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Abstract: A non-targeted LC–HRMS fingerprinting methodology based on a C18 reversed-phase
mode under universal gradient elution using an Orbitrap mass analyzer was developed to characterize
and classify Spanish honey samples. A simple sample treatment consisting of honey dissolution with
water and a 1:1 dilution with methanol was proposed. A total of 136 honey samples belonging to dif-
ferent blossom and honeydew honeys from different botanical varieties produced in different Spanish
geographical regions were analyzed. The obtained LC–HRMS fingerprints were employed as sample
chemical descriptors for honey pattern recognition by principal component analysis (PCA) and partial
least squares–discriminant analysis (PLS–DA). The results demonstrated a superior honey classifica-
tion and discrimination capability with respect to previous non-targeted HPLC–UV fingerprinting
approaches, with them being able to discriminate and authenticate the honey samples according to
their botanical origins. Overall, noteworthy cross-validation multiclass predictions were accomplished
with sensitivity and specificity values higher than 96.2%, except for orange/lemon blossom (BL) and
rosemary (RO) blossom-honeys. The proposed methodology was also able to classify and authenticate
the climatic geographical production region of the analyzed honey samples, with cross-validation
sensitivity and specificity values higher than 87.1% and classification errors below 10.5%.

Keywords: blossom honeys; honeydew honeys; LC–HRMS; fingerprinting; chemometrics

1. Introduction

Honey is a natural sweet substance produced by Apis mellifera bees from the nectar
of plant flowers (known as blossom honey or nectar honey) or from the excretions of
plant-sucking insects (Hemiptera) on the living part of plants or the secretions of living parts
of plants (known as honeydew honeys). The bees collect the nectar, plant secretions or
insect excretions and transform them by combining them with specific substances of their
own. The generated substance is deposited, dehydrated, stored and kept in honeycombs to
ripen and mature into honey [1,2]. Honeys can also be classified regarding their botanical
variety origin. When a specific botanical variety prevails, maintaining the physicochemical,
microscopic and organoleptic characteristics of that source, honey is considered as monoflo-
ral and may then be marketed under the name of the predominant botanical variety. In
contrast, honey is considered multifloral (or polyfloral) when comes from a diversity of
botanical sources. Although there are requests for the European Commission to amend the
Honey Directive [1,2] with a view to providing clear definitions and setting out the main
distinctive characteristics of apiculture products, such as monofloral against multifloral hon-
eys [3], there are still discrepancies regarding the minimum content from a certain botanical
source required to consider a honey as monofloral. Indeed, the established levels, based on
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the pollen percentages, depend on each national country’s legislation, provisions, decisions
or guidelines [4]. In any case, most of these national criteria have established 45% as the
minimum pollen percentage of a given botanical source for the honey to be considered
monofloral [4]. Nevertheless, these percentages can change considerably depending on the
country and the botanical source; for example, values higher than 85–90% (depending on
the country) for chestnut honey, higher than 85% (in Germany) for eucalyptus honey or
down to 3–20% (depending on the country) for citrus honey have been established [4].

Honey is a highly appreciated product consumed since ancient times mainly due to its
health benefits, it being a good source of antioxidants with anti-inflammatory, antibacterial
and antifungal properties [5–7]. Other well-known health benefits of honey comprise its
wound healing capacity, sore throat and cough soothing ability, help in digestive issues
and the brain benefits it presents [6]. Although honey is mainly composed of sugars (about
76%), mainly fructose, glucose and sucrose, and water (18%), it is also a remarkable source
of vitamins (such as ascorbic acid, pantothenic acid, niacin and riboflavin), minerals (such
as calcium, magnesium, copper, iron, phosphorus, potassium, manganese and zinc) and
other bioactive substances such as polyphenolic compounds, the latter being the main
substances responsible for their antioxidant properties [8–10]. In addition, the presence
of these minor components and bioactive substances can be exploited to characterize and
discriminate the different honey botanical varieties, especially blossom and honeydew
honeys [11–13].

