

Final Degree Project

Biomedical Engineering Degree

Design and application of a low-cost,

easy-to-build, non-invasive,

pressure-controlled ventilator for

pediatric use in low-resource

countries.

Barcelona, 23 January 2023

Author: Eduard Puig Bonjoch

Director & Tutor: Dr. Ramon Farré Ventura

2

Table of contents

1. Introduction ... 6

1.1. Objectives ... 6

1.2. Project scope .. 6

2. Background... 8

2.1. State of the art: ... 8

2.2. State of the situation ... 9

3. Market analysis ... 10

4. Concept engineering ... 11

4.1. Pressure generating blower .. 11

4.2. Pressure transducers .. 11

4.3. Controller .. 12

4.4. Display .. 14

4.5. Adaptation of the respirator for children ... 15

4.5.1. Ball valve... 16

4.5.2. Leakage control valve ... 16

4.5.3. Pinch solenoid pneumatic valve .. 17

4.5.4. Evaluation of the valves .. 18

4.6. Enclosure .. 18

4.6.1. 3D printing programs ... 18

5. Detail engineering ... 20

5.1. Hardware .. 20

5.1.1. High pressure blower .. 20

5.1.2. Pressure transducers .. 22

5.1.3. Arduino MEGA Controller .. 24

5.1.4. TFT Display ... 25

5.1.5. Pinch solenoid pneumatic valve .. 26

5.2. Software .. 26

5.2.1. Import of libraries and definition of variables .. 27

5.2.2. Initial offset adjustment .. 27

5.2.3. Configuration of the display ... 27

5.2.4. Configuration of the main parameters .. 28

5.2.5. Pressure and flow measurement ... 28

5.2.6. Ventilation start ... 29

5.3. Enclosure 3D printed ... 29

3

5.4. Integration and results ... 30

5.4.1. Integration of Hardware components ... 30

5.4.2. Results .. 34

6. Execution Schedule .. 37

6.1. Work-breakdown Structure .. 37

6.2. WBS dictionary ... 38

6.3. PERT .. 40

6.4. GANTT.. 42

7. Technical viability .. 43

8. Economic viability ... 44

9. Regulations and legal aspects .. 45

10. Conclusions and future improvements .. 46

11. Bibliography .. 47

12. Annexes .. 52

4

Abstract

The aim of this project was to design and apply a low-cost, easy-to-build, non-invasive, pressure-

controlled ventilator for pediatric use in low-resource countries. The ventilator was built using off-

the-shelf components and an open-source design, with a total cost of less than €200. It is

noteworthy that this ventilator is an adaptation of a previous project that was designed for adult

use. In order to adapt the previous project to a pediatric use, a method to increase the respiratory

rate was implemented, as children have a higher respiratory rate compared to adults, and this has

been through the incorporation of a valve.

The prototype was evaluated in a bench test using an active patient simulator, which modeled the

respiratory mechanics of patients with different levels of obstructive/restrictive diseases. Four

respiratory systems were set for testing the ventilator, mimicking a patient with mild disease, a

purely obstructive patient, a purely restrictive patient and a patient with both obstruction and

restriction. The device was able to function effectively at high frequencies and was able to resolve

the issue of inadequate time for breaths at high frequencies.

The results of this project demonstrate that it is possible to create a low-cost, easy-to-build, non-

invasive, pressure-controlled ventilator for pediatric use in low-resource countries. The device is

easy to construct, utilizes minimal complex components and can be replicated using the open-

source design and materials. As a future improvement, the ventilator could be developed to also

function as a support ventilator, detecting when the patient is attempting to inhale and initiating

ventilation automatically when a predefined threshold pressure is exceeded.

5

Acknowledgments

I would like to express my sincere gratitude to Dr. Ramon Farré, the director and supervisor of this

final degree project, as well as to Miguel Ángel Rodríguez Lázaro, for their invaluable support and

trust throughout the duration of this project. Their guidance has been instrumental in the successful

completion of this work. I would also like to extend my gratitude to the Department of Biophysics

and Bioengineering at the Hospital Clínic de Barcelona for providing me with the necessary

materials and facilities to conduct this research.

6

1. Introduction

1.1. Objectives

We currently live in a time where ventilators are an essential item for hospitals due to the Covid-19

pandemic. However, due to current commercial ventilator prices, there are countries that cannot

afford these prices as they are part of low- and middle-income countries. This means that a

considerable number of patients with acute and/or chronic respiratory failure cannot be adequately

treated. In addition, we find an additional problem if any of these patients is a child, since the

breathing rate is not the same as that of an adult, since it can reach 60 bpm, and therefore, they

cannot use any respirator. If these countries already have few respirators, they will have even fewer

for children adapted. Thus, the objective of this project is to design and test a bi-level, non-invasive,

affordable, easy-to-build, pressure ventilator for children to enable a reduction of the severe

shortage of ventilators in these types of countries.

The fact that it is a non-invasive ventilator is due to reasons of cost and ease of use. Non-invasive

mechanical ventilation (NIV) is a widely used and accepted treatment for chronic respiratory

diseases and apart from being an effective method, it is also a suitable approach to provide

respiratory support to patients living in low-income developing economies [1].

It must be a low-cost device, since it is intended for low-income countries that cannot use the

ventilators that are on the market today. The factor that it is easy to build also intervenes here,

since it will be an open-source device, so that they can replicate the device in these countries

autonomously.

In this way we can say that we have two main objectives, which would be:

• Carry out the design and construction of a controlled ventilator for children up to 14 years

old.

• That this ventilator meets the characteristics necessary to end the shortage of ventilators

in low-income countries.

To carry out these two objectives, it will be necessary to meet other objectives, which are the

following:

• The device must be low cost. This refers to the material that makes it up.

• It must be easy to build, so that it can be recreated in these countries.

• It must be open source, so that these countries do not have to pay to recreate it.

• It must be non-invasive.

1.2. Project scope

What is expected of this project is that it can meet the main objectives mentioned above. As has

been said before, this ventilator is intended for low-income countries, therefore we rule out its use

in developed countries with large hospitals and significant investment in health. For this reason, in

the countries to which this device is focused, they are mostly in Africa.

7

In these countries, the burden of critical illness is large and is expected to increase with increasing

urbanization, emerging epidemics, and expanding access to hospitals [1]. Furthermore, as a

consequence of the current pandemic caused by Covid-19, the demand for medical equipment

such as mechanical ventilators has increased considerably in these countries. Mechanical

ventilators are expensive, severely restricting their availability and, consequently, the ability to

adequately treat a significant number of patients with acute and chronic respiratory failure [2].

Medical device donation can help provide mechanical ventilators to underserved regions, but these

initiatives have been found to contain some limitations. Donating off-the-shelf equipment has been

found to be partially effective, as up to 50% of given devices have been reported to become

unusable due to lack of proper maintenance and inability to obtain spare parts [3].

It is due to this factor that we want to carry out this project, since in this way these countries would

be the producers of the ventilators themselves (they would have access to all the detailed technical

information) and would not depend on other companies that have the patent for the devices. Hence

the impossibility of obtaining the spare parts.

The ventilator must have three essential components, which are: the high-pressure blower to

generate the air flow, the need for pressure and flow transducers to know the pressure that is being

exerted at that moment and the value of the airflow, and a controller with a digital display that will

be in charge to control the magnitudes mentioned above.

Limitations and restrictions

In this project, the most important limitations would be at the cost level, because, as has been said

before, it is aimed at low-income countries. The price should be below 200€ per unit. In terms of

space limitations, there would not be much of a problem since the device should not be very large,

more or less than 30x20x20 cm. What is necessary is that the patient is stretched out and

comfortable, therefore the use of a bed could entail a spatial limitation. Finally, in terms of time,

there would be a temporary limitation, since each day that passes is one more day that these

countries do not have ventilators. In this project, speed is something that could help save a large

number of lives and that is what interests us most.

8

2. Background

2.1. State of the art:

Mechanical ventilation could be defined as the treatment to help a person to breathe when they

have difficulties or cannot breathe on their own. The way a mechanical ventilator works is to push

airflow into the patient's lungs to help them breathe [4]. Currently there are different types of

mechanical ventilators on the market. We can make a first classification between negative pressure

and positive pressure respirators.

Negative pressure respirators were the first ventilators to be invented and currently their use is

practically nil, as considerable progress has been made in recent years regarding this technology.

Its operation is to generate a negative pressure on the outside of the chest and transmit it to the

interior to expand the lungs and allow air to flow in [5]. The two types of negative pressure

ventilators that exist are the iron lung and the chest cuirass ventilator. The iron lung was the first

mechanical ventilator created in 1929 and was practically a metal cylinder that completely wrapped

the patient up to the neck. The cuirass ventilator could be defined as a casing that was placed on

the patient's chest to create a negative pressure [4].

 Fig 1. Iron lung Fig 2. Chest cuirass

On the other hand, we could define positive pressure ventilators as respirators that send a flow of

air to the patient's lungs through a tube. Within these we can make a classification between invasive

or non-invasive. The invasive ones are characterized by the fact that the tube is inserted inside the

patient through the airways. This procedure must be done in the intensive care unit of a hospital.

As procedures to carry out invasive breathing we find endotracheal intubation, where the tube is

inserted through the mouth or nose until it reaches the trachea, and tracheostomy, where the tube

is inserted into the trachea through a direct incision in the neck.

As for non-invasive mechanical ventilators, we can try CPAP, APAP and BiPAP. These types of

respirators include masks and can be used at home. CPAP provides a constant air pressure, APAP

changes the air pressure according to the breathing pattern, and BiPAP provides air with different

pressures for inspiration and expiration [6]. Our respirator, as mentioned before, is a two-level

pressure respirator, therefore it will be a BiPAP respirator. To use this ventilator, the first step is to

put on a mask that is connected to a tube attached to the ventilator. The device sends pressurized

9

air into the airways, and with this air pressure, the machine helps open the lungs. This is called

positive pressure ventilation [7]. What differentiates it from other ventilators such as CPAP is that

at the time of expiration this pressure decreases, thus allowing better breathing.

2.2. State of the situation

It should be noted that this project is an adapted project from a previous one. The only difference

with the previous one is that it was designed for adults and this one is designed for children between

3 and 14 years old. In the bibliography of this work [2] you can find the article of this project where

all the technical part and the tests that have been carried out so that it is accepted and can be used

are detailed. The people who participated in this project were: Onintza Garmendia, Miguel A.

Rodríguez-Lazaro, Jorge Otero, Phuong Phan, Alejandrina Stoyanova, Anh Tuan Dinh-Xuan,

David Gozal, Daniel Navajas, Josep M. Montserrat and Ramon Farré; and the article was published

last 2020.

The ventilator was built using commercially available materials through e-commerce and consisted

of a high-pressure blower, two pressure transducers, and an Arduino Nano controller with a digital

display. The total cost of the device was less than 75 €, so it met the low-cost goal. Details of its

construction were also provided so that its replication could be carried out free of charge. The

ventilator was evaluated and compared with a commercially available device (Lumis 150 ventilator;

Resmed, San Diego, CA, USA) and the results were satisfactory. The problem arose when it was

seen that due to the high respiratory rate of children, it could not be used in individuals of that age.

This is the reason why it was decided to develop this project.

Fig 3. BiPAP respirator O. Garmendia et al.

10

3. Market analysis

Mechanical ventilators are aimed at the medical sector and there are currently several companies

dedicated to manufacturing this type of device. Those that stand out are Becton, Dickinson and

Company; Phillips; Hamilton Medical; Medtronic; GE Healthcare among others. Most of the leading

companies in this field are located in Europe and the United States. It must be said that the market

has evolved a lot in recent years, since the biomedical engineering sector has begun to stand out

in a notorious way. As can be seen in the previous point of the state of the art, it has gone from a

device where you had to put your entire body, into a respirator that you can have at home. That is

why the fact that there has been an evolution in this type of technology has caused the market to

evolve together. During the first wave of the Covid-19 pandemic, there were companies not oriented

to the medical sector; such as Seat, Tesla or Dyson, which adapted to manufacture respirators,

due to their scarcity. This tells us that this market can still evolve much further.

Regarding the standard price of a mechanical ventilator that we can find in the market, it is USD

25.000 [8], which reveals what was previously commented on the scarcity of these in low-income

countries. If we focus on the low-cost ventilator market, apart from finding the aforementioned

BiPAP ventilator, we find the RESPIREM project [9]. This project was launched thanks to the

collaboration of various companies, the University of Barcelona and the Health and Public

Administration. This project consists of the automation of a manual resuscitator and would also

meet the objective of being economically affordable and easy to build.

Fig 4. RESPIREM project

11

4. Concept engineering

The main components of the respirator are: the blower that generates the pressure to provoke the

air flow; the pressure transducers to measure the pressure that is being exerted and the controller

with the display to, as the name indicates, control the pressure and the other indicators of the

ventilator. It will also be necessary to find a method by which the frequency of breathing can be

increased, since children have a greater number of breaths per unit of time.

4.1. Pressure generating blower

The blower must be able to generate an airflow in order for the patient to breathe properly. To begin

with, we are interested in a blower that can be controlled by a controller device, be it Arduino,

Raspberry, etc. For this we will need a blower that is controlled through a voltage, that is, more

voltage, more pressure.

Apart from this feature we will also need the blower to meet the appropriate dimensions. It will have

to be small, about 7x7x7 cm, since it should fit inside the structure of approximately 30x20x20 cm.

Regarding the type of turbine that we will choose, in the market we find high, medium and low-

pressure blowers. The pressure that we will need for the patient to breathe correctly will be

maximum 30cmH2O. It must be specified that due to the dimensions that our blower must have,

when we speak of high, medium or low pressure, reference is made to blowers with these

measurements, not of an industrial level, since the low-pressure industrial blowers have more

power than the high pressure of the dimensions we need.

That said, since we can control the pressure of the blower through the voltage regulation, we will

choose the high pressure one, since in this way we will reach 30cmH2O pressure without any

problem.

4.2. Pressure transducers

The pressure transducers are essential in this device, since they are responsible for measuring the

pressure that is being exerted in each moment, converting that measured pressure into an electrical

signal and being able to transmit it to the controller. The transducers will also be useful to calibrate

the device before starting its operation. There are two types of pressure transducers: mechanical

and electromechanical.

