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Abstract
Consider the linear stochastic biharmonic heat equation on a d–dimen-
sional torus (d = 1, 2, 3), driven by a space-time white noise and with periodic
boundary conditions:

(
∂

∂t
+ (−Δ)2

)
v(t, x) = σ Ẇ (t, x), (t, x) ∈ (0, T ] × T

d , (0.1)

v(0, x) = v0(x). We find the canonical pseudo-distance corresponding to the random
field solution, therefore the precise description of the anisotropies of the process. We
see that for d = 2, they include a z(log c

z )
1/2 term. Consider D independent copies of

the randomfield solution to (0.1). Applying the criteria proved inHinojosa-Calleja and
Sanz-Solé (Stoch PDEAnal Comp 2021. https://doi.org/10.1007/s40072-021-00190-
1), we establish upper and lower bounds for the probabilities that the path process hits
bounded Borel sets.This yields results on the polarity of sets and on the Hausdorff
dimension of the path process.

Keywords Systems of linear SPDEs · Sample paths properties · Hitting
probabilities · Polar sets · Capacity · Hausdorff measure

Mathematics Subject Classification 60G60 · 60G15 · 60H15 · 60G17

B Marta Sanz-Solé
marta.sanz@ub.edu

Adrián Hinojosa-Calleja
hinojosa@ub.edu

1 Facultat de Matemàtiques i Informàtica, Barcelona Graduate School of Mathematics, Universitat de
Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40072-021-00234-6&domain=pdf
http://orcid.org/0000-0002-1361-0698
https://doi.org/10.1007/s40072-021-00190-1
https://doi.org/10.1007/s40072-021-00190-1


736 Stoch PDE: Anal Comp (2022) 10:735–756

1 Introduction

This paper is motivated by the study of sample path properties of stochastic partial
differential equations (SPDEs) and its applications to questions like the polarity of
sets for the path process and its Hausdorff dimension (a.s.). We focus on a system
of stochastic linear biharmonic heat equations on a d-dimensional torus, d = 1, 2, 3
(see (2.3)). This SPDE is the linearization at zero of a Cahn–Hilliard equation with a
space-time white noise forcing term (see e.g. [1]).

In the last two decades, there has been many contributions to the subject of this
paper. A large part of them concern Gaussian random fields, the case addressed in this
work. A representative sample of results can be found in [2–4,11,12], and references
therein. Central to the study is obtaining upper and lower bounds on the probabilities
that the random field hits a Borel set A, in terms of the Hausdorff measure and the
capacity, respectively, of A. In the derivation of the bounds –named criteria for hitting
probabilities– a major role is played by the canonical pseudo-distance associated to
the process. For a random field (v(t, x), (t, x) ∈ [0, T ] × D), D ⊂ R

d , this notion is
defined by

dv((t, x), (s, y)) = ‖v(t, x) − v(s, y)‖L2(Ω), (t, x), (s, y) ∈ [0, T ] × D.

When dv((t, x), (s, y)) compares, up to multiplicative constants, with |t − s|α0 +∑d
j=1 |x j − y j |α j , α0, α j ∈ (0, 1), [12][Theorem 7.6] and [3][Theorems 2.1, 2.4 and

2.6]) provide useful criteria for hitting probabilities.
Let (u(t, x), (t, x) ∈ [0, T ] × T

d), d = 1, 2, 3, be the random field solution to
the biharmonic heat equation driven by space-time noise, given in Theorem 2.1. We
prove in Theorem 3.1 that the associated canonical pseudo-distance du((t, x), (s, y))

compares with

(
|t − s|1−d/4 +

(
log

C(d)

|x − y|
)β

|x − y|2∧(4−d)

) 1
2

, β = 1{d=2}.

Thus, when d = 2 this example does not fall into the range of applications of the
criteria cited above.

In [5][Theorems 3.2, 3.3, 3.4, 3.5], we proved extensions of [12][Theorem 7.6]
to cover cases where the canonical pseudo-distance has anisotropies described by
gauge functions other than power functions. This was initially motivated by the study
of a linear heat equation with fractional noise (see [5][Section 4]). From the above
discussion, we see that the biharmonic heat equation provides a new case of application
of such extended criteria.

The structure and contents of the paper are as follows. Section 2 is about preliminar-
ies. We formulate and prove the existence of a random field solution to the biharmonic
heat equation, and recall the notions of Hausdorff measure relative to a gauge function
and capacity relative to a symmetric potential. Section 3 is devoted to find the equiv-
alent pseudo-distance for the canonical metric –a result of independent interest. The
proof relies on a careful analytical study of the Green’s function of the biharmonic

123



Stoch PDE: Anal Comp (2022) 10:735–756 737

operator L = ∂
∂t + (−Δ)2 on (0, T ) × T

d . With this fundamental result at hand and
some additional properties of (u(t, x)) proved in Sects. 4 and 5, we are in a position
to apply Theorems 3.4 and 3.5 of [5]. We deduce Theorem 6.1 on upper and lower
bounds for the hitting probabilities of D-dimensional random vectors consisting of
independent copies of (u(t, x)). These are in terms of the ḡq -Hausdorff measure and
the (ḡq)−1-capacity, respectively, with ḡq defined in (6.1). Notice that for d = 1, 3,
the bounds are given by the classical Hausdorff mesure and the Bessel-Riesz capac-
ity, respectively. In the second part of Sect. 6, we highlight some consequences of
Theorem 6.1 on polarity of sets and Hausdorff dimension of the path process. The
application of Theorems 3.4 and 3.5 of [5] imposes the restriction D > D0, where
D0 = [(4 − d)/8]−1 + d[1 ∧ (2 − d/2)]−1. We also discuss the case D < D0 and
present some conjectures concerning the critical case D = D0 in the last part of
Sect. 6.

2 Notations and preliminaries

We introduce some notation used throughout the paper. As usually, N denotes the set
of natural numbers {0, 1, 2, ...}; we set Z2 = {0, 1}, and for any integer d ≥ 1, Nd,∗ =
(N \ {0})d . For any multiindex k = (k1, . . . , kd) ∈ N

d , we set |k| = (
∑d

j=1 k2j )
1/2,

and denote by n(k) the number of null components of k.
Let S

1 be the circle and T
d = S

1× d. . . ×S
1 the d-dimensional torus. For x ∈ T

d ,
|x | denotes the Euclidean norm. If we identify T

d with the periodic cube [−π, π ]d ,
meaning that opposite sides coincide, |x | can be interpreted as the distance of x to the
origin.