Considering that the honey supply is lower than the demand, honey is found among
the food products most adulterated in order to obtain a fraudulent economic benefit,
for example, from the addition of other sugar-based adulterants or syrups [14]. This can
also lead to adverse health effects caused by an increase in blood sugar, which can cause
diabetes, among other problems [15]. In addition, the great differences in properties and
health benefits depending on the honey composition make monofloral honeys the most
appreciated and demanded ones. Hence, the assessment of their botanical variety as well as
the geographical origin become important authenticity issues, especially for those products
with a protected designation of origin (PDO) because of the higher prices that they can reach.
The botanical origin of honey is typically determined by the microscopic identification of
pollen types (melissopalynological analyses) [16,17], but this method is time-consuming.
Within this context, the development of fast, simple and feasible methodologies for honey
authentication is required.

Among the chemical-based methodologies, non-targeted fingerprinting metabolomic
strategies in combination with multivariate chemometric methods are gaining popularity
to address food authentication issues [18,19]. In contrast to target methodologies, which are
focused on the determination of specific chemical metabolites (i.e., sample bioactive markers
indicative of a certain property of the food product), non-targeted fingerprinting does not
deal with the identification of metabolites but on the recognition of patterns, the so-called
fingerprints [20]. Thus, non-targeted fingerprinting strategies deal with registering as much
chemical information as possible from the analyzed samples (by means of high-throughput
screening methodologies), aiming to differentiate and classify the analyzed samples from
the establishment of sample patterns [21]. Recording spectral information by ultraviolet–
visible (UV–vis), fluorescence (FL) or near-infrared (NIR) fingerprinting spectroscopies
is widely employed for honey pattern recognition to classify and authenticate honey
samples according to their botanical or geographical origins and to prevent fraudulent
practices [22–26]. Liquid chromatography (LC) with UV–vis detection, often in combination
with low-resolution (LC–MS) or with high-resolution mass spectrometry (LC–HRMS), has
also been employed to address honey authentication issues by means of non-targeted
fingerprinting [27–30].

In a previous study, we developed a non-targeted HPLC–UV fingerprinting method
by using honey dilution with water and methanol as a simple sample treatment procedure,
which provided an acceptable discrimination between blossom and honeydew honeys
as well as among several blossom honey botanical varieties [30]. Nevertheless, no dis-
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crimination at all was accomplished between the honeydew honey botanical varieties
nor regarding the honey geographical origins. The present work aimed to develop a non-
targeted LC–HRMS chromatographic fingerprinting methodology for the characterization,
classification and authentication of Spanish honey samples based on both their botanical
and geographical origins. Multivariate chemometric methods such as principal component
analysis (PCA) and partial least squares–discriminant analysis (PLS–DA) were employed to
assess honey classification and authentication using non-targeted LC–HRMS fingerprints
as the source of information.

2. Results and Discussion
2.1. Non-Targeted LC–HRMS Fingerprints

As described in the literature, polyphenolic compounds are among the most important
bioactive substances present in honey [10–12], reversed-phase LC–MS methodologies in a
negative ESI mode being among the most frequently employed conditions for the determina-
tion of this family of compounds [31]. In the present contribution, a non-targeted LC–HRMS
metabolomic fingerprinting analysis of blossom and honeydew honeys was carried out
with the aim of obtaining good chemical descriptors to accomplish sample classification and
authentication according to both the botanical variety and geographical production region.
A simple sample treatment consisting of dissolving the honey sample with water followed
by a 1:1 dilution with methanol, as described in Section 3.2, was employed. The samples
were then analyzed by a C18 reversed-phase LC–HRMS method using a universal gradient
elution program from 3 to 95% acetonitrile over 15 min. The data were acquired in a full scan
HRMS (m/z 110–1000) at 60,000 full-width at half-maximum (FWHM) resolution and in a
negative ESI polarity. The fingerprints obtained for each honey sample depended on both
the honey botanical variety genotype and the product phenotype (food attributes that are
determined by climatological conditions, among others). Thus, the proposed non-targeted
metabolomic fingerprinting strategy relied on obtaining as rich LC–HRMS fingerprints as
possible, consisting of ion intensity registered as a function of m/z values and retention time.
As an example, the obtained non-targeted LC–HRMS fingerprints (total ion chromatograms,
TIC) of four selected honey samples are depicted in Figure 1.

