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5Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
6Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom

(Received 25 March 2018; published 12 June 2018)

The total energy of acoustic emission (AE) events in externally stressed materials diverges when
approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic
release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR
during soft uniaxial compression of three silica-based (SiO2) nanoporous materials. Instead of a singular
critical point, the distribution of AE energies is stationary, and variations in the activity rate are sufficient to
explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that
critical failure is suppressed in the AE statistics by mechanisms of transient hardening. Some of the critical
exponents estimated from the experiments are compatible with mean field models, while others are still
open to interpretation in terms of the solution of frictional and fracture avalanche models.
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The mechanical deformation and failure of materials is a
well-documented case of avalanche dynamics [1–33]. The
energy of mechanical avalanches is partially released in
elastic waves that can be detected by means of acoustic
emission (AE) measurement [34]. Several studies sug-
gested the presence of a phase transition associated with
the ultimate failure point [18–22,35] which could, in
theory, be monitored and forecast by means of the statistical
analysis of the preceding AE activity [6,36–38] and be
used for hazard assessment. AE signals recorded during
mechanical tests usually display a scale-free distribution of
energies (E) close to a power law: DðEÞdE ∼ E−εdE with
exponent 1≲ ε≲ 2.5. Three different relationships are
often reported between this scale-free phenomenon and
the proximity to failure: (i) The exponent ε in AE can
decrease before failure [39–44]. (ii) The rate of energy
released over time in AE experiments [45–49] diverges as a
power law with an exponent m with respect to the time
of failure tc:

dE=dtðtÞ ∝ ðtc − tÞ−m; ð1Þ

a phenomenon called accelerated seismic release (ASR)
[50]. (iii) The characteristic scales of the avalanches depend
on the distance to failure [25–28]. This latter observation
supports the well-established idea that failure occurs due to
the divergence of correlation lengths at a critical point

[15,20,57,58]. This so-called critical failure hypothesis
predicts a generalized homogeneous distribution of event
energies:

DðE; fÞdE ¼ E−εDðEfβÞdE ¼ fβεD̃ðEfβÞdE; ð2Þ

where DðxÞ and D̃ðxÞ are scaling functions, f ≡ 1 − t=tc is
the time to failure, and β is a characteristic exponent of
the model.
While the exponent decrease (i) is currently not under-

stood from a model perspective, ASR (ii) and critical failure
(iii) are well reproduced by most micromechanical models
[15–17,37,57]. Since all statistical n-moments diverge at
failure as hEni ∼ fðε−1−nÞβ and the activity rate (dN=dt) is
constant in most micromechanical models, ASR (ii) is a
natural outcome of critical failure:

dE=dtðfÞ ¼ hEiðfÞdN=dtðfÞ ∼ fðε−2Þβ: ð3Þ

Although ASR is assumed as a signature of criticality
[52,57], its connection with Eq. (2) is rarely tested with AE.
Here, we analyze the AE during the approach to failure of
nanoporous materials under soft uniaxial compression. We
prove that ASR (ii) can appear in the absence of progressive
exponent changes (i) or critical failure (iii). We estimate the
experimental exponents m [Eq. (1)], ε [Eq. (2)], and γ,
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relating the characteristic E of an event with its duration T
through the conditional average:

hEjTi ∝ Tγ; ð4Þ

and interpret them in terms of the mean field solutions of
fracture and frictional avalanches.
We limit our analysis to the three silica (SiO2)–based

materials studied in Ref. [5]: natural red sandstone (SR2,
Φ ¼ 17% porosity) extracted from Arran Isle (United
Kingdom) and two artificial porous silica glasses, Gelsil
(Gel26, Φ ¼ 36%) and Vycor (V32, Φ ¼ 40%).
Experimental details are found in Ref. [5] and summarized
in Table I. Samples are compressed without lateral confine-
ment at a steady quasistatically slow loading rate dP=dt∼
1 kPa=s, equivalent to a strain rate ðdϵ=dtÞ ∼ 10−5 s−1
during quasielastic deformation. The sample height (h) is
measured over time with a laser extensometer, and the
AE is recorded by a piezoelectric transducer attached
to the upper compression plate. Individual AE events are
identified by thresholding the acoustic signal VðtÞ, defining
the hitting time tAE and duration DAE of each AE
event. The AE energy of each event is computed as
EAE ∝

R tAEþDAE
tAE jVðtÞj2dt.

