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a b s t r a c t

In this study, we address the problem of classification of carrot fruit in order to manage and control
their waste using improved deep neural networks. In this work, we perform a deep study of the
problem of carrot classification and show that convolutional neural networks are a straightforward
approach to solve the problem. Additionally, we improve the convolutional neural network (CNN)
based on learning a pooling function by combining average pooling and max pooling. We experi-
mentally show that the merging operation used increases the accuracy of the carrot classification
compared to other merging methods. For this purpose, images of 878 carrot samples in various shapes
(regular and irregular) were taken and after the preprocessing operation, they were classified by the
improved deep CNN. To compare this method with the other methods, image features were extracted
using Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP) methods and they were
classified by Multi-Layer Perceptron (MLP), Gradient Boosting Tree (GBT), and K-Nearest Neighbors
(KNN) algorithms. Finally, the method proposed based on the improved CNN algorithm, was compared
with other classification algorithms. The results showed 99.43% of accuracy for grading carrot through
the CNN by configuring the proposed Batch Normalization (BN)-CNN method based on mixed pooling.
Therefore, CNN can be effective in increasing marketability, controlling waste and improving traditional
methods used for grading carrot fruit.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Maintaining safety of agricultural products in the post-harvest
tage becomes highly important when trying to have sustainable
griculture. Reducing waste is directly related to the safety of
ood and agricultural products. So, it is currently considered as
topic worthy of immediate attention by macro-level policy-
akers in different countries. Of the 67 million tons of the agri-
ultural products produced in Iran every year, 20 million tons
urn into agricultural waste in the post-harvest stage; a figure
hat makes up more than 30% of the total annual production. That
alue is equivalent to the food of 20 million people in a year. In
act, not only are 30% of agricultural products destroyed, but 30%
f water consumed in agriculture is also wasted. Thus, this much
aste in agricultural products and in water can be largely con-
rolled, and the products and water can be saved through proper

∗ Corresponding author.
E-mail address: mohamad.momeny@gmail.com (M. Momeny).
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352-4847/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
harvesting, transportation, warehousing and processing methods.
Reducing agricultural waste can help increase Gross Domestic
Product (GDP) and the added value of the agricultural products
(Shahgholi et al., 2020; Jahanbakhshi et al., 2019; Ahangarnezhad
et al., 2019; Jahanbakhshi and Salehi, 2019).

Carrots are one of the most widely consumed agricultural
products in the world. They are a good source of vitamins and
minerals that are good for the body and the human health. Carrots
are a good source of carotenoids (vitamin A precursors) that
are helpful in improving vision (Jahanbakhshi and Kheiralipour,
2020).

Carrots are used mostly as a raw edible product. One of the
carrot image analysis problems is its shape non-homogeneity.
Despite the fact that carrots with undesirable shapes do not
have any problems with respect to their nutritional properties,
customers do not commonly reach out for them in the market.
As a result, carrots remain in the market for a long time and
this leads to material loss increase. So, in order to increase its
marketability and reduce its wastage, appropriate methods must

be adopted for sorting and packaging the carrot products.
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Qualitative evaluation of agricultural products in the past was
raditionally done by experts and through the eyes and hands
f human inspectors. Evidently, in that method the performance
s slow and the traditional methods proved to be expensive and
nefficient in responding to the increase in consumers’ demands
ince there appeared the need to higher quality products and
aster sorting procedures. One of the most basic and important
perations after harvest is the sorting of agricultural products
ased on their quality and shape. Sorting operations assist cus-
omers in recognizing products quality more easily and leads to a
ore organized distribution and supply of agricultural products

Momeny et al., 2020; Azarmdel et al., 2020).
Machine learning and computer vision have made huge

rogress in addressing real image analysis problems during the
ecent decades. Visual machine systems can be used to control
he quality of food products by ensuring the accuracy and uni-
ormity of the control process. Also, the use of computer vision
ystems for objective and non-destructive evaluation of food
roducts has been proved to be successful in different scenarios
Singh et al., 2020; Fashi et al., 2019; Beyaz et al., 2019; Azarmdel
t al., 2019).
In a study, Jahanbakhshi et al. (2020) classified sour lemons

ased on apparent defects using deep convolutional neural net-
orks. They reported that the classification accuracy for the CNN
as 100%. Biswas et al. (2020) proposed a robust multi-label

ruit classifier based on deep CNNs. They reported a classification
ccuracy of 98% for four classes of 1200 fruit images. Stein-
rener et al. (2019) classified hyperspectral fruit and vegetables
sing CNN. The results of their research showed that hyper-
pectral image data increased the average classification accuracy
rom 88.15% to 92.23%. Kheiralipour and Pormah (2017) classified
ucumber fruits based on their appearance shape using image
rocessing techniques and artificial neural networks (ANN). They
eported that ANN classification accuracy was 97.1%. Przybyło
nd Jabłoński (2019) used deep convolutional neural networks to
iagnose oak acorn viability. They reported accuracy of 85% for
he deep neural network.

