accelerator modes, or simply FPAM.
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2.3 Volume-preserving maps as compositions of shears

To ease the construction of volume-preserving maps, we will consider angle-action maps that
are compositions of shears. Let Si be a shear in the ith direction, that is, if w = (x, z) ∈ Td+l,
then Si : Td+l → Rd+l is

Si(w) = w + si(w) êi,

where si : Td+l → R is a smooth function that is independent of the ith component, wi, and
êi is the ith unit vector in the canonical basis of Rd+l. Assuming that si projects to a smooth
function on the circle R/Z, then Si projects to a smooth, volume and orientation preserving
map, S̃i, on Td+l. Thus any composition F̃ = S̃i1 ◦ S̃i2 ◦ . . . ◦ S̃ij with arbitrary j ≥ 1 and
i1, i2, . . . , ij ∈ {1, 2, . . . , d+ l} is a volume-preserving map on the d+ l-torus.

In this paper, we are interested in the dynamics of a volume-preserving map with two
angles (x1, x2) = (x, y) ∈ T2 and one action z ∈ R, and we will use three shears, one in each
direction:

S1 :



x
y
z


7→



x+ s1(y, z)

y
z


, S2 :



x
y
z


7→




x
y + s2(x, z)

z


, S3 :



x
y
z


7→




x
y

z + s3(x, y)


 .

There are two sets of conjugate maps formed by composition of these three shears in some
order, but the families are equivalent under permutations of the labels. To fix ideas, we let
F̃ = S̃2 ◦ S̃1 ◦ S̃3,

F̃ :




x
y
z


 7→




x′

y′

z′


 =




x+ s1(y, z
′)

y + s2(x
′, z′)

z + s3(x, y)


 mod 1. (8)

We will assume that the functions si are either periodic or degree-one functions of their
arguments. In this case periodic orbits of F̃ on T3 may not be periodic orbits of F , the
lift to T2 × R: the lifted z variable may increase or decrease by an integer amount in q
iterates for suitable (x, y). Thus for an FPAM, there must exist points (x0, y0, z0) such that
F (x0, y0, z0) = (x0, y0, z0 + n) for some nonzero integer n.

The inverse of the map (8) is simply given by F̃−1ε = S−13 ◦ S−11 ◦ S−12 , where the three
inverses S−1j , j = 1, 2, 3 are obtained by simply changing the sign of the functions si.

In §3.1 we will obtain a one-parameter family of maps Fε, by letting s3(x, y)→ εs3(x, y).
The existence of an FPAM will then depend upon the parameter ε.

2.4 The Hopf-one bifurcation in volume-preserving maps

Suppose that the map (8) has an accelerator mode. In this section we will add extra con-
ditions on F to ensure that the corresponding periodic orbit of F̃ has a neighborhood of
stable motion. For area-preserving maps, stable motion around accelerator modes is gen-
erated by a saddle-center bifurcation, recall §2.1. A generalization of this mechanism to
VPM is the codimension-two, Hopf-one or saddle-center-Hopf bifurcation [17, 18]. This
bifurcation is the discrete-time, volume-preserving version of the Hopf-zero, fold-Hopf or
Gavrilov-Guckenheimer bifurcation [24].
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To guarantee that there is a stability region near an accelerator mode that is born from
a Hopf-one bifurcation, we will require that the leading terms of the Taylor expansion give
a map that is locally conjugate, using a suitable scaling, to a map, Mϕ,a : R3 → R3, of the
form

Mϕ,a :




u
v
w


 7→




u′

v′

w′


 =




u+ ϕv
v + ϕw′

w + ϕ (1− u2 − av)


 , (9)

for suitable values of the parameters ϕ and a. This map can be regarded as a 3D analogue
of the Hénon map (5) since (a) it is a quadratic truncation of the unfolding of the normal
form near a triple-one multiplier [18], (b) its inverse is also a quadratic volume-preserving
map [31], and (c) it appears as a truncation of the return map near a homoclinic quadratic
tangency [22].

The map (9) is a discretization of the well-known Michelson ODEs [39]

du

dt
= v,

dv

dt
= w,

dw

dt
= 1− u2 − av, a > 0, (10)

that appear in travelling wave solutions of the Kuramoto-Sivashinsky PDE. The flow of (10)
has an “integrable” limit for a → ∞. To see this, it is convenient to introduce the scaling
u = ξ, v =

√
aη, w = aζ, t = τ/

√
a. Then (10) reads

dξ

dτ
= η,

dη

dτ
= ζ,

dζ

dτ
= ε(1− ξ2)− η, (11)

where ε = a−3/2. The system (11) has an equilibrium at (−1, 0, 0) with eigenvalues 2ε +
O(ε3) and ±i− ε+O(ε2), and an equilibrium at (1, 0, 0) with eigenvalues −2ε+O(ε3) and
±i+ ε+O(ε2).

When a grows, and therefore ε decreases, the measure of the set of bounded orbits of (11)
also grows. To study this limit, introduce the variable s = ξ + ζ and cylindrical coordinates
(R, θ) with η = R cos θ and ζ = R sin θ. Now when ε� 1 and R is bounded from below, the
dynamics is fast in θ, namely θ̇ = −1 +O(ε/R), while it is slow in s. After averaging over
the fast angle, R becomes also slow and the system reads

ds

dτ
= ε

(
1− s2 − R2

2

)
,

dR

dτ
= εRs.

This system has the integral

h = R2

(
1− s2 − R2

4

)
. (12)

The domain of interest is h ∈ [0, 1]. The level h = 0 contains the two saddle-foci of (11)
at (s, R) = (±1, 0). The level h = 1 corresponds to an elliptic equilibrium (s, R) = (0,

√
2),

which approximates, as ε → 0, the intersection of an elliptic periodic orbit of (11) with
the Poincaré section {ζ = 0}. The level sets h ∈ (0, 1) are close to invariant circles on the
Poincaré section of the flow of (11) [19]. These correspond to two-dimensional invariant tori
of (11). When ε� 1, the ratio of the two frequencies on the invariant tori is large.
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More generally, the system (11) has two equilibria that are saddle-foci: Ql = (−1, 0, 0)
and Qr = (1, 0, 0) which have 1D invariant manifolds W u(Ql) and W s(Qr) that nearly
coincide as ε → 0. As ε tends to zero, the 2D invariant manifolds W s(Ql) and W u(Qr)
approach a spherical shell, that we refer to as the bubble [7, 8, 9, 49]. The bubble encloses
a family of nested tori around a normally elliptic invariant circle (see e.g., Fig. 1 (a)) when
ε is small enough. If ε > 0 (11) is not integrable and the 1D and 2D invariant manifolds no
longer coincide [4, 19, 5, 6]. See [19] for a detailed numerical study of the region of bounded
motion of (10).2

The quadratic map (9) is also not integrable. Fixing a > 0, the points Ql and Qr are
saddle-foci when ϕ small enough [18]. This occurs approximately when aϕ2 ∈ (0, 4). More
precisely, if ϕ < 1

2
it is sufficient to have aϕ2 < 3.87 and if ϕ < 1

4
it is sufficient to have

aϕ2 < 3.98. For these values of the parameters some of the bubble structure of the flow is
preserved. Namely, the 2D invariant manifolds of Ql and Qr (which do not coincide), bound
a Cantor family of invariant tori that enclose, for most values of the parameters ϕ and a, an
elliptic invariant circle [18].