The mechanical transducers are those that determine the pressure exerted by a liquid of known

density and height. These elements are of direct or indirect measurement, but in either case they

lack high sensitivity [10]. In contrast, electromechanical transducers use an elastic mechanical

element associated with an electrical transducer that generates the electrical signal proportional to

the supported pressure. These provide a much more accurate result than those discussed above.

There are four main groups: strain gauges, piezoelectrics, resistives, and capacitives [11].

12

 Fig 5. Mechanical pressure transducer Fig 6. Electromechanical pressure transducer

 (piezoelectric)

Strain gauges are based on the change in length and diameter that a conductor undergoes when

it withstands mechanical oscillations as a result of pressure. This causes the resistance of this

conductor to also vary and produce what is called the piezoresistive effect. To calculate this

increase in resistance, a Wheatstone bridge is used.

Piezoelectric transducers work with the accumulation of electrical charges in areas of a crystalline

sheet that is formed by certain materials. This is due to withstand mechanical pressure. The glass

is located between two sheets of identical metallic materials that collect electrical charges, allowing

pressure changes to be measured.

Next, in the resistive ones, the pressure causes the displacement of a cursor on a resistance, acting

as a potentiometer that modifies its value proportionally to the supported pressure. Finally, in the

capacitive ones, pressure is exerted on a metallic diaphragm, which is a plate of a condenser, thus

modifying the separation between the diaphragm and the other plate and thus causing variations

in capacity proportional to the applied pressure.

Considering these options we see clearly that we will need an electromechanical transducer, since

we will need the transducer to convert the measured pressure into an electrical signal. Regarding

the type of electromechanical transducer that we are going to use, it could be any. The least

probable would be the use of strain gauges, since the fact that a Wheatstone bridge must be

designed would cause the use of more space and more time invested. As for the others, the ideal

would be to carry out a series of tests to see which one is the most suitable, or since it is an

adaptation of the low-cost respirator mentioned previously, we could use the same type of

transducers as in this case, which were the piezoelectric.

4.3. Controller

As its name indicates, this device is responsible for controlling the pressure through the information

it receives thanks to the transducers. Currently on the market there are several types of controllers,

but the easiest to use and that also has a low cost is the Arduino microcontroller. Even so, there

are different models of boards, each with its own characteristics. The main ones are the following

[12]:

13

• Arduino UNO:

It is the standard board and the best known and documented. It came out in September 2010

replacing its predecessor Duemilanove with several hardware improvements that basically

consisted of using its own USB HID instead of using an FTDI converter for the USB connection. It

is a recommended board to start with electronics since it is quite intuitive. It has a voltage input of

6 to 20 V, although it is recommended that a maximum of 12 V be used. Its measurements are

69x53mm and it has 6 analog and 14 digital pins.

Fig 7. Arduino UNO board

• Arduino Mega:

This board is bigger than the Arduino UNO. It has 54 digital pins, 16 analog pins and 4 serial ports.

The dimensions are 102x53mm and the one that is shared with the Arduino UNO is the input

voltage that goes from 6 to 20V.

Fig 8. Arduino Mega board

• Arduino Nano:

It is the smallest Arduino board, since its dimensions are 18x45 mm. Despite being the smallest, it

has 22 digital and 8 analog pins and the input voltage is the same as the others.

14

Fig 9. Arduino Nano board

• Arduino Ethernet:

This board has the same characteristics as the Arduino UNO, but it also incorporates an Ethernet

port, which allows us to connect to a network or to the Internet through its network port.

To choose the type of Arduino microprocessor, we must also take into account the display that we

will use, which is explained in detail in the next point of the report. We have already seen that each

model has its own characteristics. Since the Arduino Mega has a greater number of pins and it is

also the most powerful processor of the four, it will be the chosen option. In contrast to the adult

respirator where an Arduino Nano was used, for this one we need a more powerful processor and

with more pins, since we will have to incorporate a valve to modify the respiratory frequency and a

TFT display, as outlined in the following points. The fact of using an Arduino board implies that the

code to program this controller must be done with Arduino programming.

4.4. Display

In order to see the ventilator configuration values, it is necessary to incorporate a display to it. This

display will need to be compatible with the Arduino microcontroller that we have mentioned above.

There are two types of displays adaptable to the Arduino module on the market: LCD screens

(Liquid Crystal Display) and OLED (organic light-emitting diode) screens.

LCD screens and OLED screens are both types of flat-panel displays that can be used with Arduino.

However, they have some key differences [13]:

- LCD screens use a backlight to illuminate the crystals that make up the display, while

OLED screens have individual pixels that emit their own light. This means that OLED

screens can produce deeper blacks and a wider range of colors, but they also have a

shorter lifespan and are more susceptible to burn-in.

- OLED screens are typically thinner and more flexible than LCDs, which makes them a

better choice for certain applications, such as wearable devices.

- OLED screens also have a faster response time than LCDs, which means they can display

fast-moving images more clearly.

15

- LCDs are typically cheaper than OLEDs and are more common in the market.

- OLEDs consume less power than LCDs, which makes them better suited for battery-

powered applications.

Taking these characteristics into account, the chosen display will be an LCD screen, since it meets

the low-cost objective. OLED screens have a greater range of colors and display images more

clearly, but this is not the purpose of our screen, since this is to display the configuration

parameters. Also, the fact that OLED screens are more susceptible to burn-in is quite an important

factor for the choice of LCD screens.

 Fig 10. LCD screen Fig 11. OLED screen

LCDs are made with either a passive matrix or an active matrix display grid. On the one hand, the

passive matrix LCD has a grid of conductors with pixels located at each intersection in the grid. A

current is sent across two conductors on the grid to control the light for any pixel. On the other

hand, the active matrix LCD, also known as a thin film transistor (TFT) display, has a transistor

located at each pixel intersection, requiring less current to control the luminance of a pixel. For this

reason, the current in an active matrix display can be switched on and off more frequently,

improving the screen refresh time [14]. This is why between LCDs with passive or active matrix the

decision is opted for the screen with active matrix.

4.5. Adaptation of the respirator for children

Given that this respirator is specifically designed for children, certain modifications must be made

to accommodate the higher breathing frequency of young individuals. One potential solution would

be to adjust the parameters in the code to increase the rate of breaths per minute provided by the

blower. However, this approach may prove problematic, as the blower may not have sufficient time

to complete the exhalation process, resulting in a lack of adequate breaths at the frequency

appropriate for children. Given that the breathing frequency of children can reach up to 60 bpm, it

is deemed necessary to create a valve to regulate the airflow, in order to facilitate a faster exhalation

and thus increase the overall frequency. In light of this, several types of valves that could potentially

be implemented in this device are outlined below.

16

4.5.1. Ball valve

This type of valve is a stopcock mechanism that serves to regulate the airflow. It is characterized

by a regulating mechanism located inside, which has the shape of a perforated sphere. The valve

opens by turning the shaft attached to the sphere, allowing the passage of air when the hole is

aligned with the inlet and outlet of the valve. When the valve is closed, the hole will be perpendicular

to the inlet and outlet. This type of valve can be two-way or three-way. Two-way valves typically

have a standard bore, while three-way valves allow for easy disassembly of the ball and centerpiece

elements, making it easy to clean sediments and replace deteriorated parts without having to

disassemble the elements that connect to the valve [15]. In addition, this valve is usually manual,

but in our case, it would be connected to a servomotor that is in charge of opening and closing it at

the right time.

 Fig 12. Ball valve

4.5.2. Leakage control valve

The function of this valve is to control the release of air during exhalation, resulting in faster

expiration and resolving the issue at hand. The valve is composed of a tube with a hole, which is

covered during inhalation by a servomotor connected to the mechanism responsible for covering

the hole and therefore control the leak. The goal is to adjust the opening of the hole based on the

frequency of breathing, in order to release the appropriate amount of air for the desired number of

breaths per unit of time.

This type of valve is not currently available on the market and must be designed and 3D printed.

During testing, various hole shapes were experimented with, as shown in figures 10 and 11. Initially,

round and elongated round holes were tested (figure 13), but it was found that too much air was

released at once. Therefore, the valve seen in figure 14 was created, featuring a triangular-shaped

hole. This design allows for minimal air release at first and the servomotor can open the valve

further if needed, releasing the air more regularly.

17

Fig 13. First version of valve with leak control Fig 14. Final version of valve with leak control

4.5.3. Pinch solenoid pneumatic valve

A pinch solenoid pneumatic valve is a type of valve that uses a solenoid to control the flow of

compressed air in a pneumatic system [16]. The valve typically consists of a solenoid-operated

actuator, which is connected to a pinch mechanism. The pinch mechanism is responsible for

opening and closing a tube through which the compressed air flows. When the solenoid is

energized, the actuator moves the pinch mechanism to pinch the tube, effectively stopping the flow

of air. When the solenoid is de-energized, the actuator releases the pinch mechanism, allowing air

to flow through the tube.

Pinch solenoid pneumatic valves have several advantages over other types of valves. They are

relatively simple and easy to control, as they only require an electrical signal to operate. They are

also very reliable and have a long service life. Pinch solenoid valves are also very compact and

can be easily integrated into existing pneumatic systems. They are also very easy to maintain and

repair, as they have very few moving parts. Additionally, pinch valves are typically very versatile.

Despite they are widely used in pneumatic systems for industrial automation, such as in assembly

lines, packaging machines, and other industrial processes, we could adapt it to the ventilator [17].

Fig 15. Pinch solenoid pneumatic valve

18

4.5.4. Evaluation of the valves

After testing each of the valves, it has been decided that the best option is the pinch solenoid

pneumatic valve. The ball valve has been ruled out because the servomotor had to exert too much

force to open and close the valve and this caused it to break. These valves utilize a lubricant to

minimize friction and promote smooth operation of their components. However, these valves are

intended for infrequent opening and closing, not a frequency of 60 cycles per minute. As a result,

excessive usage, as exhibited by the ventilator's characteristics, results in rapid consumption of the

lubricant, leading to hardening of the valve mechanism and ultimately failure of the servomotor.

As an alternative, the leakage control valve was considered to be a viable option due to its ability

to address the issue of hardened mechanism and its cost-effectiveness compared to the ball valve.

However, upon conducting multiple evaluations, it was determined that the valve exhibited a slight

leakage between the sealing component and the aperture when in the closed position. This resulted

in issues during the inspiration phase and thus, it was ultimately discarded as a solution.

Finally, it was determined that the pinch solenoid pneumatic valve was the most suitable valve for

use in a ventilator system. The pinch valve possesses several advantageous properties, such as a

lack of leakage, a high level of durability, and ease of control. Additionally, the use of a servomotor,

as employed in other valve systems, is not required as the pinch valve is connected directly to the

electrical circuit of the device. However, the pinch valve does have one notable drawback, which

is its relatively high cost, with prices ranging around 100€.

4.6. Enclosure

It is also necessary to create an enclosure to place all the elements mentioned above in an

organized way. It is also necessary to create an enclosure to place all the elements mentioned

above in an organized way. Since most of the parts used in this project are the same as in the adult

ventilator, we can use the enclosure of the previous ventilator as a first version. Therefore, the

support will be made up of two rectangular pieces printed in 3D printing, which fit together and in

which the components are fixed and well placed. Despite this, because we must include the valve

to increase the frequency, the dimensions will be larger and the placement of the components will

have to be redistributed.

4.6.1. 3D printing programs

To begin with, the essential feature of the program that we will use to design and print the ventilator

support is that it must be free, since it must meet the objective of low cost. The other characteristic

is that it cannot have a high level of complexity due to the objective that the construction of the

ventilator must be able to be carried out by anyone. After the research, some of the best 3D printing

software found are: 3D Builder, SketchUp, OpenSCAD and 123Design.

The 3D Builder program is a free 3D modeling application that allows you to view, create, and

customize 3D objects. The great feature of 3D Builder is that it can be used by any user, with or

19

without experience in 3D modeling. This program supports the most important 3D printing file

formats: STL, OBJ, 3MF, etc. Although it fulfills the two main objectives, this program has a

drawback. This is that it is only available for Windows, so someone with a device running MacOS

or Linux software would not be able to use it [18].

Another possible program would be SketchUp. This program is available for other operating

systems apart from Windows. It is completely free and, thanks to its easy use, it is also suitable for

beginners. If required, the software also offers the option to access a library of free 3D models.

Alternatively, you can also create your own model, by which you can use a variety of paint, measure

and offset tools with surface modeling software. It is worth mentioning that considering these

characteristics, this program would be a good option for the creation of support [18].

Another 3D printing software would be OpenSCAD. OpenSCAD free molding software is an open-

source CAD program that creates 3D models from scripts. With this program, complex 3D models

can be created from simple geometric bodies. The problem is that for this, the user must become

familiar with the programming language, since at first it may seem complicated. Due to this

inconvenience, this will not be the chosen program.

Finally, the last option would be the 123Design program. This is a program very similar to SketchUp

and is based on Autodesk Inventor. In addition to the most basic drawing and modeling capabilities,

it also has assembly and constraint support and STL export, so you can 3D print. That said, we see

that the two best options are the SketchUp and 123Design programs. The decision factor that has

led to choosing 123Design is that it was the same program used in the ventilator for adults and had

very satisfactory results.

20

5. Detail engineering

In this section, the specific characteristics of the respirator designed in this project are thoroughly

outlined. A comprehensive examination of each software component, including the blower,

pressure transducers, controller, display, and valve, is provided. Additionally, the software created

through Arduino programming and the design of the enclosure through the 123Design program are

discussed. Furthermore, the integration process of all the various components of the ventilator is

explained, along with the results obtained and a thorough analysis thereof.

5.1. Hardware
5.1.1. High pressure blower

As previously stated, this project represents an adaptation of a previous project in which the

ventilator was designed for adult use. As part of this adaptation process, it was determined that the

incorporation of a pinch valve was necessary in order to adjust the frequency of the respirator to

the range specified for pediatric use. This was necessary as the blower alone was not capable of

achieving the required cycles per minute, which can reach up to 60. As a result, the component

responsible for generating pressure, the blower, may be the same model as the one utilized in the

adult ventilator previously developed, WM7040-12/24V-65W blower. The detailed characteristics

of this component, as provided by the manufacturer's website, can be seen in figures 16, 17, and

in Table 1. The cost of this component is approximately 50€.

