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The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive
equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible for
deformation. Avalanche models involving critical failure have determined common universality classes for
stick-slip processes and fracture. However, not all empirical failure processes exhibit the trademarks of criticality.
The rheological properties of materials introduce dissipation, usually reproduced in conceptual models as a
hardening of the coarse grained elements of the system. Here, we investigate the effects of transient hardening
on (i) the activity rate and (ii) the statistical properties of avalanches. We find the explicit representation of
transient hardening in the presence of generalized viscoelasticity and solve the corresponding mean-field model
of fracture. In the quasistatic limit, the accelerated energy release is invariant with respect to rheology and the
avalanche propagation can be reinterpreted in terms of a stochastic counting process. A single universality class
can be defined from such analogy, and all statistical properties depend only on the distance to criticality. We
also prove that interevent correlations emerge due to the hardening—even in the quasistatic limit—that can be
interpreted as “aftershocks” and “foreshocks.”
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I. INTRODUCTION

The mechanical failure of natural or man-made structures
due to the variations of the external loads or long exposure
to extreme external conditions constitutes a common hazard
of major concern in seismology and civil engineering. Ex-
perimental studies reveal that the mechanical deformation of
crystalline structures [1,2], amorphous materials [3,4], and
jammed granular (or fragile) matter [5,6] is highly affected
by the inherent heterogeneity in the system [7] or some degree
of disorder such as defects, dislocations, or inclusions. Hence,
failure is difficult to forecast because of the sensitivity to the
unknown internal details of the system. In micromechanical
models of failure [8–21], the addition of disorder is able to
arrest the internal micromechanical processes responsible for
deformation in multiple metastable states, leading to stochastic
avalanche dynamics [22]. The arrested energy is partially
released during the mechanical avalanche as elastic waves that
can be detected by means of seismographs and geophones at
the geological scale [23,24], or by ultrasonic acoustic emission
(AE) equipment [25,26] in laboratory controlled experiments
(see, for example, [5,26–37]). Such elastic waves can be used
as probes to assess the state of the system and develop reliable
forecasting tools for structural health monitoring [38,39].

A. Accelerated seismic release and criticality

Mechanical failure appears as a consequence of weakening
or yielding of the strain (εij ) stress (σij ) relation. The sus-
ceptibility of the strain to variations of the stress tensor—a
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parameter simplified in this work by a scalar variable or inverse
modulus G−1 = dε/dσ—increases as the material weakens.
As a consequence, the energy released as elastic waves—
trademark of the amount of deformation—also increases close
to failure. This increased energy release has been claimed to be
present in the vicinity of major earthquakes—or mainshocks—
and it is usually referred to as accelerated moment or seismic
release (AMR or ASR) in both seismology and AE experiments
[30,40–43], although its validity in seismology is controversial
[41,44,45], and rarely outscores linear models as a forecast-
ing tool [46]. Several micromechanical models governed by
quenched disorder justify the observation of ASR by the
presence of a critical point matching failure [11,19,21,40,47–
50]. Again, in the case of seismology, this hypothesis might
be questionable [47,51,52]. In the presence of a critical point,
close to criticality the distribution of avalanche energies (E)
can be described by a generalized homogeneous function:

D(E; f )dE = E−εD(Ef β)dE = f βεD̃(Ef β)dE, (1)

with a scaling functionD that depends only on the combined ar-
gument Ef β . Here, f accounts for the distance to failure and is
defined in terms of the time remaining to reach the failure point
f = 1 − t/tf . In critical failure models, the observed ASR is a
natural consequence of the increase of the mean event energy:
If the activity rate is constant, the energy rate dE(f )

df
will be

proportional to 〈E(f )〉 ∼ f (ε−2)β ∼ (t − tf )(ε−2)β . Although
widely accepted [19,45] this explanation is insufficient in the
presence of nonconservative processes, which are known to
play an important role in rock fracture [7]. The addition of
dissipation introduce length scales and can prevent criticality
[53], as specifically shown in branching processes [54], stick-
slip models [55], and depinning interface models [56].
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Instead of, or in addition to, criticality, almost all exper-
imental studies show an increase in the number of events
coinciding with failure [27,37,57,58] and/or large events
[34–36], typically denoted as the inverse Omori law of fore-
shocks [59,60]. Such a behavior at the failure point is not repro-
duced by standard micromechanical models and the provided
analytical solutions implicitly consider constant activity rates
[12,61]. As shown experimentally [41,62], ASR can simply be
a consequence of this increase in the number of events alone.

B. About this work

In the present paper we argue that the same processes re-
sponsible for the observed history-dependent activity [26,34–
37], namely relaxation mechanisms [9,55,56,63,64–70] often
related to event-event triggering [71–74], can explain ASR as
peaks of activity, even in the absence of critical failure or any
temporal variation in the statistical properties of the AE events.
We show that the emergence of relaxation processes and the
associated temporal correlations can be a direct consequence of
dissipation as modeled by transient hardening. We mathemati-
cally explain the link between aftershocks, foreshocks, critical
failure, and accelerated seismic release at a fundamental level
in a solvable model of fracture with generalized viscoelasticity.

The starting point of our study is a prototypical model
of fracture: the democratic fiber bundle model (Sec. II A).
Incorporating experimental findings, we propose a variation
of the model with a physically based transient effect, which
we denote as the generalized viscoelastic democratic fiber
bundle model (Sec. II C), which is able to generate relaxation
processes and triggering (Sec. II G). We prove analytically
that this model can be approximated to the more simple and
general concept of transient hardening (Sec. II F). Our goal is to
characterize analytically the effect of transient hardening on the
propagation and statistics of micromechanical avalanches. We
derive the mean-field (MF) solution of the transient hardening
model in the thermodynamic limit (Sec. III). In the process, we
reinterpret the model as a fundamental stochastic problem. We
find that a unified universality class (UC) for fracture models
can be derived from this model, which is distinct in its initial
formulation from the MF model of slip avalanches [12] and
critical branching processes [75]. In the presence of transient
hardening, the critical point is never reached. The magnitude
of transient hardening and the distance to the failure point are
combined in a single parameter—the distance to criticality—
that fully determines the characteristic scales of avalanche
statistics. We test our analytical results with numerical sim-
ulations of the viscoelastic model. The numerical findings for
the standard viscoelastic case are presented in Sec. IV. The
temporal evolution of the distance to criticality during the
failure process depends on the driving mechanism (Sec. IV A).
The function of the stochastic sampling and the magnitude of
the hardening completely define the avalanche size distribution
(Sec. IV B), the evolution of the activity rate, and the seismic
release of the process leading to failure (Sec. IV C). We observe
Omori-like behavior—typically associated with triggering and
aftershocks [59,71]—with self-consistent specific exponents
(Sec. IV D). We comment on the implications for the experi-
mental observations and present some concluding remarks in
Sec. V.
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FIG. 1. (a) Schematic representation of the standard DFBM
constituted by an ensemble of M parallel elastic-brittle elements, N

of which are broken because their Si < Eε; (b),(c) Sketch of the strain
release Eε due to the breaking of a fiber Si under quasistatic stress
driving, generating an avalanche of size �. (c) The avalanche stops
when the system regains stability, as represented by the constitutive
curve (gray line).