When ϕ � 1, the dynamics of (9) limits on that of the ODEs (10). In Fig. 1 we
show, in the (ξ, η, ζ) coordinates of (11), the points on some orbits which follow in the slice
|ζ| < δ � 1. The orbits shown in the three panels pass through the corresponding slice,
moving “up”, ζ ′ > ζ, when η . 0 and “down”, ζ ′ < ζ, if η & 0. The boundary between the
orbits going “up” and “down” is η = ε(1 − ξ2). The leftmost panel corresponds to a = 10
for which the set of bounded orbits resembles that of the integrable case discussed above:
at ξ ≈ 0 and η ≈ ±

√
2 we observe what seems two elliptic fixed points that correspond to a

transversally elliptic invariant circle. The nested invariant curves in the plot correspond to
slices through invariant tori surrounding this invariant circle. For the center panel, where
a = 4.95, the outermost structure shows satellite islands and several unbounded orbits that
are temporarily trapped near the outermost torus. A similar structure also would appear
in the left panel under a sufficiently high magnification. The blue points correspond to
the intersection of a satellite torus that performs twelve complete turns around the ξ axis
before closing. Similar tori doing 9, 10, 11 and 13 turns before closing have also been easily
detected. Finally for the right panel, where a = 3.7, the regular region has eroded, though
there are still some tori around the central invariant curve. Moreover, there appears what
seems to be a period-five elliptic invariant circle surrounded by tori that are satellites of the
central structure.

3 A Volume-preserving map with accelerator modes

In this section we construct a 3D angle-action map with accelerator modes. Our goal is
to study the stickiness of a bubble of regular orbits in an otherwise seemingly fully chaotic
phase space. Hence, we look for a family fε of VPM of T2 ×R, that smoothly projects to a
map f̃ε on T3 under Π, recall (2).

To construct our model, we choose fε so that it fulfills the following three requirements
(already sketched in §1)

2A movie of the evolution of the flow with a is at http://www.maia.ub.es/dsg/moviehsn.
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a = 10 a = 4.95 a = 3.7

0

0

2

−2

1

1

−1

−1

0.5−0.5 0

0

2

−2

1

1

−1

−1

0.5−0.5 0

0

−2

1

1

−1

−1

0.5−0.5

Figure 1: Slices |ζ| < δ of trajectories of the map (9), in the (ξ, η, ζ) coordinates of (11),
showing the rectangle −1 < ξ < 1,−2 < η < 2. The parameters are a = 10, ϕ = 0.1,
δ = 0.001 (left), a = 4.95, ϕ = 0.01, δ = 0.001 (middle), and a = 3.7, ϕ = 0.001, δ = 0.0001
(right).

R1 The map has an integrable limit ε→ 0, where the phase space is foliated by horizontal
rotational invariant tori (RIT) {z = const} and the restriction of the dynamics on each
RIT is topologically conjugate to a rigid rotation. Near this limit, some of these tori
should persist: a volume-preserving KAM theorem should apply [10, 51].

R2 For ε = n ∈ N+, the origin P+ = (0, 0, 0) is a fixed point of f̃n, and for all m ∈ Z,
f qn(0, 0,m) = (0, 0,m+ nq). Hence, the origin is an FPAM, recall Def. 1.

R3 Near the creation of the FPAM, the parameter κn = ε − n unfolds a Hopf-one bifur-
cation. Hence, for 0 < κn � 1, a small volume of regular orbits may exist near P+.
We will define the family fε in such a way that its Taylor expansion around P+ for
ε = n + κn, n ∈ N+ is locally conjugate to a map in the family Mϕ,a (9), where the
higher order terms (in u, v, w) depend on n in such a way that they tend to vanish as
n→∞, see Prop. 1 in §3.2.

3.1 Shearing functions

In this subsection we construct a concrete family of maps satisfying the requirements R1,
R2 and R3 using the composition of three shears (8).

The second and third requirements are achieved for the family

fε :




x
y
z


 7→




x′

y′

z′


 =




x+ µ sin(2πy) + ψ(z′)
y + ν sin(2πz′)
z + ε (cos(2πx)− β sin(2πy))


 , (13)

where µ, ν, β are parameters. We assume that ψ is a degree-one circle map (i.e., ψ(z + 1) =
z + ψ(z)) that satisfies

ψ(0) = ψ′(0) = 0. (14)

To satisfy R1 the function ψ(z) could simply be z itself, and—as we will show below—R2
is automatically fulfilled when ψ(0) = 0. The condition R3 requires, however, that the first
derivative vanishes at the location of the FPAM, see §3.2.
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From the expression (13) it is clear that P+ = (0, 0, 0) and P− = (1
2
, 0, 0) are fixed points

of the projection f̃n. Under fn, P+ goes up by n units and P− goes down by n units in z
upon each iterate (see also Rem. 2). After the Hopf-one bifurcation the point P+ gives rise
to a pair of FPAM, to be denoted by P l,r

+ in §3.2. It would be nice to have similar properties

for P−, i.e, for it to give rise to a FPAM pair P l,r
− as well. A simple way to obtain this is

by choosing ψ to be an odd function: ψ(−z) = −ψ(z). This is not necessary to unfold the
bifurcation, but it is simpler to have similar bubbles created near P+ and P−, one going up
and the other down.

To satisfy (14) and to have the odd character of ψ we choose ψ(z) − z to be an odd
periodic function given by the trigonometric polynomial

ψ(z) = z +
7∑

j=1

aj sin(2πjz). (15)

The choice of the function ψ above is justified in App. A, where appropiate values for the
Fourier amplitudes, aj, are also given by (32).

To ensure that (13) fulfills R1 we can take

µ = εµ̃, µ̃ = O(1).

The point is that when ε = µ = 0 each horizontal two-torus {z = const} is invariant, and
the dynamics on each torus is a rigid rotation with rotation vector ω = (ψ(z), ν sin(2πz)).

