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Theoretical dark matter halo density profile
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Institut de Ciències del Cosmos, Universitat de Barcelona (UB–IEEC), Martı́ i Franquès 1, E-08028 Barcelona, Spain

Accepted 2012 March 31. Received 2012 March 24; in original form 2012 February 6

ABSTRACT
We derive the density profile for collisionless dissipationless dark matter haloes in hierarchical
cosmologies making use of the secondary infall (SI) model. The novelties are (i) we deal
with triaxial virialized objects, (ii) their seeds in the linear regime are peaks endowed with
unconvolved spherically averaged density profiles according to the peak formalism, (iii) the
initial peculiar velocities are taken into account and (iv) accreting haloes are assumed to
develop from the inside out, keeping the instantaneous inner system unaltered. The validity
of this latter assumption is accurately checked by comparing analytical predictions on such a
growth with the results of numerical simulation. We show that the spherically averaged density
profile of virialized objects can be inferred with no need to specify their shape. The typical
spherically averaged halo density profile is inferred, down to arbitrarily small radii, from the
power spectrum of density perturbations. The predicted profile in the � cold dark matter
cosmology is approximately described by an Einasto profile, meaning that it does not have a
cusp but rather a core, where the inner slope slowly converges to zero. Down to one-hundredth
the total radius, the profile has the right NFW and Einasto forms, being close to the latter down
to a radius of about four orders of magnitude less. The inner consistency of the model implies
that the density profiles of haloes harbour no information on their past aggregation history.
This would explain why major mergers do not alter the typical density profile of virialized
objects formed by SI and do not invalidate the peak formalism based on such a formation.
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1 IN T RO D U C T I O N

In the last two decades, observations, and particularly simulations,
have provided us with detailed information on the structure and
kinematics of bottom-up hierarchically assembled virialized dark
matter haloes. However, from the theoretical viewpoint, the situ-
ation is far from satisfactory. The way all these properties settle
down remains to be elucidated, and their connection with the power
spectrum of density perturbations is unknown.

The accurate modelling of virialized self-gravitating collision-
less dissipationless systems is an old unresolved issue. Most efforts
have focused on determining the equilibrium density profile for ob-
jects formed from the monolithic collapse of an isolated spherically
symmetric seed with outward-decreasing density profile and pure
Hubble velocity field, the so-called secondary infall (SI) model.
Following the seminal work by Gunn & Gott (1972), the power-law
density profile was derived under the self-similar approximation
and/or making use of an adiabatic invariant during virialization,
both for pure radial orbits (Gunn 1977; Fillmore & Goldreich 1984;
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Bertschinger 1985; Hoffman & Shaham 1985) and non-radial or-
bits (Ryden & Gunn 1987; White & Zaritsky 1992; Nusser 2001;
Le Delliou & Henriksen 2003). The departures from spherical sym-
metry (by adopting, instead, cylindrical symmetry; Ryden 1993;
Moutarde et al. 1995) and self-similarity (Łokas 2000; Łokas &
Hoffman 2000) were also investigated.

These theoretical results were tested and complemented by the in-
formation drawn from specifically designed numerical tools (Gott
1975; Williams, Babul & Dalcanton 2004) as well as full cos-
mological N-body simulations (e.g. Frenk et al. 1985; Quinn,
Salmon & Zurek 1986; Efstathiou et al. 1988; Zaroubi, Naim &
Hoffman 1996). One important finding along this latter line was
that cold dark matter (CDM) haloes with different masses show
similar scaled spherically averaged density profiles (Dubinski &
Carlberg 1991; Crone, Evrard & Richstone 1994). Navarro, Frenk
& White (1997) showed that they are well fitted down to about
one-hundredth of the total radius by a simple analytic expression,
the so-called Navarro–Frenk–White (NFW) profile, that deviates
from a power law. This finding opened a lively debate about the
value of the central asymptotic behaviour of the halo density pro-
file (e.g. Fukushige & Makino 1997; Moore et al. 1998; Ghigna
et al. 2000; Jing & Suto 2000; Power et al. 2003; Hayashi et al.
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2004). More recently, the Einasto (1965) profile was shown to
give even better fits down to smaller radii (Navarro et al. 2004,
2010; Merritt et al. 2005, 2006).

The origin of this density profile remains to be understood. Cer-
tainly, it can only arise from the way haloes aggregate their mass,
which, in hierarchical cosmologies, is through continuous mergers.
However, the dynamical effect of mergers depends on the rela-
tive mass of the captured and capturing haloes, �M/M. For this
reason, it is usually distinguished between minor and major merg-
ers (�M/M greater or less than about 0.3; Salvador-Solé et al.
2007). Major mergers each have a dramatic effect on the struc-
ture of the object, while minor mergers contribute jointly, together
with the capture of diffuse matter (if any), to the so-called accre-
tion that yields only a small secular effect on the accreting ob-
ject. Some authors (Raig et al. 1998; Syer & White 1998; Sub-
ramanian, Cen & Ostriker 2000; Dekel, Devor & Hetzroni 2003)
studied the possibility that the non-power-law density profile for
simulated haloes is the result of repeated major mergers. Others
(Avila-Reese, Firmani & Hernández 1998; Huss, Jain & Steinmetz
1999; Del Popolo et al. 2000; Ascasibar et al. 2004; MacMillan,
Widrow & Henriksen 2006) concentrated on the effects of pure
accretion (PA), which proceeds according to the simple SI model
above from peaks (secondary maxima) in the primordial random
Gaussian density field (Doroshkevich 1970; Bardeen et al. 1986).
The density profile found in this latter scenario appears to be similar,
indeed, to that of simulated haloes. Furthermore, recent cosmolog-
ical simulations have confirmed that major mergers play no central
role in setting the structure and kinematics of dark matter haloes
(Wang & White 2009). However, the reason why major mergers
would not alter the density profile set by PA is not understood.