 Fig 16. Blower dimensions Fig 17. Graph of the pressure levels that can be reached

Voltage and Current 12V (4.5A±0.1A), 24V(2.7A±0.1A)

Max Air Flow (Air pressure=0) 240L/min, 14m3/h, 8.5 CFM

Max Pressure (Air flow=0) 7.5 Kpa, 75 cmH2O

Size 700mm*40mm

Power 65 W

Speed 35000±5% rpm

21

Noise 45dB (1Kpa-1M), 73dB (7Kpa-1M)

Certification CE

Tab 1. Blower characteristics

The data displayed illustrates the relationship between pressure and flow for this specific blower

unit under different power supply conditions of 12V, 15V, and 24V.As can be observed, when

powered at 15V, the blower unit exhibits a maximum pressure of 30 cmH2O, indicating that this

voltage is sufficient for the operation of the ventilator.

These pressure-flow figures give an understanding of the blower unit's performance as a pressure

source. The greatest pressure that can be produced by the blower is when the output is completely

blocked (zero flow). As the output is gradually opened, the flow increases and the pressure

generated by the blower decreases. For instance, when the blower is powered at 15V, the highest

pressure that can be generated is 30 cmH2O. Notably, for flows of up to 100 ml/min, the pressure

drops to 25 cmH2O. On the other hand, when powered at 12V and 24V, the pressures generated

for the same flow rate are 17 cmH2O and 66 cmH2O, respectively. These results suggest that by

increasing the power supply to 24V, the blower unit could potentially produce pressures appropriate

for intubated, mechanically ventilated patients [19].

 Fig 18. Pressure-flow graph of the blower at 12V Fig 19. Pressure-flow graph of the blower at 15V

Fig 20. Pressure-flow graph of the blower at 24V

In order to ensure the proper operation of the blower, it is imperative to incorporate a driver

controller. A driver controller is needed to use a blower with an Arduino because the blower motor

typically requires more power than the Arduino can provide on its own. The driver controller

regulates the power supplied to the motor, ensuring that it runs at the desired speed and does not

overload the Arduino. Additionally, a driver controller also provides additional features such as

PWM control and current sensing, which allow for precise control of the blower motor and protection

22

against overcurrent. The fact that it is used to control the blower motor is essential in our case, as

it enables modifications to the desired pressure, frequency, and other related parameters. The

driver chosen to control the blower is driver 7040, which technical parameters are shown in Annex

1.

Fig 21. Driver 7040

5.1.2. Pressure transducers

As previously outlined in the concept engineering phase, the pressure transducers selected for this

project utilize piezoelectric technology. In contrast to the previous ventilator design, which utilized

only two pressure transducers, the current design requires the incorporation of four transducers,

with two of them being differential. This modification is necessitated by the incorporation of two

pneumotachographs for measuring flow, as opposed to the single pneumotachograph utilized in

the ventilator for adults.

In the previous ventilator, flow measurement was achieved through the subtraction of signals

obtained from two non-differential pressure transducers, with one of them being utilized for

pressure feedback. However, with the incorporation of the valve in the ventilator for children, the

utilization of four non-differential transducers for measuring flow and two additional transducers for

pressure feedback would have been required. By utilizing differential pressure sensors, the number

of transducers required for measuring flow is reduced to two, thus reducing the total number of

transducers to four.

One of the key benefits of differential pressure transducers is their ability to measure low pressure

ranges with high sensitivity. This is due to their design which utilizes a diaphragm or a bellows to

sense the pressure difference, allowing them to detect even small changes in pressure. Another

advantage of differential pressure transducers is their ability to reject common-mode noise, which

can occur when measuring pressure in systems with multiple pressure sources. This makes them

more reliable and accurate compared to non-differential pressure sensors.

The pressure transducers utilized in this design are the XGZP6847 model, which is the same as

the transducers used in the previous adult ventilator design. The XGZP6847 is a silicon pressure

sensor module that provides a ratiometric analog interface for measuring pressure over a specified

range. It has a built-in Application Specific Integrated Circuit (ASIC) which is used to compensate

for offset, sensitivity, temperature and non-linearity, providing repeatability, linearity, stability and

sensitivity. It is suitable for high-volume applications in various fields such as medical equipment,

23

fitness machines, home electronics, and other pneumatic devices [20]. The principal features of

the XGZP6847 pressure sensor module are the following ones:

- The specified pressure range for this device is -100kPa to 1000kPa, with a full scale

accuracy of ±1.0%.

- It is suitable for measuring non-corrosive gases or dry air.

- The output is a calibrated and amplified analog signal.

- The sensor is temperature compensated for use within the range of 0oC to +85oC.

- The device is intended for direct application in various systems and is low-cost.

Fig 22. XGZP6847 pressure transducer

It is important to note that various models of this pressure transducer exist, each with distinct

pressure measurement ranges. In this particular application, the XGZP684705KPG model will be

employed, which has a measurement range of 0 to 5 kPa. This model was selected as it is suitable

for measuring a maximum pressure of 30 cmH2O while providing an acceptable level of sensitivity.

The conversion of 5 kPa to cmH2O is approximately 50 cmH2O, thus the selected model's range of

0-5 kPa is sufficient for the measurement of 30 cmH2O pressure. The cost of this component is

approximately 4€ per unit.

In regards to the differential pressure transducer selection, the XGZP6897A transducer has been

chosen for its capabilities. Unlike non-differential pressure transducers, this model is capable of

measuring a pressure range of -100kPa to 200kPa and is equipped with temperature compensation

within a range of 0°C to 60°C. The XGZP6897A differential pressure transducer is available in

multiple models with varying pressure ranges. For the specific application of the ventilator, the

XGZP6897A005HPDPN model has been selected due to its pressure measurement range of -500

Pa to 500 Pa, corresponding to an approximate range of -5 cmH2O to 5 cmH2O, which is sufficient

to meet the flow measurement requirements of the system [21]. The cost of this transducer is about

5€ per unit.

Fig 23. XGZP6897A pressure transducer

24

In annex 2 and 3 are detailed the performance parameters of XGZP6847 and XGZP6897A

pressure transducers, respectively.

5.1.3. Arduino MEGA Controller

As mentioned in the concept engineering section, the controller chosen for this device is Arduino

Mega, specifically the model ArduinoMEGA2560. Below are enumerated the key characteristics of

this microcontroller with a schematic of the layout of the board components [22][23]. This board

can be purchased online for around 5€.

• Microcontroller: ATmega2560

• Digital I/O Pins: 54 (15 PWM capable)

• Analog Input Pins: 16

• UART (Hardware Serial Ports): 4

• Operating voltage: 5V

• Input Voltage (recommended): 7-12V

• Input Voltage (limit): 6-20V

• DC Current per I/O Pin: 20 mA

• DC Current for 3.3V Pin: 50 mA

• Clock Speed: 16 MHz

• USB Connection

• Power Jack

• ICSP Header

• Reset Button

• Length: 101.52 mm

• Width: 53.3 mm

• Weight: 37 g

Fig 24. Layout of ArduinoMEGA2560

25

5.1.4. TFT Display

TFT displays are a popular choice for use with Arduino boards due to their high resolution and color

capabilities. These displays use a TFT (thin-film transistor) screen to display images and graphics,

and are controlled by an integrated circuit (IC) that communicates with the Arduino via a parallel or

serial interface. This is another reason why this display has been chosen. The fact that the ventilator

can show the pressure and flow vs time graph is a good improvement respect to the other ventilator.

TFT displays come in a variety of sizes and resolutions, with some even supporting touch input.

The specific TFT display chosen for the ventilator application in this case is a 3.5 inch display with

a resolution of 480x320 pixels and is compatible with the Arduino Mega2560 microcontroller. It is

worth noting that in this particular application, the display does not require touch functionality as

the ventilator parameters are adjusted through potentiometers. However, it is worth mentioning that

the price difference between non-touch and touch modules is minimal and is around 2€. Below are

the component technical details [24]:

• Display Color: RGB 65K color

• SKU: MAR3513

• Screen Size: 3.5 inch

• Driver IC: ILI9486

• Resolution: 480*320 Pixel

• Module Interface: 16-bit parallel interface

• Active Area: 48.96x73.44 mm

• Module PCB Size: 60.30x96.60 mm

• Back light: 6 chip HighLight white LEDs

• Operating Temperature: -20oC~60 oC

• Storage Temperature: -30 oC~70 oC

• Operating Voltage: 5V/3.3V

• Power Consumption: TBD

• Product Weight: about 49g

Fig 25. TFT display 3.5 inch compatible with ArduinoMEGA2560

26

5.1.5. Pinch solenoid pneumatic valve

The pinch valve of choice to adapt the adult ventilator to children up to 14 years of age is the

ASCO™ Series S307 Pinch solenoid valve. ASCO is a leading manufacturer of valves and fluid

control products for a wide range of industries, including power generation, oil and gas, chemical

and petrochemical, pharmaceutical, biotechnology, and more. This valve is part of ASCO's line of

pinch valves, which are known for their ability to provide accurate and consistent flow control in a

wide range of industries.

The Series S307 Pinch Solenoid Valve is designed for use with a variety of fluids, including water,

air, and gases. It is available in a wide range of sizes, materials, and configurations to meet the

specific requirements of different applications [25]. The valve is also equipped with a variety of

options and accessories, including manual overrides, position indicators, and explosion-proof

enclosures. One of the key features of the Series S307 Pinch Solenoid Valve is its ability to provide

precise flow control. The valve is equipped with a pinch mechanism that can be adjusted to provide

a wide range of flow rates, from a complete shut-off to full flow. This allows for accurate and

consistent flow control, ensuring that the correct amount of fluid is delivered at the right time.

The Series S307 Pinch Solenoid Valve is also designed for durability and reliability. It is constructed

with high-quality materials that are resistant to corrosion and wear, and it is designed to have a

long service life with minimal maintenance requirements. In addition, the Series S307 Pinch

Solenoid Valve is available with a range of actuators and control systems, including air-piloted,

solenoid-piloted, and mechanically-operated options. This allows for easy integration with existing

systems and control networks, providing customers with a complete solution for their flow control

needs [26].

The decision to utilize the valve, despite its relatively high cost (estimated at approximately 100€),

was made based on a comprehensive analysis of the factors mentioned above. These factors

included the valve's ability to provide precise flow control, its durability and reliability, and its

compatibility with the specific requirements of the project. Ultimately, it was determined that the

benefits offered by the valve, such as its precision and longevity, outweighed the additional

expense.

Figure 15, shown at the engineering point of design, shows the ASCO™ Series S307 Pinch

solenoid valve and in Annex 4 there is a summary of the technical aspects of the valve.

5.2. Software

The ventilator system has been implemented using the Arduino development platform, version

1.8.57.0. The Arduino platform utilizes its own proprietary programming language, based on the

high-level programming language Processing, which exhibits similarities to the C++ programming

language. The code for the implementation of the ventilator system, including all necessary

libraries, can be found in Annex 5 of the technical documentation. Even so, the algorithm is

described in the points below.

27

5.2.1. Import of libraries and definition of variables

At the beginning of the code, it is crucial to import the libraries that will be utilized in the development

of the program. These libraries include TFT_HX8357.h for configuring the display, and PID_v1.h

for the implementation of the PID control algorithm. The inclusion of these libraries is necessary for

the proper functioning of the system, as they provide the necessary functions for the display and

control of the ventilator. The PID algorithm uses three parameters: Proportional, Integral, and

Derivative. The Proportional term calculates an error between the desired value and the current

process value, the Integral term sums up the error over time and the Derivative term calculates the

rate of change of the error. By adjusting the gain values of these parameters, the controller can

achieve the desired response in the system being controlled [27]. Después de importar las librerías

es necesario definir los pines de cada una de las señales, indicando si se tratará de una señal

digital o analógica, y todas las demás variables.

5.2.2. Initial offset adjustment

Once the initial library imports have been completed, the next step in the development process is

to configure the calibration routine for the sensors utilized in the ventilator system. It is important to

note that the blower should not be in operation during the calibration process. The code is designed

to read the signals from the pressure transducer at zero pressure and digitally correct any offset

that may be present. In case of error during the calibration process, the routine is repeated until the

calibration is successfully completed. Additionally, during this process, a conversion from the

sensor's native units to cmH2O is also executed to ensure accurate measurements. The calibration

process is crucial to the proper functioning of the ventilator system and should be executed with

care and precision to ensure accurate measurements and control.

5.2.3. Configuration of the display

After configuring the calibration of the ventilator, the next step is to create the graphical

representation of the pressure and flow on the display. To accomplish this, the TFT_HX8357.h

library, imported earlier, is utilized. The first step is to determine the interval in microseconds that

is used to plot the pressure and flow pixels.. This interval is defined using the following expression:

Tx = -347.21*bpm + 25000;

The bpm value represents the frequency, which can be adjusted by a potentiometer and varies

between 12 and 60, as said before. The minimum value of Tx (bpm = 60) is 4167, and the maximum

value (bpm = 12) is 20833. Therefore, if a bpm of 12 is selected, the display will plot one pixel every

20833 microseconds.

This interval allows the display to expand or contract in order to display a couple of cycles on the

screen, regardless of the bpm setting. The complete code for the creation of the graph and its

explanation can be found in Annex 5 of the technical documentation.

28

5.2.4. Configuration of the main parameters

The main parameters of this ventilator which can be modified according to the needs of the patient

are the following:

- Frequency: Refers to the number of breaths that the ventilator delivers to the patient per

minute. It is also known as the respiratory rate. In our case, the ventilator has a range of

12 to 60 bpm.

- Inspiratory pressure: Refers to the amount of pressure that the ventilator generates to

deliver air into the patient's lungs. The range of this parameter is of 4 cmH2O to 25 cmH2O.

- Inspiration/Expiration ratio: Refers to the proportion of time spent delivering inspiration to

the patient, compared to the time spent delivering expiration to the patient. The I/E ratio is

usually expressed in the form of a fraction, such as 1/2, which means that for every 1

second of inspiration, the ventilator delivers 2 seconds of expiration.

- Flow cycling: Refers to the way in which the ventilator delivers breaths to the patient. A

flow-cycled ventilator delivers a set flow of air to the patient, regardless of whether the

patient is actively inhaling or not. The flow rate is determined by the setting on the

ventilator, which is usually expressed as a percentage of the maximum flow rate. For

example, a ventilator set to deliver a flow rate of 50% would deliver half of the maximum

flow rate of air to the patient during each breath. The % flow cycling is an important

parameter to set in the ventilator, as it affects the tidal volume delivered to the patient, that

is the amount of air that enters the patient's lungs with each breath. The range is between

30 and 50%.