For x ∈ [0, 2π), let ε0,k(x) = π−1/2 sin(kx), ε1,k(x) = π−1/2 cos(kx), k ∈ N
∗,

and ε1,0(x) = (2π)−1/2. The set of functions B defined on T
d consisting of

εi,k := εi1,k1 ⊗ · · · ⊗ εid ,kd , i = (i1, . . . , id) ∈ Z
d
2 ,

with k j ∈ N
∗ if i j = 0, and k j ∈ N if i j = 1, is an orthonormal basis for L2(Td).

Define

(Z2 × N)d+ = {(i, k) ∈ (Z2 × N)d : (i j , k j ) 	= (0, 0), ∀ j = 1, . . . , d}.

Notice that B = {εi,k = εi1,k1 ⊗ · · · ⊗ εid ,kd , (i, k) ∈ (Z2 × N)d+}.
The following equality is a straightforward consequence of the formula for the

cosinus of a sum of angles: For any x, y ∈ T
d ,

∑
i∈Zd

2

εi,k(x)εi,k(y) = 1

2n(k)πd

d∏
j=1

cos(k j (x j − y j )), k ∈ N
d with (i, k) ∈ (Z2×N)d+.

(2.1)
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Let (−Δ)2 be the biharmonic operator (also called the bilaplacian) on L2(Td). The
basisB is a set of eigenfunctions of (−Δ)2 with associated eigenvalues λk = ∑d

j=1 k4j ,

k ∈ N
d . Observe that d−1|k|4 ≤ λk ≤ |k|4, and infk∈Nd,∗ λk = d.

The Green’s function of the biharmonic heat operatorL = ∂
∂t + (−Δ)2 on (0, T ]×

T
d is given by

G(t; x, y) =
∑

(i,k)∈(Z2×N)d+

e−λk tεi,k(x)εi,k(y) =
∑

k∈Nd

e−λk t

2n(k)πd

d∏
j=1

cos(k j (x j − y j )),

(2.2)

the last equality being a consequence of (2.1).
This paper concerns the linear stochastic biharmonic heat equation

{(
∂
∂t + (−Δ)2

)
v(t, x) = σ Ẇ (t, x), (t, x) ∈ (0, T ] × T

d ,

v(0, x) = v0(x),
(2.3)

where (Ẇ (t, x)) is a space-time white noise on [0, T ] × T
d , σ ∈ R \ {0} and v0 :

T
d −→ R.
We consider the random field solution to (2.3), that is, the stochastic process

v(t, x) =
∫
Td

G(t; x, z)v0(z)dz + σ

∫ t

0

∫
Td

G(t − r; x, z)W (dr , dz), (2.4)

with G given in (2.2), and the stochastic integral is a Wiener integral with respect to
space-time white noise.

We assume that, for any (t, x) ∈ (0, T ] × T
d , the function T

d  z �→
G(t; x, z)v0(z) belongs to L1(Td). Along with the next Theorem, this yields that
(v(t, x), (t, x) ∈ [0, T ] × T

d) is a well-defined Gaussian process.

Theorem 2.1 Let

u(t, x) =
∫ t

0

∫
Td

G(t − r; x, z)W (dr , dz), (t, x) ∈ [0, T ] × T
d .

The stochastic process (u(t, x), (t, x) ∈ [0, T ] × T
d) is well-defined if and only if

d = 1, 2, 3. In this case,

sup
(t,x)∈[0,T ]×Td

E(|u(t, x)|2) < ∞. (2.5)

Proof Fix (t, x) ∈ (0, T ] × T
d . By (2.2) and applying Fubini’s theorem, we have

123



Stoch PDE: Anal Comp (2022) 10:735–756 739

∫ t

0
dr
∫
Td

dz G2(t − r; x, z) =
∑

(i,k)∈(Z2×N)d+

ε2i,k(x)

(∫ t

0
dr e−2λkr

)

=
∑

k∈Nd

1

2n(k)πd

∫ t

0
dr e−2λkr

= t

(2π)d
+

∑
k∈Nd

0≤n(k)≤d−1

1 − e−2λk t

2n(k)+1πdλk
. (2.6)

Use the inequalities u
1+u ≤ 1 − e−u ≤ 1, valid for all u ≥ 0, to see that the series

in (2.6) is equivalent to a harmonic series
∑

k∈Nd

0≤n(k)≤d−1

1
|k|4 , which converges if and

only if d ≤ 3. Equivalently, the Wiener integral defining u(t, x) is well-defined if and
only if d ≤ 3. This finishes the proof of the first statement.

By the isometry property of the Wiener integral, E((u(t, x))2) is equal to the right-
hand side of (2.6). Taking the supremum in (2.6), we have

sup
(t,x)∈[0,T ]×Td

E((u(t, x))2) ≤ T

(2π)d
+ sup

t∈[0,T ]

∑
k∈Nd

1 − e−2λk t

2n(k)+1πdλk

≤ T

(2π)d
+
∑

k∈Nd

1

2n(k)+1πdλk
≤ C(T , d).

��
In the sequel, d ∈ {1, 2, 3}.
In the last part of this section, we recall the notions of Hausdorff measure and

capacity that will be used in of Sect. 6.
g-Hausdorff measure

Let ε0 > 0 and g : [0, ε0] → R+ be a continuous strictly increasing function
satisfying g(0) = 0. The g-Hausdorff measure of a Borel set A ⊂ R

D is defined by

Hg(A) = lim
ε↓0 inf

{ ∞∑
i=1

g(2ri ) : A ⊂
∞⋃

i=1

Bri (xi ), sup
i≥1

ri ≤ ε

}

(see e.g. [10]). In this paper, we will use this notion referred to two examples: (i)
g(τ ) = τγ , with γ > 0; this is the classical γ -dimensional Hausdorff measure. (ii)
g(τ ) = τ ν1

(
q−1(τ )

)−η
, with q(τ ) = τ ν2

(
log c

τ

)δ , ν1, ν2, η, δ > 0.
By coherence with the definition of the γ -dimensional Hausdorff measure when

γ < 0, if g(0) = ∞, we set Hg(A) = ∞.

