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Crystal size dependence of dipolar ferromagnetic order between Mn6 molecular nanomagnets
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We study how crystal size influences magnetic ordering in arrays of molecular nanomagnets coupled by
dipolar interactions. Compressed fluid techniques have been applied to synthesize crystals of Mn6 molecules
(spin S = 12) with sizes ranging from 28 µm down to 220 nm. The onset of ferromagnetic order and the
spin thermalization rates have been studied by means of ac susceptibility measurements. We find that the
ordered phase remains ferromagnetic, as in the bulk, but the critical temperature Tc decreases with crystal
size. Simple magnetostatic energy calculations, supported by Monte Carlo simulations, account for the observed
drop in Tc in terms of the minimum attainable energy for finite-sized magnetic domains limited by the crystal
boundaries. Frequency-dependent susceptibility measurements give access to the spin dynamics. Although
magnetic relaxation remains dominated by individual spin flips, the onset of magnetic order leads to very long
spin thermalization time scales. The results show that size influences the magnetism of dipolar systems with as
many as 1011 spins and are relevant for the interpretation of quantum simulations performed on finite lattices.
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Dipolar magnetic interactions are ubiquitous in nature.
They lead to the formation of domains in magnetically or-
dered materials [1], often determine the linewidth of magnetic
resonance spectra [2], and lie behind some exotic magnetic
states, such as spin ice [3]. From a fundamental perspective,
arrays of spins coupled solely by dipolar interactions provide
close approximations of mean-field models [4] and afford the
experimental observation of magnetic quantum phase tran-
sitions [5,6]. More recently, artificial spin systems coupled
by long-range interactions have aroused interest within the
context of quantum simulation [7,8]. Dipolar interactions can
introduce unconventional dynamics in the way magnetic cor-
relations and entanglement grow in three-dimensional spin
lattices [9,10].

The ground state of a magnetic dipole crystal is one of
its most basic and arguably also one of the simplest proper-
ties. In principle, the ordered phase and the phase transition
must be uniquely determined by the lattice symmetry [11–13].
However, even for classical spins, the existence of dipolar
ferromagnetism in real materials remained in doubt for many
years. The onset of a spontaneous magnetization increases
the magnetostatic energy and destabilizes the ferromagnetic
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phase. That a well-defined magnetic ground state exists, ir-
respective of the lattice shape, was rigorously proven [14].
The proof is based on the possibility of subdividing the spec-
imen into smaller domains [15], just as in exchange-coupled
ferromagnets, which retain a net spontaneous magnetization
while reducing the overall magnetostatic energy. However,
this prediction only works in the thermodynamic limit with an
infinite (or sufficiently large) number of interacting spins. It
then ensues that not only the critical temperature Tc but even
the nature of the ordered phase can be quite sensitive to the
lattice size when dealing with pure dipolar spin systems.

Studying this question experimentally is, however, quite
challenging because real materials ordering purely by dipole-
dipole interactions are scarce. Examples include some
lanthanide-based compounds [16,17] and crystals of arti-
ficial magnetic molecules [18,19]. Because of the almost
negligible intermolecular electronic exchange, molecular
crystals can be seen as model lattices of identical magnetic
dipoles. The particular system chosen for our experiments,
[Mn6O4Br4(Et2dbm)6] (Et2dbm = an ethyl para-substituted
dibenzoylmethane) [20], hereafter referred to as Mn6, is
shown in Fig. 1. The symmetry of the cluster core leads to
a large molecular spin S = 12, thus also to a large magnetic
moment and sizable dipolar couplings, with a very weak
magnetic anisotropy. The combination of these two properties
allows the spins to order before their reversal times become
too long. In bulk form, this material provides one of the
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FIG. 1. (a) Structure of the [Mn6O4Br4(Et2dbm)6] molecule,
highlighting the octahedron formed by the six Mn3+ ions (purple
spheres) and the pyramid with the four Br− ions (brown spheres) at
the apices. H atoms are omitted for clarity. Color code: Mn, purple;
Br, brown; O, red; and C, black. (b) Crystal lattice of Mn6 clusters
that can be approximated to a body-centered tetragonal unit cell
(solid black lines). The actual monoclinic cell (see Supplemental
Material [25] for details) is shown as dashed lines. For simplicity,
only the central octahedron of each Mn6 molecule is shown.

cleanest examples of pure dipolar ferromagnetism with Tc �
0.16 K [21,22]. A last necessary ingredient is the ability to
control crystal size while preserving other relevant properties,
something that often lies beyond the capabilities of conven-
tional synthetic methods. A promising way to improve the
control and homogeneity is provided by recrystallization in
supercritical fluids [23,24].