At this point the valve variable is also configured, 0 implies that it is in expiration mode and 1 in

inspiration mode.

5.2.5. Pressure and flow measurement

The measurement of pressure and flow is obtained continuously via the utilization of pressure

transducers. Unlike adult respirators, in this case, it is not necessary to apply a filter to eliminate

noise when calculating the flow, as the noise generated by non-differential pressure transducers is

minimal. To calculate the flow, both inspiratory and expiratory, in units of L/s, it is necessary to

perform a conversion by applying a constant k1 and another constant k2, as specified in the sensor

data sheet. With the calculation of the flow in L/s, the inspiratory and expiratory volumes can be

derived and displayed on the ventilator screen.

Once the sensors have been calibrated, the flow and pressure measurements begin to be

accumulated and while being saved, they are also plotted on the screen, using the TFT_HX8357.h

library, previously imported. The pressure transducers provide a continuous measurement of the

pressure and flow, allowing for real-time monitoring and control of the patient's ventilation.

29

5.2.6. Ventilation start

Once all the parameters have been set, including the frequency, inspiratory pressure,

inspiration/expiration ratio and flow cycling, the ventilation process can commence. The turbine

generates a positive pressure according to the previously defined parameters. During the

inspiration phase, the valve is programmed to be open, allowing air to enter the lungs. Conversely,

during expiration, the valve is programmed to be closed, resulting in a faster pressure drop. The

mechanical ventilator operates utilizing a PID controller, allowing for real-time modification of the

parameters, with the PID control algorithm responsible for implementing these changes. During

ventilation, the following parameters are displayed on the ventilator's screen:

- Pressure vs. time graph

- Flow vs. time graph

- Respiratory rate (breaths per minute)

- Inspiration/Expiration ratio

- Inspiratory pressure (cmH2O)

- Inspiratory volume (L)

- Expiratory volume (L)

5.3. Enclosure 3D printed

The dimensions of this enclosure exceed those of the adult ventilator, as the valve measures

100mm x 40mm x 50mm. As a result, the fan designed for pediatric use has dimensions of 275mm

in width, 100mm in height, and 203mm in depth. The enclosure consists of two parts: a base where

all components are housed and a top lid that serves to cover them, as depicted in Figure 26.

Fig 26. Enclosure of the ventilator

Three views of the enclosure are depicted below: front and back elevations, and the profile view.

These views indicate the components located within each hole or their function. As can be observed

in the front elevation view, there is a button labeled "Control/Support." The objective of this project

is to create a controlled fan, however, a future improvement for the fan would be to adapt it to also

30

function as a support. This is why the button is included, so that in the future the same fan can have

two modes. In this view, we can also see the location of the potentiometers that will be used to

regulate various parameters (frequency, pressure, I/E ratio, and flow cycling). On the other hand,

in the rear elevation view, we can see the output of the channels that provide the corresponding

voltage for pressure, inspiratory flow, and expiratory flow. The profile view and the rear elevation

view also show a grid. This grid serves to prevent overheating of the components, thereby

improving their operation and safety.

Fig 27. Front elevation view

 Fig 28. Profile view Fig 29. Back elevation view

5.4. Integration and results

Upon integration of all components, it became apparent that utilizing a PCB (printed circuit board)

would be highly beneficial, as it eliminated the need for multiple wiring connections. After the

creation of the PCB and the subsequent electronic connections of the components, functional

testing was conducted using software. Once all issues were resolved, the results were collected

for analysis and to draw conclusions for the project

5.4.1. Integration of Hardware components

A PCB (printed circuit board) is a board made of insulating material, such as fiberglass or plastic,

with conductive pathways etched onto its surface. These pathways connect different electronic

components together, allowing them to communicate and function as a cohesive unit [28]. There

are several advantages to using a PCB, including [29]:

31

- Reduced Size and Weight: PCBs allow for the compact and lightweight design of electronic

devices. By eliminating the need for bulky wiring, PCBs can make electronic devices

smaller and more portable.

- Improved Reliability: PCBs eliminate the risk of loose connections or short circuits that can

occur with traditional wiring methods. The conductive pathways on a PCB are etched into

the board, ensuring a stable and consistent connection between components.

- Increased Efficiency: PCBs allow for a higher degree of integration between electronic

components, resulting in a more efficient and streamlined design. This can lead to faster

processing speeds and improved performance in electronic devices.

- Cost-effectiveness: PCBs can be mass-produced at a relatively low cost, making them an

affordable solution for both small-scale and large-scale electronic projects.

- Easy Assembly: PCBs make electronic assembly much easier, as components are

soldered directly to the board, reducing the need for complicated wiring. This makes it easy

to upgrade, modify or debug the circuit.

- Repeatability: PCBs can be designed with the same layout, which allows for the production

of multiple identical devices, ensuring consistency in performance and functionality.

- Safety: PCBs are designed to meet safety standards, ensuring that the electronic devices

are not harmful to the users, also the components are protected from environmental

factors.

- Flexibility: PCBs are versatile and can be used in a wide range of applications, from simple

electronic devices to complex systems, including embedded systems, automation, and

robotics.

Overall, PCBs offer many advantages over traditional wiring methods, this is why it has been

chosen for this project. A PCB board has to be designed as it is unique to the device used. There

are several steps involved in creating a PCB:

- Design the PCB layout: This step involves creating a layout of the PCB using PCB design

software. The layout includes the placement of the electronic components, the routing of

the conductive pathways, and the location of any necessary connectors or power

connectors.

- Generate the Gerber files: Gerber files are used to communicate the PCB layout to the

manufacturer. These files include information on the PCB's dimensions, the location of the

components, and the routing of the conductive pathways.

- Order the PCB: Once the Gerber files are ready, the PCB can be ordered from a

manufacturer. The manufacturer will use the Gerber files to create the PCB according to

the specified design.

- Solder the components: After the PCB is received, the electronic components are soldered

onto the PCB according to the layout.

- Testing: Once the components are soldered, the PCB is tested to ensure that all

connections are correct and the components are functioning properly.

Figure 30 shows the layout of the fan PCB board and below, in the other figures, the connection

diagrams of the different components.

32

Fig 30. PCB board layout

In figure 31 we can see the connections of the analog signals with the ArduinoMEGA2560 board.

Each of the pins corresponds to the following components:

• A2: IPap potentiometer

• A3: Flow cycling potentiometer

• A4: Frequency potentiometer

• A5: I/E ratio ponentiometer

• A6: Pressure sensor 1

• A7: Pressure sensor 2

• A12: Flow sensor 1

• A13: Flow sensor 2

Fig 31. Diagram of the analog pin connections

Next, in figures 32 and 33 we see the connections of the flow and pressure transducers,

respectively. In the diagram of the pressure transducers we can also see the connections with the

valve that is controlled by digital pin 10.

33

Fig 31. Diagram of the flow sensor connections

Fig 32. Diagram of the pressure sensor connections

The figures shown below, 33 and 34, refer to the connections of the digital pins with the Arduino

board and the connection for the blower control. Each of the pins corresponds to the following

components:

• PWM8: Inspiration led

• PWM10: Valve

• PWM11: Blower

• PWM12: SwitchPin switch

• PWM13: Control/Support switch

34

 Fig 33. Diagram of the digital pin connections Fig 34. Diagram of the blower connections

Finally, the last two figures shown, 35 and 36, show the connections for powering the Arduino from

the 7040 driver and the connection to turn on the led at the moment of inspiration.

 Fig 35. Diagram of the Arduino power Fig 34. Diagram of the blower inspiration

 supply connection led connection

5.4.2. Results

To evaluate the performance of the controlled pressure ventilator for pediatric use under controlled

conditions, a prototype was subjected to bench testing using an active patient simulator that

simulated the respiratory mechanics of patients with varying levels of obstructive/restrictive

diseases. The passive component of the respiratory system model utilized was a variable

resistance-compliance (R-C) lung model (Adult SmartLung; IMT Analytics, Buchs, Switzerland),

similar to the adult ventilator [2]. Four R-C systems were configured for testing the ventilator,

simulating a patient with mild disease, a purely obstructive patient (increased resistance), a purely

restrictive patient (reduced compliance) and a patient with both obstruction and restriction (Table

2). Three breathing frequencies were employed and different inspiratory efforts were set according

to the level of disease. Despite typical respiratory rates in children ranging from 0-14 years being

12-60 bpm, in this case, testing was conducted at higher frequencies (30, 40, and 50 bpm) as it is

these frequencies that can potentially cause problems to the ventilator operating. The parameters

of flow cycling and the inspiratory-to-expiratory (I/E) ratio were maintained constant during the

testing process. The flow cycling was set to 50% and the I/E ratio was also set to 50%. To measure

35

the results, two pressure transducers were used, one to measure inspiratory pressure and the other

to measure pleural pressure and a flow transducer.

Simulated
Patient

Resistance
cmH2O·s·L−1

Compliance
mL·cmH2O−1

Breathing rate
breaths·min−1

Inspiratory
pressure
cmH2O

Mild

1 5 30 30 9

2 5 30 40 9

3 5 30 50 9

Obstructive

4 20 30 30 10

5 20 30 40 10

6 20 30 50 10

Restrictive

7 5 15 30 14

8 5 15 40 14

9 5 15 50 14

Obstructive and restrictive

10 20 15 30 16

11 20 15 40 16

12 20 15 50 16

Tab2. Respiratory resistance–compliance systems of 12 different conditions simulated for the bench test

After conducting tests with simulations of various patient types, it was determined that the low-cost,

easy-to-construct, non-invasive, pressure-controlled ventilator for pediatric use functions effectively

at high frequencies. The pressure vs. time and flow vs. time graphs for conditions 4 and 12 are

depicted below. These graphs demonstrate that the issue of inadequate time for breaths at high

frequencies has been resolved through the incorporation of the valve. As a result, the ventilator can

be utilized at high frequencies, such as those observed in children. In Annex 6 and 7 the graphs of

pressure-time and flow-time of all the simulated conditions are shown.

Fig 35. Pressure-time graph of the condition 4

-5

0

5

10

15

20

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 4

36

Fig 36. Pressure-time graph of the condition 12

Fig 37. Flow-time graph of the condition 4

Fig 37. Flow-time graph of the condition 12

-5

0

5

10

15

20

25

30

0 2 4 6 8 10 12
N

as
al

 p
re

ss
u

re
 c

m
H

2
O

Time s

Condition 12

-1

-0,5

0

0,5

0 2 4 6 8 10 12

Fl
o

w
 l/

s

Time s

Condition 4

-1

-0,5

0

0,5

1

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 12

37

6. Execution Schedule

6.1. Work-breakdown Structure

Design and application of a low-cost, easy-to-build, non-invasive pressure support
ventilator for pediatric use in low-resource countries.

1. Preparation and advance
planning

1.1. Bibliographic research

1.2. Definition of objectives and scope of the project

1.3. Preparation of the work plan

1.4. Acquisition of materials

2. Hardware

2.1. PCB board design

2.2. Arduino-Transducers Implementation

2.3. Blower Implementation

2.4. Display Implementation

2.5. Functionality test

3. Software

3.1. Code creation

3.2. Checking the increase in respiratory rate through the code

3.3. Implementation with the hardware

3.4. Functionality test

4. Adaptation of the respirator
for children

4.1. Search for methods to adapt the ventilator

4.2. Assessment of different valves

4.3. Valve testing

5. Enclosure

5.1. Definition of the sizes and the program with which it will be
designed

5.2. Creation of the enclosure

5.3. Enclosure impression

6. Final integration

6.1. Integration of all parts

6.2 Modification of the code

6.3. Functionality test of the ventilator

6.4. Obtaining and analyzing test results

7. Completion of work
7.1. Report writing

7.2. Preparation of the oral presentation

Tab 3. Work-Breakdown Structure of the project

38

6.2. WBS dictionary

In the WBS dictionary, the cost of each of the tasks is usually stated, but in this case, the price of

each of these tasks can be found later in point 8, the economic pre-feasibility section.

Task: Preparation and advance planning

Description: Process in which the project is planned.

Deliveries: Task 1.1, Task 1.2, Task 1.3, Task 1.4.

Assigned resources: Computer.

Duration: 8 weeks

Key points:
• Bibliographic research: Previous step to know the essential basis of the project. (2

weeks)
• Definition of objectives and scope of the project. (2 weeks)
• Preparation of the work plan: It refers to the establishment of all the tasks prior to

carrying out the project. Includes the creation of the WBS, the PERT and the GANNT
in order to carry out a better organization. (2 weeks)

• Acquisition of materials: They must be ordered in order to start the assembly part of
the project. (2 weeks)

Tab 4. Work-Breakdown Structure dictionary of Task 1

Task: Hardware

Description: It refers to the most mechanical part and where more use is made of the
electronics of the project.

Deliveries: Task 2.1, Task 2.2, Task 2.3, Task 2.4, Task 2.5.

Assigned resources: Computer, laboratory, Arduino Nano board, high pressure blower, two
pressure transducers, two differential flow transducers, PCB board, display and blower-
controller.

Duration: 8 weeks

Key points:
• PCB board design: The design of this component is important to make the connections

of the other components. (3 weeks)
• Arduino-Transducers Implementation: Connection of the Arduino Nano controller with

the pressure and flow transducers. (1 week)
• Blower Implementation: Arduino connection with the transducers and the high-

pressure blower. (1 week)
• Display Implementation: Implementation of the display with the other components

already connected. (2 weeks)
• Functionality tests: Verify that the connections are well made and that no component

fails. (1 week)

Tab 5. Work-Breakdown Structure dictionary of Task 2

39

Task: Software

Description: It refers to the creation of the code to be able to configure the ventilator and for it
to carry out the necessary commands.

Deliveries: Task 3.1, Task 3.2, Task 3.3, Task 3.4.

Assigned resources: Computer with the Arduino program, laboratory.

Duration: 6 weeks

Key points:
• Creation of the code. (3 weeks)
• Verification of the increase in the respiratory rate through the code: We must see if

really changing the frequency of the blower it is possible or not to reach the level of
respiration of a child. (1 week)

• Hardware implementation: Upload the code to the Arduino board. (1 week)
• Functionality tests: Tests to verify that the integration between the Hardware and the

Software works correctly. (1 week)

Tab 6. Work-Breakdown Structure dictionary of Task 3

Task: Adaptation of the respirator for children

Description: Find the best method to adapt the respirator to children so that they can use it.

Deliverables: Task 4.1, Task 4.2, Task 4.3.