In the present paper, we develop an accurate model of halo density
profile that clarifies all these issues. For simplicity, we consider pure
dark matter systems, i.e. we neglect the effects of baryons on halo
structure. This will allow us to directly compare the theoretical
predictions of the model to the results of N-body simulations. This
model is built within the SI framework and uses the peak formalism,
which assumes there is a one-to-one mapping between haloes and
the density peaks. However, peaks are not assumed to be spherically
symmetric and endowed with their typical filtered density profile
calculated by Bardeen et al. (1986, hereafter the BBKS profile) as
usual, but we take into account that they are triaxial (Doroshkevich
1970; Bardeen et al. 1986) and consider their accurate spherically
averaged unconvolved density profile. In addition, we account for
the initial peculiar velocities believed to affect the central halo
density profile (Hiotelis 2002; Ascasibar et al. 2004; Mikheeva,
Doroshkevich & Lukash 2007). Finally, instead of making use of
the usual adiabatic invariant, poorly justified near turnaround and
greatly complicating the analytic derivation of the final density
profile, we take advantage of the fact that accreting haloes develop
outwardly, keeping their instantaneous inner structure unaltered.
The validity of such an assumption, hereafter simply referred to
as inside-out growth, is accurately checked by verifying that the
trends observed in simulated haloes evolving by smooth accretion
are reproduced by an analytic model where the haloes are forced to
grow inside-out.

And what about the fact that major mergers are ignored in SI?
This important caveat affects the modelling through SI not only of
the halo density profile, as mentioned, but also of halo statistics in
the so-called peak formalism (Peacock & Heavens 1990; Manrique
& Salvador-Solé 1995, 1996, hereafter MSSa and MSSb, respec-
tively; Bond & Myers 1996; Manrique et al. 1998) which relies
on the ansatz that there is a one-to-one correspondence between

haloes and peaks as in spherical collapse,1 although no such one-to-
one correspondence is actually found in simulations (Katz, Quinn
& Gelb 1993); this is because peaks show nested configurations
(MSSa) which are not corrected for. If one concentrates in simply
checking whether or not halo seeds, hereafter also called proto-
haloes, coincide with peaks, then the answer is positive in all but
a few per cent of cases compatible with the frequency of non-fully
virialized haloes (Porciani, Dekel & Hoffman 2002). However, there
is still the problem that, in principle, major mergers should blur the
correspondence between peaks and haloes arising from SI. In
the present paper, we argue that the reason why halo statistics and
the spherically average density profile of virialized haloes seem to
be unaffected by major mergers is that virialization is a real relax-
ation process. We stress that the model deals with fully virialized
haloes. This is important because, after a major merger, the density
profile of a halo spends some time to adopt a stable density profile.

The outline of the paper is as follows. In Section 2, we present
some general relations holding for all systems regardless of their
symmetry. Taking into account these relations, we develop in Sec-
tion 3 the model for triaxial haloes grown by PA. In Section 4, we
calculate the properties of typical protohaloes and use them in Sec-
tion 5 to derive the typical spherically averaged density profile for
CDM haloes. In Section 6, we discuss the effects of major mergers.
The main results are summarized in Section 7.

Throughout the paper, we adopt the �CDM 7-year Wilkin-
son Microwave Anisotropy Probe (Komatsu et al. 2011) con-
cordance model. In spite of this, we use Newtonian dynam-
ics with null cosmological constant as its effects are irrelevant
at the scale of virialized haloes. A package with the numeri-
cal codes used in the present paper is publicly available from
www.am.ub.es/∼cosmo/haloes&peaks.tgz.

2 G E N E R A L R E L AT I O N S FO R S P H E R I C A L
AV ERAG ED PROFI LES

In the present section, we derive some general relations for spheri-
cally averaged quantities that hold for any arbitrary system regard-
less of its symmetry and that will later be used to build the model.

Consider a self-gravitating system with arbitrary mass distribu-
tion, aggregation history and dynamical state. The local density
and gravitational potential can be split in the respective spherical
averages around any given point and the corresponding residuals:

ρ(r, θ, ϕ) = 〈ρ〉(r) + δρ(r, θ, ϕ), (1)

	(r, θ, ϕ) = 〈	〉(r) + δ	(r, θ, ϕ) . (2)

The spherically averaged gravitational potential,

〈	〉(r) = 1

4π

∫ 2π

0
dϕ

∫ π

0
dθ sin θ 	(r, θ, ϕ), (3)

satisfies, by the Gauss theorem, the usual Poisson integral relation
for spherically symmetric systems:

d〈	〉(r)

dr
= GM(r)

r2
, (4)

where M(r) is the mass within r:

M(R) = 4π

∫ R

0
dr r2 〈ρ〉(r) . (5)

1 The excursion set formalism is also based on a one-to-one correspon-
dence between haloes and overdense regions in the initial density field as in
spherical collapse.

C© 2012 The Authors, MNRAS 423, 2190–2202
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/423/3/2190/2460170 by guest on 10 N
ovem

ber 2022
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Taking into account the null spherical averages of δρ and δ	 (see
equations 1 and 2), the potential energy within the sphere of radius
R,

W (R) = 1

2

∫ R

0
dr r2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ ρ(r, θ, ϕ) 	(r, θ, ϕ) , (6)

can be rewritten as

W (R) = 2π

∫ R

0
dr r2[〈ρ〉(r) 〈	〉(r) + 〈δρ δ	〉]

= −4π

∫ R

0
dr r2〈ρ〉(r)

GM(r)

r
+ 2π

∫ R

0
dr r2〈δρ δ	〉

≡ W(R) + δW(R) , (7)

where we have introduced the ‘spherical’ potential energy within
R:

W(R) = −4π

∫ R

0
dr r2〈ρ〉(r)

GM(r)

r
. (8)

The second equality in equation (7) follows from partial integration
of the first term on the right-hand side of the first equality, then
application of the relation (4), and one new partial integration,
choosing the origin of the spherically averaged potential so as to
have

〈	〉(R) = −GM(R)

R
. (9)

Note that, for spherically symmetric systems, this boundary condi-
tion coincides with considering the usual potential origin at infinity
and the system truncated at R.