II. FIBER BUNDLE MODELS

A. Standard democratic fiber bundle model (DFBM)

The democratic fiber bundle model (DFBM) is arguably
the simplest model able to reproduce avalanche statistics in
irreversible fracture mechanics [20,61,76]. As represented
in Fig. 1(a), fiber bundle models simulate the mechanical
response [ε(t)] to a tensile stress [σ (t)] of a bundle of M

initial fibers (l) sharing an externally controlled load. Each
fiber is modeled as a coarse grained elastic element with
an equal Young’s modulus (E) and an independent random
limit tolerance to deformation, or strength, Si usually sampled
from an extreme value Weibull distribution with cumula-
tive distribution: F (Si < s) = ∫ s

−∞ p(s ′)ds ′ = 1 − exp(−sm),
where p(s ′) is the probability density function. Hence, locally,
Eε(t) = σl(t) = Mxl(t) × σ (t), where xl(t) is the fraction of
the external stress sustained by the element l, and

∑
l xl(t) = 1.

Each fiber will break when Eεi(t) � Si , setting its contribution
to the load xi(t) → 0 and effectively increasing the average
xl(t) for the rest of the ensemble. The nonlinear response of
the bundle emerges from the coupling between the values of
xl due to the brittleness Si of the individual fibers. A good
general review on fibrous models can be found in Ref. [77].
The democratic fiber bundle model (DFBM) corresponds to the
mean-field solution where all intact fibers contribute equally
to the load. The contribution of each fiber can be expressed as
a function of the number N (t) of failed fibers over time such
that xl(t) = 1

M−N(t) for all l. Since all fibers have the same local
load, the number of failed fibers at a given strain value will be
given by the number of fibers with strength Si < σl(t) and thus
Eε(t) = M

M−N[Si<Eε(t)]σ (t). Using the numerical cumulative
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distribution F (Si < Eε), the constitutive equation describing
the mechanically stable solutions of the DFBM reads

σ (Eε) = [1 − F (Si < Eε)]Eε. (2)

Mechanical avalanches will occur as consequence of the
metastable solutions in Eq. (2) introduced by the profile of
F (Si < Eε) under certain driving conditions. Since F (Si <

Eε) is modified at the breaking of one or several fibers, the
mechanical avalanche is caused by the brittle failure of the
individual fibers. From now on, we will consider avalanches
as the collective instantaneous failure of � fibers, � being
defined as the size of the avalanche.

As a particular case, a macroscopic brittle event will always
occur above a stability limit (εf ,σf ), that we associate with
the macroscopic failure point. In the thermodynamic limit,
the failure strain value εf under stress driving is given by
Eεf := 1−F (Eεf )

p(Eεf ) , where now F (Eεf ) is a continuous function
defined by the sampling strength distribution. In addition, at the
microscopic level, F (Si < Eε) is a stochastic steplike function
and will introduce a stepwise drop in Eq. (2) at the strength Si

of each fiber [see gray lines in Figs. 1(b) and 1(c)], giving rise
to an avalanche of size �. The probability of size � for the
DFBM can be obtained as a particular case of the procedure
exposed in detail in Sec. III.

Although fiber bundle models were originally designed to
simulate the response of fibrous composite materials to tensile
stress, successful adaptations towards continuous damage
models reported a good agreement with the behavior of shear
processes involving plasticity [78], stick-slip dynamics [79],
and even granular materials under compression [5]. Thus, one
can consider the DFBM as a reliable prototypical and solvable
mean-field model of brittle failure [77], able to explain yielding
and critical scaling to failure [20,61]. Under stress driving, the
statistics of the DFBM are compatible with Eq. (1) as will be
discussed in Sec. III in more detail.

B. Temporal correlations and triggering
in micromechanical models

As in most conceptual and numerical failure models,
the interactions between elements in the DFBM propagate
much faster than the variations of the external conditions—
corresponding to the quasistatic driving limit—and any other
temporal scale of the system. Thus, the transition between sta-
ble solutions is driven exclusively by the avalanche dynamics.
Since the strength values Si are independent, the avalanches,
defined from the instabilities of Eq. (2), are uncorrelated. The
temporal clustering observed in nature and experiments can
be reproduced in conceptual models by the introduction of a
temporal scale interfering with the avalanche propagation. For
example, correlations have been observed in stick-slip models
with dissipation [76,80], yet they were shown not to be a
consequence of event-event triggering but a consequence of
slow temporal variations in the Poisson intensity or synchro-
nization [81]. Power-law waiting times can also be artificially
constructed by a nonquasistatic driving and a thresholding of
the activity [82–84], without requiring the involvement of any
triggering or aftershock process.

Event-event triggering or aftershock sequences and the
associated temporal correlations are commonly reproduced

by introducing additional temporal scales affecting the prop-
agation of the avalanches, without requiring to break the
quasistatic condition. In the case of fracture and stick-slip pro-
cesses, it has been proposed that temporal scales are introduced
by the nonlinear rheological or tribological behaviors of the
coarse-grained elements of the material [55,56]. As examples,
micromechanical models reproduce aftershock sequences by
incorporating rate and state-dependent friction [63], damage
rheology [64], viscoelasticity [9,65,67,70], or a viscous drag
[66]. In general terms, a partial delay in the response of the
material such as velocity hardening or viscoelastic creep will
introduce an effective transient hardening of the thresholds
[55,64,68,69,85] splitting the otherwise instant transition in
a cascade of smaller temporally correlated avalanches [55].
The relaxation of this hardening towards the equilibrium
state can give rise to the temporal correlations between
avalanches [86] mimicking those observed in aftershock se-
quences. Thus, this process can capture the temporal features
associated with event-event triggering observed in seismic
catalogs [59,71,72,87] and AE experiments [26,34–37,88,89].
On the other hand, this transient hardening corresponds to a
dissipation mechanism coupled to the dynamics, thus, affecting
criticality. Hence, both the presence of correlations and the lack
of criticality at failure might be reproduced by the introduction
of transient hardening in micromechanical models that would
normally reproduce critical failure.