Much research has been done on the classification of agricul-
ural products such as apple (Wu et al., 2020; Bargoti and Under-
ood, 2017), tomatoes (Foysal et al., 2020), orange (Ganesh et al.,
019), potato (Marino et al., 2019), peaches (Sun et al., 2019),
ineapple (Nawawi et al., 2018), barley (Kozłowski et al., 2019)
nd date (Nasiri et al., 2019) using image processing techniques
nd convolutional neural networks.
Researchers have reported that improper shapes of agricul-

ural products are one of the most important factors in increasing
gricultural waste due to the fact that unfavorable shapes of
he products reduce their marketability (Momeny et al., 2020;
heiralipour and Pormah, 2017; Fu et al., 2016).
Therefore, a market standard for agricultural products is the

hape and the appearance of them. Irregular shapes of the carrot
ruits are caused by the genetic disorders in their development.
hese irregular shapes result in poor marketability and cause
he product to remain unsold in the market for a long time and
ecay. However, adopting suitable methods of quality grading
nd, proper packaging of this product can prevent its wastage and
ncrease its marketability. This study aims at proposing a practical
ethod based on improved deep CNN to accurately classify carrot

ruit and apply it in an automatic industrial computer vision
ystem. Two important criteria for the assessment of such a
ethod are its accuracy and practicality in grading the product.

. Materials and methods

.1. Fruit preparation and imaging

In this study, fresh carrot fruits were purchased from a farmer
n Kermanshah-Iran. In total, 878 carrot samples with different
5249
shapes (450 carrot samples with regular shape and 428 carrot
samples with irregular shape) were selected (Fig. 1). Then, using
the imaging system, the image of the samples was acquired
(Fig. 2). The imaging system had a lighting box including two LED
lamps as well as a camera (Canon, Japan).

2.2. Preprocessing images

In this study, pre-processing and classification are done by
removing the background image. Also, carrot images have a large
size (4128 × 3096 pixels), which reduces the speed of image
analysis and processing. Thus, in order to compare and achieve
the highest classification accuracy, the image size was reduced to
three sizes (16 × 16), (24 × 24) and (48 × 48) pixels.

2.3. Data augmentation

It is well-known fact that Convolutional Neural Networks are
greedy techniques, in order to learn to classify objects they need
large amount of annotated data. Data augmentation is a funda-
mental technique for achieving large amount of training data and
thus for improving the generalization of deep learning models.
Recently, Fast AutoAugment has been proposed as an algorithm
for automatically searching augmentation methods (Shorten and
Khoshgoftaar, 2019). This method minimizes the computational
complexity of the Deep learning methods and achieves significant
speed and considerable performance in improving the image
classification results (Lim et al., 2019). Controller, Augmenter, and
Child model are components of Deep Augment. The controller
is a search algorithm that samples a data augmentation policy
from the search space. The images of the dataset are transformed
by the augmenter with the new policy. The augmented images
created with the new policy are inputs of a child model. According
to Fig. 3, to augment the data in the proposed Fast AutoAugment-
based approach, the data is first divided into five equal folds. Then
data augmentation politics is applied to each of the folds without
repetition. In the next step, each fold is processed by the Child
Model. The output of each CNN is controlled by a Bayesian opti-
mizer. The controller discards weak politics and maintains strong
politics. It also introduces new politics. This cycle continues until
the appropriate politics for data augmentation is found.