The kinetic energy within R is

K(R) = 2π

∫ R

0
dr r2〈ρ〉(r) σ 2(r) , (10)

σ 2(r) being the velocity variance in the infinitesimal shell at r.2

Thus, the total energy of the sphere, E(R) = K(R) + W(R), takes
the form

E(R) = 4π

∫ R

0
dr r2〈ρ〉(r)

[
σ 2(r)

2
− GM(r)

r

]
+ 2π

∫ R

0
dr r2〈δρ δ	〉(r) ≡ E(R) + δE(R) , (11)

where we have introduced the ‘spherical’ total energy

E(R) = 4π

∫ R

0
dr r2〈ρ〉(r)

[
s2(r)

2
− GM(r)

r

]
. (12)

Note thatE(R) is written in terms of the ‘spherical’ velocity variance
s2(r), different, in general, from the ordinary velocity variance,

σ 2(r) = s2(r) + δs2(r) , (13)

through the residual δs2(r) to be specified, contributing to the resid-
ual δE(r). In other words, there is some freedom in the definition of
s2(r). We will come back to this point later.

So far we have considered a system with arbitrary mass distri-
bution (symmetry), aggregation history and dynamical state. If the
system is in addition in equilibrium, then multiplying the steady
collisionless Boltzmann equation (e.g. equation 4p-2 in Binney &

2 Such a velocity variance coincides with the spherical average of the local
value. Therefore, equation (10) could also be written in terms of the local
velocity variance in angular brackets.

Tremaine 1987) by the radial particle velocity and integrating over
velocity and solid angle, we are led to

d
(
〈ρ〉σ 2

r

)
dr

+ 〈ρ〉(r)

r

[
3σ 2

r (r) − σ 2(r)
]

= − 1

4π

∫ 2π

0
dϕ

∫ π

0
dθ sin θ ρ(r, θ, ϕ) ∂r	(r, θ, ϕ) , (14)

where ∂r stands for radial partial derivative.3 Taking into account
equation (4), equation (14) adopts the form

d
(
〈ρ〉σ 2

r

)
dr

+ 〈ρ〉(r)

r

[
3σ 2

r (r) − σ 2(r)
]

= −〈ρ〉(r)
GM(r)

r2
− 〈δρ ∂r(δ	)〉(r) , (15)

identical to the Jeans equation for spherically symmetric systems in
equilibrium but for the last term on the right-hand side. Multiplying
equation (15) by 4πr3 and integrating over the sphere of radius R,
the same steps leading to the scalar virial relation for spherically
symmetric self-gravitating systems now lead to

4πR3〈ρ〉(R)σ 2
r (R) − 2K

= −4π

∫ R

0
dr r2〈ρ〉(r)

GM(r)

r
− 4π

∫ R

0
dr r3〈δρ ∂rδ	〉(r) . (16)

Therefore, defining the so-called ‘spherical’ radial velocity variance
s2

r (r) through

σ 2
r (r) = s2

r (r) + δs2
r (r) , (17)

with

δs2
r (r) = 1

r3〈ρ〉(r)

∫ r

0
dr̃ r̃2

[
δs2(r̃) − r̃〈δρ ∂rδ	〉(r̃)

]
, (18)

the virial relation (16) takes the usual form for spherically symmetric
systems,

4πR3〈ρ〉(R) s2
r (R) = 4π

∫ R

0
dr r2〈ρ〉(r)

[
s2(r) − GM(r)

r

]
, (19)

from now on called the ‘spherical’ virial relation. Furthermore,
defining the ‘spherical’ scaled surface pressure term (from now on
simply spherical surface term), S(R), equal to the member on the
left-hand side of equation (19) over the absolute value of W(R),
the spherical virial relation (19) adopts the usual compact form

2E(R)

W(R)
= 1 − S(R) . (20)

As can be seen, all the ordinary quantities X can be expressed
in the form X = X + δX , with the quantities X having the same
form for spherically symmetric systems, hence the reason they are
labelled ‘spherical’. The residuals δX always measure the deviation
from sphericity of the quantities X in the sense that when δρ and δ	

vanish, δX also vanish and X become equal to the spherical coun-
terparts X and, hence, recover the form for spherically symmetric
systems. The dimensionless quantities |δX /X | are, however, not
necessarily less than 1, so we should not look at the spherical quan-
tities X as zeroth-order approximations of X in expansion series on
small deviations from sphericity; they are fully exact quantities and
so are also the relations between them. In particular, equations (5),

3 To derive equation (14), conventional conditions such as the continuity of
the local density and mean velocity and the fact that the velocity distribution
function vanishes for large velocities are needed.
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(12) and (20), respectively, giving the mass, spherical total energy
and spherical virial relation or, equivalently, the relations

〈ρ〉(r) = 1

4πr2

dM

dr
, (21)

s2(r) = 2

[
dE/dr

dM/dr
+ GM(r)

r

]
(22)

and

s2
r (r) = 2E(r) − W(r)

r dM/dr
(23)

following from their differentiation are exact and hold unchanged
regardless of the particular shape of the object. Thus, the profiles
〈ρ〉(r), s2(r) and s2

r (r) do not depend on shape and can be deter-
mined by solving equations (21) and (22). In contrast, the ordinary
kinematic profiles σ 2(r) and σ 2

r (r) cannot be obtained from a simi-
lar set of equations because they depend explicitly on the shape of
the object.

We want to remark that even if the spherical quantities at any
given moment behave as their ordinary counterparts in spherically
symmetric systems, the relation between their values in different
epochs may not be the same as in such systems. For instance,
the spherical total energy inside spheres of fixed mass may not
be conserved in the absence of shell-crossing.4 Only one specific
choice of s2(r) will ensure such a conservation. Note also that, for
any arbitrary mass distribution, it might not be possible to have
only one profile s2(r) satisfying that condition for the whole series
of embedded spheres the system decomposes into. However, in the
case of a centred triaxial system, this is always possible, thanks to
the ordered radial mapping of the mass distribution. From now on,
we assume such a symmetry and the conservation of the spherical
total energy in the absence of shell-crossing. This is crucial for the
model as it will allow us to fix the density profile for a virialized
object from the properties of its seed (see Section 3).