The first requirement is then satisfied if fε satisfies the hypotheses of the volume-
preserving KAM theorem [10, 51]. This theorem is stated for an analytic map of the form
(4). Our model (13) can be written in this form upon taking

Ω(z) = (ψ(z), ν sin(2πz)),

εh1(x, y, z) = Ω1(z
′)− Ω1(z) + εµ̃ sin(2πy),

εh2(x, y, z) = Ω2(z
′)− Ω2(z), and

h3(x, y, z) = cos(2πx)− β sin(2πy).

In addition, we have to check if the following two necessary conditions hold for fε [51]:

1. Intersection property. The image under fε of any homotopically non-trivial two-torus,
sufficiently close to a horizontal torus {z = const}, intersects itself. This is achieved
because h3(x, y, z) has zero average with respect to the angles (x, y).

2. Nondegeneracy condition. There exists a k ∈ N, such that the frequency map satisfies
a twist-like, nondegeneracy condition:

rank




Ω′1(z) Ω′2(z)
...

...

Ω
(k)
1 (z) Ω

(k)
2 (z)


 = 2. (16)

If |ε| � 1, µ = O(ε), and ψ(z) is chosen to satisfy (16), KAM theory implies that fε will
have a Cantor set of RIT that are deformations of the horizontal tori that exist for ε = 0.
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Remark 1. By contrast with the case of symplectic maps, since the number of actions is
less than the number of angles (l < d), the frequency map Ω : Rl → Td cannot be surjective.
Hence one cannot assure the persistence of a RIT with prescribed frequencies. Thus KAM
theory does not guarantee the persistence of a torus with a given rotation vector, only that
there are many tori when ε� 1.

Remark 2. For the map (4), the condition that h3 has zero average means that there is
zero net volume flux through any RIT. This condition implies the intersection property. For
the map (13), this condition also implies that for each FPAM with positive acceleration, e.g.
P+, there is another with negative acceleration. In our case, the corresponding downwards
FPAM is located at P− = (1

2
, 0, 0).

The nondegeneracy condition (16) may have a different minimal value of k in different
ranges of z. For example, for fε, (16) does not apply for k = 2 at z = 0 since ψ′(0) =
ψ′′(0) = 0. However, it will hold for k = 3 so long as ψ(3)(0) 6= 0. This may happen for other
values of z depending on the choice of ψ(z). Indeed, since ψ(z) is odd, (16) for k = 2 is also
violated at z = 1

2
. Consequently, we expect that there will be more prominent chaotic zones

near {z = 0} and {z = 1
2
} for small values of ε > 0. For the choice (15) with the coefficients

(32), the condition (16) is violated at ten additional values of z ∈ (0, 1) for k = 2, but one
can check that it does hold for k = 3 at all of these points.

To verify that (13) satisfies R2, we can compute its fixed points and accelerator modes.
For any values of the parameters, there are four fixed points located at (1

4
, 0, 0), (1

4
, 1
2
, 0),

(3
4
, 0, 0), and (3

4
, 1
2
, 0). Since the map preserves volume, all of these are generically unstable:

the product of the three multipliers of Dfε is one, λ1λ2λ3 = 1. So, unless all three have mod-
ulus one, there will be at least one unstable multiplier. Additional fixed points correspond
to accelerator modes. The following Lemma is proved in App. B.

Lemma 1. Suppose that
0 < |µ| < 1

2
, 0 < |ν| < 1

2
. (17)

Then for each ε = n ∈ N+ fε has a Hopf-one bifurcation that creates four FPAM. Two of
these, P+ = (0, 0, 0) and Q+ = (0, 1

2
, 0), accelerate upwards, and two, P− = (1

2
, 0, 0) and

Q− = (1
2
, 1
2
, 0), accelerate downwards.

Finally, we note that the map fε commutes with the involution R: fε ◦R = R ◦ fε, where
R is given by

R(x, y, z) = (1
2
− x,−y,−z). (18)

Indeed, this follows for any map of the form (8) when the shears are odd about the point
(1
4
, 0, 0), which is a fixed point of R. In particular R(P l

+) = P r
− and R(P r

+) = P l
−. Also the

manifolds associated to the P r,l
− are obtained under the symmetry R from the manifolds of

P l,r
+ . See §5.1 for details.

For the remainder of the paper, we will not vary µ with ε, but will return to the form
(13) for a fixed small value of µ. We think of ε as the primary parameter, and take (µ, ν, β)
as “fixed”.
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3.2 Local dynamics near an accelerator mode

In this section we study the local dynamics around the FPAM of fε (13) when ε is near
n ∈ N+. This is done by expanding about the FPAM to quadratic order and rescaling the
variables.

To motivate the scaling, consider for example, the dynamics around P+ = (0, 0, 0). Let
ε = n+ κn, where κn > 0 is small. Then P+ bifurcates into a pair of new FPAM located at
P l,r
+ = (xl,r, 0, 0) where (13) implies that xl,r must satisfy (n+ κn) cos(2πxl,r) = n. When κn

is small, this implies

xl,r = ∓ 1

π

√
κn
2n

+O(κn). (19)

This scaling motivates the introduction of a new parameter δ = nκn and of the scaled phase
variables n(x, y, z), so that the distance between the new FPAM becomes O(

√
δ).

Proposition 1. Given µ, ν, β, let ε = n + δ/n and P be any of the accelerator modes of
Lemma 1. Thus δ/n measures the distance from the birth of P . Define new phase vari-
ables (ξ, η, ζ) = n ((x, y, z)− P ), and let f ∗δ (ξ, η, ζ) be the projected map f̃n+δ/n in the new
variables. Then the following holds.

1. The Taylor expansion of f ∗δ around the origin can be written as f ∗δ = L + O(n−1),
where L is a quadratic volume-preserving map.

2. An additional normalization (u, v, w) = (αξξ, αηη, αζζ) conjugates L to the Michelson
map (9) for suitable parameters ϕ and a.

Proof. For the moment, let us restrict ourselves to the dynamics around P+. In the variables
(ξ, η, ζ) = n(x, y, z), map f ∗δ becomes




ξ′

η′

ζ ′


 =




ξ + nµ sin
(
2π η

n

)
+ nψ

(
ζ′

n

)

η + nν sin
(

2π ζ
′

n

)

ζ + n
((
n+ δ

n

) (
cos
(
2π ξ

n

)
− β sin

(
2π η

n

))
− n

)


 , (20)

where −n in the third component is due to the projection to the torus. Expanding around
(0, 0, 0) gives

f ∗δ = Lδ,β +O(n−1),

where

Lδ,β :




ξ′

η′

ζ ′


 =




ξ + 2πµη
η + 2πνζ ′

ζ + δ − 2π2ξ2 − 2πβnη


 . (21)

Note that n has disappeared, except for the last term, proportional to βn.
The same procedure can be applied to the remaining three FPAM, but one has to take

into account some changes of sign due to expanding the trigonometric functions around π
instead of 0, and the fact that P− and Q− jump downwards. Table 1 summarizes the scalings
and gives the form of L one obtains after this procedure. Note that the only difference in
the final form is that β → −β for the Q± FPAM.
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FPAM (ξ, η, ζ) Map
P+ = (0, 0, 0) n(x, y, z) Lδ,β
P− = (1

2
, 0, 0) n(1

2
− x,−y,−z) Lδ,β

Q+ = (0, 1
2
, 0) n(−x, y − 1

2
, z) Lδ,−β

Q− = (1
2
, 1
2
, 0) n(x− 1

2
, 1
2
− y,−z) Lδ,−β

Table 1: Scalings to obtain the quadratic map L near an FPAM.