2.4. Model implementation based on improved CNN

A convolutional neural network is made up of a series of
convolutional layers, pooling layers, and fully connected layers.
In the following, we will describe each of the layers:

2.4.1. Convolutional layer
The core of the CNNd is the convolution layer. The function

of these layers is to identify and extract nonlinear features of
objects in the images. The CNN output can be thought of as a
three-dimensional set of neurons. Filters with learning capacity
form the convolution layer parameters. In each convolutional
layer, the features map is extracted from the image by these
filters and a two-dimensional activation map is created. In the
early layers of the convolution, low-level features such as corners,
lines, and edges are revealed, and in deeper layers, features with
higher levels, such as parts of or even objects in the images, are
identified. Fig. 4 shows the function of the convolution layer.
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Fig. 1. Carrot fruit with different shapes being (a) irregular and (b) regular appearance (Jahanbakhshi and Kheiralipour, 2020).
Fig. 2. Imaging system to acquire carrot images.
.4.2. ‘‘Mixed’’ max-average pooling
In CNN-based image classification systems, pooling operations

lay an important role in reducing network parameters. Average
ooling and max pooling have been widely used in many CNN-
ike architectures. The combination of these two methods is called
‘mixed pooling’’ (Lee et al., 2017). In this study, the mixed pooling
ethod is used in the pooling layer as follows:

mix (X) = al · fmax (X) + (1 − al) · favg (X) (1)

here al ∈ [0,1] is the value that determines the combination of
ax pooling and average pooling. How mixed pooling works is

llustrated in Fig. 5.

.4.3. The proposed CNN architecture
The proposed CNN configuration for carrot fruit classifica-

ion is shown in Fig. 6. According to Fig. 6, Configuration 1
n the proposed model consists of two convolution layers, two
atch normalization layers, a pooling layer and a fully connected
ayer. Configuration 2 in the proposed model, consists of six
onvolutional layers, three layers of batch normalization, two
ooling layers and a fully connected layer. Configuration 3 of the
odel consists of eight convolutional layers, four batch normal-

zation layers, three pooling layers and a fully connected layer. In
he proposed architecture, ReLU was used as activation function
Krizhevsky et al., 2012; Hahnloser et al., 2000).

One technique that can be used for improving the speed,
erformance, and stability of artificial neural networks is the
5250
Batch normalization. This technique normalizes the input layer
through adjusting and scaling activations. At the beginning, it
was proposed to solve internal covariate shift. The distribution
of inputs in the current layer changes in accordance with change
in the parameters of the preceding layers during the training
stage of networks. Thus, the current layer must readjust to new
distributions on a constant basis. The problem gets even more
serious when it comes to deep networks, since the propagation
of the small changes in shallower hidden layers of the network
amplifies them; hence causing considerable change in deeper hid-
den layers. So, batch normalization method is applied to decrease
the undesirable changes, to speed up the training and produce a
model that is more reliable for carrot classification.

Batch normalization has several other advantages in addition
to reducing internal covariate shift. This additional layer enables
the network to have a higher learning rate without vanishing
or exploding gradients. Batch normalization also regularizes the
network in such a way that the generalization becomes easier,
which in turn removes the necessity of using dropout to mitigate
overfitting. Yet another benefit is that the network becomes more
robust and applicable with different initialization schemes and
learning rates.

Each input channel is normalized across a mini-batch by a
batch normalization layer. Batch normalization is used between
convolutional layers and the nonlinear layers, such as the ReLU
layers in order to accelerate the convolutional neural networks
training and decrease network initialization sensitivity.
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Fig. 3. Fast AutoAugment-based data augmentation architecture.
Fig. 4. Input image and the convolutional layer in the proposed CNN.
Fig. 5. Combined pooling layer of our CNN based on mixed pooling.
First, activations of each channel are normalized by the layer,

.e. the mean of the mini-batch is subtracted and divided by its

5251
standard deviation. After that, the layer shifts the input by a

learnable offset, β and scales it by a learnable scale factor, γ .



A. Jahanbakhshi, M. Momeny, M. Mahmoudi et al. Energy Reports 7 (2021) 5248–5256

n

Fig. 6. Our proposed CNN architecture for carrot fruit classification.
By calculating the mean µB first, the batch normalization
ormalizes its inputs xi and variance σ 2

B on each input channel
over a mini-batch. Inputs can be calculated through the following
formula:

xi =
xi − µB√
σ 2
B + ε

(2)

When the mini-batch variance is very small, the parameter
ϵ improves the numerical stability. Inputs with zero mean and
unit variance might not be optimal for the layer following the
batch normalization layer. To allow for this possibility, the batch
normalization layer shifts more and scales the activations as
follows:

y = γ x + β (3)
i i

5252
where the offset β and the scale factor γ (offset and scale prop-
erties) are learnable parameters updated during the network
training.