3 TH E MO D EL

We will concentrate, in a first step, on triaxial systems evolving by
PA. This includes the case of accretion along filaments.

3.1 Inside-out growth

The model relies on the assumption that accreting objects grow
inside-out. This is consistent with the properties of simulated
haloes (Salvador-Solé, Solanes & Manrique 1998; Helmi, White &
Springel 2003; Salvador-Solé, Manrique & Solanes 2005; Romano-
Dı́az et al. 2006; Wang et al. 2011). In Manrique et al. (2003)
and Salvador-Solé et al. (2007), it was shown that the assumption
that (spherical) haloes grow inside-out at the typical cosmologi-
cal accretion rate automatically leads to a density profile à la NFW.
Nonetheless, to be fully confident about it, we show below that such
a growth is naturally expected and in agreement with the detailed
results of simulations.

In SI, the isodensity contours in the triaxial seed expand, with-
out crossing each other, until they reach turnaround. This expan-
sion is achieved in linear regime with all particles moving radially,

4 If one chooses s2(r) ≡ σ 2(r), the spherical total energy is not conserved
in ellipsoidal systems because any given sphere exchanges energy with the
rest of the system.

so the axial ratios of shells are conserved. However, after reach-
ing turnaround, particles collapse and rebound non-radially, so the
shape of the isodensity contours changes. Shell-crossing causes a
secular energy transfer between shells so that particles initially ly-
ing in a turnaround ellipsoid reach their new apocentre at a smaller
radius and not simultaneously. However, the energy lost by particles
in one orbit is small, so the typical time of apocentre variation is
substantially greater than the typical orbital period, implying that
particles belonging to one turnaround ellipsoid will still trace an ef-
fective apocentre surface, which for symmetry reasons will also be
an ellipsoid although smaller in size and with different axial ratios.
Repeating the same reasoning from each new apocentre ellipsoid,
we have that any turnaround ellipsoid evolves through a continuous
series of ellipsoidal apocentre surfaces that progressively shrink and
change their shape until they stabilize.

During such an evolution, apocentre ellipsoids never cross each
other. If two of them had a common point, particles belonging to
the two surfaces at that point (with null velocities) would follow the
same evolving orbits, so the two surfaces would always be in con-
tact, but this is meaningless because different turnaround ellipsoids
come from different isodensity contours in the seed which do not
intersect. Thus, during virialization, the system contracts orderly,
without apocentre-crossing, and when a new apocentre ellipsoid
stops shrinking, it necessarily places itself beyond all previously
stabilized apocentre ellipsoids. Thus, the central steady object nec-
essarily grows from the inside out according to the gradual deposi-
tion of particles with increasingly larger apocentre surfaces.

In the above reasoning, we assumed that orbits eventually stabi-
lize. However, new shells are constantly arriving and crossing the
growing halo; consequently, orbits only approximately stabilize. It
is therefore worthwhile verifying the validity of this approximation.
This can be accurately checked by means of the detailed follow-up
of the density profile for CDM haloes in simulations. Zhao et al.
(2009) and Muñoz-Cuartas et al. (2011) carried out such a follow-up
and found that the rs and Ms NFW shape parameters5 of accreting
haloes are not constant but vary slightly with time. This was in-
terpreted as evidence that the inner structure of accreting haloes
is changing. However, this is not the only possible interpretation.
As the density profile of haloes is not perfectly fitted by the NFW
profile,6 even if the inner density profile did not change, its fit by the
NFW law out to progressively larger radii should result in slightly
different best values of rs and Ms.

To confirm that our interpretation for this change is correct, we
have followed in the Ms–rs log–log plane the evolution of accret-
ing haloes forced to grow inside-out at the typical accretion rate
given by the excursion set formalism according to Salvador-Solé
et al. (2007) model. The result, in the same cosmology as used in
Zhao et al. (2009), is shown in Fig. 1. Even if, by construction,
haloes grow inside-out without changing their instantaneous inner
structure, when their density profile is fitted by an NFW profile,
they are found to move in the Ms–rs log–log plane along one fixed
direction over a distance that increases with current halo mass. This
behaviour is identical to that found by Zhao et al.: accreting haloes
moved in the Ms–rs log–log plane along straight lines with exactly
the same universal slope (Ms ∝ r1.65

s ) as in our experiment and
ended up at z = 0 lying along another straight line, with a different

5 Ms is defined as the mass within the scale radius rs where the logarithmic
slope of the density profile is equal to −2.
6 The larger the mass, the closer the density profile is to a power law with
index ∼−1.5–2 (Tasitsiomi et al. 2004).
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2194 E. Salvador-Solé et al.

Figure 1. Tracks followed in the Ms–rs plane by typical accreting haloes
developing inside-out, with current masses, M, equal to 1011, 1012, 1013,
1014 and 1015 M� (from bottom to top) at z = 0, 2, 4, 6 and 8 (circles essen-
tially from right to left, respectively, in black, green, red, blue and magenta).
The straight dashed red line shows the universal direction followed by such
tracks, identical to that found by Zhao et al. (2009) in full cosmological
simulations. The black straight line shows the Ms–rs relation obtained at
z = 0 also identical to that found in Zhao et al. (2009; see fig. 22).

slope (Ms ∝ r2.48
s ) also identical to that found in our experiment (see

their fig. 22). The fact that our constrained model reproduces the
observed trend convincingly demonstrates haloes primarily grow
inside-out.

3.2 Radius encompassing a given mass

As we will show, by assuming that haloes grow inside-out via
PA and that the spherical total energy in spheres of fixed mass is
conserved in the absence of shell-crossing, we are able to infer the
radius enclosing a given mass in a halo from the spherical energy
distribution of its progenitor protohalo.