C. Formulation of the generalized viscoelastic DFBM

Here, we derive the mean-field solutions to a transient
hardening model [68] by explicitly incorporating generalized
viscoelasticity into the DFBM. We compare the analytical solu-
tions with the standard DFBM—i.e., without viscoelasticity—
to understand how this mechanism of transient hardening
affects the statistical properties of avalanches. Specifically, we
discuss its ability to explain (i) the presence of ASR without
a divergence of scales at failure—i.e., critical failure—and (ii)
temporal correlations between events.

An interesting aspect of this model is the substitution
of the elastic fibers with generalized Zener solid elements
[90], as schematically shown in Fig. 3(a). These elements are
equivalent to a fractal viscoelastic model [91], stable under
stress and strain driving and able to describe realistic memory
relaxation processes, as observed, for example, in amorphous
solids [92,93]. This viscoelastic model introduces a physically
based mechanism of transient hardening (as will be discussed
in Sec. II F) in the microscopic elements with brittle failure.

Each of the elastic brittle elements of the standard DFBM
(σe = Eε) is now coupled in parallel to a generalized Maxwell
element [94] (see left panel of Fig. 2). The generalized Maxwell
element consists of a secondary elastic spring (σm = Emε)
coupled in series to a Scott-Blair springpot [95,96], instead
of the usual viscous dashpot. While the mechanical response
of the standard dashpot reads σX = ηdεX/dt , where η is the
viscosity, the generalized element involves fractional deriva-
tives (σX = XdαεX/dtα) with physical fractional dimensions
0 � α � 1 and a general complex modulus X instead of η. The
constitutive relations of each generalized Zener solid element
can be obtained from the mechanical equilibrium between
the individual parts as represented in Fig. 2. The conditions
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FIG. 2. Left: schematic representation of the generalized Zener
element. Right: Temporal response Eε of the generalized Zener
element to a stepwise increase in the load σl . Five example behaviors
are represented for different values of 0 � h � 1 and 0 � α � 1 (see
main text for details).

σm ≡ σX, ε ≡ εm + εX, and σl ≡ σe + σm have to be satisfied,
leading to the constitutive equation[

1 + X

Em

dα

dtα

]
σl =

[
1 + X(Em + E)

EmE

dα

dtα

]
Eε. (3)

By defining τα := X(Em + E)/(EmE), the strain response to a
sudden increase in stress �σ at time 0—i.e., creep response—
�ε(t) = JGZ(t)�σl has the explicit solution [97]:

JGZ(t) = 1

E

[
E

Em + E
+ Em

Em + E
{1 − Eα[−(t/τ )α]}

]
= 1

E

[
1 − Em

Em + E
Eα[−(t/τ )α]

]
, (4)

where Eα(z) := Eα,1(z) = ∑∞
n=0

zn


(αn+1) denotes the so-called
Mittag-Leffler function. Viscoelasticity adds a correction
term to the elastic response JE = 1/E. This correction de-
creases as a stretched exponential for short times, since
limt/τ→0+ Eα[−(t/τ )α] = e−(t/τ )α/
(α+1) and evolves towards
a power-law decay with exponent α for 0 < α < 1, since
limt/τ→+∞ Eα[−(t/τ )α] = (t/τ )−α/
(1 − α). By simplifying
the transient term Hα(t/τ ) := Em

Em+E
Eα[−(t/τ )α], the response

of each fiber to a sudden increase in the local stress �σl reads

E�ε(t) = [1 − Hα(t/τ )]�σl. (5)

Here, the transient term evolves from a positive value:

h := Hα(0) = Em

Em + E
(6)

to Hα(t/τ 	 1) → 0. A sudden increase in the local stress
will induce an initial sudden increase in strain of the elastic
element E�ε(0+) = E

E+Em
�σl which is lower than in the

standard DFBM [E�ε(0+) = �σl]. The rest of the elastic
energy is retained by the springpot element and slowly released
to the spring element during the creeping phase. This creep
response shares similarities with the addition of viscoelasticity
to the elastic rebound model proposed in Ref. [85]. The
creeping time of the springpot introduces a third temporal
scale to the model, apart from the interaction between fibers
and the driving. This additional temporal scale is responsible

for the emergence of temporal correlations in this model
(Sec. IV D). We consider that the interactions between fibers
are much faster than the relaxation of the springpot. Under
quasistatic driving, all temporal scales are much faster than the
driving. This implies that the response value for the standard
DFBM is reached before the system is driven again, since
Hα(t/τ 	 1) → 0.

D. Parameters of the generalized viscoelastic DFBM

As represented, the Zener solid element has three free
parameters: τ , α, and h. Within the framework of our model,
the generalized relaxation timescale τ is arbitrary as we assume
a timescale separation between the quasistatic driving, the
relaxation time, and the instantaneous avalanche propagation.

The role of the parameters h and α is represented in
the right-hand panel of Fig. 2. The fractional dimension α

controls the profile of the relaxation process. By imposing
α = 1 we recover the standard Zener element, where X := η

representing a viscous dashpot and the corresponding term
H1(t/τ ) = h exp(−t/τ ). Lower values of α imply a more
complex memory in the relaxation that cannot be simplified
in an exponential decay. Instead, the memory is characterized
by a power-law decay. For α → 0+ the quasistatic condition
starts to fail: viscoelasticity affects the propagation of the
avalanche and relaxes at times long enough to interfere with
the driving. In the extreme case of α = 0 this transient term
becomes permanent and H0(t/τ ) = h/2. Note that this case is
singular since Hα>0(0) = h for any other value of α.

Overall, α controls the temporal correlations between
avalanches but, excluding the case α ≈ 0, it only has a minor
role on their size and number. Instead, these are controlled by
the hardening parameter h. For h = 0, equivalent to setting
Em � E, we recover the elastic response. We use this case as
a benchmark to the standard DFBM in our numerical simula-
tions. ForE � Em [68], we recover a generalized Kelvin-Voigt
element, with h = 1. This case imposes continuity in ε and
hence all fibers break individually, since a sudden increase in
σl does not generate a sudden stress drop. The implementation
of fiber bundle models with Kelvin-Voigt elements is briefly
discussed in Ref. [77]. Here, we solve analytically the more
general viscoelastic DFBM (GVE-DFBM) by using the me-
chanical behavior of the individual generalized Zener elements
in the constitutive equation of the DFBM [see Fig. 3(a)].