Here, we study the magnetic ordering in micro- and
nanocrystals of Mn6. By means of ac susceptibility measure-
ments, we investigate the phase transition as a function of
crystal size and the spin relaxation toward thermal equilib-
rium. The results are analyzed based on ground state energy
calculations and Monte Carlo simulations that consider how
the lattice size affects dipolar interactions.

The starting material, unprocessed bulk Mn6, was syn-
thesized following the method reported in Ref. [20] and
characterized as described in the Supplemental Material [25]
(see, also, Refs. [26–29] therein). Crystals of varying size
were obtained by recrystallization in compressed supercritical
fluids via two techniques: the gas antisolvent (GAS) method
and the aerosol solvent extraction system (ASES) method.
Details of these methods can be found elsewhere [23]. Sam-
ples of Mn6 crystals with average lengths (A) 28 µm, (B)
12 µm, and (C) 7.5 µm were prepared using the GAS method.
The smallest particles, with an average size of 220 nm, were
prepared with the ASES method (sample D). Transmission
electron microscopy [Fig. 2(a)] shows the tendency of Mn6

to grow in elongated shapes. The size distribution of each
set of crystals was measured using dynamic light scattering,
providing evidence for rather narrow distributions, as shown
in Fig. 2(a) for sample D (see Supplemental Material [25] for
information on the other samples).

The samples were characterized by different techniques to
determine how the structural and magnetic properties of Mn6

are modified by the recrystallization process. Single-crystal
synchrotron diffraction experiments have allowed us to verify
that all four samples remain (poly-)crystalline and to derive
the unit cell for various crystals of sample C (see Supplemen-
tal Material [25] and Refs. [26–29] therein for more details).
The cell parameters remain very similar to those of bulk Mn6

FIG. 2. (a) Transmission electron microscopy image (top) and
crystal size distribution measured by dynamic light scattering (bot-
tom) of sample D. The distribution is centered at 220 nm with a
half width at half maximum of 75 nm. (b) X-ray diffraction spectra
measured on a powder sample of unprocessed bulk Mn6 and on
samples C and D having average crystal sizes of 7.5 µm and 220 nm,
respectively. (c) Magnetization isotherms measured on unprocessed
Mn6 and on the same C and D samples. The fit with a Brillouin
function (solid line) gives S = 12 and g = 1.95. (d) Molar specific
heat of unprocessed Mn6 and of sample A measured at zero field
as a function of temperature. The solid line shows the Schottky
contribution due to the magnetic anisotropy of each molecule. In
both cases, the results are compatible with a weak uniaxial anisotropy
constant D/kB = 0.013 K [21,22].

although with departures from strict monoclinic symmetry,
i.e., angles tending to deviate from 90◦ and a variation <4%
in the cell volume. Additional x-ray powder diffraction ex-
periments were performed on all samples. The patterns for
unprocessed bulk Mn6 and samples C and D are compared
in Fig. 2(b). A significant broadening of the main peaks is
observed in the case of sample D that can be ascribed to the
significantly reduced size of the crystallites. This broaden-
ing likely impedes the detection of weaker peaks at higher
angles. In addition to this, the diffraction patterns remain
very similar upon reducing crystal size, but they show some
differences with respect to that of the original unprocessed
material. This is relevant for pure dipolar systems where the
magnetic ground state is mainly determined by the lattice
geometry [11].

The magnetic properties of Mn6 can be described with the
following spin Hamiltonian [21,22]:

H = −
N∑

i=1

(
DS2

i,z + gμB �B�Si
)