Capacity relative to a symmetric potential kernel
Let g : R

D −→ R+ ∪ {∞} be continuous on R
D \ {0}, symmetric, g(z) > 0, for

all z 	= 0, g(0) = ∞. This function is called a symmetric potential. The g-capacity of
a Borel set A ⊂ R

D is defined by
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Capg(A) =
[

inf
μ∈P(A)

Eg(μ)

]−1

,

where Eg(μ) = ∫
RD×RD g(y− ȳ) μ(dy)μ(d ȳ) and P(A) denotes the set of probability

measures on A. If g(0) ∈ [0,∞), we set Capg(A) = 1, by convention.
In this article, we will use this notion with g = 1/g, where g is as in the examples

(i) and (ii) above. Observe that, in the example (i), the g-capacity is the Bessel-Riesz
capacity, usually denoted by Capγ (A) (see e.g. [7, p. 376]).

Throughout the article, positive real constants are denoted by C , or variants, like C̄ ,
C̃ , c, etc. If we want to make explicit the dependence on some parameters a1, a2, . . .,

we write C(a1, a2, . . .) or Ca1,a2,.... When writing log
(

C
z

)
, we will assume that C is

large enough to ensure log
(

C
z

)
≥ 1.

3 Equivalence for the canonical metric

For the process u of Theorem 2.1, we define

du((t, x), (s, y)) = ‖u(t, x) − u(s, y)‖L2(Ω). (3.1)

This is the canonical pseudo-distance associated with u. This section is devoted to
establish an equivalent (anisotropic) pseudo-distance for du .

Throughout the proofs, we will make frequent use of the identity

‖u(t, x) − u(s, y)‖2L2(Ω)

= 1

2n(k)+1πd

×
∑

k∈Nd,∗

1 − e−2λk s

λk

⎛
⎝e−2λk (t−s) + 1 − 2e−λk (t−s)

d∏
j=1

cos(k j (x j − y j ))

⎞
⎠

+ 1

2n(k)+1πd

∑
k∈Nd,∗

1 − e−2λk (t−s)

λk
+ t − s

(2π)d
, (3.2)

0 ≤ s ≤ t . This formula is proved using the Wiener isometry

‖u(t, x) − u(s, y)‖2L2(Ω)
=
∫ t

0
dr
∫
Td

dz (G(t − r; x, z) − G(s − r; y, z))2

=
∫ s

0
dr
∫
Td

dz (G(t − r; x, z) − G(s − r; y, z))2

+
∫ t

s
dr
∫
Td

dz G2(t − r; x, z), (3.3)
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(the last equality holds because the Green’s function G(r; y, z) vanishes if r < 0) and
using the definition (2.2). The first (respectively, second) series term in (3.2) equals
the first (respectively second) integral on the rignt-hand side of (3.3).

We start by analyzing the L2(Ω)-increments in the time variable of the process
(u(t, x)).

Proposition 3.1 1. There exist constants c1(d, T ) and c2(d) such that, for all s, t ∈
[0, T ], x ∈ T

d ,

c1(d, T )|t − s|1−d/4≤‖u(t, x) − u(s, x)‖2L2(Ω)
≤c2(d)|t − s|1−d/4. (3.4)

2. For any (t, x), (s, y) ∈ [0, T ] × T
d ,

c1(d, T )|t − s|1−d/4 ≤ ‖u(t, x) − u(s, y)‖2L2(Ω)
, (3.5)

where c1(d, T ) is the same constant as in (3.4).

Proof Without loss of generality, we suppose 0 ≤ s < t ≤ T .
Use the first equality in (3.3) and then apply Lemma 7.1 with h := t − s. This yields
the second inequality in (3.4).
From (3.2), we have

‖u(t, x) − u(s, x)‖2L2(Ω)
≥ 1

2n(k)+1πd

∑
k∈Nd,∗

1 − e−2λk (t−s)

λk
. (3.6)

Let r ≥ d. Applying the inequality 1 − e−u ≥ u
1+u , u ≥ 0, we obtain

∑
k∈Nd,∗

1 − e−2λk (t−s)

λk
≥2(t − s)

∑
k∈Nd,∗
|k|>r

1

1 + 2λk(t − s)

≥ 2(t − s)

r−4 + 2(t − s)

∑
k∈Nd,∗
|k|>r

1

|k|4 = Cd
2(t − s)

r−4 + 2(t − s)
rd−4,

since λk ≤ |k|4. Choosing r =
(

d4T
t−s

)1/4
, the inequality above yields

‖u(t, x) − u(s, x)‖2L2(Ω)
≥ c1(d, T )(t − s)1−d/4,

with c1(d, T ) = Cd
2dd T d/4

1+2d4T
. This is the lower bound in (3.4).
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Notice that from (3.2) we deduce

‖u(t, x) − u(s, y)‖2L2(Ω)
≥ 1

2n(k)+1πd

∑
k∈Nd,∗

1 − e−2λk (t−s)

λk
.

Hence the proof above yields (3.5). ��
For any j = 1, . . . , d, fix real numbers 0 < c0, j < 2π and define J j = [c0, j , 2π −

c0, j ] and J = J1 × . . .× Jd � T
d . The next statement deals with increments in space.

Proposition 3.2 Let (u(t, x), (t, x) ∈ [0, T ] × T
d) be the stochastic process defined

in Theorem 2.1 and let J be a compact set as described before. There exist positive
constants c(d), C(d), c3(d) and c4(d) such that, for any t > 0, x, y ∈ J ,

c3(d)Ct

(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d)

≤ ‖u(t, x) − u(t, y)‖2L2(Ω)
≤ c4(d)

(
log

C(d)

|x − y|
)β

|x − y|2∧(4−d), (3.7)

where Ct = (1 − e−2dt ), and β = 1{d=2}.
The upper bound holds for any (t, x) ∈ [0, T ]×T

d . The lower bound holds for any
x, y ∈ T

d if |x − y| is small enough. For t = 0, the lower bound is non informative.