As can be seen in the figure, the obtained non-targeted LC–HRMS TIC fingerprints
were characterized by a huge peak signal corresponding to the column dead volume
(around 2.5 min) with a coelution of all the non-retained compounds under reversed-phase
mode, these being mainly sugar-related components. Apart from this peak, the total ion
chromatograms revealed important differences among the analyzed samples, as can be
observed in the figure amplifications from 3 to 18 min. These differences consisted of
not only the number of signals detected but also the peak signal intensities. For example,
the blossom multifloral (MF) and the honeydew multifloral forest (FO) honey samples
displayed a higher number of peak signals throughout the chromatogram (Figure 1). In
contrast, the chromatographic fingerprints of the other honey samples seemed to be much
simpler, with few peaks and with lower intensities, such as in the case of the blossom
eucalyptus (EU) honey. This could be related to the fact of it being a monofloral honey
with an enhanced content of a specific botanical variety in comparison to the multifloral
honeys. The observed differences between the different honey varieties analyzed were
also highlighted in the non-targeted LC–HRMS fingerprints when considering only the
base peak chromatograms (Figure S1 in the Supplementary Materials). In any case, the
differences observed between the obtained non-targeted LC–HRMS fingerprints for the
different honey types under study, and the fact that the fingerprints seemed to be quite
reproducible within the same honey botanical origin, suggested that they could be suitable
sample chemical descriptors to address honey classification and authentication.
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Figure 1. Non-targeted LC–HRMS (total ion chromatogram) fingerprints obtained for multifloral,
eucalyptus, heather and forest honeys.

2.2. Honey Exploratory Chemometric Analysis by PCA

First, the non-targeted LC–HRMS fingerprints were subjected to a non-supervised
exploratory method such as PCA to perform a preliminary assessment of honey sample
distribution. In addition, the behavior of the quality control (sample analyzed at the
beginning of the sequence and once every 10 analyzed samples) was evaluated to ensure
the performance of the applied method. As can be seen in the scores plot of PC1 vs. PC2
(Figure 2), the quality controls (QCs) appeared clustered and very close to the center of the
plot, demonstrating the reproducibility and robustness of the non-targeted LC–HRMS data
and that the chemometric results were not influenced by any sequence drift.
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Figure 2. PCA score plot of PC1 vs. PC2 when using non-targeted LC–HRMS fingerprints as honey
chemical descriptors. Blue line separates the blossom and honeydew honey (with HE blossom) areas.
The blossom honey area is extended on the right plot. BL: orange/lemon blossom; EU: eucalyptus;
FO: forest; HE: heather; HO: holm oak; MF: multi-floral; MO: mountain; RO: rosemary; TH: thyme;
QC: quality control.
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When addressing the distribution of the analyzed honey samples, two clear behaviors
were observed through PC1 related to the honey botanical variety origin. First, a compact
group of samples were observed close to the center area of the score plot but exhibiting
negative values for both PC1 and PC2. This region was mainly constituted by blossom
honeys of the orange/lemon blossom (BL), eucalyptus (EU), rosemary (RO) and thyme
(TH) varieties, with the BL and RO varieties being located at more negative PC1 values
than the EU and TH ones. Then, a second group of samples were located mainly at positive
PC1 values but widely dispersed through PC2, including blossom heather (HE) honey
and the honeydew honey samples of the holm oak (HO), forest (FO) and mountain (MO)
varieties. These results were similar to those previously reported when using HPLC–UV
fingerprints [30], although the blossom honeys here were much more clustered. With both
methodologies, the heather samples appeared distributed in the same area as the honeydew
honey samples despite being a blossom honey, which was due to their compositional
similarities (mainly attributed to phenolic compounds), their similar antioxidant capacity
(in general higher than that exhibited by blossom honeys) and their similar color attributes
(being normally darker honeys in comparison to blossom ones). Regarding the multifloral
(MF) samples, they were dispersed throughout both groups (although they tended to be
more concentrated in the blossom honey sample area). This large variability was expected
because of their higher diversity of botanical origins.