Figure 1 shows the relations between AE energy (EAE)
and duration (DAE) in a density map, and the conditional
averages hDAEiðEAEÞ. The experimental data are compared

to a nonstochastic model considering a scale-free avalanche
profile [Eq. (4)] and the best value of γ found by inspection
(see Supplemental Material [59]). Within error bars (�0.4),
all values are compatible with γ ¼ 3, as predicted by mean
field (MF) models [60,61]. The density clouds fill narrow
stripes around the conditional average values as expected
by Eq. (4).
The activity rate—the number of AE events per time

unit—is nonstationary, as is also reported in Refs. [4–9].
Figure 2(a) shows the mechanical evolution expressed as a
decrease in sample height [hðtÞ] and the cumulative number
of AE events [NðtÞ] for the experiment V32. Figure 2(b)
shows the activity rate (dN=dt) and the decrease in height
(dh=dt) evaluated in intervals of uniaxial pressure ΔP ¼
100 kPa (converted from t by dP=dt in Table I). We
identify several sharp drops in h (five in Fig. 2), with a short
characteristic temporal span Δtc ≈ 0.1 s (or ΔP ≈ 100 Pa),
at pressure values Pk

c. These so-called strain drops are
outliers to an otherwise smooth strain evolution, as
observed in the dh=dP profile, and match a simultaneous
increase of AE activity (dN=dP) and strong AE events. The
events at Pk

c resemble brittle failure, a typical outcome of
internal weakening or progressive damage in MF micro-
mechanical models [10,62]. Brittle failure events are
macroscopic by definition. Thus, during a loading cycle,
a single (not multiple) brittle event is expected in these
models. Here, however, the material recovers the stiffness
during the intervals Pk

c < P < Pkþ1
c (Fig. 2). This can be

explained by hardening, as reported in compression
experiments [12], due to the accommodation of the stress
field. The presence of both weakening and hardening
localizes damage in brittle events that can correspond
to spallation, correcting boundary defects [63] or be
arrested due to stress heterogeneities [64]. An ultimate

TABLE I. Sample details: cross-sectional area A, height h,
compression rate dP=dt, number N of recorded signals above
threshold Th.

Area
A (mm2)

Height
h (mm)

Driving
rate dP=dt
(kPa/s) Th (dB) N

Vycor (V32) 17.0 5.65 5.7 23 34 138
Gelsil (G26) 46.7 6.2 0.7 26 5 412
Sands. (SR2) 17.0 4.3 2.4 23 27 271
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FIG. 2. Mechanical response and AE sequence for experiment
on Vycor (V32). (a) Cumulative number of events N (dark red)
and height evolution h (light green) in experiment V32 as a
function of uniaxial pressure P. The size of the circles depends
on the AE energy (size ∼E0.25

AE ). (b) Mean AE activity rate dN=dt
(dark red histograms) and strain rate dh=dt (light green histo-
grams) in intervals of ΔP ¼ 100 kPa. Vertical gray lines: Pk

c.
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FIG. 1. Histograms (color-coded) of AE events in the
duration-energy (DAE, EAE) space. Blue dots: Conditional
averages hDAEiðEAEÞ. Green triangles: Numerical solutions of
EAEðDAEÞ consistent with Eq. (4) (see main text for details),
with γ ¼ 3.0ð4Þ for V32, γ ¼ 3.4ð4Þ for G26, and γ ¼ 3.2ð4Þ
for SR2.
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system-sized failure event collapsing the whole sample
is observed in all experiments (P5

c in Fig. 2 has an
associated Δh ∼ 5 mm).
We study how the statistics of AE events are modified

close to the most prominent stress drops by evaluating
hEAEi, ε and dEAE=dt in short stress intervals correlated
with the distance to each strain drop: fk ≔ 1 − P=Pk

c. We
select Pk

c as the onset of each strain drop, identified with a
precision of 0.01 s (equivalent to δfk ∼ 10−6 − 10−5) and
compare the results to Eq. (2) where D is an exponential
cutoff:

DðE;Em; Ec; εÞdE ¼ E−ε
Eε−1
c expð− E

Ec
Þ

Γð1 − ε; Em
Ec
Þ dE: ð5Þ

Here, Γða; xÞ is the incomplete gamma function and Em is
the lower boundary of the distribution. Ec is the character-
istic scale of the exponential cutoff and, according to
critical failure, should be proportional to f−βk [Eq. (2)].
We truncate the distribution at the lower boundary Em ¼
1 aJ to avoid resolution artifacts distorting the power law
for low energies.
We inquire if the strain drops at Pk

c can be interpreted as
independent failure events, identified by at least one of the
three trademarks mentioned earlier. Figures 3(a)–3(c) show

the exponents ε̂ðfkÞ estimated by maximum likelihood
inside the interval 1–1000 aJ [65] (overhat denotes esti-
mation), compared to the global estimated exponent (gray
line). Figures 3(d)–3(f) show the mean energy of individual
AE events (hEAEiðfkÞ in dots) compared to the solution to
Eq. (5) (triangles) with ε̂ðfkÞ from Figs. 3(a)–3(c) and
stationary Êc (gray lines). The lower panels [Figs. 3(g)–3(i)]
show the rate of energy released by all events in temporal
intervals (dEAE=dPðfkÞ in dots). In Figs. 3(g)–3(i), since
some avalanches last longer than the evaluation intervals
close to failure, their AE energy is split into intervals of 1 ms
in order to increase the temporal resolution. The exponent
ε̂ðfkÞ is almost stationary except for a few low values in the
last intervals before Pk