Proof Upper bound. From (3.2) we deduce

‖u(t, x)−u(t, y)‖2L2(Ω)
= 1

2n(k)πd

∑
k∈Nd,∗

1 − e−2λk t

λk

⎛
⎝1 −

d∏
j=1

cos(k j (x j − y j ))

⎞
⎠ .

(3.8)
Observe also that, because of (2.1),

1 −
d∏

j=1

cos(k j (x j − y j )) = 2n(k)−1πd
∑
i∈Zd

2

(εi,k(x) − εi,k(y))2

≤ C̄(d)(1 ∧ (|k| |x − y|)2). (3.9)

for any (i, k) ∈ (Z2 × N)d .
Case d = 1. Since

∑
k≥1

1
k2

< ∞, from (3.8) and (3.9) we have

‖u(t, x) − u(t, y)‖2L2(Ω)
= 1

π

∑
k≥1

1 − e−2λk t

λk
(1 − cos(k(x − y))) ≤ Cd |x − y|2.

(3.10)
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Case d = 2, 3. For any k ∈ N
d , let Ik = [k1, k1+1)×· · ·×[kd , kd +1). Observe that

for any d-dimensional vector z ∈ Ik , we have |z| ≤ |k| + √
d . Fix ρ0 ≥ �3√d� + 1

and let α > 0. Then,

T1(α, ρ0) :=
∑

k∈Nd

|k|≥ρ0

1

|k|α ≤
∑

k∈Nd

|k|≥ρ0

∫
Ik

dz

(|z| − √
d)α

≤ Cd

∫ ∞

ρ0

ρd−1 dρ

(ρ − √
d)α

≤ Cd,α

∫ ∞

ρ0

ρd−1−α dρ, (3.11)

where the last inequality holds because on [ρ0,∞), ρ − √
d ≥ 1/2ρ.

Let ρ0 be as above, ρ1 =
⌊
(3/2)

√
d
⌋

+ 1, and β > 0. By arguments similar to

those used to obtain (3.11), we deduce

T2(β, ρ0) =
∑

k∈Nd

ρ1≤|k|<ρ0

1

|k|β ≤
∑

k∈Nd

ρ1≤|k|<ρ0

∫
Ik

dz

(|z| − √
d)β

≤ Cd

∫ ρ0

ρ1

ρd−1 dρ

(ρ − √
d)β

≤ Cd,β

∫ ρ0

ρ1

ρd−1−β dρ, (3.12)

where in the last inequality, we have used that on [ρ1, ρ0], ρ − √
d ≥ (1/5)ρ.

Set h = |x − y| and ρ0 =
⌊

cd h− 2∧(4−d)
4−d

⌋
+ 1, where cd = 3

√
d(2π

√
d)

2∧(4−d)
4−d .

Notice that ρ0 ≥ �3√d� + 1. Then, from (3.8) we have

‖u(t, x) − u(t, y)‖2L2(Ω)
≤ C(d)

⎡
⎢⎢⎣T1(4, ρ0) + h2

⎛
⎜⎜⎝T2(2, ρ0) +

∑
k∈Nd

1≤|k|<ρ1

1

|k|2

⎞
⎟⎟⎠

⎤
⎥⎥⎦ .

(3.13)

Using (3.11), with the choice of ρ0 specified above, we see that T1(4, ρ0) ≤
Cd h2∧(4−d) and

T2(2, ρ0) ≤ Cd ×
{
log
(C

h

)
, d = 2,

h−1, d = 3.

Since
∑

k∈Nd , 1≤|k|<ρ1
1

|k|2 = c̃d < ∞, substituting the above estimates in the right-
hand side of (3.13) we obtain the upper bound in (3.7).
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Lower bound. Case |x − y| small. We start from (3.8) to obtain

‖u(t, x) − u(t, y)‖2L2(Ω)
≥ 1 − e−2t

2n(k)πd

∑
k∈Nd,∗

1 −∏d
j=1 cos(k j (x j − y j ))

|k|4 .

(3.14)

Let T (x, y) denote the series on the right-hand side of (3.14). Because for any z ∈
[−π/2, π/2], we have cos z ≤ 1 − ( 2

π
z)2, we deduce

T (x, y) ≥
∑

k∈Nd,∗
k j |x j −y j |≤π/2

1 −∏d
j=1(1 − [(2/π)k j |x j − y j |]2)

|k|4 . (3.15)

Case d = 1. Using (3.15), we obtain

T (x, y) ≥ ( 2
π
)2|x − y|2

∑
k∈N\{0}

k|x−y|≤π/2

1

k2
≥ ( 2

π
)2|x − y|2

∫ π
2 |x−y|−1

1
ρ−2 dρ

= ( 2
π
)2|x − y|2

(
1 − 2

π
|x − y|

)
.

Assume |x − y| ≤ c0π
2 , with 0 < c0 < 1 arbitrarily close to 1. Then 1 − 2

π
|x − y| ≥

1 − c0 and, in this case,

‖u(t, x) − u(t, y)‖2L2(Ω)
≥ 4(1 − c0)

1 − e−2t

π3 |x − y|2. (3.16)

Case d = 2, 3. Consider the series on the right-hand side of (3.15) and apply the
formula (7.2) of Lemma 7.2 with m := d and p j = [(2/π)k j |x j − y j |]2, to see that

T (x, y) ≥ (2/π)2
[

S1(x, y) − (2/π)2S2(x, y)
]
, (3.17)

where

S1(x, y) =
∑

k∈Nd,∗
k j |x j −y j |≤π/4

d∑
j=1

(k j |x j − y j |)2
|k|4 ,

S2(x, y) =
∑

k∈Nd,∗
k j |x j −y j |≤π/4

∑
j1, j2∈{1,...,d},

j1< j2

(k j1 |x j1 − y j1 |k j2 |x j2 − y j2 |)2
|k|4 .
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Note that the condition k j |x j − y j | ≤ π/4 implies 1 − (2/π)2(k j |x j − y j |)2 ≥ 3/4.
Hence, for d = 2 we see that

2∑
j=1

(k j |x j − y j |)2 − (2/π)2(k1|x1 − y1|)2(k2|x2 − y2|)2

= (k1|x1 − y1|)2
(
1 − (2/π)2(k2|x2 − y2|)2

)
+ (k2|x2 − y2|)2

≥ 3

4

2∑
j=1

(k j |x j − y j |)2.