To do this, we will consider the virial relation (20) for a per-
fectly uniform sphere with mass M, which implies W(M) =
−3GM2/(5R), with spherical total energy E(M) equal to that of the
system at turnaround Eta(M) and null spherical surface term S(M):

R(M) = − 3

10

GM2

Eta(M)
. (24)

This equation is the often used estimate for the radius encompassing
mass M in spherical systems with an unknown internal mass distri-
bution (Bryan & Norman 1998). In principle, R(M) is not believed
to give an exact measure of that mass in the real virialized object
as this has non-uniform density profile, its spherical total energy is
equal to E(M) instead of Eta(M) and its surface term is not null.
Yet, as shown below, as a consequence of the inside-out growth
of accreting objects formed by PA, the inaccuracies above exactly
cancel and both radii turn out to fully coincide.

To see this, we will deform the system since its shells reach
turnaround so as to construct a virialized toy object satisfying the
conditions leading to equation (24). This is only possible in PA

where the equivalent radius of turnaround ellipsoids increases with
increasing time and the central virialized object grows inside-out.
Shells reaching turnaround can then be virtually contracted one after
the other without any crossing so as to match the mass profile M(r)
(although not necessarily the ellipsoidal isodensity contours) of
the real virialized object developed until some time t. By ‘virtual’
motion we mean a motion of shells that preserves their particle
energy and angular momentum, but is disconnected from the real
timing of the system. Of course, such a motion will not recover
at the same time the axial ratios of the isodensity contours of the
virialized object, but we only need to recover the mass profile, which
by conveniently contracting each new shell is guaranteed (there is
one degree of freedom: the final equivalent radius of the contracted
ellipsoidal shell, and one quantity to match: the mass within the new
infinitesimally larger radius). By construction, the new toy object so
built has the same mass profile M(r) [although not the total energy
profile E(r) due to the different ellipsoidal mass distribution] as the
virialized object. However, the spherical total energy in such a toy
object is equal to that at turnaround, Eta[M(r)], as there has been
no shell-crossing and E is conserved for the appropriate choice of
s2(r) (see Section 2).

Of course, such a toy object is not in equilibrium. However, the
quantity Eta(R)−W̃(R), with W̃(R) equal to the potential energy of
a homogeneous sphere with mass M, is positive (see equation 25 be-
low). Therefore, we can virtually expand each ellipsoidal isodensity
contour of the toy object, from the centre out to the edge avoiding
shell-crossing, so as to end up with a uniform density equal to the
mean density ρ̄(R) of the real object inside R and still have an ex-
cess of spherical kinetic energy. Thus, this can be redistributed over
the sphere and the radial and tangential components of the spherical
velocity variance, s̃(r), can be locally exchanged so as to satisfy the
spherical virial relation (19) at every radius. This is again possible
to achieve because there are two degrees of freedom, s̃(r) and s̃r(r),
and two conditions to fulfil, the spherical total kinetic energy in
excess and the spherical virial equation. In this way, we have built
a steady homogeneous toy object with radius, mass and total en-
ergy, respectively, equal to R, M and Eta(M) and with null value of
s̃r(R) (there is no density outside the sphere because shells having
not reached turnaround at t have not been contracted). Hence, this
uniform toy object satisfies the spherical virial relation

2Eta(R)

W̃(R)
= 1 , (25)

which, given the equality W̃(R) = −3GM2/(5R), implies equa-
tion (24).

The exact equation (24) allows one to determine the spherically
averaged density profile of the virialized object from the properties
of its seed. To do this, we must simply take into account that, during
the initial expanding phase of shells, there is no shell-crossing, so
the spherical total energy in spheres with fixed mass is conserved.
We can then replace, in equation (24), Eta(M) by its value in the
protohalo, Ep(M), and obtain, by inversion of r(M), the mass profile
M(r) and, through equation (21), the spherically averaged density
profile 〈ρ〉(r) of the virialized object from the spherical total energy
distribution in the seed.

Furthermore, as the functions 〈ρ〉(r), s2(r) and s2
r (r) do not depend

on the shape of the object, we can think in the spherically symmetric
case to infer the latter two functions from the former one. In such
objects, orbits are purely radial because they collapse and virialize
radially. We therefore have s2(r) = s2

r (r). Equations (22) and (23)
then lead to a differential equation for E(r) that can be readily
integrated for the boundary condition E = 0 at r = 0, the result
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Halo density profile 2195

being

E(R) = −R

∫ R

0
dr

[
4π 〈ρ〉(r) GM(r) + W(r)

2r2

]
. (26)

Once 〈ρ〉(r) is known, we can calculate W(r) (equation 6) and then
E(R) (equation 26), and apply any of the two relations (22) and (23)
to infer the profile s2(r). However, the interest of this expression
is only formal because, as mentioned, the profile s2(r) is not ob-
servable, not even in the spherically symmetric case where s(r) =
σ (r) and sr(r) = σ r(r). The reason for this is that objects formed by
PA are never spherically symmetric. The tidal field of surrounding
density fluctuations causes spherically symmetric seeds to undergo
ellipsoidal collapse (Zeldovich 1970). Even if such a tidal field is
artificially removed, the system suffers radial orbit instability, also
leading to triaxial virialized objects (Huss et al. 1999; MacMillan
et al. 2006).

The expression (26) is nonetheless useful to compute the spher-
ical total energy dissipation factor since the time of the protohalo,
D(M) ≡ E(M)/Ep(M), with Ep(M) given by equation (24). This
has the following interesting implication. In objects formed by PA,
there is always some spherical energy loss through shell-crossing
during virialization, so D(M) is greater than 1. Taking into account
equations (20) and (25), this dissipation factor can be written in the
form

D(M) = W(M)

W̃(M)
[1 − S(M)] . (27)

Thus, if D(M) is greater than 1, the ratio

W(M)

W̃(M)
= 5

6

[
1 +

∫ R(M)

0

dr

R(M)

r4 ρ̄2(r)

R4 ρ̄2(R)

]
(28)

must also be greater than 1.7 By differentiation and after a little
algebra, it can be seen that the ratio W(M)/W̃(M) is greater than 1
provided only ρ̄(r) is outward-decreasing. Consequently, we are led
to the conclusion that the spherically averaged mean inner density
profile of any collisionless dissipationless virialized object formed
hierarchically (through PA but also through major mergers; see
Section 6) is necessarily outward-decreasing.