2.3. Classification of Honey Samples by Supervised PLS–DA

A supervised and classificatory chemometric method such as PLS–DA was employed
to evaluate the obtained non-targeted LC–HRMS fingerprints as honey chemical descriptors
of their botanical variety. Figure 3 depicts the PLS–DA score plot of LV1 vs. LV3 (multifloral
and QCs were not considered to build the model). These first latent variables captured
a low percentage of the total variance of the data matrix due to the complexity of the
chromatographic fingerprints. However, despite the quite low total X variance retained,
as shown above, the PLS–DA model was able to satisfactorily predict the honey classes.
As expected, the results clearly improved on those previously observed by PCA. Two
main areas were distinguished across LV1, corresponding to blossom honey (EU, TH, BL
and RO) samples (positive LV1 values) and honeydew honey and HE honeys (negative
LV1 values). In addition, although the samples were widely distributed through LV3, a
certain discrimination could be observed for some varieties; for example, almost all the HO
samples were located at positive LV3 values, and most of the HE samples were located at
negative ones. Overall, a much better sample discrimination was observed, which clearly
improved on the results previously reported when using HPLC–UV fingerprints and PLS–
DA [30]. Eucalyptus blossom honeys were separated from the other classes at the top of the
plot. Another cluster of samples, constituted by BL and RO varieties, was observed on the
right, and, finally, the thyme samples were grouped in the middle between the BL+RO and
the MO+FO+HO+HE groups. The discrimination between the blossom honey samples was
probably due to differences in their flavonoid composition according to the literature [32].
In summary, the proposed non-targeted LC–HRMS fingerprinting methodology exhibited
a higher classification capability according to the honey botanical varieties than the ones
previously reported by non-targeted HPLC–UV fingerprinting (where the same sample
treatment was employed) and by off-line SPE HPLC–UV polyphenolic fingerprinting (based
on a specific polyphenolic isolation sample treatment employing HLB cartridges) [30].

The classification of the analyzed honey samples based on their botanical variety
origin was also evaluated by PLS–DA by employing blossom honey and honeydew honey
subsets independently. As can be seen in the PLS–DA score plots, an excellent sample
discrimination was obtained in both cases (Figure 4). The samples tended to be clustered in
five groups when studying all the blossom-honey samples (LV1 vs. LV3 PLS–DA score plot)
with some overlapping between HE and EU and between EU, RO and BL. The thyme (TH)
samples were clearly discriminated at the top of the plot (Figure 4a). Perfect discrimination
was accomplished when the paired PLS–DA models were considered, as can be seen in
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Figure S2 (supplementary materials) for the PLS–DA plot of BL vs. RO. Regarding the
honeydew honey subset, the samples were clustered into three groups with no overlapping
(see Figure 4b). This level of separation was not accomplished with any of the previously
reported HPLC–UV fingerprinting methodologies [30], where, for example, the honeydew
honey samples were always overlapped. This finding demonstrated again the higher
classification capabilities of the developed non-targeted LC–HRMS fingerprinting method.
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Figure 4. PLS–DA score plots when using non-targeted LC–HRMS fingerprints as honey chemical
descriptors for (a) blossom honey botanical variety classification (LV1 vs. LV3 score plot, three LVs
were used to build the model) and (b) honeydew honey botanical variety classification (LV1 vs. LV2
score plot, three LVs were used to build the model). BL: orange/lemon blossom; EU: eucalyptus; FO:
forest; HE: heather; HO: holm oak; MO: mountain; RO: rosemary; TH: thyme.