E. Constitutive equation of the GVE-DFBM

Considering the stress variations due to fracture in Eq. (5)
and equal load sharing [σl = σ/(1 − F )], the constitutive
equation of the GVE-DFBM will match Eq. (2) when all terms
Hα(t/τ ) → 0, i.e., on the timescale of the quasistatic driving.
Directly after the breaking of fibers, the constitutive equation
depends on the historical sequence of the recent avalanches {j}
occurring at the frozen value of σ , and can be expressed as

Eε(t) = σ (t)

⎛⎝ 1

[1 − F (Eε)]
−

∑
Sj <Eε

φj (t − tj )

⎞⎠, (7)
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FIG. 3. (a) Schematic representation of the generalized rheolog-
ical democratic fiber bundle model (GVE-DFBM), where the elastic
element has been substituted by a generalized Zener solid element.
(b)–(e) Sketch of an avalanche process in the GVE-DFBM with the
same fibers considered in Fig. 1. (b) The system is hardened a factor
H (0) for each failed fiber (blue lines). (c) The initial avalanche, of size
�I , stops sooner than in the standard DFBM. (d) During the creeping
phase and without driving, the hardening is relaxed just enough to
activate the next failure. (e) The process is repeated until all the �

fibers of Fig. 1 are broken. All transient terms are relaxed to 0 before
resuming the quasistatic driving. While part of the brittle deformation
in the standard DFBM model occur as creep in the GVE-DFBM, the
number of broken fibers remains the same.

where the terms

φj (t − tj ) :=
δFj Hα

(
t−tj
τ

)
[1 − F (S−

j+�j
)][1 − F (S−

j )]
(8)

contain the contribution of each preceding avalanche j , with
integer size �j := MδFj initiated at strength values S−

j .
Notice that Eq. (7) is still valid even if the quasistatic condition
is not met. However, under fast driving, the terms φj (t − tj )
cannot be neglected and Eq. (7) only coincides with Eq. (2) at
the very beginning of the external driving, i.e., when no events
have occurred yet.

Contrary to Eq. (2), the constitutive equation (7) has a
temporal dependence on the history of the process in all
cases and cannot be simplified as a function of state. Thus,
the avalanche activity rate will exhibit temporal correlations,
absent in the standard DFBM.

F. Viscoelasticity as a transient hardening

While the formulation of the GVE-DFBM involves a very
specific physical process, the effect of viscoelasticity with
respect to the standard DFBM can be generalized to the con-
ceptual idea of “transient hardening” [55,68], as we prove in
this section. In the standard DFBM, the instantaneous failure
of a system fraction δF at S = Eε introduces a drop in the
constitutive Eq. (2) corresponding to

δσstd = −EεδF . (9)

In the GVE-DFBM [Eq. (7)] the same event will cause a stress
change:

δσ = δσstd[1 − Hα(t/τ )][
1 − (1 − F )

∑
φ
][

1 − (1 − F − δF )
(∑

φ + φs

)] ,

(10)

where φs = δFh

[1−F (S−
j+�)][1−F (S−

j )]
is the φ term due to the latest

failure of δF . We have relabeled the term F := F (Eε−). In the
thermodynamic limit, δF/(1 − F ) � 1, and the denominator
can be approximated as 1 at the lowest order. Thus, in this limit
the mechanical response [Eq. (10)] reduces to

δσ ≈ δσstd[1 − Hα(t/τ )]. (11)

Since the stress drop is reduced with respect to δσstd, the system
regains stability with a lower deformation than the standard
DFBM [see Figs. 3(c)–3(e)], instantly hardening the bundle by
an amount Hα(0). Hence, we can interpret the transient term
Hα(t/τ ) in Eq. (5) as a transient hardening with respect to the
standard DFBM, increasing temporally the effective strength
in σ of all the surviving elements.

G. Origin of aftershocks

The history dependence in the constitutive equation is a
mechanism able to generate temporal correlations, that can
be expressed in terms of a triggering point process, where
each avalanche is either a “background” event activated by
the external driving or a “triggered” event when it is a direct
consequence of previous activity. This is consistent with the
event-event triggering or aftershock picture typically invoked
for seismic events [71,72,87] and AE events [34,37,74] to
explain temporal correlations. Specifically, the rate of events
triggered by a given event decays over time, with a typical
power-law profile that is consistent with the relaxation of
generalized viscoelasticity [98]. Figures 3(c)–3(e) represent
schematically the avalanche process in the GVE-DFBM (blue
curve) in comparison to the standard DFBM (gray curve). The
breaking of the fibers at Si+�I in Fig. 3(d), retarded by effect
of hardening, occurs at the same stress σ that triggered the
primary avalanche [at Si in Fig. 3(b)], since we consider that
the relaxation time needed to activate the secondary avalanche
is much faster than the quasistatic driving. Thus, the driving is
not directly responsible for the secondary avalanche in Si+�I .
Instead, it is the failing of the elements broken in the avalanche
at Si (this one due to the driving) which triggers the failure.
Thus, we can classify the events into background (event I
starting at Si in this example) and triggered (event II starting
at Si+�I in this example).
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While the temporal evolution has changed on the timescale
of the relaxation, the σ (ε) diagram is invariant to transient
hardening. As a consequence, considering the same driving
conditions, a given avalanche in the standard DFBM is split into
a cluster of causally correlated avalanches in the GVE-DFBM.
When all the fibers forming the avalanche in the standard
DFBM—now, the cluster—have been broken, all terms φj (t)
are relaxed to zero. This imposes temporal independence
between clusters, since Eq. (7) is equivalent to Eq. (2) in that
case.

Since the interactions are mean field, all correlations be-
tween avalanches are determined by a scalar relation between
the activation strengths. Independently of the value of h, an
individual fiber with strength Sj will break as a consequence
of a previously broken fiberSk ifSj [1 − F (Sk) − 1/M] < σ <

Sj [1 − F (Sk)]. Depending on the value of h, the breaking of
Sj will occur either within the same avalanche or within a
latter triggered avalanche (i.e., aftershock) within the same
cluster, only when h > 0. Since this stability condition is
derived from the distribution of Si , this separation between
triggered and background events still holds when σ has evolved
between avalanches, i.e., outside the quasistatic limit. Hence,
mean-field models are unable to generate the superposition
of complex triggering trees identified in natural phenomena
[72,73,99,100] and modeled in spatiotemporal stochastic point
processes [71,87,101]. Instead, all aftershocks triggered due to
the breaking of a given fiber Sk are correlative in time and occur
in the same cluster.

However, even the MF approximation is able to render
the power-law temporal statistics (see Sec. IV D), supporting
the link between triggering process and the phenomenological
observations of aftershocks in AE experiments and seismicity.
From the analytical results derived in the following sections,
we can argue that the details regarding the structure of the
triggering trees shall not have a significant impact on the shape
of the avalanche size distribution in the thermodynamic limit.

III. MEAN-FIELD UNIVERSALITY CLASS FOR
FRACTURE WITH TRANSIENT HARDENING

As mentioned in Sec. II G, the stress value for an avalanche
to occur in the standard DFBM coincides with the stress
value of a cluster in the GVE-DFBM. The constitutive curves
of both models are indistinguishable in the thermodynamic
limit, and so is the coarse grained effective inverse modulus
G−1 = dε/dσ as well as the moment released per time unit
d�/dt . However, the number of avalanches and their statistical
properties have been strongly altered. Avalanches tend to be
smaller [Eq. (10)] due to the effect of hardening and yet, as
we will prove now, all avalanche statistics fall inside the same
universality class, regardless of the value of h.