+ g2μ2
B

∑
i �= j

[ �Si �S j

r3
i j

− 3(�Si�ri j )(�S j�ri j )

r5
i j

]
, (1)
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where the first term is a uniaxial magnetic anisotropy, the
second describes the Zeeman interaction of the molecular
magnetic moment �μ = gμB �S with magnetic field �B, and the
third accounts for the dipolar interactions between different
molecules. Figure 2(c) shows the magnetization M measured
as a function of B for the original Mn6 and for samples C and
D. In this temperature range, anisotropy and dipolar couplings
play a negligible role; thus, the molecular spin S and the g
factor can be determined by fitting M with a Brillouin function
(see also the Supplemental Material [25]). We obtain S = 12
and g = 1.95, in good agreement with those previously found
in the bulk [21]. Figure 2(d) compares the specific heat cp of
sample A measured down to 300 mK with that of unprocessed
Mn6 [21]. The magnetic contribution, which becomes domi-
nant <∼2 K, is the same in the temperature range common
to both measurements. The solid line shows the Schottky con-
tribution associated with the magnetic anisotropy. It follows
that the anisotropy constant remains virtually the same as in
the starting material D/kB � 0.013 K [20]. From these results,
we conclude that recrystallization in compressed fluids largely
preserves all relevant molecular properties and that it gives
rise to a well-defined crystal lattice. These Mn6 crystallites
provide therefore a model system to study how crystal size
affects long-range dipolar ordering.

The complex ac susceptibility χ (ω, T ) = χ ′(ω, T ) −
iχ ′′(ω, T ), where ω is the ac frequency, was measured
with a microsuperconducting quantum interference device
(μSQUID) susceptometer [30,31] immersed inside the mixing
chamber of a 3He - 4He dilution refrigerator to maximize the
thermal exchange between the sample, helium bath, and ther-
mometer. A small amount of crystalline powder was mixed
with a nonmagnetic grease and directly deposited onto the
μSQUID susceptometer. The measurements were performed
in the frequency range 15 mHz < ω/2π < 130 kHz and for
temperatures ranging between 45 mK and 20 K. More details
about this measuring technique are given in the Supplemental
Material [25].

Figure 3(a) shows the in-phase component χ ′ measured for
sample A at different frequencies. The susceptibility shows
a paramagnetic response χ ′ ∝ 1/(T − θ ) interrupted by a
frequency-dependent peak. The temperature of the maximum
decreases with ω following the Arrhenius law [Fig. 3(c)].
In this paramagnetic regime, the spin dynamics can be un-
derstood on a quite simple basis, characteristic of many
single-molecule magnets: the magnetic anisotropy of each
cluster generates an energy barrier U = DS2 � 1.87 K for
the reversal of its spin, which slows down spin thermalization
exponentially as T decreases. This means that progressively
lower frequencies are needed to explore the equilibrium
magnetic response at lower temperatures. Interestingly, for
ω/2π < 0.1 Hz, the peak becomes approximately indepen-
dent of frequency which, in analogy with what was observed
for unprocessed Mn6, we assign to the onset of a magneti-
cally ordered phase. The maximum χ ′ � 0.16 emu/g is close
to the ferromagnetic limit, determined by the demagnetiz-
ing factor [22] and marked as a dashed horizontal line in
Fig. 3(a). The intrinsic reciprocal susceptibility, corrected for
demagnetization effects [Fig. 3(d)], follows the Curie-Weiss
law, with a positive Weiss temperature θ , as expected for
mean-field-like dipolar ferromagnets [4]. Therefore, we con-
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FIG. 3. (a) In-phase magnetic susceptibility χ ′ of sample A (av-
erage crystal size 28 µm) measured as a function of temperature for
different frequencies ω/2π ranging from 15 mHz (blue) to 79 kHz
(red). The maximum χ ′ becomes independent of ω <0.1 Hz and
saturates at a value close to 1/ρN = 0.16 emu/g (dotted red line),
signaling the onset of ferromagnetic order. (b) Same as in (a) for
sample B (average crystal size 12 µm). (c) Arrhenius plot for the
frequency-dependent temperature of maximum χ ′. The tendency of
this temperature to saturate to a constant value points to a mag-
netic phase transition and provides a method to estimate the critical
temperature Tc (vertical solid lines). (d) Reciprocal equilibrium sus-
ceptibility of all samples, corrected from demagnetizing effects, as a
function of temperature. The solid lines are least squares Curie-Weiss
fits.

clude that magnetic order remains ferromagnetic, albeit the
critical temperature Tc � 0.121 K, extracted from the position
of the susceptibility maximum, turns out to be lower than
Tc � 0.16 K of the unprocessed Mn6 [21,22]. The difference
might be associated with their slightly different crystal lattices
[see Fig. 2(b)]. For this reason, in the discussion that follows
sample A will be used as the reference bulk limit.