Applying the additional normalization (u, v, w) = (αξξ, αηη, αζζ) to (21) shows that
Lδ,β 'Mϕ,a, the Michelson map (9), if we choose

αξ = π

(
2

δ

) 1
2

, αη = π

(
4µ2

δ2ν

) 1
3

, αζ = π

(
32µ2ν2

δ5

) 1
6

, (22)

ϕ = π (32µ2ν2δ)
1
6 , a = βn

(
2ν

δµ2

) 1
3

. (23)

These expressions are the same for the other fixed points except that for Q±, a changes sign
since, by Tbl. 1, β → −β. 2

Remark 3. There are some important aspects of the local form that are worth noting:

• The fixed points of (21), at (±
√

δ
2π2 , 0, 0), collide as δ → 0.

• For fixed β, the parameter a as given in (23) grows linearly with n. Recall, from §2.4,
that a bubble of stability for Mϕ,a appears when aϕ2 = 4π2βnν ∈ (0, 4). Hence, for the
one-parameter family fε, we can only expect to detect a finite number of such stability
regions, those born at ε = n < (βπ2ν)−1.

• A bubble of stability occurs near P± when βν > 0, but since the sign of a in (23)
changes for Q±, the bubble will occur near Q± when βν < 0. Hence the requirement
R3 is satisfied.

Proposition 1 implies that Mϕ,a encodes the local dynamics near an FPAM under the
proper scaling. To do this, we think of f ∗ε as a two-parameter family f ∗ε,β. A final scaling of
the parameter β implies the following.

Corollary 1. For given µ, ν let βn = β/n and εn = n+ δ/n for fixed β and δ. Then there is
a ball around P± (Q±) inside of which the Taylor expansion of f ∗εn,βn converges, as n→∞,

to a map that is conjugate to Mϕ,a (Mϕ,−a), where ϕ = π(32µ2ν2δ)1/6 and a = β (2ν/δµ2)
1/3

.

4 Diffusion in the presence of a bubble: a case study

In this section we study the diffusive properties of chaotic orbits of (13) when there is
a bubble of stable orbits near some of the FPAM, see App. B. To this end, we perform
numerical simulations for 0 < ε− 1� 1.
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4.1 Choosing parameters

We use the function ψ(z) introduced in App. A and choose values of the parameters µ, ν
and β of fε in (13) so that

1. For ε − 1 > 0 and small the local map Mϕ,a (9) around P±, satisfies aϕ2 = 4βπ2ν ∈
(0, 4).

2. The critical parameter value, εcrit, at which the last RIT of fε is destroyed is as large
as possible.

The first requirement is a necessary condition to ensure that there is a region of regular
motion near the FPAM P±. The second requirement, ensures that the map is not too chaotic.
Note that the value εcrit is analogous to Greene’s critical value for Chirikov’s standard map
(3) [23]. Such values have been found for VPM in [35, 20].

After an exploration of the dynamics for various parameters, we choose

µ = 0.01, ν = 0.24, and β = 0.12. (24)

For this choice, aϕ2 ≈ 1.137n, so we only expect to detect a region of regular motion around
P± for n < 4, recall Rem. 3.

For the parameters (24), we conjecture that3 εcrit ∈ (0.093, 0.094). To determine this,
we iterated a set of initial conditions in T2 × [0, 1] for T = 2 · 107. Each initial condition
was classified first as either escaping or non-escaping from z ∈ [0, 1]. Those that did not
escape were classified as either chaotic or regular using an approximation of the Lyapunov
exponent. If this approximation was small, so that the orbit could be considered to be
regular, we checked whether it could be on a RIT by looking to see if its (x, y) projection
completely filled all the pixels on a 400× 400 grid.

4.2 Regular region around the accelerator mode

We focus on the effect of the FPAM that appear for ε = 1, since they are expected to
have the largest bubble. Figure 2 shows the relative measure of bounded orbits near P+

that start in the half-plane z = 0, y ≤ 0. We considered a 400 × 360 grid in (x, y) ∈
[−0.024, 0.024] × [−0.12, 0]. This range is chosen accordingly to the position of the fixed
points of f̃ε that bifurcate from the origin at ε = 1. We iterate the centers of the grid
cells up to a time Tmax, and declare that the orbit escapes from the bubble if at any time
max(|x|, |y|, |z|) > 0.25. The left panel of the plot shows values of ε over the full range
where a stable accelerator mode with n = 1 is detected. The fraction of bounded orbits
exhibits a number of sudden decreases, and an enlargement of some of these are shown in
the right panel of the figure. These drops in bounded area correspond to the breakdown of
an outermost invariant two-torus that allows previously confined motion to escape from the
bubble.

3 This critical value is not too far from Greene’s critical value kcrit ≈ 0.971635/(2π) ≈ 0.154641.
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Figure 2: The fraction of bounded orbits around the accelerator mode P+ of fε as a function
of ε for parameters (24). Initial conditions are chosen with z = 0 in the box (x, y) ∈
[−0.024, 0.024] × [−0.12, 0]. The three curves correspond to different maximal number of
iterates Tmax, as labelled. Left: the bounded fraction for ε = 1 + κ1, for κ1 ∈ [10−6, 0.0096]
in steps of 10−6. The labelled values ε1 = 1.0007, ε2 = 1.0015 and ε3 = 1.004 are studied in
§4.4. Right: magnification near ε = 1.003 of the box in the left figure.

4.3 Diffusion in the chaotic zone: expectations

After the breakdown of the last RIT near εcrit ≈ 0.094, the phase space seems to become
much more chaotic. In particular, for 0.2 < ε < 1 we have numerically checked that any
regular component in the phase space is below pixel size (1/4002 squared units in T2). For
ε in a subinterval of [1, 1.009] one detects the presence of a bubble of stability around P±,
recall Fig. 2. In this section we investigate the diffusion in the z variable for ε ∈ [0.2, 1.8].