c. Since all ε̂ðfkÞ < 2, critical failure
expects a divergence in hEAEi when fk → 0. As first
reported in Vycor [4], hEAEiðfkÞ is instead almost stationary
and compatible with a finite and constant Êc (see EAE
distributions in the Supplemental Material [59]). Only the
last intervals prior to failure show higher hEAEiðfkÞ, close to
the 90% confidence interval limit. Despite the stationary
hEAEi, all data sets exhibit a steady increase in dEAE=dt
starting far from failure [Figs. 3(g)–(i)], as predicted by
ASR [Eq. (1)] considering m ∼ 1.0 (thin gray lines). Thus,
we observe ASR, even when avalanches are noncritical.
Figure 3 illustrates how ASR [Eq. (1)] is more general

than critical failure [Eq. (2)]. This result can be reproduced
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FIG. 3. Statistical variations with distance to strain drops Pk
c. The color scheme identifies the index k. (a)–(c) Exponent ε̂ðfkÞ from

Eq. (2) estimated within the interval (1.0–1000 aJ). (d)–(f) Mean energy per signal hEAEiðfkÞ; expected mean value according to
D(E;Em; Ec; ε̂ðfkÞ) (triangles) with Ec ¼ 106 aJ (104 aJ for SR2); expected value from the global exponent (gray line). (g)–(i) Rate of
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expected by critical failureD(E;Em; Emf
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by introducing microscopical mechanisms of transient
hardening such as rheology damage [66,67], rate-and-
state-dependent friction [68], or viscoelasticity [38,69,70]
into models that would otherwise exhibit critical failure
[61,62,70]. Transient hardening acts as an effective dis-
sipation [61,62,71] preventing criticality [62,70,72,73] and
introduces temporal scales to the model reproducing the
foreshock and aftershock sequences [61,69,74]. The latter
are perceivable in Fig. 2(a) after P5

c, for example, and
reported in Refs. [4,5] and the Supplemental Material [59].
Some of the last intervals preceding Pk

c exhibit a
significant decrease of ε̂ [see Fig. 3(c)] and an increase
in hEAEi even higher than the expectation from Eq. (5) and
the estimated ε̂. Such intervals might contain superposition
of events [75], artifacts due to the signal clipping of large
avalanches, or strong AE related to brittle failure. As
discussed in Ref. [61], brittle events can follow particular
statistical laws. Some experiments of rock fracture report
instead a progressive decrease in ε̂ far from failure
[1,39,43,76,77], but this is not a universal feature [48],
and it is also inconsistent with models [20]. Anisotropic
stresses are known to affect ε in structural phase transitions
[78], which might or might not play a role in rock fracture
[48]. The small size of our samples, close to the width
of localization bands in sandstones [48,79], might prevent
any band-related anisotropy. Finally, several brittle events
might commonly appear under uniaxial compression,
since similar results were reported at constant stress
[80]. Simulations can reproduce multifragmenation from
dynamic fracture [81] or localized weakening bands in a
predominantly hardening process [14,20].
Both friction and different fracture mechanisms are

involved in mechanical failure under compression
[24,82]. We compare the experimental values of ε, γ,
and m to the MF solutions of pure fracture and frictional
models with transient hardening. We consider the MF
stick-slip model [10,60,83,84] as a prototype for frictional
avalanches and the democratic fiber bundle model [37] for
fracture (see Supplemental Material [59], which includes
Refs. [85–87]). The collection of MF exponents [10,61,88]
is shown in Table II. The critical exponents [Eqs. (2) and
(4)] are defined in terms of the size (S) of the avalanche
from the relations

DðS; fÞdS ¼ S−κDSðSf1=σÞdS; hSjTi ∼ T1=σνz: ð6Þ

In MF models, the exponents κ, σνz, ε, and γ are universal
and invariant under transient hardening [10,61]. Given the
broad regime with hDAEi ∼ E1=γ

AE (Fig. 1), we assume
EAE ∝ E. The estimated exponents ε and γ determine
the values of κ and σνz, as shown in Table II. While
σνz and β are MF, κ and ε are higher but close to MF, below
2 standard deviations in V32 and G26, and 3 standard
deviations in SR2, which might indicate the relevance of
long-ranged elastic interactions.