Multiclass PLS–DA models were built for specifically working with blossom honey
(including BL, RO, EU, TH and RO classes) and honeydew honey (including HO, MO and
FO classes) subsets independently. Table 1 summarizes the sensitivity, specificity and overall
classification prediction error assessed by cross-validation for the blossom honey samples.
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The sensitivity and specificity values were higher than 96.2%, except for the specificity for BL
and RO (57.1% and 79.6%, respectively), them being the two groups with higher overlapping.
Accordingly, the classification error of these two groups also worsened, with values higher
than 12.7%, while for the other three groups the classification errors were below 1.7%.
The PLS–DA classification of the honeydew–honey samples achieved 100% sensitivity and
specificity, with 0% prediction error (Table S1, Supplementary Materials). Overall, excellent
results were accomplished, and, as previously commented, the classification capabilities of
the proposed methodology noticeably improved when paired PLS–DA models of the BL vs.
RO samples were employed (Figure S2, Supplementary Materials).

Table 1. Multiclass predictions by cross-validation for the set of blossom-honey samples using three
LVs. BL: orange/lemon blossom; RO: rosemary; EU: eucalyptus; TH: thyme, and HE: heather.

Sample Class Variety Sensitivity (%) Specificity (%) Classification Error (%)

BL 100 57.1 21.4
RO 100 98.4 0.8
EU 100 96.6 1.7
TH 96.2 79.6 12.7
HE 100 100 0

It should be mentioned that, in this work, no melissopalynological analysis of the
employed honey samples was performed, and, therefore, the PLS–DA classification studies
were based on the botanical origin declared on the honey sample labels. Nevertheless, this
was not a disadvantage for this study. First, the minimum percentage of pollen from a given
botanical source needed to claim a specific botanical origin is ambiguous [4], as previously
commented in the introduction section. For instance, the minimum percentage of pollen
to claim that a honey is citrus honey is 3–20% depending on the country. This means that
the specific origin for the 80–97% remaining does not need to be declared. It is important
to have in mind that different botanical species grow in specific areas depending on the
characteristics of the soil, the climate and the water supply as well as agricultural practices.
Thus, the botanical diversity in ecosystems that share species should be similar. This means
that the characteristics of those monofloral-claimed honey production areas may be similar
for a given botanical origin. Hence, although the content of pollen in different honey samples
of a specific botanical source can vary among producers, brands or production years, it
is reasonable to think that all of them will share the same global characteristics. Indeed,
the obtained results showed a reasonable concordance in the fingerprints of samples with
similar characteristics, assuming the validity of the PLS–DA classification results as a proof
of concept.

The capability of the non-targeted LC–HRMS fingerprints to classify the analyzed
honey samples based on their geographical production origin was also evaluated. Similarly
to the results previously reported by HPLC–UV fingerprinting [30], no discrimination was
obtained when considering the different Spanish geographical production regions under
study (indicated in Table S2), which was expected considering that it is very difficult to
delimit these geographical regions when addressing bee-produced natural products such
as honey. In contrast, when considering bigger geographical regions based on climatic
conditions, i.e., the north of Spain (Cantabrian Sea region, CBR), the continental area
(landlocked inland region, LIR) and the east/south of Spain (Mediterranean Sea region,
MSR), the classification results notably improved.

As can be seen in the PLS–DA score plot of LV1 vs. LV2 depicted in Figure 5, despite
certain sample overlapping, the samples tended to be grouped according to the geographical
climatic area of honey production. The honeys produced in the Mediterranean Sea region
were clustered in the center-top area of the plot, while the honeys produced in the Cantabrian
Sea region tended to be located in the left area of the plot, exhibiting negative LV1 values.
The honeys produced in the continental regions (landlocked inland region) were located
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at the right-bottom area of the plot, exhibiting mainly positive LV1 values and negative
LV2 values.
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Figure 5. PLS–DA score plots of LV1 vs. LV2 when using non-targeted LC–HRMS fingerprints as
chemical descriptors for climatic geographical production region (two LVs were used to build the
model). CSR: Cantabrian Sea region; LIR: landlocked inland region; MSR: Mediterranean Sea region.

A multiclass PLS–DA model was also built to assign the analyzed honey samples
according to their geographical climatic production region, and the results of sensitivity,
specificity and overall class prediction errors assessed by cross-validation are summarized
in Table 2. Satisfactory results were observed, with sensitivity and specificity values higher
than 91.9% and 87.1%, respectively. Classification errors were below 10.5%.