Assigned resources: Computer with the design program, laboratory, 3D printer, plastic for 3D
printing.

Duration: 8 weeks

Key points:
• Search for methods to adapt the ventilator. (4 weeks)
• Assessment of different valves: Once decided that the best method to adapt the

ventilator is through a valve, make an assessment of them. (2 weeks)
• Valve testing: After the assessment, test the valves to choose the best one. (2 weeks)

Tab 7. Work-Breakdown Structure dictionary of Task 4

Task: Enclosure

Description: Creation of a structure to be able to place all its components in an orderly manner.
It also has the function of protecting them, since it is a casing that covers them.

Deliverables: Task 5.1, Task 5.2, Task 5.3.

Assigned resources: Computer with the design program, laboratory, 3D printer, plastic for 3D
printing.

Duration: 4 weeks

Key points:
• Definition of the sizes and the program with which it will be designed. (1 week)
• Creation of the enclosure: Design of the enclosure with the 3D program previously

chosen. (2 weeks)
• Printing of the enclosure. (1 week)

Tab 8. Work-Breakdown Structure dictionary of Task 5

40

Task: Final Integration

Description: It consists of attaching all the parts that we have separately and making the first
version of the BiPAP respirator for children.

Deliverables: Task 6.1, Task 6.2, Task 6.3.

Assigned resources: Computer with Arduino and Labview, laboratory, 3D printer, plastic for 3D
printing, Hardware, Software, valve or some other method.

Duration: 12 weeks

Key points:

• Integration of all parts: Integrate all parts of the ventilator (Hardware, Software and
Enclosure) to start using the device. (3 weeks)

• Modification of the code: When introducing the valve as a new component,
modifications must be made to the previously created code. (4 weeks)

• Functionality test of the ventilator: Test to verify that the ventilator works correctly. (1
week)

• Obtaining and analyzing test results: Collect the data from the tests carried out with
the ventilator to analyze its operation and draw the corresponding conclusions. (4
weeks)

Tab 9. Work-Breakdown Structure dictionary of Task 6

Task: Completion of work

Description: Compilation of all the information collected during the work and completion of the
report.

Deliveries: Task 7.1, Task 7.2 and final report.

Assigned Resources: Computer

Duration: 3 weeks

Key points:

• Report writing: This task does not refer to the writing of the entire project report, since
each part of it is included in the previous tasks, but to the last modifications before
delivery. (1 week)

• Preparation of the oral presentation. (2 weeks)

Tab 10. Work-Breakdown Structure dictionary of Task 7

6.3. PERT

To determine the time required to do the project, a PERT diagram has been done. As it can be

seen below, some of the tasks overlap. This is because there is a part of the adult ventilator project

that can be taken advantage of. The reason and which are the affected tasks is explained in more

detail in point 6.4, with the GANTT diagram.

Task Preceding task Consequent task Duration (weeks)

1.1 Start 1.2 2

1.2 1.1 1.3/1.4 2

41

1.3 1.2 2.1/3.1/5.1 2

1.4 1.2 2.1/3.1/5.1 2

2.1 1.3/1.4 2.2 3

2.2 2.1 2.3 1

2.3 2.2 2.4 1

2.4 2.3 2.5 2

2.5 2.4 3.3 1

3.1 1.3/1.4 3.2 3

3.2 3.1 3.3/4.1 1

3.3 2.5/3.2 3.4 1

3.4 3.3 6.1 1

4.1 3.2 4.2 4

4.2 4.1 4.3 2

4.3 4.2 5.2 2

5.1 1.3/1.4 5.2 1

5.2 4.3/5.1 5.3 2

5.3 5.2 6.1 1

6.1 3.4/5.3 6.2 3

6.2 6.1 6.3 4

6.3 6.2 6.4 1

6.4 6.3 7.1 4

7.1 6.4 7.2 1

7.2 7.1 End 2

Tab 11. PERT tasks

Fig 38. PERT diagram

The critical path is the one marked with the red circles. It is as follows: 1-2-3-5-7-9-11-13-15-17-

18-19-20-21-22-23-24. To see it with higher resolution, go to Annex 8.

42

6.4. GANTT

Tom's planner program has been used to make the Gantt chart. It starts in May 2021 and ends in

January 2023.

Fig 39. GANTT diagram

The activities that I have decided to overlap and therefore carry out more than one task on the

same week have been the hardware tasks with the code creation and the first task of the enclosure

part. This is because we can use the code and the enclosure of the ventilator for adults as a first

version for the new ventilator. Even so, the Hardware-Software implementation task must be done

after the hardware functionality tests. In this period in which no Software tasks are carried out, the

task of finding a method to adapt the ventilator for children is completed. Once the method to be

used has been decided, the enclosure creation tasks are done. It should also be noted that the task

of writing the report is done throughout the project. To visualize the GANTT diagram better, click

on the following link: https://plan.tomsplanner.es/public/tfgrespirador

https://plan.tomsplanner.es/public/tfgrespirador

43

7. Technical viability

Strengths Opportunities

-There is a previous product created that is
similar with which we can fix.

-We have selected small components that fit in
the desired measurements.

-Selected components that meet the objectives
of low cost and ease of use.

-The acquisition of these components is easy,
since they can be found on the Internet.

- Implementation in low-income countries,
since the objectives are met.

- Help combat the Covid-19 pandemic in
countries where they have very few
respirators.

Weaknesses Threats

-At the moment, it is a controlled ventilator and
still lacks the triggering. Even so, a future goal
is to incorporate it.

-The ventilator has not been tested on patients
yet.

-It is very likely that the place where the
respirator is used does not have a 3D printer,
however, the support is not one of the parts
that needs replacement, only in case it breaks.

-The valve involves an extra cost.

Tab 12. Project DAFO

44

8. Economic viability

The next point refers to the study of costs and budget. Regarding the first task of Preparation and

advance planning of the project, we can say that it would have a cost of 15€/h. The tasks of this

project have been planned for weeks, but it could be said that the weekly hours invested in this

project would be an average of 10 hours. As can be seen in the GANTT diagram in figure 11, the

Preparation of the work plan task and the Acquisition of materials have an overlapping week,

therefore, even if the total of the tasks add up to 8 weeks, economically they would only be

considered 7. This is why the Preparation and planning of the project task would have a cost of

1.125€, 1.050€ referring to personnel costs and 75€ to the materials purchased. Being a student

myself and working without getting paid, it would not be necessary to assume the cost of employee,

but if anyone else on the team did, it would count as a cost.

Regarding the second task of Hardware, there would be no expense for the material, since the

materials are acquired in the previous task, but there would be for the devoted time. If we maintain

the price of 15€/h, this work would cost a total of 565€. This is because during the 8 weeks

dedicated to Hardware tasks, time is also dedicated to other tasks, as it is indicated in figure 11.

However, it happens the same as before, in the case that I was the one doing this task, these costs

would not be considered. The third task, the Software one, would have a total cost of 415€ and the

Adaptation of the respirator for children task, around 685€. Within this task, the price of the valve

should also be added, which would be around 100€ [25]. Next, the price of the Enclosure task

would be 400€, considering that the laboratory has a 3D printer as in this case. Its printing, due to

the material used and the hours of operation of the printer, would have a total extra cost of between

10€ and 15€. All these calculations have been made with the allocation of 15€ per hour of work.

The cost of devoting the necessary time for the Final integration is 1.800€ for the time invested and

5€ for the material purchased, the PCB Board. In the case of the last task of Writing the report and

Preparing the presentation, it would not represent any additional cost, since this is something that

I would do myself and as I said before, as a student, I would not be financially rewarded for the

time invested. In this way, the project would have a total cost of approximately 5.300€, but we have

already seen that the price of the materials to build the respirator would be less than 200€, therefore

we would continue to meet the low-cost objective. Below, in Table 13 the classification of costs can

be looked more clearly.

 Personnel Material

Preparation and advance planning 1.050€ 75€

Hardware 565€ -

Software 415€ -

Adaptation of the respirator for children 750€ 100€

Enclosure 500€ 15€

Final integration 1.800€ 5€

Total 5.080€ 195€ 5.275€

Tab 13. Project costs

45

9. Regulations and legal aspects

At the international level, electrical medical equipment, mechanical ventilators among them, must

meet the general safety requirements according to the IEC 60601-1 Standard and the particular

standards of the IEC 60601 Series. The most technically appropriate standards for the national

manufacture of these medical devices are the following [30]:

- ISO 13485 quality management system.

- International standard IEC 60601-1-1: 1996. Electromedical equipment - General safety

requirements. This standard establishes the necessary safety requirements to provide

protection to the patient, the operator and the environment.

- UNE-EN 60601-1: 2006/A1: 2013: Part 1: General requirements for basic safety and

essential operation. (Ratified by AENOR in November 2013).

- UNE-EN 60601-1-2: 2015: General requirements for basic safety and essential operating

characteristics. Collateral standard: Electromagnetic disturbances. Requirements and

tests.

- UNE-EN 60601-1-11: 2015: General requirements for basic safety and essential

operation. Collateral Standard: Requirements for medical electrical equipment and the

medical electrical system used for care in the home medical environment.

- UNE-EN 62304: 2007/A1: 2016: Medical device software. Software life cycle processes.

- ISO 10993: Fifth edition 2018-08: Biological evaluation of medical devices - Part 1:

Evaluation and testing within a risk management process.

- ISO 18.562-1 First edition 2017-03: Assessment of biocompatibility of respiratory gas

pathways in healthcare applications - Part 1: Assessment and testing within a risk

management process.

- ISO 18.562-2 First edition 2017-03: Evaluation of the biocompatibility of respiratory gas

pathways in healthcare applications. - Part 2: tests for particulate matter emissions.

- ISO 18.562-3 First edition 2017: evaluation of the biocompatibility of respiratory gas

pathways.

- ISO 18.562-3 First edition 2017: Evaluation of biocompatibility of respiratory gas

pathways in healthcare applications - Part 3: Volatile organic compound emission tests.

- ISO 80601-2-12: 2011: Particular requirements for the basic safety and essential

performance of critical care ventilators.

46

10. Conclusions and future improvements

With the results obtained, it can be affirmed that this project has fulfilled all its objectives. In the first

place, it has been possible to adapt the previously created ventilator to be used in adults at high

frequencies so that it can also be used in children from 1 to 14 years of age. We can consider that

compared to the other respirators on the market it is a low-cost device, since materials do not

exceed €200. We can also affirm that it is an easy device to build, since it does not have complex

components to use. The only thing that could be complicated to make for someone without

knowledge of the subject would be the PCB board, but even so, as it is an open-source project, the

idea is to provide both the layout of the PCB board design and the Arduino code so that can be

recreated in low-income countries.

With regards to potential future enhancements, one would be to integrate support ventilation

capabilities. This would enable the ventilator to detect when the patient is attempting to inhale and

initiate ventilation automatically when a predefined threshold pressure is exceeded (trigger). This

feature was attempted in this project, however, due to the integration of the valve, it proved to be

difficult to implement.

47

11. Bibliography

11.1. References

[1] Mandelzweig, K. et al. (2018) “Non-invasive ventilation in children and adults in low- and low-middle income

countries: A systematic review and meta-analysis,” Journal of Critical Care, 47, pp. 310–319. Available at:

https://doi.org/10.1016/j.jcrc.2018.01.007.

[2] Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive pressure support ventilator for under-

resourced regions: Open Source Hardware Description, performance and feasibility testing,” European

Respiratory Journal, 55(6), p. 2000846. Available at: https://doi.org/10.1183/13993003.00846-2020.

[3] Howie, S. (2008) “Beyond good intentions: Lessons on equipment donation from an african hospital,” Bulletin

of the World Health Organization, 86(1), pp. 52–56. Available at: https://doi.org/10.2471/blt.07.042994.

[4] What are the different types of mechanical ventilation? (2020) MedicineNet. MedicineNet. Available at:

https://www.medicinenet.com/different_types_of_mechanical_ventilation/article.htm

[5] Cheifetz, I.M. et al. (2006) “Respiratory support for the child with critical heart disease,” Critical Heart Disease

in Infants and Children, pp. 307–332. Available at: https://doi.org/10.1016/b978-032301281-2.50014-x.

[6] UCSanDiegoHealth (2021) Ventilador BiPAP, UCSanDiegoHealth - BiPAP ventilator. Available at:

https://myhealth.ucsd.edu/Spanish/RelatedItems/3,90237es

[7] El Hospital (2021) Ventiladores Para Cuidado Intensivo, El Hospital. Available at:

https://www.elhospital.com/temas/Ventiladores-para-cuidado-intensivo+8062027?pagina=7

[8] Author Heather Glass et al. (2022) High-acuity ventilator cost guide, Medtronic. Available at:

https://hcpresources.medtronic.com/blog/high-acuity-ventilator-cost-guide

[9] Respirem - respirem.org (2021) Respirem. Available at: https://respirem.org.cutestat.com/

[10] Transductores Mecánicos (2017) TRANSDUCTORES. Available at:

https://tranductoresjado.wordpress.com/transductores-mecanicos/

[11] Transductores de presión mecánicos (2021) UDG - MX. Available at:

https://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/3274?mode=full

[12] Jecrespom, P. and Jecrespom (2017) Placas Arduino, Aprendiendo Arduino. Available at:

https://aprendiendoarduino.wordpress.com/2017/06/19/placas-arduino-2/

[13] Ugai, Y. et al. (1997) “Development of wide-viewing-angle TFT-lcds using halftone gray-scale method,”

Electronics and Communications in Japan (Part II: Electronics), 80(5), pp. 89–98. Available at:

https://doi.org/10.1002/(sici)1520-6432(199705)80:5<89::aid-ecjb12>3.0.co;2-2.

[14] Contributor, T.T. (2019) What is LCD (liquid crystal display)?, WhatIs.com. TechTarget. Available at:

https://www.techtarget.com/whatis/definition/LCD-liquid-crystal-display

[15] Brandt, M.J. et al. (2017) “Valves and meters,” Twort's Water Supply, pp. 743–775. Available at:

https://doi.org/10.1016/b978-0-08-100025-0.00018-1.