Similarly, for d = 3 we have

3∑
j=1

(k j |x j − y j |)2
(
1 − (2/π)2(k j+1|x j+1 − y j+1)

2
)

≥ 3

4

3∑
j=1

(k j |x j − y j |)2,

where in the sum above, we set j + 1 = 1 if j = 3.
Thus, in both dimensions d = 2, 3,

S1(x, y) − (2/π)2S2(x, y) ≥ (3/4)S1(x, y).

The next goal is to find a lower bound for S1(x, y). Without loss of generality we
may and will assume |x1 − y1| ≤ |x2 − x2| ≤ ... ≤ |xd − yd |. Set Nd,∗

≤ := {k ∈ N
d,∗ :

k1 ≤ k2 ≤ ... ≤ kd}. Then,

S1(x, y) ≥
∑

k∈Nd,∗
≤

k j |x j −y j |≤π/4

d∑
j=1

(k j |x j − y j |)2
|k|4 ≥ 1√

2d
|x − y|2

∑
k∈Nd,∗

≤
k j |x j −y j |≤π/4

1

|k|2 .

(3.18)

Indeed, set K = (k2j ) j , Z = (|x j − y j |2) j and let ξ be the angle between the vectors

K and Z . Because
∑d

j=1(k j |x j − y j |)2 is the Euclidean scalar product between K
and Z and ξ ∈ [0, π/4],

d∑
j=1

(k j |x j − y j |)2 ≥ cos(π/4)

⎛
⎝ d∑

j=1

k4j

⎞
⎠

1/2⎛
⎝ d∑

j=1

|x j − y j |4
⎞
⎠

1/2

≥ 1√
2

|k|2|x − y|2
d

.
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Assume that |x − y| ≤ π

5
√

d
. The set {k ∈ N

d,∗ : |k| ≤ π
4 |x − y|−1} is non empty and

is included in {k ∈ N
d,∗ : k j ≤ π

4 |x j − y j |−1, j = 1, . . . , d}. Hence,

∑
k∈Nd,∗

≤
k j |x j −y j |≤π/4

1

|k|2 ≥ 1

d!
∑

k∈Nd,∗
|k|≤ π

4 |x−y|−1

1

|k|2 ≥ Cd

∫ π
4 |x−y|−1

√
d

ρd−3 dρ.

For d = 2, the last integral equals log
(

π

4
√

d|x−y|
)
, while for d = 3, it is equal to

(π/4)|x − y|−1 − √
d . Observe that if |x − y| ≤ π

5
√

d
this expression is bounded

below by (π/20)|x − y|−1.
Summarizing, from (3.18) and assuming |x − y| ≤ π

5
√

d
, the discussion above

proves

S1(x, y) ≥ Cd ×
{
log
(

π

4
√

d|x−y|
)

|x − y|2, d = 2,

|x − y|, d = 3.
(3.19)

Therefore, for any x, y ∈ T
d such that 0 ≤ |x − y| ≤ π

5
√

d
, we have proved that

the lower bound of (3.7) holds with the constant c3(d) depending only on d and
Ct = 1 − e−2t .
Lower bound. Case |x − y| large. We recall a standard “continuity-compactness”
argument that we will use to extend the validity of the lower bound established in the
previous step, to every x, y ∈ J satisfying π

5
√

d
< |x − y| < 2π .

Consider the function

J 2  (x, y) �→ ϕt (x, y) = ‖u(t, x) − u(t, y)‖2L2(Ω)
,

where t > 0 is fixed. Because of the upper bound in (3.7), this is a continuous function.
Furthermore, from (3.8), we see that it is strictly positive. Thus, for any c0 > 0, the
minimun value m of ϕt over the compact set {ϕt (x, y); (x, y) ∈ J 2 : |x − y| ≥ c0} is
achieved, and m > 0. Referring to the left hand-side of (3.7), let M be the maximum
of the function

J 2  (x, y) �→
(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d), β = 1{d=2}.

Taking c0 = π

5
√

d
, we deduce,

‖u(t, x) − u(t, y)‖2L2(Ω)
≥ m

M

(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d), β = 1{d=2},

for any x, y ∈ J such that π

5
√

d
< |x − y| < 2π .

This ends the proof of the lower bound and of the Proposition. ��
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With Propositions 3.1 and 3.2 we obtain an equivalent expression of the canonical
pseudo-distance (3.1), as stated in the next theorem.

Theorem 3.1 Let (u(t, x), (t, x) ∈ [0, T ] × T
d) be the stochastic process defined in

Theorem 2.1.

1. There exist constants c5(d), C(d) such that for any (t, x), (s, y) ∈ [0, T ] × T
d ,

‖u(t, x)−u(s, y)‖2L2(Ω)
≤c5(d)

(
|t−s|1−d/4+

(
log

C(d)

|x−y|
)β

|x−y|2∧(4−d)

)
,

(3.20)

with β = 1{d=2}.
2. Fix t0 ∈ (0, T ] and let J be a compact subset of T

d as in Proposition 3.2. There
exist constants c6(d, t0, T ) and c(d) such that, for any (t, x), (s, y) ∈ [t0, T ]× J ,

‖u(t, x) − u(s, y)‖2L2(Ω)
≥c6(d, t0, T )

×
(

|t − s|1−d/4 +
(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d)

)
,

(3.21)

with β = 1{d=2}.

Proof The estimate from above follows by applying the triangle inequality and the
upper bounds in (3.4) and (3.7), which hold for any (t, x), (s, y) ∈ [0, T ] × T

d . The
value of the multiplicative constant in the upper bound is c5(d) = 2[c2(d) + c4(d)],
where c2(d), c4(d) are given in (3.4), (3.7), respectively.

To prove the lower bound, we consider two cases (see Propositions 3.1 and 3.2 for
the notations of the constants).

Case 1: c2(d)|t − s|1−d/4 ≤ c3(d)Ct0
4

(
log c(d)

|x−y|
)β |x − y|2∧(4−d), where Ct0 = 1 −

e−2t0 .
Applying the triangle inequality and then, using the lower bound in (3.7) and the

upper bound in (3.4) we obtain,

‖u(t, x) − u(s, y)‖2L2(Ω)
≥ 1

2
‖u(t, x) − u(t, y)‖2L2(Ω)

− ‖u(t, y) − u(s, y)‖2L2(Ω)

≥ c3(d)Ct0
2

(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d) − c2(d)|t − s|1−d/4

≥ c3(d)Ct0
8

(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d) + c2(d)

2
|t − s|1− d

4 .