Table 2. Multiclass predictions by cross-validation for the analyzed honey samples according to their
geographical climatic production region using two LVs. CSR: Cantabrian Sea region; LIR: landlocked
inland region; and MSR: Mediterranean Sea region.

Sample Class Variety Sensitivity (%) Specificity (%) Classification Error (%)

CSR 94.7 99.0 3.1
LIR 92.4 98.2 4.7
MSR 91.9 87.1 10.5

Paired PLS–DA models for the classification of samples based on climatic regions were
also built, and the obtained score plots of LV1 vs. LV2 are shown in Figure S3 (Supplementary
Materials). As can be seen, the discrimination capability of the proposed methodology
improved in all cases (LIR vs. MSR; CSR vs. MSR; and CSR vs. LIR), with minimal sample over-
lapping. Overall, these results were again much better than the ones previously reported
when using HPLC–UV fingerprints [30], enhancing the classification of Spanish honey
samples not only according to their different botanical varieties but also their climatic
production regions.

3. Materials and Methods
3.1. Reagents and Chemicals

Acetonitrile (UHPLC supergradient ACS quality) and methanol (ChromasolvTM for
HPLC, ≥99.9%) were provided by PanReac AppliChem (Barcelona, Spain). Formic acid
(≥98%) was obtained from Sigma-Aldrich (St Louis, MO, USA). Water was purified with
an Elix 3 system coupled to a Milli-Q instrument from Millipore Corporation (Bedford,
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MA, USA). The water was filtered with a 0.22 µm nylon membrane filter integrated into
the Milli-Q instrument.

3.2. Samples and Sample Treatment

A total of 136 Spanish honey samples, purchased from supermarkets and local markets
in Spain, were analyzed. Among them, 32 were labelled as blossom multifloral (MF) honeys,
76 as monofloral blossom honeys of different botanical origins (orange/lemon blossom (BL),
rosemary (RO), thyme (TH), eucalyptus (EU), and heather (HE)) and 26 as honeydew honeys
including holm oak (HO) and mountain (MO) and forest (FO) honeys. Two heather honeys
were donated by Miel de Braña (León, Spain). In addition, the analyzed honey samples
were obtained from different Spanish geographical production regions. More information
regarding the number of honey samples for each botanical variety and geographical region
of production is summarized in Table S2 of the Supplementary Material.

A simple and non-discriminant honey sample treatment was employed as previously
described [30]. Briefly, ca. 1 g of honey was dissolved with 10 mL of Milli-Q water in
15 mL PTFE centrifuge tubes from Serviquimia (Barcelona, Spain) and mixed with a vortex
(VibraMix, OVAN, Barcelona, Spain). For the crystallized honey samples, the samples were
first melted at 45 ◦C in a water bath, homogenized and weighed at room temperature. The
obtained honey extracts were then centrifuged (3500 g, 5 min) in a Rotina 420 Centrifuge
(Hettich, Tuttlingen, Germany) to separate non-soluble particles (i.e., bee bread, pollen and
proteins) naturally occurring in honey. The aqueous honey extracts were then diluted with
methanol (1:1 ratio). Finally, the samples were filtered through syringe membrane filters
(0.45 µm) from FILTER-LAB (Barcelona, Spain) into 2 mL HPLC amber glass injection vials
and refrigerated at 4 ◦C until LC–HRMS analysis.

A quality control (QC) solution was prepared by mixing 50 µL of each honey extract.
This solution was then employed to assess the robustness and the repeatability of the
non-targeted LC–HRMS fingerprints and to ensure that the chemometric results were not
affected by any instrumental drifts.

3.3. Non-Targeted LC–HRMS Chromatographic Fingerprinting Method

Non-targeted LC–HRMS honey fingerprints were obtained with a Dionex UHPLC
system (Germering, Germany) coupled to an FT–HRMS LTQ Orbitrap instrument from
Thermo Fisher Scientific (San Jose, CA, USA). A reversed-phase chromatographic separation
(Kinetex® C18 porous shell column of 100 × 4.6 mm I.D., 2.6 µm partially porous particle
size; Phenomenex, Torrance, CA, USA) under a universal gradient elution was employed
as previously described in [30]. Briefly, 0.1% aqueous formic acid and acetonitrile were
used as mobile phase components with the elution gradient shown in Table 3. The injection
volume was 5 µL.