Outside the range in ε where the accelerator-mode bubble appears, we expect an expo-
nential decay of correlations giving “normal” diffusion in the action variable z, namely, that
the standard deviation after T iterates

σT =
(〈

(zT − z0)2
〉
− 〈zT − z0〉2

) 1
2 ∼ T χ, (25)

where χ = 1
2
, so that the limit

D = lim
T→∞

σ2
T

2T
, (26)

exists. Here 〈·〉 stands for the average over an ensemble of initial conditions (x0, y0, z0),
which we usually take to be uniform on some domain of T3 outside bubbles of stability, and
(xT , yT , zT ) = fTε (x0, y0, z0). The one-step coefficient, known as the quasilinear approxima-
tion, can be easily evaluated as

Dql =
1

2

〈
(z′ − z)2

〉
=

∫

T2

(z′ − z)2 =
ε2

4
(1 + β2), (27)

using (13).

15



The behavior of the action diffusion when there is a bubble, e.g., for ε ∈ [1, 1.009], can
be expected to be very different. Indeed as was discussed in §2.1, the hierarchical island-
around-island structure of the 2D case gives rise to a power-law behavior of the trapping
time distribution [38], which, in turn, gives rise to anomalous diffusion [1]. However for the
3D case, the way that tori in a bubble are organized by their rotation vectors is not known,
so we do not have the ability to create a model similar to the 2D one.

4.4 Numerical experiments

In this section we describe the results of the numerical experiments for diffusion and trapping
statistics. In §4.4.1 we will show that the presence of accelerator-mode orbits gives rise to
anomalous diffusion of the action. In §4.4.2 we show that the trapping statistics appears to
have power-law decay Pε(t) ∼ t−b, b > 2. Both of these results are consistent with the 2D
case [33, 34].

In order to avoid choosing initial conditions inside a bubble, we consider them on a
fundamental domain of the right branch of the 1D unstable manifold of the fixed point
(3
4
, 0, 0). When ε = O(1) and µ, ν and β as given in (24), this point is a saddle with a 1D

unstable manifold and a 2D stable manifold. We choose N = 106 to 107 initial conditions on
W u(3

4
, 0, 0), logarithmically equispaced over a distance interval [10−9, 10−8] from the fixed

point.
Each initial condition was iterated between 108 and 1011 times, depending on the observed

behavior, and we compute the following two observables:

1. The standard deviation. Anomalous diffusion of the action is detected by examining
the growth rate of σT , (25). In a phase space that is seemingly fully chaotic and has no
accelerator modes, one expects the limit (26) to exist and that D should be near the
quasilinear value (27). When there are accelerator modes one expects a faster growth
so that the limit (26) does not exist.

2. The trapping statistics. We kept track of the number of consecutive iterates that an
orbit remains close to a bubble, i.e., in the union W =W+ ∪W− of neighborhoods of
P+ and P−. For most of cases, the neighborhoods

W+ = {(x, y, z) : |x| ≤ 0.024, |y| ≤ 0.12, |z| ≤ 0.08},
W− = {(x, y, z) : |x− 1

2
| ≤ 0.024, |y| ≤ 0.12, |z| ≤ 0.08}, (28)

appear to completely contain the bubbles; however, we modify these regions slightly
in §5.2. Note that the set W+ ∩ {z = 0, y ≤ 0} was used in Fig. 2. The probability of
having a stay of exactly length t near the bubbles is

Pε(t) = Prob

(
(xj, yj, zj mod 1)

{
∈ W , j ∈ [i, . . . , i+ t],
/∈ W , j ∈ {i− 1, i+ t+ 1}

}
: i ∈ [1, T − t]

)
.

(29)
This is the analogue of the trapping statistic (6) used in the area-preserving case.

We computed Pε(t) for an orbit of length T = 226.6 ≈ 108 by partitioning this interval
into subintervals that are logarithmically equispaced, i.e., Ii = [20.1i, 20.1(i+1)) for i up to
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265. We declare an orbit to be “trapped” around a bubble if it remains in W for at least
t0 = 128 consecutive iterates, so we start with i = 70, corresponding to this shortest trapping
segment.

A histogram is constructed for the number of trapped orbit segments in W of length
t ∈ Ii. Normalizing this gives the probability, Pε for t = 20.1(i+1/2), in the logarithmic middle
of Ii.

4.4.1 Normal and anomalous diffusion

The left panel of Fig. 3 shows the standard deviation (25) as a function of T for seventeen
values of ε ∈ [0.2, 1.8]. When ε < 1 (black curves) there are no accelerator modes and when
ε = 1, there are no bubbles. When ε ≥ 1.1 (red curves) the accelerator bubbles have already
disappeared.

From this data it seems reasonable to assert that σT ∼
√
T . To check this claim, we

performed least squares fits of the full data sets for each displayed ε to a function of the
form σT = AT χ. For all fits, we found χ ∈ (0.4975, 0.5025), close to the expected value
of 1

2
. The corresponding values of A are displayed in the central plot of Fig. 3 (black

dots), together with the estimate
√

2Dql (in red), recall (27). The deviation between the
numerically obtained values and the quasilinear prediction is larger for ε ≈ 1 and the effect
of the accelerator mode can be seen even when there is no bubble. Note that when ε < 1
the diffusion coefficient appears to grow nearly linearly with ε, but at a slope larger than the
quasilinear estimate. Recall that for Chirikov’s standard map, the quasilinear prediction is
a better approximation for large parameter values [11, 44, 47, 42], but we have not checked
values of ε larger than 1.8 here.

In the right panel of Fig. 3 we see that when ε ∈ [1.0005, 1.0055]—when the FPAM
around P± have stable bubbles—σT grows more rapidly than

√
T and depends irregularly on

ε. Intervals of linear growth, corresponding to very long trapping segments, are interspersed
with intervals of slower growth where the orbit is not trapped or has only short trapped
intervals. The considerable variability in the growth of σT as a function of ε is presumably
due to the strong dependence of the geometry of the bubbles on ε and to the sensitivity of
the long trapping times to chaos.

To assess the anomalous diffusive properties of fε we iterated N = 104 initial conditions
to T = 1011 to compute σT for the three particular values, ε1, ε2 and ε3—the highlighted
values in Fig. 3. Logarithmic plots of the averaged σT are shown in Fig. 4. In these plots, a
trapping interval can cause jumps in

zmaxT = max
(x0,y0,z0)

(|zT |),

sometimes up to an order of magnitude over a time interval of order 108. In the previous
definition (x0, y0, z0) ranges in the set of initial conditions.