Using Batch Normalization leads to better results including
faster network training, higher learning rate, easier weight ini-
tialization, more viable activation functions, simplification of cre-
ating deeper networks, and regularization of the classification
model.

2.5. Validation

In this study, the performance of the proposed CNN model was
compared with the performance of other classification methods
for carrot images. For comparison, the desired features were
first extracted from the carrot color images by Local Binary Pat-
tern (LBP) and Histograms of Oriented Gradients (HOG) methods.
Features extracted from the images were then categorized with
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arameters used for the algorithms.
Algorithms First parameter Second parameter Third parameter

Parameter name Value Parameter name Value Parameter name Value

KNN k 3 – – – –
MLP Number of hidden layers 2 Number of neurons per hidden layer 25 – –
GBT Limited number of levels (tree depth) 4 Number of models in the boosting 100 Learning rate 0.1
CNN Batch size 25 Learning rate 0.001 Maximum no. epochs 250
MLP, GBT, and KNN algorithms. Finally, the results of applying
different algorithms for classification were compared in terms
of the accuracy of the algorithms. The parameters used for the
different algorithms are reported in Table 1. In this research, pre-
processing and classification operations of carrot images were
carried out in MATLAB R2020b software. The convolutional neu-
ral Networks were built with the Deep Network Designer tool-
box of Matlab software. Other classifiers were simulated with
Classification Learner App of Matlab software.

2.6. Statistical analysis

Accuracy, Loss and MAE were criteria taken into account for
he validation and comparison between the proposed CNN and
ther classification models in accordance to the following rela-
ions (Jahanbakhshi et al., 2020; Zheng et al., 2017; Arqub, 2019;
rqub and Rashaideh, 2018):

ccuracy =
TP + TN

TP + TN + FP + FN
(4)

where,
TP: True positive
TN: True negative
FP: False positive
FN: False negative

Loss = − (XLog (p) + (1 − X) Log (1 − p)) (5)

where Log is the natural log; X is a binary indicator (0 or 1) if
class label c is the correct classification for observation o and p is
the predicted probability observation that o is of class c.

MSE =
1
N

N∑
i=1

⏐⏐yi − ŷi
⏐⏐ (6)

where:
yi: ith real instance
ŷi: ith predicted instance

The most common criteria for evaluating classifiers are Re-
call, Precision, Sensitivity, Specificity, F-measure and accuracy
which were used to compare the performance of the classifiers.
Sensitivity is the fraction of correctly classified positive samples
(i.e. samples corresponding to the class in question), specificity is
the fraction of correctly classified negative samples (i.e. samples
not corresponding to the given class), F-measure is obtained
through a precision–recall comparison, and the accuracy is the
classifier’s total classification rate. These criteria are computed
using Eqs. (7)–(11):

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

FP + TN
(10)

-Measure =
2 × Precision × Recall

Precision + Recall
(11)
5253
Table 2
Selecting the positive and negative classes of carrot images in order to evaluate
the recall, precision, sensitivity, specificity and F-measure.
Steps and classes Irregular shapes Regular shapes

Step 1: Irregular shapes Positive Negative
Step 2: Regular shapes Negative Positive

3. Results and discussions

In this study, data augmentation was used in the CNN training
process. Also, 70% of the data was used for training, 10% for
validating and 20% of the data were randomly chosen and fixed
to test the proposed CNN model. Classification performance was
evaluated by once considering the carrots with irregular shapes as
positive class (In this step, regular images of carrots are selected
as negative class) and once taking the carrots with regular shapes
as the positive class (In this step, irregular images of carrots
are selected as negative class) (Table 2). Then, the classification
accuracy of the different methods was evaluated through the
Accuracy, Loss and MAE criteria, and the results were reported
in Tables 3–5.

The overall accuracy results show that the proposed BN-CNN
model based on mixed pooling with the proposed configuration
(Config. 3 in Fig. 6), in the image size of 24 × 24 pixels in the
training, validation and testing phases, was the optimal one. It
has a values equal to 1.00, 1.00 and 0.99, respectively. Also, the
proposed configuration (Config. 3 in Fig. 6) with image size of 24
× 24 pixels in the test phase has the lowest Loss and MAE values
of 0.01 and 0.01, respectively (Table 5). Because to improve the
pooling process, the mixed pooling method has been used, which
has the advantages of max pooling and average pooling.