We next consider the change in Tc with crystal size. For
this, we compare results obtained for samples B–D by the
same method outlined above to the value found for sam-
ple A. The susceptibility of sample B (12 µm) is shown in
Fig. 3(b), while those of samples C and D can be found in the
accompanying Supplemental Material [25]. The frequency-
independent susceptibility peak shifts to lower temperatures
with decreasing size, Tc � 0.114 K for sample B (12 µm) and
�0.11 K for sample C (7.5 µm). For sample D, which contains
the smallest crystals (220 nm), it is not observed even for
frequencies as low as 15 mHz, which sets Tc < 0.1 K.

These Tc values, normalized to that found for sample A,
are plotted in Fig. 4(a) as a function of average particle
size d . The physics underlying the decrease in Tc can be
understood by considering the dipolar energies of ferromag-
netic domains polarized along the magnetic anisotropy axis z.
To simplify the analysis, the Mn6 lattice was approximated
to a body-centered tetragonal lattice with a′ = b′ = 18.0 Å
and c′ = 17.7 Å [see Fig. 1(b) and the inset of Fig. 4(b)].
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FIG. 4. (a) Critical temperature of Mn6 molecular crystals, estimated from ac susceptibility measurements and normalized to Tc of sample
A (solid rhombic dots), as a function of average crystal size d . The plot also shows dipolar energies of ferromagnetic domains [solid circles,
see (b)] and critical temperatures determined from Monte Carlo simulations [open circles, see (c)], in both cases normalized to the bulk values.
(b) Dipolar energy E of ferromagnetic domains with different lengths Nz as a function of domain width Nx = Ny. The dotted line marks
the minimum dipolar energy Emin attainable for each domain size. The inset shows an scheme of the tetragonal lattice used in these energy
calculations and in the Monte Carlo simulations, where Nx , Ny, and Nz denote number of sites. (c) Magnetic heat capacity obtained from Monte
Carlo simulations on lattices of varying Nz and fixed Nx = Ny = 5 sites. The solid lines are least squares fits to Lorentzian curves that allow
finding Tc. The inset shows the dipolar energy as a function of temperature from which the specific heat curves are derived.

Figure 4(b) shows that a domain of length Nz attains a
minimum energy for a width Nx = Ny < Nz that gives a suf-
ficiently low demagnetizing factor. The minimum attainable
energy Emin reflects the number of interacting spins in the
domain, and it is therefore limited by size, decreasing toward
its thermodynamic limit [11], E = −(4π/3)Nμ2 with N =
2NxNyNz, as Nz increases. The critical temperature measures
the strength of thermal fluctuations needed to break magnetic
order; thus, it also decreases with increasing size. The link
between Emin and Tc has been tested by means of Monte Carlo
simulations performed on the same lattice yet necessarily of
a smaller size. We fixed Nx = Ny = 5 sites, while Nz was
varied between 10 and 120, which approximately corresponds
to 20–200 nm. Initially, spins are randomly pointing up or
down at high T . Then the temperature of the simulation is
decreased, and the energies of the different configurations are
computed with Eq. (1). Results are shown in Fig. 4(c). A
steplike drop in energy is observed, which marks a transition
to the ferromagnetic phase. As expected, the minimum attain-
able energy in this state decreases with increasing Nz. The
size-dependent Tc can be determined from the specific heat
maximum and follows a similar trend. The results obtained
from both methods are included in Fig. 4(a). They account
fairly well for the observed decrease in Tc.

It follows that crystal size begins to influence long-range
dipolar order for remarkably large lattices (with as many
as 1011 spins in the case of sample B). This contrasts with
predictions for short-range interactions [32] and with results
observed in thin magnetic films [33]. In this case, Tc decreases
mainly from the reduced coordination of spins located near
the surface; thus, it becomes noticeable only when its fraction
becomes sufficiently high. As discussed above, the situation
is different with dipolar spin lattices, for which the minimum
dipolar energy becomes a compromise between the net inter-
action field felt by each spin and the demagnetizing factor.
Because of the slow decay of dipolar interactions with size and
the increasing number of neighbors at any given increasing
distance, the surface of the sample is not the determinant

factor. All spins, including those at the core are affected by
limitations that crystal boundaries impose on the domain size.
This explains why the minimum domain energy and Tc start to
feel the reduction in the number of spins at such large lattice
sizes.