[16] Electronic pinch valves (no date) Clippard Electronic Pinch Valves. Available at:

https://www.clippard.com/products/isolation-valves-npv

[17] Fang, Z. et al. (2020) “AmbuBox: A fast-deployable low-cost ventilator for covid-19 emergent care,” SLAS

Technology, 25(6), pp. 573–584. Available at: https://doi.org/10.1177/2472630320953801.

https://doi.org/10.1016/j.jcrc.2018.01.007
https://doi.org/10.1183/13993003.00846-2020
https://www.medicinenet.com/different_types_of_mechanical_ventilation/article.htm
https://doi.org/10.1016/b978-032301281-2.50014-x
https://myhealth.ucsd.edu/Spanish/RelatedItems/3,90237es
https://www.elhospital.com/temas/Ventiladores-para-cuidado-intensivo+8062027?pagina=7
https://hcpresources.medtronic.com/blog/high-acuity-ventilator-cost-guide
https://respirem.org.cutestat.com/
https://tranductoresjado.wordpress.com/transductores-mecanicos/
https://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/3274?mode=full
https://aprendiendoarduino.wordpress.com/2017/06/19/placas-arduino-2/
https://doi.org/10.1002/(sici)1520-6432(199705)80:5<89::aid-ecjb12>3.0.co;2-2
https://www.techtarget.com/whatis/definition/LCD-liquid-crystal-display
https://doi.org/10.1016/b978-0-08-100025-0.00018-1
https://www.clippard.com/products/isolation-valves-npv
https://doi.org/10.1177/2472630320953801

48

[18] M., A. (2022) Softwares de modelado 3D gratis, 3Dnatives. Available at:

https://www.3dnatives.com/es/softwares-modelado-3d-gratis-210720202/

[19] Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive pressure support ventilator for under-

resourced regions: Open Source Hardware Description, performance and feasibility testing – Supplementary

Technical Description,” European Respiratory Journal, 55(6), p. 2000846. Available at:

https://doi.org/10.1183/13993003.00846-2020.

[20] XGZP6847 Datasheet. Available at: https://www.sgbotic.com/products/datasheets/sensors/02976-

datasheet.pdf

[21] XGZP6897A Datasheet. Available at: https://cfsensor.com/wp-content/uploads/2022/11/XGZP6897A-

Pressure-Sensor-V2.5.pdf

[22] Arduino Mega 2560 REV3 (2022) Arduino Official Store. Available at:

https://store.arduino.cc/products/arduino-mega-2560-rev3

[23] Block diagram 1. arduinomega2560 (2015). Available at: https://www.researchgate.net/figure/Block-

Diagram-1-ArduinoMEGA2560-The-Arduino-Mega-2560-is-a-type-of-microcontroller_fig5_281538436

[24] 3.5inch Arduino display-mega2560 (no date) 3.5inch Arduino Display-Mega2560 - LCD wiki. Available at:

http://www.lcdwiki.com/3.5inch_Arduino_Display-Mega2560

[25] ASCO (2022) Emerson. Available at: https://www.emerson.com/en-es/catalog/automation/fluid-control-

pneumatics/angle-seat-pinch-diaphragm-valves/asco-s307-en-gb

[26] Valves (2022) Asco™ Series S307 pinch solenoid valves, İntegral Elektronik. Available at:

https://integralelektronik.com/product/asco-series-s307-pinch-solenoid-valves/#tab-specification

[27] Kadu, C.B. and Patil, C.Y. (2016) “Design and implementation of stable PID controller for Interacting Level

Control System,” Procedia Computer Science, 79, pp. 737–746. Available at:

https://doi.org/10.1016/j.procs.2016.03.097.

[28] Bhunia, S. and Tehranipoor, M. (2019) “Printed Circuit Board (PCB): Design and test,” Hardware Security,

pp. 81–105. Available at: https://doi.org/10.1016/b978-0-12-812477-2.00009-5.

[29] Zhang, H., Krooswyk, S. and Ou, J. (2015) “PCB design for Signal integrity,” High Speed Digital Design, pp.

27–115. Available at: https://doi.org/10.1016/b978-0-12-418663-7.00002-2.

[30] Normativa y especificaciones técnicas Ventiladores Mecánicos (2021). Available at:

https://www.uchile.cl/documentos/normativa-y-especificaciones-tecnicas-ventiladores-

mecanicos_162480_1_2932.pdf

11.2. Figures

Fig 1. Iron lung - Pulmón de Acero (2022) Wikipedia. Wikimedia Foundation. Available at:

https://es.wikipedia.org/wiki/Pulm%C3%B3n_de_acero

Fig 2. Chest cuirass - Negative pressure ventilation (2021) Virtual Museum. Available at:

https://museum.aarc.org/galleries/negative-pressure-ventilation/

Fig 3. BiPAP respirator O. Garmendia et al. - Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive

pressure support ventilator for under-resourced regions: Open Source Hardware Description, performance and

feasibility testing – Supplementary Technical Description,” European Respiratory Journal, 55(6), p. 2000846.

Available at: https://doi.org/10.1183/13993003.00846-2020.

https://www.3dnatives.com/es/softwares-modelado-3d-gratis-210720202/
https://doi.org/10.1183/13993003.00846-2020
https://www.sgbotic.com/products/datasheets/sensors/02976-datasheet.pdf
https://www.sgbotic.com/products/datasheets/sensors/02976-datasheet.pdf
https://cfsensor.com/wp-content/uploads/2022/11/XGZP6897A-Pressure-Sensor-V2.5.pdf
https://cfsensor.com/wp-content/uploads/2022/11/XGZP6897A-Pressure-Sensor-V2.5.pdf
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://www.researchgate.net/figure/Block-Diagram-1-ArduinoMEGA2560-The-Arduino-Mega-2560-is-a-type-of-microcontroller_fig5_281538436
https://www.researchgate.net/figure/Block-Diagram-1-ArduinoMEGA2560-The-Arduino-Mega-2560-is-a-type-of-microcontroller_fig5_281538436
http://www.lcdwiki.com/3.5inch_Arduino_Display-Mega2560
https://www.emerson.com/en-es/catalog/automation/fluid-control-pneumatics/angle-seat-pinch-diaphragm-valves/asco-s307-en-gb
https://www.emerson.com/en-es/catalog/automation/fluid-control-pneumatics/angle-seat-pinch-diaphragm-valves/asco-s307-en-gb
https://integralelektronik.com/product/asco-series-s307-pinch-solenoid-valves/#tab-specification
https://doi.org/10.1016/j.procs.2016.03.097
https://doi.org/10.1016/b978-0-12-812477-2.00009-5
https://doi.org/10.1016/b978-0-12-418663-7.00002-2
https://www.uchile.cl/documentos/normativa-y-especificaciones-tecnicas-ventiladores-mecanicos_162480_1_2932.pdf
https://www.uchile.cl/documentos/normativa-y-especificaciones-tecnicas-ventiladores-mecanicos_162480_1_2932.pdf
https://es.wikipedia.org/wiki/Pulm%C3%B3n_de_acero
https://museum.aarc.org/galleries/negative-pressure-ventilation/
https://doi.org/10.1183/13993003.00846-2020

49

Fig 4. RESPIREM project - Respirem - respirem.org (2021) Respirem. Available at:

https://respirem.org.cutestat.com/

Fig 5. Mechanical pressure transducer – Sites.google.com (2021) Available at:

https://support.google.com/blogger/thread/108309234/images-with-the-url-https-1-bp-blogspot-com-are-not-

showing-on-my-blog-what-should-i-do?hl=en

Fig 6. Electromechanical pressure transducer (piezoelectric) - Sites.google.com (2021) Available at:

https://sites.google.com/site/tema8otrostransductores/5-transductores-de-presion/elecmec.jpg?attredirects=0

Fig 7. Arduino UNO board - Arduino Uno REV3 (2022) Arduino Official Store. Available at:

https://store.arduino.cc/products/arduino-uno-rev3

Fig 8. Arduino Mega board - Arduino Mega 2560 REV3 (2022) Arduino Official Store. Available at:

https://store.arduino.cc/products/arduino-mega-2560-rev3

Fig 9. Arduino Nano board - Arduino Nano (2022) Arduino Official Store. Available at:

https://store.arduino.cc/products/arduino-nano

Fig 10. LCD screen - MisterBotBreak 2022. How to use an LCD screen, Hackster.io. Available at:

https://www.hackster.io/MisterBotBreak/how-to-use-an-lcd-screen-8c993f.

Fig 11. OLED screen - Azdelivery 1,3 Pulgadas OLED display I2C SSH1106 chip 128 x 64 Pixeles I2C (no date)

Amazon.es: Electrónica. Available at: https://www.amazon.es/AZDelivery-Pantalla-Display-pixeles-

Parent/dp/B082M9FTPZ .

Fig 12. Ball valve - Own source

Fig 13. First version of valve with leak control - Own source.

Fig 14. Final version of valve with leak control – Own source

Fig 15. Pinch solenoid pneumatic valve - ASCO (2020) Emerson. Available at: https://www.emerson.com/en-

es/catalog/automation/fluid-control-pneumatics/angle-seat-pinch-diaphragm-valves/asco-s307-en-gb? .

Fig 16. Blower dimensions - Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive pressure support

ventilator for under-resourced regions: Open Source Hardware Description, performance and feasibility testing –

Supplementary Technical Description,” European Respiratory Journal, 55(6), p. 2000846. Available at:

https://doi.org/10.1183/13993003.00846-2020.

Fig 17. Graph of the pressure levels that can be reached - Garmendia, O. et al. (2020) “Low-cost, easy-to-build

noninvasive pressure support ventilator for under-resourced regions: Open Source Hardware Description,

performance and feasibility testing – Supplementary Technical Description,” European Respiratory Journal,

55(6), p. 2000846. Available at: https://doi.org/10.1183/13993003.00846-2020.

Fig 18. Pressure-flow graph of the blower at 12V - Garmendia, O. et al. (2020) “Low-cost, easy-to-build

noninvasive pressure support ventilator for under-resourced regions: Open Source Hardware Description,

performance and feasibility testing – Supplementary Technical Description,” European Respiratory Journal,

55(6), p. 2000846. Available at: https://doi.org/10.1183/13993003.00846-2020.

Fig 19. Pressure-flow graph of the blower at 15V - Garmendia, O. et al. (2020) “Low-cost, easy-to-build

noninvasive pressure support ventilator for under-resourced regions: Open Source Hardware Description,

performance and feasibility testing – Supplementary Technical Description,” European Respiratory Journal,

55(6), p. 2000846. Available at: https://doi.org/10.1183/13993003.00846-2020.

Fig 20. Pressure-flow graph of the blower at 24V - Garmendia, O. et al. (2020) “Low-cost, easy-to-build

noninvasive pressure support ventilator for under-resourced regions: Open Source Hardware Description,

https://respirem.org.cutestat.com/
https://support.google.com/blogger/thread/108309234/images-with-the-url-https-1-bp-blogspot-com-are-not-showing-on-my-blog-what-should-i-do?hl=en
https://support.google.com/blogger/thread/108309234/images-with-the-url-https-1-bp-blogspot-com-are-not-showing-on-my-blog-what-should-i-do?hl=en
https://sites.google.com/site/tema8otrostransductores/5-transductores-de-presion/elecmec.jpg?attredirects=0
https://store.arduino.cc/products/arduino-uno-rev3
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://store.arduino.cc/products/arduino-nano
https://www.hackster.io/MisterBotBreak/how-to-use-an-lcd-screen-8c993f
https://www.amazon.es/AZDelivery-Pantalla-Display-pixeles-Parent/dp/B082M9FTPZ
https://www.amazon.es/AZDelivery-Pantalla-Display-pixeles-Parent/dp/B082M9FTPZ
https://www.emerson.com/en-es/catalog/automation/fluid-control-pneumatics/angle-seat-pinch-diaphragm-valves/asco-s307-en-gb
https://www.emerson.com/en-es/catalog/automation/fluid-control-pneumatics/angle-seat-pinch-diaphragm-valves/asco-s307-en-gb
https://doi.org/10.1183/13993003.00846-2020
https://doi.org/10.1183/13993003.00846-2020
https://doi.org/10.1183/13993003.00846-2020
https://doi.org/10.1183/13993003.00846-2020

50

performance and feasibility testing – Supplementary Technical Description,” European Respiratory Journal,

55(6), p. 2000846. Available at: https://doi.org/10.1183/13993003.00846-2020.

Fig 21. Driver 7040 - Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive pressure support ventilator

for under-resourced regions: Open Source Hardware Description, performance and feasibility testing –

Supplementary Technical Description,” European Respiratory Journal, 55(6), p. 2000846. Available at:

https://doi.org/10.1183/13993003.00846-2020.

Fig 22. XGZP6847 pressure transducer - XGZP6847 gas pressure sensor transmitter module 0-1MPA 3.3V/5V

optional (2022) Xgzp6847 Gas Pressure Sensor Transmitter Module 0-1mpa 3.3v/5v Optional - Buy Transmitter

Module,Gas Pressure Sensor,Xgzp6847 Product on Alibaba.com. Available at: https://www.alibaba.com/product-

detail/XGZP6847-gas-pressure-sensor-transmitter-module_1600066524504.html

Fig 23. XGZP6897A pressure transducer - 8.89 – 9.89 $: Rating 100% (2022) Alitools.io. Available at:

https://alitools.io/en/showcase/xgzp6897a-differential-pressure-sensor-1kpa-dual-intake-suitable-pressure-

sensor-wind-speed-flow-1005001757645780 (Accessed: January 23, 2023).