Classification performance criteria including recall, precision,
sensitivity, specificity and F-measure for different classifiers are
given in Table 6. Comparison of the results from Table 6 shows
that the HOG image feature extraction method has a better per-
formance than LBP in the MLP, GBT and KNN classifiers. The
proposed model (CNN) based on mixed pooling with an image
size of 24 × 24 pixels and in all performance criteria (recall,
precision, sensitivity, specificity and F-measure) has values equal
to one (100%). Therefore, through these criteria, the excellent
performance of the classification system can be appreciated. In
order to optimize the pooling process, mixed pooling was used
to benefit from the max pooling and average pooling advantages.
Also, applying CNN optimization using mixed pooling has shown
to achieve better results than the baseline pooling. To summa-
rize, 100% sensitivity value in a given class indicates that all its
samples have been classified correctly. A specificity value of 100%
in a class means that no samples from other classes have been
misclassified in that class.

The results of the classification accuracy for the different clas-
sifiers are given in Fig. 7 according to the image size for grading
carrot images. The results show that the proposed BN-CNN model
based on mixed pooling with the proposed configuration (Config.
3 in Fig. 6) based on total accuracy has been able to classify carrot
images in all sizes (16×16, 24×24, and 48 × 48 pixels) with

96.02%, 99.43% and 97.16%, respectively. The results suggest that
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omparison of the proposed model (CNN) with other models for carrot fruit grading (according to Config. 1 in Fig. 6).

Metrics Image size Non BN-CNN BN-CNN

Baseline pooling Mixed pooling Baseline pooling Mixed pooling

Train Validation Test Train Validation Test Train Validation Test Train Validation Test

Accuracy 16 × 16 0.73 0.73 0.70 0.78 0.78 0.76 1.00 1.00 0.93 1.00 1.00 0.93
24 × 24 0.76 0.76 0.73 0.80 0.82 0.79 1.00 1.00 0.93 1.00 1.00 0.94
48 × 48 0.80 0.79 0.72 0.77 0.76 0.76 1.00 1.00 0.86 1.00 1.00 0.87

Loss 16 × 16 0.53 0.54 0.54 0.46 0.48 0.46 0.01 0.01 0.23 0.02 0.02 0.20
24 × 24 0.50 0.50 0.55 0.42 0.44 0.49 0.00 0.00 0.22 0.00 0.00 0.20
48 × 48 0.30 0.45 0.55 0.46 0.47 0.47 0.00 0.00 0.54 0.00 0.00 0.55

MAE 16 × 16 0.37 0.37 0.37 0.32 0.32 0.32 0.01 0.01 0.08 0.01 0.01 0.08
24 × 24 0.34 0.34 0.36 0.29 0.30 0.31 0.00 0.00 0.08 0.00 0.00 0.08
48 × 48 0.44 0.31 0.34 0.32 0.33 0.32 0.00 0.00 0.13 0.00 0.00 0.13
Table 4
Comparison of the proposed model (CNN) with other models for carrot fruit grading (according to Config. 2 in Fig. 6).

Metrics Image size Non BN-CNN BN-CNN

Baseline pooling Mixed pooling Baseline pooling Mixed pooling

Train Validation Test Train Validation Test Train Validation Test Train Validation Test

Accuracy 16 × 16 0.83 0.83 0.83 0.63 0.62 0.62 1.00 1.00 0.94 1.00 1.00 0.95
24 × 24 0.89 0.89 0.89 0.82 0.82 0.82 1.00 1.00 0.95 1.00 1.00 0.96
48 × 48 0.92 0.89 0.86 0.94 0.94 0.91 1.00 1.00 0.93 1.00 1.00 0.91

Loss 16 × 16 0.40 0.40 0.40 0.61 0.61 0.62 0.00 0.00 0.17 0.00 0.00 0.14
24 × 24 0.27 0.28 0.28 0.39 0.38 0.38 0.00 0.00 0.14 0.00 0.00 0.14
48 × 48 0.20 0.25 0.37 0.15 0.15 0.27 0.00 0.00 0.36 0.00 0.00 0.35

MAE 16 × 16 0.27 0.28 0.28 0.44 0.44 0.45 0.00 0.00 0.06 0.00 0.00 0.04
24 × 24 0.18 0.18 0.18 0.26 0.26 0.26 0.00 0.00 0.05 0.00 0.00 0.04
48 × 48 0.13 0.14 0.17 0.10 0.10 0.14 0.00 0.00 0.09 0.00 0.00 0.08
Table 5
Comparison of the proposed model (CNN) with other models for carrot fruit grading (according to Config. 3 in Fig. 6).