For the three ε values of Fig. 4, a fit to σT = AT χ over 108 < t < 1011 gives exponents
shown in Tbl. 2. All are significantly larger than the diffusive value 1

2
. Note that the value

of χ depends on the range of values used for T . In particular, it abruptly changes if we end
the simulation just before or after a big jump.
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Figure 3: The standard deviation σT as ε varies. Left: The standard deviation as a
function of T for nine values, ε = 0.2(0.1)1, in black, and eight values, ε = 1.1(0.1)1.8, in
red. Center: Growth rate A, defined by σT ∼ A

√
T for these ε values. Right: The standard

deviation for fourteen (non-equispaced) ε ∈ [1.0005, 1.0055]. The labelled curves correspond
to ε1 = 1.0007 (blue), ε2 = 1.0015 (green) and ε3 = 1.0040 (red).
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Figure 4: The standard deviation as a function of T (red curves) on a log-log scale for the ε
values shown. A least squares linear fit (blue) gives the slopes, χ, indicated in each plot. The
upper curves (black) show the maximal value of |zT | among the N = 104 initial conditions
iterated.

4.4.2 Trapping statistics

The trapping statistics (29) for bubbles at ε1, ε2, and ε3 are shown in log-log plots in Fig. 5. In
all cases it seems plausible to assume, following (6), that Pε(t) ∼ t−b, with some fluctuations.
A least-squares fit (performed over the entire range) to a straight line (black) gives the
exponents shown in Tbl 2. Repeating the computations for ε1 with N = 106 initial conditions
and 1010 iterates gives the same value of b to three decimal figures. Such a power law decay
was previously observed for a volume-preserving map in [43]; by contrast in [46] the authors
observe an exponential decay of trapping statistics for another type of map.

Each panel in the right column of Fig. 5 shows a typical orbit trapped near P+ for the
same ε as the left column. Slices near z = 0 of these same orbits are shown in the (x, y)
plane in the top row of Fig. 6. The bottom row of this figure shows slices through some
regular orbits in the P+ bubble. Recall that when κ1 > 0 the point P+ bifurcates into a pair
of accelerating orbits P l,r

+ = (xl,r, 0, 0) (19).
In §2.4 we noted that P r

+ (P l
+) has a 1D stable (unstable) invariant manifold and a 2D

unstable (stable) manifold. These seem to play an important role in the trapping, and we
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ε χ b χ+ b/2
1.0007 0.6482 2.0989 1.6977
1.0015 0.6591 2.4243 1.8713
1.004 0.6856 2.5630 1.9671

Table 2: Exponent χ for the standard deviation (25), and b for the exit time distribution
(6)-(29) obtained from the numerical experiments on the map fε (13) for the values ε1, ε2,
and ε3. See §5.3 concerning the last column.

will discuss this in §5.1.
For our three standard values of the parameter, we observe the following.

• ε1 = 1.0007. Close to the birth of the bubble (recall Fig. 2) the invariant manifolds of
P l,r
+ can be clearly guessed in Fig. 6. The longest trapped orbits approach the bubble

along W s(P r
+), then follows a trajectory that seems to cover a 2D torus, finally escaping

along W u(P l
+).

• ε2 = 1.0015. Further away from the birth of the bubble there are prominent satellite
tori outside the main tori, and the longest trapped orbits appear to be primarily stuck
around such satellites: in Fig. 6 this region has the highest density. Each of these
satellites encloses an elliptic invariant circle giving what seems to be a period-twelve
orbit in the section (the black points in the bottom middle panel of Fig. 6). In fact,
there are six invariant curves of f 6

ε , one the image of the other under fε. Under f 6
ε

each of these curves closes after two revolutions around the x axis. The central region
of the bubble, near the 1D manifolds of P l,r

+ , has a lower density, but it still seems to
play a role in its stickiness.

• ε3 = 1.0040. Now the regular region around the bubble is almost destroyed, but one
still expects trapping around the main tori or satellite tori. The orbit shown in Fig. 6
seems to be trapped around a family of tori that surrounds a single elliptic invariant
curve, which closes after five revolutions around the x axis.

Recall that by Prop. 1, the Michelson map (9) is a quadratic approximation near P±
for the family (13). Though this approximation is less accurate when n = 1, there is a
coordinate change of the form (x, y) 7→ (x − G(ε)y3, y), for suitable G(ε), that brings the
plots in Fig. 6 closer to those in Fig. 1 for the Michelson map.

5 Discussion

In this section we discuss in more detail how chaotic orbits approach the vicinity of a bubble.
We also discuss how the results of the previous section fit with, and deviate from, existing
theoretical approaches, suggesting a possible approach to deal with the discrepancies.

5.1 Entering and exiting the bubbles

As we noted above, the entrance and exit routes for a bubble often correspond to the 1D
manifolds of the fixed points P r,l

± of f̃ε. Numerical computations of these manifolds are shown
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Figure 5: Trapping statistics versus time for ε = 1.0007, 1.0015 and 1.0040. Each right panel
shows an example of a trapped orbit near the bubble of P+ for the corresponding ε value on
the left.

in Fig. 7 for ε3. Qualitatively similar curves are obtained for other parameters. Recall that
the reversing symmetry (18) implies that the invariant manifolds of P r,l

− can be obtained from

those of P r,l
+ using the reversor (18), and this symmetry is clearly manifest in the figure. When

a bubble is present, points on outer branches of the unstable 1D manifolds do not appear
to return to a neighborhood of the bubbles in a short number of iterations. The implication
is that these manifolds correspond to entrance and exit routes for the neighborhood of a
bubble.

A large fraction of orbits that get trapped inW+ (28) approach P r
+ along the right branch
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of W s(P r
+), the purple curve in Fig. 7. They then move away from this point along its 2D

unstable manifold, W u(P r
+) (not shown in the figure). This manifold curves towards the

neighboring saddle-focus, P l
+. The 2D stable manifold of this point similarly curves towards

P r
+, and so these two manifolds intersect. Some orbits are thus funneled along W s(P l

+)
towards P l

+. They finally escape the bubble close to the left branch of W u(P l
+), the green

curve in the figure. Though the incoming orbits to W+ need not be very close to W s(P r
+),

the attraction of W s(P l
+) tends to make escaping orbits closely follow W u(P r

−). Moreover,
the length of the trapped segment is longer if an orbit is closer to the stable manifolds,
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since such orbits spend more time near the saddle-foci. By symmetry the same explanation
applies to incoming and escaping orbits for the region W− around P l,r

− . The case ε = 1.0007
in Fig. 5 and its corresponding slice around z = 0 in Fig. 6 illustrate this situation.

If an orbit remains trapped for a long time, it will often follow a trajectory close to a
boundary torus of the bubble (an outermost 2D torus). When such an orbit reaches the
vicinity of P l

+, it can be swept through the center of the bubble along the right branch of
W u(P l

+). This will lead to a return near P r
+, and the orbit can repeat the process. A small

number of trajectories make many turns inside the bubble becoming trapped for a long time
near sticky, 2D tori. Each turn requires a passage close to the two saddle-foci where the orbit
spends a relatively large number of iterates. The effect of repeated returns can be clearly
seen in the trapping statistics plots of Fig. 5 especially for ε1. Let us give some details on
what is observed:

1. First, orbits that enter the bubble and leave it without being swept through the center,
can escape more rapidly from W+ than those orbits that return close to P r

+. This
creates a discontinuity in the trapping statistics. The same thing happens for orbits
that have multiple passages through the channel created by the 1D manifolds: for each
additional passage there is a new discontinuity. Consequently, the trapping statistics
in the figure show corresponding jumps (for, say, 103 / t / 104 for ε1).