Finally, we focus on the dynamics of the spin system by
looking at the frequency dependence of the linear response
(Fig. 5). For a variety of magnetic systems, this dependence
can be understood based on the Cole-Cole equation for the
complex ac susceptibility [34]:

χ (ω, T ) = χS + χT − χS

1 + i(ωτ )1−α
, (2)

where χS and χT are the adiabatic (infinite-frequency) and
isothermal (equilibrium or zero-frequency) susceptibility lim-
its, respectively, τ is an average spin-relaxation time, and 0 �
α � 1 parameterizes the relaxation time distribution (α = 0
corresponds to a system with a single τ , and the distribution
broadens as α approaches unity). Whenever the out-of-phase
susceptibility component χ ′′ becomes maximum, 1/ω pro-
vides a measure of the dominant relaxation time. Figure 5(a)
shows χ ′′ of sample A at 10 different frequencies from
15 mHz up to 79.4 kHz. Its maximum shifts to lower tem-
perature as ω decreases, following an Arrhenius law 1/ω =
exp(U/kBT ) for T > 60 mK and then leveling off a little.
The activation energy U/kB � 1.4(1) K for samples A–C and
1.6(1) K for sample D. This is close to the anisotropy barrier
for a single molecular spin. The saturation observed at very
low T shows that thermal activation is gradually replaced by
temperature-independent spin-tunneling processes [35–38].
These results therefore suggest that the spin thermalization
remains dominated by single spin flips even well into the
ferromagnetic phase. This is understandable, considering the
weak dipolar interaction strength as compared with the mag-
netic anisotropy, which allows magnetic domain walls to
move by reversing a spin at a time without incurring a too-high
energy cost [1].
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FIG. 5. (a) Out-of-phase magnetic susceptibility component χ ′′

of sample A (average crystal size 28 µm) measured as a function of
temperature at 10 different frequencies spanning eight decades, from
79.433 kHz (dark red) to 15.85 mHz (purple). (b) Arrhenius plots for
the frequency-dependent temperatures of maximum χ ′′ for all sam-
ples. This plot provides information on the temperature dependence
of the typical spin thermalization times. Solid lines are least square
Arrhenius fits 1/ω = τ0 exp(U/kBT ), with τ0 an attempt time and U
the activation energy. The inset shows U as a function of average
crystal size. (c) Isotherms of χ ′ (top) and χ ′′ (bottom) of sample
B as a function of frequency for temperatures across Tc � 0.114 K.
Notice the sudden broadening of these curves that occurs at and
below Tc.

Still, some features indicate that magnetic order does af-
fect the spin dynamics near and below Tc. The maximum χ ′′
decreases with temperature [Fig. 5(a)]. According to Eq. (2)
and considering that the equilibrium ferromagnetic χT �
1/N , it follows that the relaxation time distribution broad-
ens below Tc. This can be seen directly by looking at the
frequency-dependent susceptibility measured at fixed temper-
atures [Figs. 5(c) and 5(d)]. As Tc is approached from above,
χ ′′ develops a low-frequency tail, signaling the onset of very
slow thermalization processes, with characteristic timescales
longer than seconds. These are probably associated with the
stabilization of certain domain configurations by the growth
of magnetic correlations. Incidentally, this explains why the

onset of magnetic order gives rise to a maximum in χ ′ and not
a plateau and provides a dynamic signature for detecting the
phase transition (e.g., by monitoring χ ′′ measured at the low-
est attainable frequency). For sample D, the broadening starts
∼100 mK (see Supplemental Material [25]), which suggests
that Tc is not too far below this temperature.

In conclusion, we have exploited recrystallization in super-
critical fluids to grow molecular crystals of decreasing size
and to explore how this affects magnetic order in a model
dipolar lattice. The results show that, while the ordered phase
remains the same (in our case, ferromagnetic), there is a
drop in the transition temperature Tc. Finite-sized effects in
this system become already noticeable for lattice sizes of a
few microns, equivalent to a spin number N > 1011, thus are
stronger than those predicted and observed for magnetic sys-
tems with dominant short-range spin-spin interactions. This
effect ensues as a consequence of the slow decrease of dipo-
lar interactions with distance. In addition, we have observed
that, even though the spin relaxation remains dominated by
single spin flips, the growth of spin correlations introduces
very long spin thermalization times. In addition to providing
direct evidence on some of the fundamental properties of
dipolar magnets, these results might also have a relevance
for the interpretation of experiments performed on other sys-
tems characterized by dominant long-range interactions. The
connection between the ground states obtained for necessarily
small-scale quantum simulators [7,8] and predictions for real
phases in quantum magnets must be done with some caution
and consider finite-sized effects. On the other hand, the rela-
tive frailty of spin systems coupled by dipolar interactions also
makes them of interest for the implementation of proposals
to modify and control magnetic order via the interaction to
photons in superconducting circuits [39].