Table 3. Universal gradient elution conditions.

Time (min) Elution % Acetonitrile Flow Rate (µL/min)

0–5 Isocratic 3% 400
5–13 Linear gradient 3–95% 400
13–15 Isocratic 95% 400
15–15.5 Linear gradient 95–3% 400
15.5–19 Isocratic 3% 400

An electrospray ionization (ESI) source, set in an off-axis position to minimize con-
tamination and operating in negative ionization mode (capillary voltage of −3.5 kV) was
employed. Nitrogen was used for the ESI sheath, auxiliary and sweep gases at flow rates of
50, 20 and 2 a.u. (arbitrary units), respectively. ESI vaporizer and capillary temperatures
were kept at 25 ◦C and 350 ◦C, respectively. The Orbitrap mass analyzer worked in the
full-scan HRMS mode (m/z range from 110 to 1000) at a mass resolution of 60,000 FWHM
(full-width at half-maximum at m/z 200). The Orbitrap system was tuned and calibrated
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using commercial calibration solutions for the negative ion mode (Thermo Fisher Scientific).
Xcalibur software v 4.1 (Thermo Fisher Scientific) was used to control the LC–HRMS system.

All the honey extract samples were analyzed randomly to prevent and minimize any
instrumental drift effect on the built chemometric models. Moreover, a QC solution and an
acetonitrile blank were injected at the beginning and after every ten sample injections.

3.4. Data Matrix

First, the LC–HRMS raw data were transformed with the MSConvert free software
(ProteoWizard, Palo Alto, CA, USA) into an mzML output format [33,34]. For data simpli-
fication, 32 bits as a binary encoding precision and threshold peak filter were employed
by establishing the absolute intensity as the threshold type at a value of 10,000 counts.
Then, the mzMine 3 software was employed to convert the mzML files into a data matrix
containing the non-targeted LC–HRMS fingerprints, which consisted of ion signal intensities
arranged as a function of samples and variables in rows and columns, respectively [35]. For
this purpose, first, exact mass detection was used to generate mass lists for each acquired
sample scan, considering a noise level of 1.0 × 105. The next step was to remove false signals
with the FTMS shoulder peak filter by setting a Gaussian peak model function and a mass
resolution of 70,000. Then, the automated data analysis pipeline (ADAP) chromatogram
builder was employed to join the exact mass signals found in contiguous scans in a sample,
by establishing a peak time range, an m/z tolerance and an intensity threshold of 0.5–19 min,
5 ppm and 1.0 × 105, respectively. Isotopes were then removed by considering that the
most representative isotope was the most intense and setting an m/z tolerance of 5 ppm.
The Join Aligner option was then applied to match the masses detected across all analyzed
samples, with a mass tolerance of 5 ppm, 80% of weight for m/z, a retention time tolerance
of 0.5 min and 1% of weight for retention time. Finally, the aligned feature list was exported
to CSV format for subsequent chemometric analysis. The resulting data matrix contained
the peak intensity of each variable—characterized by m/z and retention time—for each
sample. Then, the dimension of the working data matrix (samples + QCs × variables) was
151 × 2084, where the variables consisted of MS peaks recorded in the m/z range from 110
to 1000 throughout the working chromatographic range from 0.5 to 19.0 min.

3.5. Chemometric Data Analysis

The SOLO 8.6 chemometric software from Eigenvector Research (Manson, WA, USA)
was employed for exploratory principal component analysis (PCA) and supervised partial
least squares–discriminant analysis (PLS–DA). More information about the theoretical
aspects of the employed chemometric procedures can be found in [36].