Case 2: c2(d)|t − s|1−d/4 >
c3(d)Ct0

4

(
log c(d)

|x−y|
)β |x − y|2∧(4−d).
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By (3.5), we have

‖u(t, x) − u(s, y)‖2L2(Ω)
≥ c1(d, T )|t − s|1−d/4 = c1(d, T )

c2(d)

[
c2(d)|t − s|1−d/4

]

≥ c1(d, T )

c2(d)

(
c2(d)

2
|t − s|1−d/4 + c3(d)Ct0

8

(
log

c(d)

|x − y|
)β

|x − y|2∧(4−d)

)
.

The proof of the theorem is complete. ��

4 Further second order properties of the random field u

Throughout this section, we use the notation

σt,x = E((u(t, x))2), ρ(t,x),(s,y) = Corr(u(t, x), u(s, y)), s, t ∈ (0,∞), x, y ∈ T
d .

Lemma 4.1 1. There exists a constant cd,T such that for all s, t ∈ (0, T ], x, y ∈ T
d ,

|σ 2
t,x − σ 2

s,y | ≤ cd,T ‖u(t, x) − u(s, y)‖2L2(Ω)
. (4.1)

2. Fix t0 ∈ (0, T ]. There exist constants 0 < cd,t0 < Cd,T such that for any (t, x) ∈
[t0, T ] × T

d ,

cd,t0 ≤ σ 2
t,x ≤ Cd,T . (4.2)

3. Fix t0 ∈ (0, T ]. For any (t, x), (s, y) ∈ [t0, T ] × T
d such that (t, x) 	= (s, y),

ρ(t,x),(s,y) = E(u(t, x)u(s, y))

σt,xσs,y
< 1.

Proof 1. Without loss of generality we may assume 0 < s ≤ t . Applying (2.6)
yields

|σ 2
t,x − σ 2

s,y | = t − s

(2π)d
+ 1

2n(k)+1πd

∑
k∈Nd

0≤n(k)≤d−1

e−2λk s
(
1 − e−2λk (t−s)

)
λk

.

Use the inequality (3.5) to get t−s
(2π)d ≤ c̄d,T ‖u(t, x) − u(s, y)‖2

L2(Ω)
. Since

e−2λk s ≤ 1 and because of (3.2), we see that the second term on the right-hand
side of this equality is bounded above by ‖u(t, x) − u(s, y)‖2

L2(Ω)
. This ends the

proof of (4.1).
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2. The claim follows from (2.6), observing that

σ 2
t,x ≥

∑
k∈Nd

n(k)=d−1

1 − e−2λk t

2n(k)+1πdλk
≥ 1 − e−2t

2dπd
, t ≥ 0.

3. Assume that ρ(t,x),(s,y) = 1. Then, there would exist λ ∈ R \ {0} such that
‖u(t, x) − λu(s, y)‖L2(Ω) = 0. This leads to a contradiction. Indeed, consider
first the case 0 < s < t . By the isometry property of the Wiener integral,

‖u(t, x) − λu(s, y)‖2L2(Ω)
=
∫ s

0
dr
∫
Td

dz(G(t − r; x, z) − λG(s − r; y, z))2

+
∫ t

s
dr
∫
Td

dz G2(t − r; x, z)

≥
∫ t−s

0
dr
∫
Td

dz G2(r; x, z) > 0, (4.3)

by the properties of G.
Next, we assume t = s and x 	= y. If λ = 1, we see that

‖u(t, x) − λu(t, y)‖L2(Ω) = ‖u(t, x) − u(t, y)‖L2(Ω) = 0

is in contradiction with the lower bound in (3.7). If λ 	= 1, we apply Lemma 3.4 in
[5] to the stochastic process (u(t, x), x ∈ T

d), with t ∈ [t0, T ] fixed. Notice that,
because of the statements 1. and 2. proved above and Proposition 3.2, the hypotheses
of that Lemma hold. We deduce

‖u(t, x) − λu(t, y)‖2L2(Ω)
≥ c(1 − λ)2 > 0.

��

5 Solution to the deterministic homogeneous equation

In this section, we consider the Eq. (2.3) with σ = 0 whose solution in the classical
sense and in finite time horizon is given by the function

[0, T ] × T
d  (t, x) −→ I0(t, x) =

∫
Td

G(t; x, z)v0(z)dz.

In the next proposition, we prove the joint continuity of this mapping.

Proposition 5.1 Let v0 ∈ L1(Td). Then, the function (t, x) �→ I0(t, x) is jointly
Lipschitz continuous.
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Proof Increments in time. Fix 0 < s ≤ t ≤ T , Using the definition of G(t; x, z) given
in (2.2), we see that for any x ∈ T

d ,

|I0(t, x) − I0(s, x)|

=

∣∣∣∣∣∣∣∣∣∣

∫
Td

dz v0(z)
∑

k∈Nd,∗

(
e−λk t − e−λk s) ∑

i∈Zd
2

(i,k)∈(Z2×N)d+

εi,k(x)εi,k(z)

∣∣∣∣∣∣∣∣∣∣

≤
∫
Td

dz|v0(z)|
∑

k∈Nd,∗

t − s

λk

1

2n(k)πd

∣∣∣∣∣∣
d∏

j=1

cos(k j (x j − z j ))

∣∣∣∣∣∣
≤ Cd(t − s)‖v0‖L1(Td )

∑
k∈Nd,∗

1

λk
≤ [

Cd‖v0‖L1(Td )

]
(t − s).