We acknowledge support from Grants No. RTI2018-
096075-B-C21 and No. RTI2018-096075-A-C22, funded by
MCIN/AEI/10.13039/501100011033 and ERDF A way of
making Europe, Grant No. RYC2019-028429-I, funded by
MCIN/AEI/10.13039/501100011033 and ESF Investing in
your future, the Gobierno de Aragón Grant No. E09-20R-Q-
MAD, and the CSIC Quantum Technology Platform PT-001.
This letter used resources of the Advanced Light Source, a
Department of Energy, Office of Science User Facility under
Contract No. DEAC02-05CH11231. The synthesis and size
measurements of Mn6 micro- and nanocrystals were done at
the U6 unit of NANBIOSIS ICTS, located at the Institute of
Materials Science of Barcelona (CSIC).

[1] C. Kittel, Rev. Mod. Phys. 21, 541 (1949).
[2] J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
[3] B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett. 84, 3430

(2000).
[4] A. Aharony, Phys. Rev. B 8, 3363 (1973).
[5] D. Bitko, T. F. Rosenbaum, and G. Aeppli, Phys. Rev. Lett. 77,

940 (1996).
[6] E. Burzurí, F. Luis, B. Barbara, R. Ballou, E. Ressouche, O.

Montero, J. Campo, and S. Maegawa, Phys. Rev. Lett. 107,
097203 (2011).

[7] P. Richerme, C. Senko, S. Korenblit, J. Smith, A. Lee, R. Islam,
W. C. Campbell, and C. Monroe, Phys. Rev. Lett. 111, 100506
(2013).

[8] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith,
A. Lee, E. E. Edwards, C.-C. J. Wang, J. K. Freericks, and C.
Monroe, Science 340, 583 (2013).

[9] J. Eisert, M. van den Worm, S. R. Manmana, and M. Kastner,
Phys. Rev. Lett. 111, 260401 (2013).

[10] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley,
Phys. Rev. X 3, 031015 (2013).

L180407-5

https://doi.org/10.1103/RevModPhys.21.541
https://doi.org/10.1103/PhysRev.74.1168
https://doi.org/10.1103/PhysRevLett.84.3430
https://doi.org/10.1103/PhysRevB.8.3363
https://doi.org/10.1103/PhysRevLett.77.940
https://doi.org/10.1103/PhysRevLett.107.097203
https://doi.org/10.1103/PhysRevLett.111.100506
https://doi.org/10.1126/science.1232296
https://doi.org/10.1103/PhysRevLett.111.260401
https://doi.org/10.1103/PhysRevX.3.031015


E. BURZURÍ et al. PHYSICAL REVIEW B 106, L180407 (2022)

[11] J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
[12] T. Niemeijer and H. Blöte, Physica 67, 125 (1973).
[13] S. K. Misra, Phys. Rev. B 14, 5065 (1976).
[14] R. B. Griffiths, Phys. Rev. 176, 655 (1968).
[15] C. Kittel, Phys. Rev. 82, 965 (1951).
[16] M. R. Roser and L. R. Corruccini, Phys. Rev. Lett. 65, 1064

(1990).
[17] M. R. Roser, J. Xu, S. J. White, and L. R. Corruccini, Phys. Rev.

B 45, 12337 (1992).
[18] D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets

(Oxford University Press, Oxford, 2006).
[19] J. Bartolomé, F. Luis, and J. F. Fernández, Molecular Magnets,

Physics and Applications (Springer, Berlin, Heidelberg, 2014).
[20] G. Aromí, M. J. Knapp, J.-P. Claude, J. C. Huffman, D. N.

Hendrickson, and G. Christou, J. Am. Chem. Soc. 121, 5489
(1999).