2. Second, the relative measure of orbits that do not perform any close return to P r
+

decreases as the distance to the saddle-foci decreases. The implication is that there
are more orbits spending shorter times near the bubble than longer times. For the
statistics at ε1, this explains the decrease in the abundance of trapped orbits for, say,
102 / t / 103. Similar effects are seen, but to a smaller extent, for the orbits that pass
multiple times through the channel. These effects are weaker, but still visible in the
plots for ε2 and ε3.

As ε grows, the channel around the 1D manifolds that traps orbits grows in diameter,
but can still play some role. For example, the slices for ε = 1.0015 in Fig. 6 show that some
trapped orbits still can be stuck in a zone with larger volume near the 1D manifolds. Of
course if ε is large enough this channel will be less important.

5.2 A transport model

A statistical model of transport usually assumes that ensembles evolve as a random walk
on a discrete Markov chain with states corresponding to regions of phase space bounded by
partial barriers. For area-preserving maps, the barriers are Cantori, and the transition flux
between states is the turnstile area [32, 33, 36].

A simplified model for trapping statistics and anomalous diffusion corresponds to dis-
cretization into two such states [1, 26, 50, 53, 54]: a region W = W+ ∪ W−, (28), where
orbits are accelerated, and its complement,

Wc = T3 \W .

The idea is that when an orbit is in W it undergoes a flight, where the action grows linearly
in time, and while it is in Wc it undergoes normal diffusion. In this model there are just
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two possible transitions: escape from, or entry into W , i.e. the transitions W → Wc

and Wc → W , respectively. If we take W to be a vicinity of a bubble of stability, then
this simplification requires that we know the exit-time probability Pε(t) (29), the pdf of a
W →Wc transition at time t. From our observations it seems plausible to assume that this
has the power law form (6) with b ∈ (2, 3). This is consistent with previous numerical results
for a 3D map [43] and with the observations for 2D maps, recall §2.1. Note that b must be
at least 2 since, when a map is volume preserving, Kac’s theorem implies that the average
exit time must exist [34]. When b < 3, the variance does not exist.

Of course the true distributions in Fig. 5 are not exactly power laws: there are jumps
and oscillations. The former is probably due to low flux through regions containing newly
broken tori, and the latter to the number of passages close to the saddle-foci P r,l

± [40, Ch.
5].

The analogous pdf for the lengths of stays outsideW is the exit-time distribution forWc.
As was also observed in the area-preserving context [42], this distribution seems to be well
approximated by an exponential. In Fig. 8 we show, for ε1, the exit time distribution forWc

as a function of time. In essence, excluding fast returns to W (say, of length less than 50),
it appears that the probability of enteringW after spending t iterates inWc seems to follow
a geometric distribution with rate c, and hence that the exit time distribution for Wc is

P(t) ∼ (1− c)t ∼ e−ct, (30)

when c � 1. Estimating c from a linear fit on a log-linear plot like Fig. 8 gives, for ε1, ε2,
and ε3,

c ≈ 3.00× 10−6, 2.53× 10−6, and 2.10× 10−6,

respectively. Note that the average exit time is of the order of c−1 so that the average time
in Wc is of the order of 4(10)5 iterates. That is, there are long periods outside the bubbles.

e−8

e−16

e−24

0 2(10) 4(10) t 6(10) 666

exp
(
−3(10)−6t

)

ε = 1.0007

Figure 8: Exit time probability density function forWc on a log-linear plot. The distribution
is computed for N = 2 × 107 initial conditions in a fundamental domain of the unstable
manifold of the point (3/4, 0, 0).
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Correlations between the transitionsW →Wc andWc →W must be taken into account
to be able to estimate the anomalous diffusion exponent χ from the trapping statistics. To
measure these, we consider two random variables: say X, that denotes the length of a stay
in W ; and Y , that measures the length of the next trapping segment in Wc. In this way we
can measure the correlation between successive stays in complementary regions.

For ε1 and ε2 we found that the correlation coefficient between X and Y to be small,
i.e., to be inside the confidence interval at the level of 95% given by Student’s law. However,
for ε3 we initially found correlations. This anomaly has an easy geometrical explanation:
the shape of the bubble is increasingly distorted (by the cubic term in ψ(z)) as ε grows,
recall Fig. 6. The implication is that the size of the domain for W in (28) is too small to
properly contain the trapped segments around the bubble. If we slightly increase the size of
this domain to

W+ = {(x, y, z) : |x| ≤ 0.04, |y| ≤ 0.15, |z| ≤ 0.1},
and an analogous form for W−, then the correlation between successive stays is again small.
This enlargement only affects short stays inW andWc due to orbits that are located on the
periphery of the bubble. Hence, it has a minor effect on the long-time trapping statistics
shown in Fig. 5 and the long-time behavior of σT shown in Fig. 4.

5.3 Relating anomalous diffusion to stickiness

Our numerical experiments suggest that the action diffusion for our map is anomalous, recall
Tbl. 2. What is the relation between the exponent χ of σT and the exponent b of the exit
time distribution? A number of previous studies of the analogous phenomena for 2D maps
imply that

χ = 2− b/2, (31)

see e.g., [27, 21, 26, 53, 54, 50]. However this result does not hold for our map when ε is close
to one; the final column in Tbl. 2 shows the deviation of χ + b/2 from the expected value
of 2. Indeed, even the sign of the relation is not correct: as b increases, χ should decrease
according to (31); instead it increases.

We believe that a major reason for this disagreement is the relatively small value of c
in the exponential decay of the Wc → W transitions. The point is that even though we
have iterated each initial condition up to 1011 times, we may still be far from observing
the “correct” asymptotic behavior. Indeed, the derivation of (31) relies on the Wc → W
transitions being fast compared with those forW →Wc. When c is small, orbits spend more
time outside W . Hence, for a fixed total number of iterates, less time is spent in W . Thus
longer experiments are probably needed to faithfully compute the effect of the W → Wc

transitions on σT .
It would be interesting to take into account the role of the parameter c in the simple

two-state transport model, especially to compute finite time corrections to an asymptotic
exponent.
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6 Conclusions

In the first part of this paper we constructed a family fε (13) of two-angle, one-action,
volume-preserving maps of the cylinder T2 × R that smoothly projects to the three-torus
T3. This map has fixed point accelerator modes that are born whenever ε = n. The phase
space of f0 is foliated by horizontal, rotational invariant tori, and these persist when ε (and
µ) is small according to volume-preserving versions of the KAM theorem. Thus our model
generalizes Chirikov’s standard map to the 3D volume-preserving setting.