The MF solutions of friction and fracture are similar,
but they differ in the values of 1=σ and β related to the
approach to failure (see the Supplemental Material [59]).
Furthermore, the interpretation of m in terms of the MF
exponents is unclear when transient hardening is present.
According to MF models, the exponent m defining the
seismic energy released [Eq. (1)] is modified by transient
hardening. Following Eq. (6), the mean size in models
with critical failure diverges as hSiðfÞ ∼ fðκ−2Þ=σ , and thus
dS=dt ∼ fðκ−2Þ=σ. Under slow driving, dS=dt is invariant
under transient hardening [61]. Considering the constant
hEiðfÞ observed in Figs. 3(d)–3(f), the MF model assumes
that hSiðfÞ is also constant. Thus, dS=dt diverges due to the
divergence of dN=dt and, instead of Eq. (3), we have

dE=dtðfÞ ¼ hEiðfÞdN=dtðfÞ ∼ f
κ−2
σ : ð7Þ

This interpretation of dE=dtðfÞ derived from MF theory is
presented with superscripts a in Table II. The experimental
m ¼ ð2 − κÞ=σ ≈ 1 coincides with the MF model of fric-
tional avalanches. However, the values of 1=σ ∼ 2.5–4 and
β ∼ 4–6 are higher than the MF predictions of both models.
The relation between m and the fundamental exponents

is discussed in MF theory, but not in models with local
interactions, where transient hardening is known to affect
the exponents [69,89]. An alternative hypothesis is that
ASR [Eq. (3)] is invariant under transient hardening.
Then, m ¼ ð2 − εÞβ ≈ 1 is compatible with the fracture
MF model, and the exponents σ ∼ 0.8 and β ∼ 1.8 are
between both models, and notably closer to fracture
(superscript b in Table II). The presence of brittle events
denoting damage and related to fracture is consistent with
this interpretation. Rock fracture experiments at low con-
fining pressure [24] are dominated by tensile fracture (not
shear) AE events, a phenomenon related to dilatancy, and
also reproduced in numerical simulations [90].

TABLE II. Top three rows: Fitted exponents as represented in
Figs. 3(g)–3(i), Figs. 2(a)–2(c), and Fig. 3(a)–3(c), compared to
the MF exponents for slip and fracture. Bottom six rows:
Fundamental exponents estimated from MF theory. The super-
scripts a [Eq. (7)] and b [Eq. (3)] denote two different inter-
pretations of ASR in terms of MF theory (see text).

V32 G26 SR2 Slip MF Fracture MF

γ 3.0 (4) 3.4 (4) 3.2 (4) 3 3
ε 1.40 (5) 1.40 (5) 1.50 (5) 4=3 4=3
m 1.02 (13) 1.11 (20) 0.99 (8) 1a 2b 1=2a 1b

σνz 0.50 (6) 0.45 (6) 0.48 (5) 1=2 1=2
κ 1.60 (8) 1.62 (8) 1.76 (8) 3=2 3=2
σa 0.40 (9) 0.34 (9) 0.24 (8) 1=2 1
σb 0.88 (12) 0.80 (16) 0.76 (7) 1=2 1
βa 3.7� 0.8 4.6� 1.2 6.3� 2.1 3 3=2
βb 1.67 (24) 1.83 (37) 2.00 (25) 3 3=2
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In conclusion, sharp strain drops with massive AE events
denoting brittle failure are identified during the compres-
sion of nanoporous materials. Instead of critical failure,
we find that hEAEi is stationary, and accelerated seismic
release (ASR) is exclusively observed in the activity rate
(dNAE=dt). Experiments under strain driving reported
similar results [48], but failure precedes the divergence
time of ASR [tc in Eq. (1)], especially in materials with low
porosity (Φ≲ 10%) [49]. Many theoretical models expect
avalanche criticality at failure due to the divergence of
correlation lengths [15–17,37,57]. This criticality can be
prevented by dissipation [70,72,73], the dynamic weaken-
ing or hardening of the material [10,62], or the combined
effect [71]. In particular, the ASR and the lack of criticality
reported here, together with the temporal correlations
reported in Ref. [5], can be reproduced by transient
hardening [61]. In our experiment, an effective transient
hardening can be caused by one or several internal micro-
mechanical processes such as viscoelasticity [69,91], fric-
tion between crack surfaces [74], stress corrosion [92],
diffusion of internal fluids [93,94], etc. In contrast, exter-
nally measured slip avalanches usually scale to failure and
appear unperturbed by transient hardening [25–28].
Analytic solutions of MF models allow us to interpret
the experimental results in terms of critical exponents.
While the interpretation of the ASR [Eq. (1)] and its
associated exponents remains an open question, other
exponents are consistent with MF theory. A remaining
challenge for the future is to validate this extension of MF
models to noncritical failure through new micromechanical
experiments able to control the potential mechanisms of
transient hardening and dissipation.
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