[21] A. Morello, F. L. Mettes, F. Luis, J. F. Fernández, J. Krzystek,
G. Aromí, G. Christou, and L. J. de Jongh, Phys. Rev. Lett. 90,
017206 (2003).

[22] A. Morello, F. L. Mettes, O. N. Bakharev, H. B. Brom, L. J. de
Jongh, F. Luis, J. F. Fernández, and G. Aromí, Phys. Rev. B 73,
134406 (2006).

[23] M. Muntó, J. Gómez-Segura, J. Campo, M. Nakano, N.
Ventosa, D. Ruiz-Molina, and J. Veciana, J. Mater. Chem. 16,
2612 (2006).

[24] N. Domingo, F. Luis, M. Nakano, M. Muntó, J. Gómez, J.
Chaboy, N. Ventosa, J. Campo, J. Veciana, and D. Ruiz-Molina,
Phys. Rev. B 79, 214404 (2009).

[25] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.L180407 for details on the synthesis

and structural characterization of the different samples, addi-
tional magnetization and susceptibility data, and a description
of the theoretical study of dipolar interactions.

[26] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke,
J. Appl. Cryst. 48, 3 (2015).

[27] G. M. Sheldrick, Acta Cryst. A 64, 112 (2008).
[28] G. M. Sheldrick, Acta Cryst. C 71, 3 (2015).
[29] A. L. Spek, Acta Cryst. C 71, 9 (2015).
[30] M. J. Martínez-Pérez, J. Sesé, F. Luis, D. Drung, and T. Schurig,

Rev. Sci. Instrum. 81, 016108 (2010).
[31] M. J. Martínez-Pérez, J. Sesé, F. Luis, R. Córdoba, D.

Drung, T. Schurig, E. Bellido, R. de Miguel, C. Gómez-
Moreno, A. Lostao et al., Trans. Appl. Supercond. 21, 345
(2011).

[32] D. P. Landau, Phys. Rev. B 14, 255 (1976).
[33] M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, and F.

Gerhardter, Phys. Rev. B 47, 11571 (1993).
[34] K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
[35] C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli,

and D. Gatteschi, Phys. Rev. Lett. 78, 4645
(1997).

[36] N. V. Prokof’ev and P. C. E. Stamp, Phys. Rev. Lett. 80, 5794
(1998).

[37] J. F. Fernández, Phys. Rev. B 66, 064423 (2002).
[38] F. Luis, M. J. Martínez-Pérez, O. Montero, E. Coronado, S.

Cardona-Serra, C. Martí-Gastaldo, J. M. Clemente-Juan, J.
Sesé, D. Drung, and T. Schurig, Phys. Rev. B 82, 060403(R)
(2010).

[39] J. Román-Roche, F. Luis, and D. Zueco, Phys. Rev. Lett. 127,
167201 (2021).

L180407-6

https://doi.org/10.1103/PhysRev.70.954
https://doi.org/10.1016/0031-8914(73)90027-X
https://doi.org/10.1103/PhysRevB.14.5065
https://doi.org/10.1103/PhysRev.176.655
https://doi.org/10.1103/PhysRev.82.965
https://doi.org/10.1103/PhysRevLett.65.1064
https://doi.org/10.1103/PhysRevB.45.12337
https://doi.org/10.1021/ja983446c
https://doi.org/10.1103/PhysRevLett.90.017206
https://doi.org/10.1103/PhysRevB.73.134406
https://doi.org/10.1039/B603497G
https://doi.org/10.1103/PhysRevB.79.214404
http://link.aps.org/supplemental/10.1103/PhysRevB.106.L180407
https://doi.org/10.1107/S1600576714022985
https://doi.org/10.1107/S0108767307043930
https://doi.org/10.1107/S2053229614024218
https://doi.org/10.1107/S2053229614024929
https://doi.org/10.1063/1.3280169
https://doi.org/10.1109/TASC.2010.2082479
https://doi.org/10.1103/PhysRevB.14.255
https://doi.org/10.1103/PhysRevB.47.11571
https://doi.org/10.1063/1.1750906
https://doi.org/10.1103/PhysRevLett.78.4645
https://doi.org/10.1103/PhysRevLett.80.5794
https://doi.org/10.1103/PhysRevB.66.064423
https://doi.org/10.1103/PhysRevB.82.060403
https://doi.org/10.1103/PhysRevLett.127.167201