A. Interpretation of avalanche sizes as hitting times
in a stochastic process

Under general driving conditions, an avalanche starting
at the failure of fiber i with strength Si will stop at the
first fiber i + �i with strength Si + δs such that σ (Si+�i

) >

σ (Si) + δσ (ti+�i
− ti), where δσ (ti+�i

− ti) is the increase
in stress between the breaking of fibers i and i + � that

will depend on the external driving condition. Since we are
considering quasistatic stress driving, the propagation of the
avalanche is much faster than any variation of the stress and the
term δσ (ti+�i

− ti) ≡ 0. Thus, the size of the avalanche �i is
defined as the number of broken fibers from a process of record
dynamics and related to the difference in the fraction of broken
fibers (δF := Fi+� − Fi) as δF ≡ �/M . Since the propa-
gation of the avalanche is much faster than the viscoelastic
relaxation, the contribution to the transient term of all the fibers
broken within the same avalanche isφi = δFHα (0)

(1−Fi )(1−Fi+δF ) . From
the constitutive equation (7), the avalanche stops when

δs

δF
>

1[
1 − (1 − Fi)

∑
j φj (t − tj )

] × Si[1 − Hα(0)]

(1 − Fi − δF )
.

(12)

The right-hand side of the equation is constituted by two
terms. The term 1

[1−(1−Fi )
∑

j φj (t−tj )] contains the effect of

previous avalanches on the size of the current one and is
static during the propagation of the avalanche thanks to the
separation between temporal scales. The other term on the
right-hand side of Eq. (12) includes a dependence on the
size of the current avalanche (δF ) because the macroscopic
state of the system is modified during the propagation of the
avalanche. This variation will have a significant effect when
the size of the avalanche is comparable to the system size,
but not if the avalanche is small. Let us consider, for now,
that all avalanches are small compared to the system size. For
the propagating avalanche, 1 − Fi − δF ∼ 1 − Fi and for all
previous avalanches (1 − Fi)

∑
j φj (t − tj ) � 1. The whole

right-hand side of Eq. (12) can then be expressed as a single
quantity b. This quantity is a function of the state of the system
at Si and constant during the propagation of the avalanche:

b(Si |h) := Si

1 − Fi

(1 − h). (13)

The left-hand side of Eq. (12) can be redefined in a dimen-
sionless form. By definition, δF := �/M . Since the values of
Si are independent and identically distributed, the increment
δs between � consecutive strengths is a Poisson process of �

trials at rate Mp(s). The dimensionless form of Eq. (12) for
this general representation of the transient hardening model
reads

ξ (�i)

�i

> B(Si |h), (14)

as represented in Fig. 4(a), where B(Si |h) := p(Si)b(Si |h) and
ξ := Mp(s)δs is a Poisson process of rate 1. Given a single
realization of strengths at fixed h, once an avalanche has started
at Si , the value B(Si) acts as a constant threshold and the
distribution of avalanches in the GVE-DFBM is equivalent
to the distribution of first hitting times of a random Poisson
counting process ξ (�) to the moving boundary B(Si)�.

For B > 1 there is a macroscopic probability that an
avalanche grows to an infinite size. We associate this su-
percritical regime to a brittle failure event. For B < 1 the
probability of an infinite avalanche is 0, and the distribution
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FIG. 4. (a) Example of an avalanche defined as the hitting times
of a stationary random counting process ξ (�) to the boundary B�.
Maroon area shows the landscape ξ (�) drawn from random Poisson
increments at each elementary step �. The avalanche stops at the
first � value with ξ (�) > B� represented as a dashed gray line.
The salmon area represents the elements failing at the time unit, with
values ξ (�) < B[�(t − 1) + 1] (black solid line). (b) The temporal
profile of the same avalanche, defining the amplitude A, duration T ,
and size � (see Sec. III B).

of finite avalanche sizes can be approximated as a generalized
homogeneous function:

D(�; B)d� = �−κ� D(�|1 − B|βB ) d� (15)

= |1 − B|κ�βB D̃(�|1 − B|βB ) d�, (16)

where κ� and βB are universal exponents, and D̃(�|1 −
B|βB ) := (�|1 − B|−βB )κ�D(�|1 − B|βB ) and D(�|1 −
B|βB ) are scaling functions. This scaling term diverges exactly
at Bc = 1, which defines a critical point with scale-free
avalanches. It is important to remember that B is constant only
in the regime of small avalanches. In both the standard DFBM
and GVE-DFBM, this limit can be achieved asymptotically
close to a critical point—where avalanches are scale free—by
increasing the size of the system. In the thermodynamic limit
(M → ∞), the yielding process up to the critical point is well
defined by Eq. (14). But, according to Eq. (12), at criticality
and above, when B(δF → 0) � 1, the avalanche might grow
to sizes such that B(δF ) > B(δF → 0) and, thus, the system
is, by definition, supercritical. Although B = 1 is critical, the
critical point in the DFBM is not well defined because of the
coupling between the avalanche size (�) and the state of the
system (B). From now on, the reader shall keep in mind that
the expression (14) and the following derivations are valid for
B < 1 in the DFBM.

Figure 5(b) shows the numerical distribution of return times
(�) for different values of B. The probability distribution
functions collapse onto a single universal function given the
scaling relations with B stated in Eq. (16), as shown in
Fig. 5(a). The fitted critical exponents are κ� = 3/2 and βB =
2. The exponent κ� = 3/2 is ubiquitous in the distribution
of avalanche sizes in mean-field models. The exponent β is
usually defined as a function of the driving mechanism and the
relation with B has to be derived, as shown in the next section
for the case of the DFBM.

Since Eq. (14) is dimensionless, all the information, in-
cluding the distribution of avalanches, is fully determined by
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FIG. 5. Distribution of N = 107 hitting times for the Poisson
process ξ� to the boundary B� tapped at � = 104 for different values
of B. (a) Scaling according to Eq. (16) compared to the ansatz (grey
thick line) in Eq. (17). (b) Distribution before scaling, compared to
the power law expected by B = 1 (gray thick line).

the scalar term fB := 1 − B measuring the distance a critical
point. In the case of the transient hardening model, the value
of B is defined in the thermodynamic limit given a hardening
h, a strain value s/E, and the sampling distribution of Si .
Since the functional form of D is invariant to the explicit
dependence of B with the state of the system, any model
that can be represented as Eq. (14) fulfills the scaling relation
(16). Considering the distribution represented in Fig. 5(a) the
specific functional form of D can be approximated to the
ansatz:

D(x) = exp(−3x/2)/
(−0.5). (17)

However, one can show that this approximation is inadequate
to measure some quantities such as 〈�〉, especially for B � 1,
due to the discrete nature of �. Instead, we use the following
ansatz for the dependence of the statistical moments on fB :

〈�n|fB〉 = f
(κ�−1−n)βB

B . (18)

Therefore, Eq. (18) will replace Eq. (17) when possible to
compare analytical and numerical results. As a consequence
of this power-law relation, even if the explicit dependence of
a model on B is unknown, Eq. (16) can be rewritten in terms
of the first statistical moment 〈�|fB〉 = f

(κ�−2)βB

B as

D(�; 〈�〉)d� = 〈�〉
κ�

κ� − 2 D̃(〈�〉
1

κ� − 2 �)d� (19)

for a fixed fB . This expression depends only on the specific
exponent κ� with MF values κ�

κ�−2 = −3 and 1
κ�−2 = −2.