Metrics Image size Non BN-CNN BN-CNN

Baseline pooling Mixed pooling Baseline pooling Mixed pooling

Train Validation Test Train Validation Test Train Validation Test Train Validation Test

Accuracy 16 × 16 0.51 0.51 0.50 0.52 0.51 0.49 1.00 1.00 0.95 1.00 1.00 0.96
24 × 24 0.52 0.51 0.50 0.53 0.54 0.54 1.00 1.00 0.95 1.00 1.00 0.99
48 × 48 0.51 0.51 0.51 0.87 0.85 0.81 1.00 1.00 0.96 1.00 1.00 0.97

Loss 16 × 16 0.68 0.68 0.69 0.69 0.69 0.69 0.00 0.00 0.23 0.00 0.00 0.10
24 × 24 0.67 0.68 0.69 0.69 0.68 0.69 0.00 0.00 0.21 0.00 0.00 0.01
48 × 48 0.68 0.68 0.69 0.29 0.32 0.40 0.00 0.00 0.10 0.00 0.00 0.08

MAE 16 × 16 0.49 0.49 0.50 0.49 0.49 0.50 0.00 0.00 0.05 0.00 0.00 0.04
24 × 24 0.48 0.49 0.50 0.50 0.50 0.50 0.00 0.00 0.05 0.00 0.00 0.01
48 × 48 0.50 0.49 0.50 0.19 0.21 0.23 0.00 0.00 0.04 0.00 0.00 0.03
the CNN, as a simple, fast, and non-destructive method, can be
useful in managing and controlling carrot fruit waste in the post-
harvest stage, which is the main goal of this study. These results
are similar to the results reported by Jahanbakhshi et al. (2020)
and Momeny et al. (2020) about the classification method used
to control sour lemon and cherry fruit waste. Fig. 7 also shows
that the HOG method of extracting features in MLP, GBT, and KNN
classification techniques yields better results than the LBP. The
advantage of the HOG method over the LBP is a result consistent
with the findings of Jahanbakhshi et al. (2020) and Momeny et al.
(2020).

Due to the great importance and high consumption rate of
arrot, achieving an appropriate and non-destructive method for
ontrolling their quality and grading them is particularly sig-
ificant. The extent of each kind of defects in carrots can be
onsidered as a factor in grading this product. Due to the unique
haracteristics of carrots and many operations such as harvest-
ng, transportation, warehousing, etc. carried out to deliver the
roduct to the market to be consumed by the users, providing a
otally healthy and perfect product with uniform shapes would be
difficult task. Based on different defects in their physical shape,
uch as fracture, abnormal size, malformation as well as surface
5254
damage caused by diseases and pests, carrots can be placed in
different levels (e.g. grade 1, grade 2, etc.) for different purposes.
These purposes can be as varied as home use (fresh or cooked
consumption), use in product processing industries (making jams
and pickles), or even use as a food supplement for livestock.
The results of this study showed that our CNN model was very
effective and useful for the purposes of this type of research.
In addition, this study concluded that increase in marketability
and waste control for carrots can be performed through the
above-mentioned techniques and methods.

4. Conclusions

The marketability of agricultural products in the consumer
market plays an important role in reducing agricultural waste. In
this study, in order to increase marketability and control waste,
carrots were graded based on their appearance shape. Using the
Fast AutoAugment algorithm, dataset samples were augmented
and images were categorized using the CNN proposed methods.
The mixed pooling was used to improve its generalization in the
CNN model. The results showed that the proposed CNN using
mixed pooling was able to classify carrot images in size of 24
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valuation of carrot images classification in testing phase by the proposed models (CNN) compared to other classifiers.

Performance criteria Image size Classes Classification algorithms

MLP GBT KNN BN-CNN: Baseline pooling BN-CNN: Mixed pooling

LBP HOG LBP HOG LBP HOG Config. 1 Config. 2 Config. 3 Config. 1 Config. 2 Config. 3

Recall

16 × 16 Regular 0.48 0.83 0.62 0.86 0.65 0.81 0.93 0.95 0.97 0.92 0.97 0.98
Irregular 0.46 0.83 0.60 0.85 0.63 0.79 0.93 0.93 0.93 0.94 0.93 0.94