Increments in space. Let x, y ∈ T
d . Then, for any t ∈ [0, T ],

|I0(t, x) − I0(t, y)| =

∣∣∣∣∣∣∣
∫
Td

dz v0(z)
∑

(i,k)∈(Z2×N)d+

e−λk t (εi,k(x) − εi,k(y))εi,k(z)

∣∣∣∣∣∣∣
≤ |x − y|

∑
k∈Nd,∗

|k|e−λk t
∫
Td

dz|v0(z)|

Up to a multiplicative constant depending on d, the series in the above expression

is bounded by
∫∞
0 ρde

− ρ4

2d−1 = CdΓE
( d+1

4

)
, where ΓE denotes the Euler Gamma

function.
The proof of the proposition is complete. ��

Remark 5.1 Combining Proposition 5.1 with the estimate (3.20) yields the following.
The sample paths of the stochastic process (v(t, x), (t, x) ∈ [0, T ] × T

d) are Hölder
continuous, jointly in (t, x), of degree (η1, η2) with

η1 ∈ (0, 4−d
8

)
, η2 ∈ (0, (1 ∧ 4−d

2

))
.

Indeed, v(t, x) = I0(t, x)+ u(t, x), and the process (u(t, x)) is Gaussian. Hence, the
claim follows from Kolmogorov’s continuity criterion (see e.g. [9]).

6 Hitting probabilities and polarity of sets

Consider the Gaussian random field

V = (V (t, x) =
(
v1(t, x), . . . , vD(t, x)), (t, x) ∈ [0, T ] × T

d
)

,
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where (v j (t, x)), j = 1, . . . , D, are independent copies of the process (v(t, x))

defined in (2.4). For simplicity, we will take σ = 1 there. Recall that A ∈ B(RD) is
called polar for the random field V if P(V (I × J ) ∩ A 	= ∅) = 0, and is nonpolar
otherwise. In this section, we discuss this notion using basically the results of [5]. We
first introduce some notation. For τ ∈ R+, let

q1(τ ) =τ (4−d)/8, q2(τ ) =
(
log

C(d)

τ

) β
2

τ 1∧((4−d)/2), β = 1{d=2},

ḡq(τ ) =τ D
(

q−1
1 (τ )

)−1 (
q−1
2 (τ )

)−d
, (6.1)

where the subscript q in the last expression refers to the couple (q1, q2).
Let D0 = [(4− d)/8]−1 + d[1∧ ((4− d)/2)]−1. If D > D0, the functions ḡq and

(ḡq)−1 satisfy the conditions required by the definitions of the ḡq -Hausdorff measure
and the (ḡq)−1-capacity, respectively (see [5][Section 5] for details).

In the next theorem, I = [t0, T ] and J = [0, M]d , where 0 < t0 ≤ T and
M ∈ (0, 2π).

Theorem 6.1 The hitting probabilities relative to the D-dimensional random field V
satisfy the following bounds.

1. Let D > D0.

(a) There exists a constant C := C(I , J , D, d) such that for any Borel set A ∈
B(RD),

P(V (I × J ) ∩ A 	= ∅)) ≤ CHḡq (A). (6.2)

(b) Let N > 0 and A ∈ B(RD) be such that A ⊂ BN (0). There exists a constant
c := c(I , J , N , D, d) such that

P(V (I × J ) ∩ A 	= ∅)) ≥ cCap(ḡq )−1(A). (6.3)

2. Let D < D0 and A ∈ B(RD).

(a) Hḡq (A) = ∞ and therefore (6.2) holds, but is non informative.
(b) If A is bounded, there exists a constant c := c(I , J , N , D, d) > 0 such that

P(V (I × J ) ∩ A 	= ∅)) ≥ c = cCap(ḡq )−1(A). (6.4)

Hence, (6.3) holds.

Proof Consider first the case D > D0. The upper bound (6.2) follows by applying
[5][Thm. 3.3.], while the lower bound (6.2) follows from [5][Thm. 3.5]. Indeed, from
Theorem 3.1, Lemma 4.1 and Proposition 5.1, we deduce that the random field V
satisfies the assumptions of those two theorems. As for the hypotheses required on q1,
q2 and ḡq , they are proved in [5][Section 5].

Let D < D0. We have limτ↓0 ḡq(τ ) := ḡq(0) = ∞ and then, by convention,
Hḡq (A) = ∞.
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Next, we prove (6.4) by using arguments similar to those in [3][Theorem 2.1, p.
1348].

For ε ∈ (0, 1) and z ∈ A, we denote by Bε(z) the ball centred at z with radius ε

and define

Jε(z) = 1

(2ε)D

∫
I

∫
J

dsdy1Bε(z)(V (s, y)).

Since {Jε(z) > 0} ⊂ {V (I × J )∩ A(ε) 	= ∅}, it suffices to prove that P(Jε(z) > 0) >

C , for some positive constant C . Using the Paley-Zygmund inequality, this amounts
to check

E (Jε(z)) > C1, E
[
(Jε(z))

2
]

< C2,

for some C1, C2 > 0.
Because of (4.2), the one-point density of V (t, x) is bounded uniformly on (t, x) ∈

[t0, T ] × T
d . This yields E (Jε(z)) > C1.

From Theorem 3.1, we deduce that the two-point densities of (V (s, y), V (t, x))

satisfy

ps,y;t,x (z1, z2) ≤ C

[ρ((s, y), (t, x))]D
exp

(
− c|z1 − z2|2

[ρ((s, y), (t, x))]2
)

, z1, z2 ∈ A,

where ρ((s, y), (t, x)) = |t − s| 4−d
8 +

(
log C(d)

|x−y|
) β

2 |x − y|1∧((4−d)/2), β = 1{d=2}
(apply the arguments of [3][Proposition 3.1]). Consequently,

E
[
(Jε(z))

2
]

≤ C̃
∫

I×J
dsdy

∫
I×J

dtdx [ρ((s, y), (t, x))]−D .

Set α1 = 4−d
8 , α2 = 1∧ ((4− d)/2), so that D0 = 1

α1
+ d

α2
. Since the constant C(d)

is such that log C(d)
|x−y| ≥ 1, the last integral is bounded from above by

I = C
∫

I×J
dsdy

∫
I×J

dtdx [|t − s|α1 + |x − y|α2 ]−D.

After some computations, we see that I ≤ C
∫ c0
0 ρ

−D+ 1
α1

+ d
α2

−1
dρ, which is finite if

D < D0. This ends the proof of the inequality in (6.4).
Since limτ↓0[ḡq(τ )]−1 := [ḡq(0)]−1 = 0, by convention Cap(ḡq )−1(A) = 1. This

yields the last equality in (6.4). ��
Theorem 6.1 1. implies the following.