Notice that this expression is more general than Eq. (16)
and may be also fulfilled by other models incompatible with
Eq. (14).
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FIG. 6. Scatter plots of magnitude pairs: (a)A,T , (b)S,T , (c)E,T

found for different values ofB. (Since the values are discrete a uniform
unitarian jitter in the x and y axes has been added to better visualize
the density of the point clouds.) The conditional averages 〈x|T 〉 are
shown for B = 1 (black error lines). The expected relations derived
from Eq. (20) are consistent with an exponent value σνz = 1/2.

B. Mean-field exponents

In order to fully characterize the universality class (UC),
we define a time unit within the temporal scales of avalanche
propagation and associate a temporal profile to the avalanche
propagation by designating the causality treelike structure be-
tween the failing fibers. In terms of a DFBM, the breaking of an
original fiber at time unit 0 can cause the breaking of a number
of fibers during time unit 1. Such fibers will cause the breaking
of other fibers at time unit 2, etc. The temporal profile at time t

is determined by the number �i
t of fibers with associated values

ξ [�(t − 1) + �i
t ] < B[�(t − 1) + 1], i.e., all the values of

ξ that can be activated by the state of the system at time
t − 1. In Fig. 4(a), the salmon areas illustrate the set of fibers
breaking together in a time unit (until ξ [�(t − 1) + �i

t ] hits
the value B[�(t − 1) + 1]) given by the black solid line). The
intensity of the temporal profile is represented with arrows in
Fig. 4(a), and histograms in Fig. 4(b). Apart from the avalanche
size �i = ∑T

t=0 �i
t (t), the temporal profile �i

t (t) allows us to
define additional variables: a duration T i , as the number of time
units; an amplitude Ai corresponding to max[�i

t (t)]; and also

an energy Ei = ∑T
t=0 [�i

t (t)]
2
, usually related to the seismic

release and acoustic emission measurements in the literature
[102].

Assuming that the process defining the hitting times is scale
invariant over a broad range of scales, the average avalanche
profile must scale with the duration such that

〈�t (t)|T 〉 = T 1/σνz−1�(t/T ). (20)

The average relation between the four magnitudes can be
summarized as

〈A|T 〉 ∼ T 1/σνz−1 〈�|T 〉 ∼ T 1/σνz 〈E|T 〉 ∼ T 2/σνz−1.

(21)

The numerical results of the conditional averages are shown
in Fig. 6. Although the density distributions depend on B, the
average relationships between magnitudes is conserved and
agrees with Eq. (20) given a value σνz = 1/2, coinciding with
the mean value for stick-slip models [49].

IV. SIMULATION RESULTS

A. Interpretation of B in terms of the driving in the standard
and GVE-DFBM

In each specific model of critical failure, the particular
exponent β associated to the distance to failure is determined
by the explicit relation between B and the mechanism of
external driving such as a constant stress (σ ) or strain (ε) rate
driving. In such cases, we can formulate the time to failure in
terms of distance to the macroscopic failure point in strain:

Eεf = 1−F (Eεf )
p(Eεf ) , or stress: σf = (1−F (Eεf ))2

p(Eεf ) . In the case of
the GVE-DFBM, the general relation of B with strain can be
obtained to a good approximation in the thermodynamic limit
by expanding B around the failure point:

B = (1 − h)

[
1 − fε

(
2 + εf

d

dε
ln[p(Eε)]

∣∣∣∣
εf

)
+ O(f 2

ε )

]
,

(22)

where p(Eε) is the strength (Si) distribution evaluated at
Eε. This relation is linear in a first order approximation.
The strength sampling distribution only affects the constant
term 2 + εc

d
dε

ln[p(Eε)]|
εc

=: 2A. As specific cases, if Si is
uniformly distributed, A = 1, while for a Weibull distribution,
A = 1 + m/2. Considering the first order approximation (22),
fB ≈ 2(1 − h)fεA + h and, at the yield point (when f

f
ε = 0),

f
f

B ≈ h. Critical failure only occurs for h = 0, corresponding
to the standard DFBM. The model with h = 0 is critical in
terms of Eq. (1) with the exponent βε = 2. As a particular
result, we notice that the characteristic scale at failure (fε =
fσ = 0) scales with h as 〈�|h〉 ∼ h−1. Instead, the MF solution
of stick-slip models reports a scaling 〈�|ε〉 ∼ |ε|−2 [55], with
h being equivalent to −ε. The discrepancy in this exponent is
discussed in the next section.

We can find the relation with stress (σ ) by expanding the
constitutive equation around ε close to the critical point. Under
quasistatic driving, σ (Eε) is equivalent to Eq. (2) and around
εf reads

fσ = f 2
ε

(
1 + εf

2

d

dε
ln[p(Eεf )]

)
+ O

(
f 3

ε

)
. (23)

Thus, fσ ≈ Af 2
ε and fB ≈ (1 − h)(Afσ )1/2 + h. For the stan-

dard DFBM, we find critical failure [Eq. (1)] with βσ = 1, as
expected from the mean-field solution of the standard DFBM
[76]. As an example, for a Weibull distribution and standard
(h = 0) conditions: fB(fε) = 1 − (1 − fε) and fB(f ) = 1 +
W (− (1−fσ )m

e
) where W (x) is the Lambert function, inverse of

x = W exp(W ). We can expand fσ in terms of fB by inverting
this expression:

fσ = 1 + (fB − 1) exp(fB) = f 2
B

2m
+ f 3

B

3m
+ O

(
f 4

B

)
, (24)

thus satisfying the approximate relation fσ ∼ f 2
B , as expected

based on the approximations in Eqs. (23) and (22).