4 PROTO H A L O E S

According to the previous results, to calculate the spherically av-
eraged density profile for a CDM halo grown by PA we only need
the spherical energy distribution, Eta(M), of its seed, namely a peak
in the initial density field filtered at the mass scale of the halo. The
cosmic time ti where the initial density field has to be considered
is arbitrary although small enough for the protohalo to be in linear
regime.

Such a spherical energy distribution is given, in the parametric
form, by the spherical total energy of the protohalo,

Ep(Rp) = 4π

∫ Rp

0
drp r2

p 〈ρp〉(rp)

×
{[

Hirp − vp(rp)
]2

2
+ σ 2

p (Rp)

2
− GM(rp)

rp

}
, (29)

in centred spheres of radii Rp encompassing the masses M,

M(Rp) = 4π

∫ Rp

0
drp r2

p 〈ρp〉(rp) . (30)

7 As W(M)/W̃(M) is positive (see equation 28), the factor 1 −S(M) must
also be positive and less than 1.

In equations (29) and (30), Hi is the Hubble constant at the cosmic
time ti of the protohalo, 〈ρp〉(rp) is its spherically averaged density
profile, vp(rp) is the peculiar velocity, to zeroth order in the de-
viations from sphericity, due to the gravitational pull by the mass
excess within the radius rp and σ p(Rp) is the uniform and isotropic
background peculiar velocity dispersion inside the sphere of radius
Rp.8

The peculiar velocity vp(rp) is (e.g. Peebles 1980)

vp(rp) =
2G

[
M(rp) − 4πr3

p ρi/3
]

3Hir2
p

, (31)

ρ i being the mean cosmic density at ti.9 Bringing this expression of
vp(rp) into equation (29) and neglecting the second-order term in
the perturbation with v2

p(rp) [the term with σ 2(Rp) may be greater
than this owing to the contribution of σ 2

DM(ti)], we are led to

Ep(Rp) = 5

3
EH

p (Rp) + M(Rp)
σ 2

p (Rp)

2
, (32)

where EH
p (Rp) stands for the spherical total energy of the protohalo

in the case of pure Hubble flow (i.e. equation 29 with null vp and
σ p). In principle, σ 2

p (Rp) has two contributions: one arising from the
dark matter particle velocities at decoupling, adiabatically evolved
until the time ti, σ 2

DM(ti), and another one caused by random density
fluctuations. Following the exact prescription by Mikheeva et al.
(2007) for this latter contribution, we arrive at

σ 2
p (Rp) = σ 2

DM(ti) + �2
i

∫ ∞

0

dk

2π2
P (k)

[
1 − e−k2R2

p

]2

= σ 2
DM(ti) + �2

i

[
σ 2

−1(0) − 2σ 2
−1(Rp) + σ 2

−1(
√

2Rp)
]
, (33)

where �i is defined as
√

2πHa2
i , ai being the initial cosmic scale

factor,10 and σ 2
−1(Rf ) is the spectral moment of order −1 for the

power spectrum, P(k), with the jth-order moment given by

σ 2
j (Rf ) =

∫ ∞

0

dk

2π2
P (k) k2j+2 e−k2Rf

2
. (34)

However, the velocity variance due to random density fluctua-
tions, σ 2

p (Rp) − σ 2
DM(ti) (see equation 33), turns out to be several

orders of magnitude less than GM(Rp)/Rp (a factor of ∼10−6 in
the concordance model adopted here). Consequently, it can be ne-
glected in Ep(M) (equation 29), contrary to the claims made by
Hiotelis (2002), Ascasibar et al. (2004) and Mikheeva et al. (2007)
that such a velocity dispersion may affect the central density profile
for CDM haloes. The former two authors reached this conclusion by
analysing the effects of velocity dispersions that, unlike those used
here, were not consistently inferred from the random density fluctu-
ations. Mikheeva et al. used the same derivations for the dispersion
as used here; however, they considered the fluctuations within the
whole protohalo, whereas we account for random density fluctua-
tions within each sphere of radius Rp. In including fluctuations from
the whole protohalo, Mikheeva et al. included velocities induced by
external density fluctuations with masses possibly larger than the
own mass of the sphere. This overestimates the velocity dispersion
in the sphere because external density fluctuations cause a bulk ve-
locity, not a velocity dispersion. And the bulk velocity of a sphere

8 The starting value of the spherical total energy can be computed taking
s2

p ≡ σ 2
p .

9 In equation (31), we have taken into account that the cosmic virial factor
f (�) ≈ �0.1 is at ti, very approximately equal to 1.
10 At small ti, this is very approximately equal to the cosmic growth factor.
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2196 E. Salvador-Solé et al.

does not hamper its collapse, whereas the internal velocity disper-
sion does, as found by Mikheeva et al. for small enough Rp. The
only velocity dispersion that does not diminish with decreasing Rp

and, hence, can really set a minimum halo mass is that intrinsic to
dark matter particles, σ 2

DM(ti). However, this is negligible in CDM
cosmologies.

And what about the spherically averaged peak density profile,
〈ρp〉(rp)? The BBKS profile calculated by Bardeen et al. (1986)
gives the typical (average) spherically averaged density contrast
profile for peaks filtered with a Gaussian window. Unfortunately,
the convolution by a Gaussian window results in some information
loss, so the BBKS profile cannot be used to infer the desired profile.
In addition, the average profile of purely accreting haloes with M
at t may not coincide with the profile arising from the average
profile of the corresponding seeds. However, we can still find the
typical (in the sense below) spherically averaged density profile of
protohaloes.