The obtained fingerprinting data matrices were subjected to non-supervised PCA to
explore the analyzed honey samples distribution as well as the QC behavior. Then, the
supervised classificatory PLS–DA method was applied according to the honey botanical
varieties and geographical production regions. For PCA, the X-data matrix consisted of
the non-targeted LC–HRMS fingerprint for each honey and QC sample, i.e., the ion signal
intensity values as a function of m/z and retention time. In the case of PLS–DA, the same
X-data matrix as PCA but without QCs was used, while the Y-data matrix defined the
sample classes (i.e., the honey botanical variety or the honey geographical production
region, depending on the case). The number of latent variables (LVs) required to obtain the
PLS–DA models was estimated from the first relevant minimum of the cross-validation
(CV) error from the Venetian blind approach when a matrix with more than 20 samples
was used, or from leave-one-out CV when the matrices contained less than 20 samples.

4. Conclusions

A non-targeted LC–HRMS (Orbitrap) fingerprinting strategy was proposed for the
characterization and classification of Spanish honey samples based on both the botanical
varieties and geographical production regions. The proposed LC–HRMS chromatographic
fingerprints were accomplished after a simple honey sample treatment consisting of dis-
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solution in water and a 1:1 dilution with methanol followed by a C18 reversed-phase
chromatographic separation using a universal gradient elution program.

The exploratory PCA and classificatory PLS–DA results from the LC–HRMS finger-
prints demonstrated a superior descriptive performance in comparison to previous reported
non-targeted HPLC–UV fingerprints, with the method being able to discriminate the Span-
ish honey samples based on their botanical varieties. The blossom honey samples were
clustered into the five groups under study (BL, EU, HE, RO and TH) with only partial
overlapping between the BL and RO samples, although their full separation was accom-
plished by paired PLS–DA. Highly satisfactory cross-validated multiclass predictions were
generally attained, with sensitivity and specificity values higher than 96.2%, with the only
exception of the BL and RO specificity values (57.1% and 79.6%, respectively). Low classi-
fication errors (below 1.7%) were also observed, except for BL and RO, which increased
up to 21.4%. In the case of the honeydew honey samples, the three botanical varieties (FO,
HO and MO honeys) were discriminated from the non-targeted LC–HRMS fingerprints,
a fact that was not accomplished when using non-targeted HPLC–UV fingerprints, with
sensitivity and specificity values of 100% and a 100% classification rate for the three classes.

In addition, the proposed non-targeted LC–HRMS fingerprints resulted in excellent
chemical descriptors for honey classification according to three Spanish climatic geograph-
ical regions (CSE, LIR and MSR), a classification that was not previously accomplished
with HPLC–UV fingerprints. The PLS–DA results were highly satisfactory, with good
cross-validated multiclass prediction errors (sensitivity and specificity values higher than
87.1% and classification errors below 10.5%).

In general, the results attained in the present work demonstrated the superior perfor-
mance of non-targeted LC–HRMS fingerprints for the classification and authentication of
Spanish honey samples based on both the botanical varieties and climatic regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238357/s1, Figure S1: Non-targeted LC–HRMS (base
peak chromatogram) fingerprints obtained for multifloral, eucalyptus, heather and forest honeys;
Figure S2: Supervised PLS–DA score plots of LV1 vs. LV2 when using non-targeted LC–HRMS chro-
matographic fingerprints as honey chemical descriptors of orange/lemon blossom (BL) vs. rosemary
(RO) blossom honeys (two LVs were used to build the model); Figure S3: Supervised paired PLS–DA
score plots of LV1 vs. LV2 when using non-targeted LC–HRMS chromatographic fingerprints as honey
chemical descriptors of climatic geographical production region. (a) LIR vs. MSR (three LVs were used
to build the model), (b) CSR vs. MSR (two LVs were used to build the model) and (c) CSR vs. LIR (two
LVs were used to build the model). CSR: Cantabrian Sea region; LIR: landlocked inland region; MSR:
Mediterranean Sea region; Table S1: Multiclass predictions by cross-validation for the set of honeydew
honey samples using three LVs. HO: holm oak; MO: mountain; and FO: forest; Table S2: Number of
analyzed honey samples considering botanical varieties and geographical origins.
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