24 × 24 Regular 0.52 0.89 0.59 0.88 0.63 0.83 0.94 0.96 0.97 0.93 0.97 1.00
Irregular 0.50 0.87 0.56 0.85 0.60 0.82 0.92 0.94 0.94 0.94 0.95 0.99

48 × 48 Regular 0.53 0.72 0.52 0.82 0.59 0.74 0.86 0.95 0.97 0.88 0.92 0.98
Irregular 0.51 0.69 0.50 0.80 0.58 0.71 0.87 0.91 0.95 0.86 0.90 0.97

Precision

16 × 16 Regular 0.48 0.83 0.62 0.86 0.64 0.80 0.93 0.93 0.93 0.94 0.93 0.94
Irregular 0.47 0.83 0.59 0.85 0.64 0.80 0.93 0.95 0.97 0.92 0.97 0.98

24 × 24 Regular 0.53 0.88 0.57 0.86 0.61 0.82 0.92 0.94 0.94 0.94 0.96 0.99
Irregular 0.49 0.88 0.58 0.87 0.62 0.83 0.94 0.95 0.97 0.93 0.97 1.00

48 × 48 Regular 0.52 0.70 0.50 0.81 0.60 0.71 0.88 0.91 0.96 0.87 0.90 0.97
Irregular 0.51 0.71 0.52 0.81 0.57 0.73 0.85 0.95 0.97 0.87 0.92 0.98

Sensitivity

16 × 16 Regular 0.48 0.83 0.62 0.86 0.65 0.81 0.93 0.95 0.97 0.92 0.97 0.98
Irregular 0.46 0.83 0.60 0.85 0.63 0.79 0.93 0.93 0.93 0.94 0.93 0.94

24 × 24 Regular 0.52 0.89 0.59 0.88 0.63 0.83 0.94 0.96 0.97 0.93 0.97 1.00
Irregular 0.50 0.87 0.56 0.85 0.60 0.82 0.92 0.94 0.94 0.94 0.95 0.99

48 × 48 Regular 0.53 0.72 0.52 0.82 0.59 0.74 0.86 0.95 0.97 0.88 0.92 0.98
Irregular 0.51 0.69 0.50 0.80 0.58 0.71 0.87 0.91 0.95 0.86 0.90 0.97

Specificity

16 × 16 Regular 0.46 0.83 0.60 0.85 0.63 0.79 0.93 0.93 0.93 0.94 0.93 0.94
Irregular 0.48 0.83 0.62 0.86 0.65 0.81 0.93 0.95 0.97 0.92 0.97 0.98

24 × 24 Regular 0.50 0.87 0.56 0.85 0.60 0.82 0.92 0.94 0.94 0.94 0.95 0.99
Irregular 0.52 0.89 0.59 0.88 0.63 0.83 0.94 0.96 0.97 0.93 0.97 1.00

48 × 48 Regular 0.51 0.69 0.50 0.80 0.58 0.71 0.87 0.91 0.95 0.86 0.90 0.97
Irregular 0.53 0.72 0.52 0.82 0.59 0.74 0.86 0.95 0.97 0.88 0.92 0.98

F-measure

16 × 16 Regular 0.48 0.83 0.62 0.86 0.65 0.80 0.93 0.94 0.95 0.93 0.95 0.96
Irregular 0.46 0.83 0.60 0.85 0.64 0.80 0.93 0.94 0.95 0.93 0.95 0.96

24 × 24 Regular 0.53 0.88 0.58 0.87 0.62 0.83 0.93 0.95 0.96 0.94 0.96 0.99
Irregular 0.49 0.88 0.57 0.86 0.61 0.82 0.93 0.95 0.95 0.94 0.96 0.99

48 × 48 Regular 0.53 0.71 0.51 0.82 0.60 0.72 0.87 0.93 0.96 0.87 0.91 0.97
Irregular 0.51 0.70 0.51 0.81 0.57 0.72 0.86 0.93 0.96 0.87 0.91 0.97
Fig. 7. Comparing the accuracy of different classification methods for grading carrot fruit.
× 24 pixels with 99.43% of accuracy. To compare the proposed
method with other methods, image features were extracted with
the proposed HOG and LBP methods and classified by MLP, KNN
and GBT machine learning algorithms. A comparison of the per-
formance of different classifications showed that our CNN model
5255
was able to perform better than the other machine learning
algorithms. So, traditional methods for grading carrots fruit can
be upgraded through improved and customized CNNs. Doing so
would increase product marketability in addition to controlling
natural products waste.
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