Since in PA haloes grow inside-out, the density profile inside
every inner ellipsoid exactly matches that of one halo ancestor, also
evolved by PA from a peak with its own density contrast and scale.
Hence, the typical (average) spherically averaged density profile
for purely accreting haloes with M at t must arise from a protohalo
whose spherically averaged density contrast profile, 〈δp〉(rp), con-
volved with a Gaussian window of radius Rf corresponding to the
mass of any halo ancestor yields, at rp = 0, the density contrast
δpk(Rf ) of the peak evolving into that ancestor:

δpk(Rf ) = 21/2

π1/2Rf
−3

∫ ∞

0
drpr

2
p 〈δp〉(rp) exp

[
−1

2

(
rp

Rf

)2
]

. (35)

According to the peak formalism (see Section 6), the typical (most
probable) trajectory δpk(Rf ) of peaks evolving into the series of
halo ancestors ending in a halo with M at t is the solution of the
differential equation (MSSb)

dδpk

dRf
= −xe(δpk, Rf ) σ2(Rf ) Rf , (36)

with the boundary condition defined by the halo, i.e. satisfying the
relations

δpk(t) = δc(t)
G(ti)

G(t)
(37)

and

Rf (M) = 1

q

[
3M

4πρi

]1/3

, (38)

where G(t) is the cosmic growth factor, q = 2.75 is the radius, in
units of Rf , of the collapsing cloud with volume equal to M/ρ i,
δc[t(z)] = 1.93 + (5.92 − 0.472z + 0.0546z2)/(1 + 0.000 568z3) is
the critical linearly extrapolated density contrast for halo formation
at the redshift z (see Section 4 for those values of q and δc[t(z)]). In
equation (36), xe(δpk, Rf ) is the inverse of the average inverse cur-
vature x (equal to minus the Laplacian over σ 2) for the distribution
of curvatures (BBKS),〈

1

x

〉
(Rf, δpk) = (2π)−1/2

(1 − γ 2)1/2

∫ ∞

0
dx

1

x
f (x) e

− (x−x� )2

2(1−γ 2) , (39)

at peaks with δpk and Rf being

f (x) = x3 − 3x

2

{
erf

[(
5

2

)1/2

x

]
+ erf

[(
5

2

)1/2
x

2

]}

+
(

2

5π

)1/2 [(
31x2

4
+ 8

5

)
e−5x2/8 +

(
x2

2
− 8

5

)
e−5x2/2

]
,

(40)

Figure 2. Typical δpk–Rf (in physical units) peak trajectory of peaks at
z = 100 (solid lines) giving rise to the series of halo ancestors evolving
by PA into haloes with current masses M equal to 10, 1 and 0.1 times the
critical mass for collapse, M∗ = 3.6 × 1012 M� (curves from top to bottom,
respectively, in orange, red and brown).

and σ 2(Rf ) the second-order spectral moment, where γ and x� are,
respectively, defined, in terms of the spectral moments, as σ 2

1 /(σ0σ2)
and γ δpk/σ 0. This distribution function is a very peaked, quite sym-
metric, bell-shaped function so that the function Rf (δpk), inverse of
the δpk(Rf ) solution of equation (36), is traced by peaks with the
average (essentially equal to the most probable) inverse curvature at
each point (δpk, Rf ). Note that the slope dRf /dδpk translates into the
typical (average or most probable) accretion rate, dM/dt, of haloes
with M(Rf ) at t(δpk) evolving from those peaks. In Fig. 2, we show
the typical peak trajectories at z = 100 leading to typical haloes
with current masses equal to 10−1M∗, M∗ and 10M∗, where M∗
is the critical mass for collapse in the concordance model (3.6 ×
1012 M�).

Given a typical peak trajectory, δpk(Rf ), equation (35) is a Fred-
holm integral equation of first kind for 〈δp〉(rp). Through the changes
y = r2

p and x = 1/(2Rf
2), it takes the form of a two-sided Laplace

integral transform,

g(x) =
∫ ∞

−∞
dy f (y) e−xy, (41)

with f (y) and g(x), respectively, equal to y1/2〈δp〉(y1/2) and
2
√

2π(2x)−3/2δpk[(2x)−1/2], which can be solved in the standard
way. Extending x to the complex space and taking x = i2πξ , equa-
tion (41) adopts the form of a Fourier transform,

g(ξ ) =
∫ ∞

−∞
dy f (y) e−i2πξy, (42)

where g(ξ ) = 2
√

2π(i4πξ )−3/2[δR(ξ ) + iδI(ξ )], where δR(ξ ) and
δI(ξ ) stand, respectively, for the real and imaginary parts of δpk(ξ ) ≡
δpk[(4πξ )−1/2]. Thus, equation (35) can be inverted by simply taking
the inverse Fourier transform of equation (42).

As f (y) is a real function, the real and imaginary parts of g(ξ )
must be even and odd, respectively. Both conditions must be sat-
isfied at the same time, so there are only two possibilities: either
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Halo density profile 2197

Figure 3. Spherically averaged unconvolved density profiles for the seeds
of typical purely accreting haloes with the same current masses M as in Fig. 2
(same colours, now ordered from bottom to top), obtained by inversion of
the peak trajectories shown in that figure. Rp is the radius of the proto-object
with mass M. The filtering radii Rf /Rp used in the convolutions shown in
Fig. 4 are marked with arrows.

δR(ξ ) = δI(ξ ) or δR(ξ ) = −δI(ξ ). The latter possibility leads to
a non-physical solution, so g(ξ ) must be a pure imaginary odd
function, i.e. δR(ξ ) = δI(ξ ). To determine δpk(ξ ), we must solve the
differential equation (36) in the complex space for ξ , i.e. for its real
and imaginary parts separately. However, as the two solutions
δR and δI are identical, we can directly solve it in the real space
for Rf and then take δR = δI = δpk/

√
2, after the conversion from

Rf to ξ . Once the solution δpk(ξ ) is known, we can readily calculate
the function g(ξ ) and take its inverse Fourier transform, which leads
to the wanted protohalo density contrast profile, 〈δp〉(rp), after the
change r2

p = y.
The spherically averaged unconvolved protohalo density profiles,

〈ρp〉(rp), obtained from the typical peak trajectories depicted in
Fig. 2 are shown in Fig. 3. In Fig. 4, we plot the convolved density
contrast profiles for the seeds of three arbitrary ancestors [with
masses M(Rf ) given by equation (38) for the three arbitrary filtering
radii] of the halo with final mass M∗, corresponding to the filtering
radii in units of the protohalo radius, Rf /Rp, marked with arrows
in Fig. 3. For comparison, we also plot the BBKS profiles for
peaks with identical central density contrasts and filtering radii.
As can be seen, each couple of curves is very similar; the small
deviation observed (of less than 10 per cent within the radius Ranc

p

of each ancestor seed) is likely due to round-off errors.11 Thus,
there is no evidence that the peak leading to an object with the
average spherically averaged density profile for haloes with M at
t is significantly different from the average peak leading to such
haloes.