B. Distribution of avalanche sizes

Given the distribution of � (16) and considering the
relation between σ and B derived from Eqs. (23) and (22),
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FIG. 7. Complementary cumulative distribution function (CCDF)
of avalanche sizes scaled by (a) their mean value (〈�〉) and (b) distance
to criticality (fB ), obtained by the numerical simulations of the GVE-
DFBM with m = 1 (standard Zener elements) and M = 107 evaluated
in intervals of σ . We compare the results for h = 0.4 (in blue) with
the standard DFBM (h = 0 in black) and the universal distribution
for the analogous hitting time problem according to Eq. (17) (gray
thick lines).

we can forecast the expected distribution of sizes, durations,
amplitudes, and energies for the GVE-DFBM model as a
function of the distance to the critical point under stress driving,
fσ . As a specific case, the distribution of avalanche sizes,
matching the results represented in Fig. 5, for the standard
DFBM will depend explicitly on the distance to the failure
stress as

D(�; fσ )d� = �−3/2 D(�fσ ) d� (25)

and, thus, differ from the mean-field solution for stick-slip
models, where the characteristic function scales with �f 2

σ .
We have shown that this specific exponent—usually referred
to as 1/σ in the literature—depends on the relation B(σ ).
Unlike fracture models, stick-slip models restitute or “stick”
failed elements, giving rise to a characteristic stationary flow
regime under strain driving. If one were able to express the MF
stick-slip model in terms of Eq. (14), the relation B(σ ) would
differ from Eq. (24) because of that.

Figure 7 shows the scaling in both fB and 〈�〉 of the
numerical cumulative distribution CCDF(�) for h = 0 and
h = 0.4 in a DFBM with a Weibull sampled strengths si with
m = 1 and α = 1 (see the Appendix for simulation details).
The results fit well the normalized ansatz (17) for the UC
(14) as a solution to Eq. (16). As expected, Fig. 7(b) showing
the scaling factor with fB deduced from Eq. (24) is almost
indistinguishable from Fig. 7(a) showing the scaling with 〈�〉.
This result confirms that the predictions derived from the UC
in Sec. IV A are valid in the case of the GVE-DFBM.

C. Subcritical failure and foreshocks

Thanks to the explicit evolution of fB in Eq. (16), we
can provide an explanation for the observed lack of diver-
gence in the mean avalanche magnitudes—either amplitude,
size, or energy—in processes exhibiting accelerated seismic
release (ASR) proportional to the yielding in the constitutive
equation (7). While the number of broken elements over
time [d�/dt(f ) = ∑〈�〉(f )dn/dt(f )] is independent of the
rheology in the quasistatic and thermodynamic limit, the
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FIG. 8. Normalized activity rate (red) as the number of events for
unit of time (N−1dn/dfσ ), average avalanche size (〈�〉 in blue), and
number of fibers failed for unit of time d�/dt for the GVE-DFBM
with values of h = 0.0, 0.1, 0.4, and 0.8. Light lines serve as a guide
to the eye with the analytical solution found for the thermodynamic
limit. The temporal scale is expressed in terms to the distance to failure
in stress, in order to empathize the agreement with the power-law
divergences at the failure point.

evolution of dn/dt(f ) and 〈�〉(f ) will depend on the value of
h. Figure 8 shows the evolution to failure of the numerical
results of the GVE-DFBM for different values of h. Each
data set corresponds to a single simulation for a bundle with
M = 107 standard (α = 1) viscoelastic elements and a fixed
h. No major differences are expected for other values of α

since the results are equivalent in the thermodynamic limit.
The strengths are sampled from a Weibull distribution with
m = 1. The results for the standard DFBM with elastic (instead
of viscoelastic) elements are represented as h = 0 (circles).
Thick light lines represent the analytical solutions found by
the approximation to the thermodynamic limit, exhibiting a
good agreement with the simulation results. The expression
of 〈�〉(f |h) is obtained from the ansatz to 〈�|B〉 introduced
in Eq. (18) and considering the analytical relation fB(fσ )
expected for the strength distribution.

Instead of critical failure, the ultimate failure point in
the viscoelastic model is reached at B < 1, i.e., failure is
subcritical. The invariance of d�/dt imposed by the con-
stitutive equation implies a divergence in the activity rate
with an exponent that shall match the divergence in d�/dt

and the equivalent critical failure for h = 0, since the power
decomposition of 〈�〉 for h > 0 has a zeroth order (constant)
term. Notice that, strictly speaking, due to the divergence in
the activity rate, the associated temporal scales introduced
by the viscoelasticity can overlap with the driving, even in
the thermodynamic limit. This will distort the approximations
taken to obtain Eq. (14) and return an avalanche set that may
differ from the UC in real systems where the stress evolution
is not strictly quasistatic. We don’t discuss here the properties
of the postpeak activity that may appear as consequence of the
splitting of the brittle event in aftershock sequences. We expect
this collection of events to fall outside the UC, since the terms
φj in Eq. (12) cannot be neglected any longer.
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D. Presence of power-law temporal correlations

Finally, we can verify that, even for standard viscoelasticity
(α = 1), the activity rates observed within clusters are com-
patible with the Omori relation [59] observed in aftershock
sequences, reinforcing the link between the presence of after-
shocks and the lack of criticality in the presence of transient
hardening. Figure 9(b) shows the distribution of waiting times
(δt) between events within the same cluster and Fig. 9(a)
shows the apparent decay of the activity rate (dn/dt) at time
t since the beginning of the cluster at t0. The simulations
correspond to the simple case α = 1 and different values of
h. For high values of h, the activity exhibits a power-law
regime: dn/dt(�t) ∼ �t−p, with exponent p ≈ 2.0 for �t �
τ , resembling the modified Omori relation. The distribution
of waiting times (δ) exhibits also a power-law regime: P (δ) ∼
δ−(1−ν) superimposed onto an exponential distribution. This
exponent 1 − ν = 1.5 found in the distribution of waiting times
agrees with the relation 1 − ν = 2 − 1/p [59] expected if
p is the exponent of the triggering kernel (see Ref. [103]).
All the nontrivial temporal profiles tend to vanish for h → 0,
as expected in the limit without temporal correlations (h =
0) corresponding to the standard DFBM. We expect both
exponents p and ν to be sensitive to the driving rate and the
fractional exponentα [98] in generalized implementations. The
overall distribution of the waiting times and its relation with
the triggering rates are particular results of the parametrization,
as will be analyzed in future works.

V. DISCUSSION AND CONCLUSIONS

The present paper provides a plausible relation between the
macroscopic observation of temporal correlations and lack of
critical failure with a microscopical fundamental principle: the
presence of a transient hardening mechanism. The generalized
viscoelastic democratic fiber bundle model (GVE-DFBM)
serves as an example derived from physical principles of a
more general category of variations of the DFBM with some
mechanism generating transient hardening. In this explicit

model, the amount of hardening is quantified and linked to
the observable rheological properties of the material.