Fig 24. Layout of ArduinoMEGA2560 - Block diagram 1. arduinomega2560 (2015). Available at:

https://www.researchgate.net/figure/Block-Diagram-1-ArduinoMEGA2560-The-Arduino-Mega-2560-is-a-type-of-

microcontroller_fig5_281538436

Fig 25. TFT display 3.5 inch compatible with ArduinoMEGA2560 - 3.5inch Arduino display-mega2560 (2022)

3.5inch Arduino Display-Mega2560 - LCD wiki. Available at: http://www.lcdwiki.com/3.5inch_Arduino_Display-

Mega2560

Fig 26. Enclosure of the ventilator – Own source

Fig 27. Front elevation view – Own source

Fig 28. Profile view – Own source

Fig 29. Back elevation view – Own source

Fig 30. PCB board layout – Own source

Fig 31. Diagram of the analog pin connections – Own source

Fig 32. Diagram of the pressure sensor connections – Own source

Fig 33. Diagram of the digital pin connections – Own source

Fig 34. Diagram of the blower connections – Own source

Fig 35. Pressure-time graph of the condition 4 – Own source

Fig 36. Pressure-time graph of the condition 12 – Own source

Fig 37. Flow-time graph of the condition 4 – Own source

Fig 37. Flow-time graph of the condition 12 – Own source

Fig 38. PERT diagram – Own source

Fig 39. GANTT diagram – Own source

https://doi.org/10.1183/13993003.00846-2020
https://doi.org/10.1183/13993003.00846-2020
https://www.alibaba.com/product-detail/XGZP6847-gas-pressure-sensor-transmitter-module_1600066524504.html
https://www.alibaba.com/product-detail/XGZP6847-gas-pressure-sensor-transmitter-module_1600066524504.html
https://www.researchgate.net/figure/Block-Diagram-1-ArduinoMEGA2560-The-Arduino-Mega-2560-is-a-type-of-microcontroller_fig5_281538436
https://www.researchgate.net/figure/Block-Diagram-1-ArduinoMEGA2560-The-Arduino-Mega-2560-is-a-type-of-microcontroller_fig5_281538436
http://www.lcdwiki.com/3.5inch_Arduino_Display-Mega2560
http://www.lcdwiki.com/3.5inch_Arduino_Display-Mega2560

51

11.3. Tables

Tab 1. Blower characteristics - Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive pressure support

ventilator for under-resourced regions: Open Source Hardware Description, performance and feasibility testing –

Supplementary Technical Description,” European Respiratory Journal, 55(6), p. 2000846. Available at:

https://doi.org/10.1183/13993003.00846-2020.

Tab2. Respiratory resistance–compliance systems of 12 different conditions simulated for the bench test – Own

source

Tab 3. Work-Breakdown Structure of the project – Own source

Tab 4. Work-Breakdown Structure dictionary of Task 1 – Own source

Tab 5. Work-Breakdown Structure dictionary of Task 2 – Own source

Tab 6. Work-Breakdown Structure dictionary of Task 3 – Own source

Tab 7. Work-Breakdown Structure dictionary of Task 4 – Own source

Tab 8. Work-Breakdown Structure dictionary of Task 5 – Own source

Tab 9. Work-Breakdown Structure dictionary of Task 6 – Own source

Tab 10. Work-Breakdown Structure dictionary of Task 7 – Own source

Tab 11. PERT tasks – Own source

Tab 12. Project DAFO – Own source

Tab 13. Project costs – Own source

https://doi.org/10.1183/13993003.00846-2020

52

12. Annexes

Annex 1 – Technical parameters of driver 7040

Garmendia, O. et al. (2020) “Low-cost, easy-to-build noninvasive pressure support ventilator for under-resourced

regions: Open Source Hardware Description, performance and feasibility testing – Supplementary Technical

Description,” European Respiratory Journal, 55(6), p. 2000846. Available at:

https://doi.org/10.1183/13993003.00846-2020.

Annex 2 – Technical parameters of XGZP6847 pressure transducer

XGZP6847 Datasheet. Available at: https://www.sgbotic.com/products/datasheets/sensors/02976-datasheet.pdf

https://doi.org/10.1183/13993003.00846-2020
https://www.sgbotic.com/products/datasheets/sensors/02976-datasheet.pdf

53

Annex 3 – Technical parameters of XGZP6897A pressure transducer

XGZP6897A Datasheet. Available at: https://cfsensor.com/wp-content/uploads/2022/11/XGZP6897A-Pressure-

Sensor-V2.5.pdf

Annex 4 – Technical aspects of ASCO™ Series S307 Pinch solenoid valve

ASCO™ pinch solenoid valve series - fluidconcept.de (2022). Available at:

https://www.fluidconcept.de/media/downloads/dbl/ASCO-S307.pdf

https://cfsensor.com/wp-content/uploads/2022/11/XGZP6897A-Pressure-Sensor-V2.5.pdf
https://cfsensor.com/wp-content/uploads/2022/11/XGZP6897A-Pressure-Sensor-V2.5.pdf
https://www.fluidconcept.de/media/downloads/dbl/ASCO-S307.pdf

54

Annex 5 – Arduino code for ventilator operation

The last part of the code is for the future improvement of support mode.

#define CENTRE 240

#define BLUE 0x001F //parameters of the colors for the display

#define RED 0xF800

#define GREEN 0x07E0

#define CYAN 0x07FF

#define MAGENTA 0xF81F

#define YELLOW 0xFFE0

#define WHITE 0xFFFF

#define BLACK 0x0000

#include <TFT_HX8357.h> // Hardware-specific library LCD

TFT_HX8357 tft = TFT_HX8357();

#include <PID_v1.h> //PID library

#define analog 11 //define digital 11 as analog output PWM.

#define analog_flow 9 //define digital 9 as analog_flow.

#define switchPin 12 //define digital 12 as SwitchPin.

#define mode 13 //define digital 13 modo automatico/paciente.

#define led 8 //define digital 8 as led.

#define valve 10 //define digital 10 control valvula ins/esp

#define sensorpress1 A6 //define sensorpress1 as analog input A6 (pressure

sensor 1)

#define sensorpress2 A7 //define sensorpress1 as analog input A7 (pressure

sensor 2)

#define analog_ipap A2 //define analog_ipap as analog ipunt A2 (ipap

potentiometer)

#define analog_porcentaje A3 //define analog_porcentaje as analog input A3 (cycling

potentiometer)

#define analog_freq A4 //frequency potentiometer adjustment is connected to

the analog input 4

#define analog_dutty A5 //I/E potentiometer adjustment is connected to the

analog input 5

#define flow_ins A12 //define sensorpress Flow ins as analog input A12.

#define flow_esp A13 //define sensorpress Flow esp as analog input A13.

55

int freq, periodo, dutty, duttycien;

double Setpoint, Input, Output,flow_hp,flow_bp; //control variables

double Kp=0.12, Ki=0.75, Kd=0; // PID values variables

KP(proportional),Ki(integral),Kd(derivative)

byte autoipap = 0,lcdmodecpap=1,lcdmodebipap=1,switchState =

0,selectmode=0,mode1=0,restard,ctrolvalve=0; //state switch variables

unsigned long t0,tiempoahora ,t1,t2;

int Tm =10000; //Sampling freq in us

int Tx=20900;//time x pixel

int bpm_1=-1, dutty100_1=-1,timediv_1=-1,P_ipap_1=-1,volumenesp=0,volumenins=0;

float tiempo =0;

float fc_hp=0.125; //cuttof freq for HP filter

float fc_lp=1.125; //cuttof freq for LP filter

float RC_hp =1/(2*PI*fc_hp);

float RC_lp =1/(2*PI*fc_lp);

double data_filt_hp[] = {0, 0};

double data_hp[] = {0, 0};

double data_filt_lp[] = {0, 0};

double data_lp[] = {0, 0};

double maximo=0,vmax=0,flow=0;

int ipap,zero1,zero2,zeroins,zeroesp,consigna=0;

float

porcentaje,P_sensor1,P_sensor1_g,P_ipap,P_sensor2,flowins,flowesp,flowins_g,flowesp_g;

int ctroltime;

int gain_flow =100; // variable integer gain_flow

char P_sensor1string[4];

char P_sensor2string[4];

char P_IPAPstring[4];

char porcentajestring[2];

char timestring[2];

int i,x=0,yp,yesp,yins,h=0,y=0,z=0,g=0;

int samplepressure1[25]; //array for sampling pressure sensor 1 (samplepressure0)

int samplepressure2[25]; //array for sampling pressure sensor 2 (samplepressure1)

int sampleflowins[25];

int sampleflowesp[25];

int samplepressure1_g[25];

int sampleflowins_g[25];

int sampleflowesp_g[25];

56

double totalpress2 = 0, totalpress1 = 0,

totalpress1_g=0,totalflowins=0,totalflowesp=0,totalflowins_g=0,totalflowesp_g=0;

double

pressinzero1,pressinzero1_g,pressinzero2,samplezero1,samplezero2,totalzero1=0,totalzero2

=0,flowsinzeroins,flowsinzeroesp,samplezeroins,samplezeroesp,totalzeroins,totalzeroesp;

float flowesp_ls,flowins_ls;

uint16_t bufpres[480];

uint16_t bufflow[480];

char vesp[4],vins[4],Pset[4],Preal[2];

unsigned long color;

float K1esp=0.233,K2esp=2.33,K1ins=0.233,K2ins=2.33;

float calflowcmH2o =2.55; //pressure sensors to measure flow (2,55Cmh20=1V)

float calprescmH2o =12.7475;//pressure sensors to mesure pressure (12.7475Cmh20=1V)

PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT); //PID function declaration

void setup() {

Serial.begin(115200);

pinMode(switchPin,INPUT); //define switchPin as input

pinMode(mode,INPUT); //mode automatic =0 mode paciente =1

pinMode(valve,OUTPUT);

pinMode(led,OUTPUT); //define led as output

tft.init();

tft.setRotation(1);

//tft.invertDisplay(1);

tft.fillScreen(BLACK);

myPID.SetMode(AUTOMATIC); //PID in automatic mode

consigna=ipap;

//--- calibration process ------------------------

--

57

for(i=0; i< 24; i++) //array initialization

 {

samplepressure1[i] = 0;

samplepressure2[i] = 0;

sampleflowins[i]=0;

sampleflowesp[i]=0;

 }

i=0;

tft.setTextColor(WHITE,BLACK);

tft.drawString("Calibrating zero",150, 80,4);

for(i=0; i< 91; i++) //record every 50ms pressure value for a total time of 4.5s and

accumulates the sum in totalzero1,totalzero2,totalzeroins,totalzeroesp variable

 {

if (i==0 || i==6 || i==12 || i==18 || i==24 || i==30 || i==36 || i==42 || i==48 || i==54

|| i==60 || i==66 || i==72 || i==78 || i==84 || i==90)

 {

 tft.drawString("*",50+4*i,130,4);

 }

samplezero1 = analogRead(sensorpress1); //Readings of pressure sensor 1

totalzero1 = totalzero1 + samplezero1;

samplezero2 = analogRead(sensorpress2); //Readings of pressure sensor 2

totalzero2 = totalzero2 + samplezero2;

samplezeroins=analogRead(flow_ins); //Readings of pressure sensor flowins

totalzeroins = totalzeroins + samplezeroins;

samplezeroesp=analogRead(flow_esp); //Readings of pressure sensor flowesp

totalzeroesp = totalzeroesp + samplezeroesp;

delay(50);

58

 }

//------------------------real zero calculated (P1,P2,flow ins,Flow esp) ---------------

zero1=totalzero1/i;

zero2=totalzero2/i;

zeroins=totalzeroins/i;

zeroesp=totalzeroesp/i;

//-------------------------------- write text in the display----------------------------

tft.drawString("P1:",100,180,4);

tft.drawString("P2:",285,180,4);

tft.drawString("flow Insp:",40,220,4);

tft.drawString("flow esp:",270,220,4);

//--------------- verification that zero pressure correction is OK (<0.3cmH20). If not,

gives an error and restarts ----------------------

for(i=0; i< 50; i++) {

// zero desviations correction

pressinzero1 =analogRead(sensorpress1)-zero1;

pressinzero2 =analogRead(sensorpress2)-zero2;

flowsinzeroins=analogRead(flow_ins)-zeroins;

flowsinzeroesp=analogRead(flow_esp)-zeroesp;

//conversion of pressure transducer to cmH2o

P_sensor1=abs(pressinzero1*4.8*calprescmH2o/1023);

P_sensor2=abs(pressinzero2*4.8*calprescmH2o/1023);

flowins=abs(flowsinzeroins*4.8*calflowcmH2o/1023);

flowesp=abs(flowsinzeroesp*4.8*calflowcmH2o/1023);

//write tha values of pressure transducer to cmH2o in the display

tft.drawFloat(P_sensor1,2,175, 180,4);

tft.drawFloat(P_sensor2,2,360, 180,4);

59

tft.drawFloat(flowins,2,175, 220,4);

tft.drawFloat(flowesp,2,395, 220,4);

delay(300);

 if (P_sensor1 >0.3 || P_sensor2>0.3 || flowins>0.3 || flowesp>0.3) { //

calibration error

 tft.drawString("err calibrating ",150, 80,4);

 tft.setTextColor(WHITE,RED);

 if (P_sensor1 >0.3) {

 tft.drawFloat(P_sensor1,2,175, 180,4); // if the pressure error

is in Psensor1 write the value in red on the LCD

 }

 if (P_sensor2 >0.3) {

 tft.drawFloat(P_sensor2,2,360, 180,4); // if the pressure error

is in Psensor2 write the value in red on the LCD

 }

 if (flowins >0.3){

 tft.drawFloat(flowins,2,175, 220,4); // if the pressure error is

in flowins write the value in red on the LCD

 }

 if (flowesp >0.3){

 tft.drawFloat(flowesp,2,395, 220,4); // if the pressure error

is in flowesp write the value in red on the LCD

60

 }

tft.setTextColor(WHITE,BLACK);

tft.drawString("Restard sofware.",150, 80,4);

delay(3000);

restard =1; //restart

i=50;

 }

 }

//-- if error,restart variables

and restart setup calibration routine-----------------

if (restard ==1) {

 i=0;

 totalzero1=0;

 totalzero2=0;

 totalzeroins=0;

 totalzeroesp=0;

 restard=0;

 setup();

 }

inicio();

//t0 ,t1 and t2 control the time intervals

t0=micros();

t1=millis();

t2=micros();

61

tiempoahora =millis();

 } //end setup

void grafica1(int pixel){ // loop for creating the graph

 color=BLACK;

 if(bufpres[x]==300 || bufpres[x]==50 ||bufpres[x]==175 ||x==0 ||x==478)

{color=RED;}

 if(bufpres[x]==300 || bufpres[x]==50 ||bufpres[x]==175 ||x==0 ||x==478)

{color=RED;}

if(x==48 || x==96 || x==144 || x==192 || x==240 || x==288 || x==336 || x==384 || x==432

|| x==480)

 {

 if ((bufpres[x]>=170 && bufpres[x]<=180) || (bufpres[x]>=290 &&

bufpres[x]<=300)) { color=RED;}

 }

if(bufpres[x]==50 || bufpres[x]==75 || bufpres[x]==100 || bufpres[x]==125 ||

bufpres[x]==5175 || bufpres[x]==200 || bufpres[x]==225 || bufpres[x]==250 ||

bufpres[x]==275 || bufpres[x]==300)

 {

 if ((x>=469 && x<=479) || (x>=0 && x<=10)) { color=RED;}

 }

if (x <=478) {

 tft.drawPixel(x,bufpres[x],color);