Corollary 6.1 Let A ∈ B(RD) and assume D > D0.

1. If Hḡq (A) = 0 then A is polar for V .
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2. If A is bounded and Cap(ḡq )−1(A) > 0, then A is nonpolar for V .

Corollary 6.2 If D > D0, points z ∈ R
D are polar for V and are nonpolar if D < D0.

Proof Assume first D > D0. By the definition of the ḡq -Hausdorff measure, we have
Hḡq ({z}) = 0. Hence, the polarity of {z} follows from (6.2).

One can give another proof of this fact without appealing to Theorem 6.1. Indeed,
we have limτ↓0 ḡq(τ ) := ḡq(0) = 0. This is obvious for d = 1, 3. For d = 2, it is
proved in [5][Lemma 5.1]. This property implies P(V (I × J ) ∩ {z} 	= ∅) = 0 (see
[5][Corollary 3.2]). Therefore {z} is polar for V .

If D < D0, we apply (6.4) to A = {z} and deduce that {z} is nonpolar. Actually, if
D < D0 any bounded Borel set A is nonpolar for V . ��

Consider the case d = 1, 3, for which the definitions of theHḡq -Hausdorff measure
and (ḡq)−1-capacity are those of the classical Hausdorff measure and Bessel-Riesz
capacity, respectively. Assume D > D0. From Theorem 6.1 and using the same proof
as that of Corollary 5.3 (a) in [2], we obtain the geometric type property on the path
of V :

dimH(V (I × J )) = D0, a.s,

where dimH refers to the Hausdorff dimension (see e.g. [6][Chapter 10, Section 2, p.
130])

We end this section with some open questions for further investigations.
It would certainly be interesting to have a statement on the Hausdorff dimension

of the path of V also in dimension d = 2. Looking back to (6.1), we see that, in
this dimension, there is a logarithmic factor in the definition of ḡq . This leads to
the question of giving a notion of Hausdorff dimension based on the ḡq -Hausdorff
measure. A suggestion can be found in [8]. Indeed, the family T of functions

R+  τ −→ fν(τ ) := τ ν

(
log

C

τ

)1/2

, ν ∈ (0, ν0),

satisfies fν1(τ ) = o( fν2)(τ ), τ ↓ 0, whenever ν1 < ν2; therefore, T is a scale in
the sense of [8][Definition 2.1]. According to [8][Definition 2.3], we can define the
generalized notion of Hausdorff dimension (relative to T ),

dim( f )
H (A) = sup{η ∈ (0, ν0) : H fν (A) = ∞} = sup{η ∈ (0, ν0) : H fν (A) > 0}

= inf{η ∈ (0, ν0) : H fν (A) = 0} = inf{η ∈ (0, ν0) : H fν (A) < ∞}.

We conjecture that dim( f )
H (V (I × J )) = D0, a.s.

A second conjecture, related to Corollary 6.2, is that singletons are polar if D = D0.
This questionmaybe approachedusing [4][Theorem2.6],whichgives sufficient condi-
tions onGaussian randomfields ensuring polarity of points. Preliminary investigations
rise some technical challenges, due to the complex expression of the harmonizable
representation of the random field V . On the other hand, in dimension d = 1, the
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processs V is very regular in space and therefore, the approach based on [4] might
have a simplification or an alternative.
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7 Appendix

In this section, we gather some auxiliary results used in the paper.

Lemma 7.1 Let d ∈ {1, 2, 3}. There exists a constant Cd such that for any h ≥ 0 and
x ∈ T

d ,

∫ ∞

0
dr
∫
Td

dz (G(r + h; x, z) − G(r; x, z))2 ≤ Cd h1−d/4. (7.1)

Proof Using the expression (2.2), we see that

∫ ∞

0
dr
∫
Td

dz (G(r + h; x, z) − G(r; x, z))2

=
∑

k∈Nd

1

2n(k)πd

∫ ∞

0
dr
(

e−λk (r+h) − e−λkr
)2

=
∑

k∈Nd

0≤n(k)≤d−1

1

2n(k)+1πd

(
1 − e−λk h

)2
λk

≤ Cd

∑
k∈Nd

0≤n(k)≤d−1

min(1, |k|8h2)

|k|4

= Cd

∑
k∈Nd

0≤n(k)≤d−1

min
(
|k|−4, |k|4h2

)
:= Cd T (h).
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Case h ≥ 1. We have min
(|k|−4, |k|4h2

) = |k|−4. Thus, T (h) = C < ∞, which
implies T (h) ≤ Ch.
Case 0 < h < 1. Let T (h) ≤ T1(h) + T2(h), where

T1(h) =
∑

k∈Nd , 0≤n(k)≤d−1
|k|≤�h−1/4�

min
(
|k|−4, |k|4h2

)
,

T2(h) =
∑

k∈Nd 0≤n(k)≤d−1
|k|>�h−1/4�

min
(
|k|−4, |k|4h2

)
.

For the first term, we have

T1(h) ≤
∑

k∈Nd 0≤n(k)≤d−1
|k|≤�h−1/4�

|k|4h2 ≤ h
∑

k∈Nd 0≤n(k)≤d−1
|k|≤�h−1/4�

1 ≤ Cd h1−d/4.

For the second term, we have

T2(h) ≤
∑

k∈Nd 0≤n(k)≤d−1
|k|>�h−1/4�

|k|−4 ≤ Cd h1−d/4.

Since 1 − d/4 < 1, the estimates obtained in the two instances of h imply (7.1). ��
Lemma 7.2 For p j ∈ [0, 1], j = 1, . . . , m, the following formula holds:

1 −
m∏

j=1

(1 − p j ) =
m∑

j=1

p j −
∑
i< j

1≤i, j≤m

pi p j +
∑

i< j<k
1≤i, j,k≤m

pi p j pk

− · · · + (−1)m−1 p1 p2 · · · pm . (7.2)

Proof On a probability space, consider independent events (A j )1≤ j≤m such that p j =
P(A j ). Then,

1 −
m∏

j=1

(1 − p j ) = 1 − P(Ac
1 ∩ . . . ∩ Ac

m)) = 1 − P(∪m
j=1A j )

c = P(∪m
j=1A j ),

and (7.2) follows from the well-known inclusion-exclusion formula in probability
theory. ��
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