As a consequence of the transient hardening, the failure
point is not critical as one would expect in common concep-
tual micromechanical models, including the standard DFBM.
Instead, the statistical properties of fracture avalanches at the
failure point correspond to a subcritical regime with finite
correlation lengths and characteristic scales. The activity rate
increases up to a divergence compatible with d�/dt , which
is imposed by the common constitutive equation with the
standard DFBM and, thus, is invariant to transient effects under
quasistatic driving. One of the most remarkable results is the
existence of universal behavior invariant to the parametrization
of the model, thus including the standard DFBM. Despite
the apparent statistical differences, all the avalanches in any
model of fracture compatible with Eq. (14) fall within the
same universality class (UC), and are only characterized by
the distance to the critical point.

Notice that this universality class, determined by the re-
duction of the GVE-DFBM to the hitting times of a count-
ing process (14), is not exclusive to the implementation of
viscoelasticity, nor transient hardening, nor even fiber bundle
models. The universality class will be common to any other
mean-field lattice models that can be expressed as Eq. (14) with
any alternative temporal evolution of B or different explicit
relation B = g(Si). As a particular case, one might expect that
the results discussed in the current work can be extrapolated to
the incorporation of generalized viscoelasticity to variations of
the DFBM such as continuous damage models. Furthermore,
the statistical properties arising from the representation of the
avalanche as a hitting time problem (14) are consistent with
other MF UCs such as the branching process approach [75]
with the same τ = 1.5 and also invariant to dissipation [54]. A
deeper relationship, or even the possible equivalence between
the two MF models, is yet to be discussed.

Interactions in natural fracture processes are anisotropic
and have a finite range generating spatially correlated hetero-
geneities that can lead to nucleation phenomena, macroscopic
defects, or localization bands. In addition, it is difficult to
assess how close a system is to failure at the onset of data
recording. However, some of the fundamental predictions
of this mean-field model can be validated by experimental
observations. The stationarity in the statistical properties of
AE events recorded during certain experiments [34,89,104] is
compatible with the lack of criticality represented in Fig. 8
if the natural internal structure of the material is already
close to a critical state at the beginning of the experiment.
This condition is supported by the wide range of the scale
invariance [34] observed in the stationary energy distribution.
Strictly speaking, the amount of AE energy released, and the
ASR, will decrease by effect of viscoelasticity due to the
energy dissipated by creep. However, in the GVE-DFBM the
proportion of dissipated energy is stationary and won’t affect
the temporal statistics of ASR, which is also a reasonable
assumption in more realistic models. In contrast, this model
cannot provide an explanation to the increase of activity close
to failure observed in the absence of aftershocks [37]. In these
experiments, a link is discussed between temporal correlations
and local stress fluctuations emerging due to the presence
of large heterogeneities. Such experiences might highlight
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the role of other processes neglected in this study, such as
the weakening of the material due to stress corrosion or the
interaction between defects [105,106].

Another phenomenon related to failure that in principle
could explain the increase of the energy released is the decrease
in the power-law exponent of magnitudes or energies [ε in
Eq. (1)] sometimes observed close to failure in AE experiments
[27,28,33]. Neither conceptual nor numerical micromechani-
cal models of critical failure can reproduce this effect [19].
It has long been suggested that the decrease of the exponent
is linked to variations of the stress level [28], a concept that
can be related to the distance to failure [19]. Although not
explicitly investigated, the same rheological picture presented
in this paper might provide an explanation to the change of
exponents close to failure. Some of the assumptions considered
in the approximation to the thermodynamic limit fail at the
yield point, where macroscopic effects appear. In the standard
DFBM this macroscopic effect is limited to a single brittle
event. In the GVE-DFBM, the transient hardening at the
failure point generates a whole triggering tree with specific
statistical properties. As mentioned in Sec. IV C, these events
cannot be expressed as (14) and, thus, are outside the UC. The
identification of such non-UC events as postpeak relaxation
might not be possible in finite range interacting systems, where
the failure point can be smeared in local interconnected regions
due to the material heterogeneity.

This model can set a framework for future experimental
studies relating statistical features such as critical failure,
ASR, and temporal correlations to driving conditions and
internal dynamics. Specifically, the proposed relation between
triggering and viscoelasticity can be tested in heterogeneous
materials with well parametrized viscoelasticity at the mi-
croscale by comparing the triggering rates and criticality with
the predictions of the MF model or modifications with com-
plex short-range interactions. Additionally, we have shown in
Sec. IV A that in mean-field models of fracture the divergence
in d�/dt at failure is determined by the evolution of B as a
function of the driving which is difficult to control in some
AE experiments [2,107]. Furthermore, it is difficult to clearly
discriminate between stick-slip phenomena and microscopic
fracture in some AE experiments of fracture [34,37]. We have
shown in Sec. IV B that, under the same driving, the exponents
related to the divergence of d�/dt are different in the MF
approximation of both models. The possible mixture of both
kind of processes in some cases, related to dynamic weakening
[19], and the variations in the effective driving might explain

the variability in the exponent determining the divergence of
energy at failure observed in AE experiments [42,43] within
the framework of MF theory. This needs to be addressed in
future laboratory experiments.
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APPENDIX: NUMERICAL IMPLEMENTATION

To validate the analytical approximations presented in this
work, we implement the simplest GVE-DFBM, with α = 1,
corresponding to the standard Zener element. While the values
Si at which an avalanche is activated are absolutely determined
by the constitutive curve and the h parameters, the time
intervals between avalanches depend also on the relaxation of
the hardening, given by the α values. The selection of α = 1
allows a simple implementation since all the history of the
process can be simplified. For α = 1, the time dependence
introduced in the elements φs can be factorized as φs(t +
dt) = φs(t) exp(−dt/τ ). The interevent times (δtj ) between
consecutive fiber breaking (j,j + 1) can be found analytically
by imposing a fixed external field σ in Eq. (7) leading to the
expression

he−δtj/τ =
�h + δF

(1−Fj )(1−Fj+1) +
(
�h − δF

(1−Fj )

)
δs
sj

� + δF
(1−Fj )(1−Fj+1)

, (A1)

where � := ∑
ti<tj

φi(tj − ti). Both avalanches and temporal
correlations can be obtained from the right-hand term of this
equation. When the term is larger than h, the associated
interevent time (δtj ) is negative and the next fiber will break
instantaneously within the same avalanche. For values between
0,h we can associate a triggering interevent time (δtj ) between
avalanches. No time can be associated for negative values of
the right-hand term, meaning that an increase of the external
field σ is required to activate the next breaking. This last
situation corresponds to the definition of avalanches in the
standard DFBM and, hence, defines independent clusters in
the GVE-DFBM. Note that δt has no analytical solution for
fractional exponents 0 < α < 1 and finite driving rates. In
such cases, simulations must use the numerical integration of
previous history and consider the stress evolution.
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