The accelerator modes are created by a Hopf-one bifurcation. The local behavior near
this bifurcation is modeled by the Michelson quadratic volume-preserving map (9). Previous
studies of this map gave necessary conditions for the appearance of a bubble regular motion
around the accelerator modes.

In the second part of the paper, we assessed the diffusive properties of the fε as ε
varied near the first Hopf-one bifurction at ε = 1. We found, as expected, that if there are
no accelerator modes, the action variable exhibits normal diffusive behavior: its standard
deviation grows as

√
T . However when there is a bubble of stable orbits, the action diffusion

seems to be anomalous: the standard deviation with exponent χ > 0.6. Moreover, the exit
time distribution for a neighborhood of the bubble decay as a power-law t−b with b ∈ (2, 3).
Our experiments suggest that the distribution for the lengths of untrapped segments is
exponential, and that stays outside and inside the bubbles are independent.

In this paper we provide evidence that Pε(t) ∼ t−b, b ∈ (2, 3), agreeing with the results
in [43]. This contrasts with the exponential distribution for exit times observed for the map
in [46]. We do not know the reason for this radical difference.

Another important question that remains is the relation between the exponents b and χ.
From our computations, this differs from the relation obtained for the 2D case, recall §5.3.
We hypothesize that the reason for this is that the mean exit time from the complement of
the bubbles is too long for our numerical experiments to reach their asymptotic limit.

The observed algebraic decay of the exit time distribution seems to imply that there
exist remnants of destroyed invariant two-tori in the chaotic zone outside the KAM-bubble.
These would be analogous to the Cantori for 2D twist maps. There is no theory, however,
for the existence of these in the volume-preserving context. If one could find these remnants,
and compute the flux through them, then it should be possible to construct a Markov tree
model, similar to that in [38], that could explain the observed stickiness of the bubble. To
solve these problems requires a theory for the destruction of invariant tori [35, 20]. Is there
an analogue of Chirikov’s overlap criterion? Are there remnant tori, and if so, what is their
topology?
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A A choice for ψ(z)

Here we construct a concrete example of an odd, degree-one circle map ψ that satisfies (14).
This will be used in §4 to give numerical evidence of anomalous diffusion in the dynamics of
the map fε along the action variable.

First consider a function ψ̃(z) = −z + c3z
3 defined on [0, 1]. If c3 ≥ 4 there is a unique

zc ≤ 1
2

such that mc = ψ̃′(zc) is the slope of the straight line between (zc, ψ̃(zc)) and (1
2
, 0).

The value zc is determined as a solution of the cubic equation,

ψ̃′(zc)(
1
2
− zc) + ψ̃(zc) = 0.

Define the C1 function

ψ̃ext(z) =





ψ̃(z) if z ∈ [0, zc),
mc(z − 1

2
) if z ∈ [zc, 1− zc],

−ψ̃(1− z) if z ∈ (1− zc, 1].

This is an odd function with zero average. We can consider an analytic approximation of it
via (a truncated) Fourier series, that will only contain sine terms with coefficients âk < 0.
Call such an approximation ψ̂ext. For the choice c3 = 8π2 it is enough to take the first seven
harmonics to get a fairly good approximation of ψ̃ext. That is, we take

ψ(z) = z + λcψ̂ext(z) ≈ z + λc

7∑

k=1

âk sin(2πkz),

where λc = |dψ̂ext(0)/dz|−1 is a correction factor to make sure that ψ′(0) = 0. For our map
(13), this gives the form (15) with ai = λcâi, i = 1, . . . , 7 being

a1 = −0.03172255262410020, a5 = −0.00394622128219923,
a2 = −0.01500144672104500, a6 = −0.00257376369649251,
a3 = −0.00909490284466739, a7 = −0.00159954483407287.
a4 = −0.00594357151581041,

(32)

In Fig. 9 we can see the graph of ψ(z) in [0, 1] (left), and how much it differs from the
identity (right).

B Proof of Lemma 1

Here we prove Lemma 1, on the existence of fixed point accelerator modes for the map (13).
Recall that the function ψ(z) is assumed to be an odd, degree-one circle map that satisfies
(14).

A point (x, y, z) belongs to an FPAM if (x′, y′, z′) = (x+n1, y+n2, z+n3), n1, n2, n3 ∈ Z,
and n3 6= 0. From (13) this implies

µ sin(2πy) + ψ(z′) = n1, (33)

ν sin(2πz′) = n2, (34)

ε (cos(2πx)− β sin(2πy)) = n3. (35)
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Figure 9: Left: function ψ(z) in (13), see (15). Right: ψ(z)− z.

Given the limits (17), (34) implies that n2 = 0, and thus either z′ = p or z′ = p+ 1
2
, for some

p ∈ Z.

1. Assume first that z′ = p ∈ Z. Since z′ − z = n3, then, z = q = p − n3 ∈ Z. Since
ψ(p) = p, and µ is restricted by (17), (33) requires that n1 = p, which requires y = y±
with y+ = r or y− = r + 1

2
, for r ∈ Z.

In particular, in both cases (35) reduces to ε cos(2πx) = n3 ∈ Z \ {0}. Solutions to
this equation are born at ε = n3 at x = s or x = s + 1

2
, being s ∈ Z. Hence we have

FPAM that are born when ε = n3 at the points

P+ = (0, 0, 0), Q+ = (0, 1
2
, 0),

P− = (1
2
, 0, 0), Q− = (1

2
, 1
2
, 0),

on T3, and all equivalent lifts of these points to R3.

At the Hopf-one bifurcation, the linearization Dfε should have 1 as eigenvalue. This
holds since at the FPAM, cos(2πy±) = ±1 and sin(2πx) = 0, and the first and second
traces of Dfε are

τ = σ = 3∓ 4βεπ2ν.

Finally, the second pair of multipliers is on the unit circle when −1 < τ = σ < 3,
which gives the requirement

0 < ±επ2βν < 4

Thus if βν > 0 only the fixed points P+,− have the stability property to become
saddle-foci, recall Rem. 3.

2. If z′ = p + 1
2
, p ∈ Z, then since ψ(z) − z is a period-one, odd function, ψ(z′) =

ψ(p + 1
2
) = p + ψ(1

2
) = p + 1

2
. Thus (33) requires that n1 = p + 1

2
+ µ sin(2πy) = 0.

Under the restriction (17), this implies that n1 /∈ Z. Hence, no point in T3 of the form
P = (x, y, 1

2
), x, y ∈ S1 can be an FPAM.

2
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