62

 tft.drawPixel(x,pixel,WHITE);

 bufpres[x]=pixel;

 x++;

 }

else{x=0;}

 color=BLACK;

 if(bufflow[x]==300 || bufflow[x]==50 ||bufflow[x]==175 ||x==0 ||x==478)

{color=RED;}

 if(bufflow[x]==300 || bufflow[x]==50 ||bufflow[x]==175 ||x==0 ||x==478)

{color=RED;}

if(x==48 || x==96 || x==144 || x==192 || x==240 || x==288 || x==336 || x==384 || x==432

|| x==480)

 {

 if ((bufflow[x]>=170 && bufflow[x]<=180) || (bufflow[x]>=290 &&

bufflow[x]<=300)) { color=RED;}

 }

if(bufflow[x]==50 || bufflow[x]==75 || bufflow[x]==100 || bufflow[x]==125 ||

bufflow[x]==5175 || bufflow[x]==200 || bufflow[x]==225 || bufflow[x]==250 ||

bufflow[x]==275 || bufflow[x]==300)

 {

 if ((x>=469 && x<=479) || (x>=0 && x<=10)) { color=RED;}

 }

 }

 void inicio(){

63

 tft.fillScreen(BLACK);

 tft.drawLine(0,50,0,300,RED); //vertical axis

 for (int i=50; i <=300; i=i+25){

 tft.drawLine(0,i,10,i,RED); //ticks y axis

 }

 tft.drawLine(479,50,479,300,RED); //vertical y2 axis

 for (int i=50; i <=300; i=i+25){tft.drawLine(469,i,479,i,RED);}

//ticks y2 axis

 tft.drawLine(0,50,479,50,RED);

 tft.drawLine(0,300,479,300,RED); //horizontal axis

 for (int x=0; x <=479; x=x+48){tft.drawLine(x,290,x,300,RED); }

//ticks x axis

 tft.drawLine(0,175,479,175,RED); //horizontal x2 axis

 for (int x=0; x <=479; x=x+48){tft.drawLine(x,170,x,180,RED);} //ticks x2 axis

 tft.drawLine(345,313,360,313,YELLOW) ;

 tft.drawLine(95,313,110,313,WHITE) ;

 tft.setTextColor(YELLOW);

 tft.drawString("Flow",370,310,1);

 tft.drawString("-1 L/s",445,310,1);

 tft.drawString("1 L/s",450,40,1);

 tft.setTextColor(WHITE);

 tft.drawString("Press",120,310,1);

 tft.drawString("0CmH2o",1,310,1);

 tft.drawString("40CmH2o",1,40,1);

 tft.drawString("ms/div",245,310,1);

64

 }

void loop() {

freq = analogRead(analog_freq); //respiratory frequency

periodo=map(freq,0,1023,5000,1000);

dutty= analogRead(analog_dutty); // Inspiration/Expiration relation

float duttycien=map(dutty,0,1023,20,50);

float duttyuno=(duttycien/100);

int bpm =map(freq,0,1023,12,60);

//String duttycien_string;

int dutty100;

dutty100=duttycien;

int valor=digitalRead(valve); //0=exp and 1=ins

sampleflowins_g[g]=analogRead(flow_ins);

totalflowins_g=totalflowins_g+sampleflowins_g[g];

sampleflowesp_g[g]=analogRead(flow_esp);

totalflowesp_g=totalflowesp_g+sampleflowesp_g[g];

samplepressure1_g[g] = analogRead(sensorpress1); //Pressure sensor 1 measurements are

accumulated

totalpress1_g = samplepressure1_g[g] + totalpress1_g ;

g++;

Tx=-347.21*bpm+25000; // interval in microseconds used to plot pressure and flow pixels

int timediv =(Tx/1000)*48; //indicates the duration of each division of the TFT

65

if (timediv_1 != timediv) { //only plot the value of timediv if it changes

value

 tft.drawNumber(timediv,225,310,1); // timediv graph in the TF

 timediv_1=timediv; //this reassignment of the variable is what makes it

only enter once in the

 //if and only enter again if there is a change in the

timediv variable

 }

// ------------------------------ data graph every 20900 microsec (tx) -----------------

if (micros()-(t2)>=Tx) {

 tiempo=(micros()-t2);

 t2=micros(); //restart the time variable

 P_sensor1_g=100*abs((((totalpress1_g/g)-zero2)*4.8*calprescmH2o/1023));

//pressure in cmH20

 yp=map(P_sensor1_g,0,4000,300,55);

grafica1(yp);

switchState = digitalRead(switchPin); //setup values switch

int ndec =P_ipap*10;

int n =P_ipap;

int nint=n*10;

int dec =ndec-nint;

sprintf(Pset, "%02d.%01d", n, dec);

if (switchState == LOW) { // Auto mode

66

 if (lcdmodebipap ==1) { //write text BPM I/E P Vi Ve one time only

 tft.setTextColor(WHITE,BLACK);

 tft.drawString("BPM: I/E: % P: Vi:

Ve: ",0,10,4);

 lcdmodebipap=0;

 }

 if (valor==0) { //if valve is in exp mode

 if (volumenins >-1) {

 sprintf(vins, "%04d", volumenins);

// convert inspiratory volume to text with 4 digits

 tft.drawString(vins,321,10,4);

// shows the inspiratory volume in ml on the screen

 volumenins=-2;

 }

 flowesp_g=(((totalflowesp_g/g)-zeroesp)*4.8*calflowcmH2o/1023);

//exp flow sensor in cmH20

 flowesp_ls=100*(-K1esp+sqrt(K1esp*K1esp+(4*K2esp*flowesp_g)))/(2*K2esp);

//exp flow sensor in l/s applying k1 k2

 volumenesp =volumenesp+(flowesp_ls*tiempo/100000);

//calculate the exp volume

 yesp=map(flowesp_ls,0,100,175,300);

//mapping exp flow to graph values

 tft.drawPixel(x,bufflow[x],color);

//remove previous yesp saved in bufflow from the graph

 tft.drawPixel(x,yesp,YELLOW);

//plot current yesp

 bufflow[x]=yesp;

//saves the yesp value of the current pixel in bufflow so that it can be deleted from

the graph later before plotting the new one

67

 }

 if (valor==1) { // if valve is in ins mode

 if (volumenesp >-1) {

 sprintf(vesp, "%04d", volumenesp); //

convert expiratory volume to 4-digit text

 tft.drawString(vesp,420,10,4); // shows

the expirtory volume in ml on the screen

 volumenesp=-2;

 }

 flowins_g=(((totalflowins_g/g)-zeroins)*4.8*calflowcmH2o/1023);

//ins flow sensor in cmH20

 flowins_ls=100*(-K1ins+sqrt((K1ins*K1ins)+(4*K2ins*flowins_g)))/(2*K2ins);

//ins flow sensor in l/s applying k1 k2

 volumenins =volumenins+(flowins_ls*tiempo/100000);

//calculate the ins volume

 yins=map(flowins_ls,0,100,175,50);

//mapping ins flow to graph values

 tft.drawPixel(x,bufflow[x],color);

//remove previous yins saved in bufflow from the graph

 tft.drawPixel(x,yins,YELLOW);

//plot current yins

 bufflow[x]=yins;

//saves the yins value of the current pixel in bufflow so that it can be deleted from

the graph later before plotting the new one

 }

 dtostrf(porcentaje,2,0,porcentajestring);

 if (bpm_1 != bpm) { //writes the selected BPM value to the

screen only if there are changes in its value

 bpm_1=bpm;

 tft.drawNumber(bpm,65,10,4);

 }

68

 if (dutty100_1 != dutty100) { //writes the selected dutty100 value (I/E)

to the screen only if there are changes in its value

 dutty100_1=dutty100;

 tft.drawNumber(dutty100,145,10,4);

 }

 if (P_ipap_1 != ipap) { //writes the selected pressure (ipap) value

to the screen only if there are changes in its value

 P_ipap_1=ipap;

 tft.drawString(Pset,235,10,4);

 }

 }

 if (switchState == HIGH) { // setup mode

 if (lcdmodebipap ==0) {

 tft.drawString("set Press: CmH2o Pres: CmH2o

",0,10,4);

 dutty100_1=-1;

 bpm_1=-1;

 P_ipap_1=-1;

 }

 lcdmodebipap=1;

 digitalWrite(valve , HIGH);

 dtostrf(P_ipap,2,1, P_IPAPstring);

 if (P_ipap_1 != ipap) {

69

 P_ipap_1=ipap;

 tft.drawString(Pset,115,10,4);

 }

 int Psensor1 =P_sensor1;

 sprintf(Preal,"%02d",Psensor1);

 tft.drawString(Preal,345,10,4);

 }

//---reset graph variables------------------------

g=0;

totalpress1_g=0;

totalflowins_g=0;

totalflowesp_g=0;

 }

//---end graphing data--------------------

sampleflowins[i]=analogRead(flow_ins); //Pressure sensor for ins flow

measurements are accumulated

totalflowins=totalflowins+sampleflowins[i];

sampleflowesp[i]=analogRead(flow_esp); //Pressure sensor for esp flow

measurements are accumulated

totalflowesp=totalflowesp+sampleflowesp[i];

samplepressure1[i] = analogRead(sensorpress1); //Pressure sensor 1 measurements are

accumulated

totalpress1 = totalpress1 + samplepressure1[i];

samplepressure2[i] = analogRead(sensorpress2); //Pressure sensor 2 measurements are

accumulated

totalpress2 = totalpress2 + samplepressure2[i];

ctroltime = 3; //control time variable can be adjusted with the potentiometer (3s-7s)

70

i++;

//---------------------------- control pid--

if (micros()-(t0)>=Tm) {

 tiempo=(micros()-t0);

 t0=micros();

 pressinzero1 = (totalpress1/i)-zero1; // pressure sensor 1

should be unplugged (connected to atmospheric pressure)and correct the displayed value

(zero desviations correction)

 pressinzero2 = (totalpress2/i)-zero2; // pressure sensor 2

should be unplugged (connected to atmospheric pressure)and correct the displayed value

(zero desviations correction)

 P_sensor1=abs(pressinzero1*4.8*calprescmH2o/1023);

 P_sensor2=abs(pressinzero2*4.8*calprescmH2o/1023);

 ipap=map(analogRead(analog_ipap),0,1023,67,402);//ipap range: 4-24 cmH2O (67-

402)

 //ipap= 0.833*analogRead(analog_ipap)+170;

 P_ipap =(ipap*calprescmH2o*4.8/1023.00); //ipap pressure in cmH2O.

 porcentaje=(100*(analogRead(analog_porcentaje)/1023.00))-1; //cycling

potentiometer: values 0-100%

 if(porcentaje<0){porcentaje=0;}

 if (flow>0){ flow=100*sqrt(flow);}

 else{flow=-100*sqrt(-flow);} //flow- linearization

 int flow_out = map(flow,-20000,40000,0,255); // flow_out is adjusted

between 0-255 for doing the PWM (DIO9)

 analogWrite(analog_flow,flow_out);

 consigna=ipap;

 ctrolvalve=digitalRead(valve);

 if (ctrolvalve ==LOW) {Input =pressinzero2; }

 else{Input =pressinzero1;}

71

 Setpoint= consigna; //setpoint for PID is ipap or epap depending on the

mode

 myPID.Compute();

 analogWrite(analog,Output); //DIA11 actuates the

blower

 if (autoipap==0) {dtostrf(ctroltime,1,0,timestring);}

 totalpress1=0;

 totalpress2=0;

 i=0;

 }

//---end control pid------------------------

selectmode=digitalRead(mode);

if (selectmode ==0) {

 if (mode1 != selectmode) {

 tft.drawString("Auto ",380, 10,4); //Control mode

 mode1=selectmode;

 }

 if (millis()-(t1)>=(periodo)) {

 digitalWrite(valve , LOW);

 float tiempon=(millis()-t1);

 t1=millis();

 }

 if (millis()-(t1)>=(periodo*(1-duttyuno))) {

72

 digitalWrite(valve , HIGH);

 float tiempoff=(millis()-t1);

 }

 }

if (selectmode==1) { // Support mode (with trigger)

 if (mode1 != selectmode) {

 tft.drawString("Patient ",360,10,4);

 mode1=selectmode;

 }

flow_hp = mifiltroHP(flow,tiempo/1000000,RC_hp); // HP filtering

flow signal

flow_bp = mifiltroLP(flow_hp,tiempo/1000000,RC_lp); // LP filtering

flow signal

 }

 }//closed loop

73

double mifiltroHP(double dato,double dt,double RC) { // HP filtering function

double alpha = RC/(RC+dt);

data_hp[1] = dato;

 // High Pass Filter

 data_filt_hp[1] = alpha * (data_filt_hp[0] + data_hp[1] - data_hp[0]);

 // Store the previous data in correct index

 data_hp[0] = data_hp[1];

 data_filt_hp[0] = data_filt_hp[1];

 return (data_filt_hp[1]);

 }

double mifiltroLP(double dato,double dt,double RC) { // LP filtering function

double alpha = dt/(RC+dt);

data_lp[1] = dato;

 // low Pass Filter

 data_filt_lp[1] = alpha *data_lp[1]+(data_filt_lp[0]*(1-alpha));

 // Store the previous data in correct index

 data_lp[0] = data_lp[1];

 data_filt_lp[0] = data_filt_lp[1];

 return (data_filt_lp[1]);

 }

74

Annex 6 – Pressure tests of the ventilator for all conditions

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 1

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 3

75

-2

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 4

-2

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 5

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 6

76

-5

0

5

10

15

20

25

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 7

-5

0

5

10

15

20

25

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 8

-5

0

5

10

15

20

25

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 9

77

-5

0

5

10

15

20

25

30

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 10

-5

0

5

10

15

20

25

30

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 11

-5

0

5

10

15

20

25

30

0 2 4 6 8 10 12

N
as

al
 p

re
ss

u
re

 c
m

H
2
O

Time s

Condition 12

78

Annex 7 – Flow tests of the ventilator for all conditions

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12

Fl
o

w
 l/

s

Time s

Condition 2

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12

Fl
o

w
 l/

s

Time s

Condition 3

79

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 4

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 5

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 6

80

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 7

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 8

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 9

81

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 10

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 11

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 2 4 6 8 10 12Fl
o

w
 l/

s

Time s

Condition 12

82

Annex 8 – PERT diagram