Interestingly, the peak trajectories converge to a finite value (null
asymptotic slope) as Rf approaches to zero, as can be seen after

11 The convolution is achieved by taking the product of the 3D Fourier
transform of the unconvolved density contrast profile and the Gaussian
window. As the Fourier transform of the unconvolved density contrast profile
has no compact support, some aliasing is present.

Figure 4. Spherically averaged density contrast profiles for the seed at z =
100 of a halo with current mass equal to M∗ (in red in Figs 2 and 3) convolved
by a Gaussian window (solid lines) with the filtering radii quoted (in physical
units) and marked with arrows in Fig. 3 (same colours), compared to the
BBKS profiles with identical central density contrasts and filtering scales
(dashed coloured lines). Ranc

p are the radii of the seeds of the corresponding
halo ancestors.

some algebra from the null asymptotic limit of the right-hand side
member of equation (35). This in turn implies, from equation (35)
and the relation between 〈δρp〉(rp) and 〈ρp〉(rp), that the uncon-
volved density profiles for protohaloes with different masses also
converge to a finite value. This is consistent with the behaviour at
small radii of the unconvolved density profiles of protohaloes shown
in Fig. 3. This finite limit is approached slightly more rapidly than
in the case of typical peak trajectories.

5 H ALO D ENSI TY PROFI LE

Thus, to derive the typical spherically averaged density profile of
a halo with M at t, we must follow the following steps: (i) solve
equation (36) for the typical peak trajectory δpk(Rf ) leading by PA
to the typical halo with M at t; (ii) from such a peak trajectory, invert
equation (35) to find 〈δp〉(rp) and from it the spherically averaged
density profile of the protohalo, 〈ρp〉(rp); (iii) given the protohalo
density profile, determine the spherical energy distribution Ep(M) in
the protohalo by means of equations (30) and (29) and (iv) making
use of this latter function, invert equation (24) to find the typical
mass profile M(r) of the halo and, from it (equation 21), the typical
spherically averaged density profile 〈ρ〉(r).

The density profiles so obtained (hereafter the theoretical profiles)
for haloes with the same masses as in Figs 2 and 3 are compared in
Fig. 5 to the corresponding NFW profiles with Zhao et al. (2009)
mass–concentration relation and a total halo radius equal to the
virial radius Rvir of Bryan & Norman (1998) (essentially equal to
r90). As can be seen, there is good agreement between each couple of
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2198 E. Salvador-Solé et al.

Figure 5. Spherically averaged density profiles predicted by the present
model (solid lines) for the same current masses M at Rvir as in Figs 2 and 3
(same colours, ordered as in Fig. 2), compared to the density profiles of the
NFW form (dashed lines) with Zhao et al. (2009) concentrations fitting the
average density profile of simulated haloes, both in the radial range covered
by those authors (left) and down to a radius four orders of magnitude less
(right). For comparison, we also plot the fits to the predicted density profiles
by an Einasto law (dotted lines). To avoid crowding, the curves for 10 and
0.1 M∗ have been, respectively, shifted upwards and downwards by a factor
of 3. The lower panels show the residuals of the theoretical curves from the
NFW profiles (left) and of the Einasto profiles from the theoretical curves
(right) for the three halo masses (same order from top to bottom).

curves down to about one-hundredth Rvir. The residuals �log (〈ρ〉)
(prediction minus NFW profile) start being positive at 0.01Rvir, tend
to diminish at intermediate radii (reaching slightly negative values
for M∗), then increase again at moderately large radii (except for
10 M∗) and finally become negative near the halo edge. All these
trends coincide with those shown by the same residuals (simulated
halo minus NFW profile) for individual haloes in the simulations by
Navarro et al. (2004; fig. 1, left-hand panels) except for the fact that
the residuals of simulated haloes are notably larger, as expected (the
theoretical profiles are supposed to correspond to average profiles).
The only significant difference is near the halo edge, where the
residuals of the theoretical profiles for low halo masses keep on
decreasing for a longer radial range (see also Fig. 7). This could
be due to the different halo radius used in both works: the radius
adopted in the present version of the model, arising from the fit to
the halo mass function predicted in the excursion set formalism (see
Section 6), is likely closer to Rvir ≈ r90 as in Zhao et al. (2009) than
to r200 as in Navarro et al. (2004).

However, at small r, the theoretical profiles become progressively
shallower and increasingly deviate from the NFW form (with con-
stant inner logarithmic slope equal to −1). This behaviour is also in
agreement with the results of numerical simulations showing that
the Einasto profile gives a slightly better fit to the spherically av-
eraged density profile for simulated haloes down to radii of about
0.001Rvir. In Fig. 5, we plot the Einasto profiles that better fit the
theoretical profiles down to 0.01Rvir. As can be seen, these Einasto

Figure 6. Same as Fig. 5 (including colours and order) but for the compar-
ison with the density profiles of the Einasto form (dashed lines) with Gao
et al. (2008) mass-dependent parameters fitting the average density profile
of simulated haloes in the �CDM cosmology adopted by those authors, both
in the radial range covered by Gao et al., although extended out to Rvir ≈
r90 (left) and down to the same small radii as in the right-hand panel of
Fig. 5 (right). The curves for 10 and 0.1 M∗ have been shifted as in Fig. 5.
The lower panels show the residuals (same lines) for the three halo masses
(same order from top to bottom).

profiles are still reasonably close to the theoretical profiles at radii
four orders of magnitude less (r ∼ 10−6Rvir).

In Fig. 6, the theoretical density profiles are also compared to
the Einasto profiles with mass-dependent parameters according to
Gao et al. (2008) and the same cosmology used by these authors
(the mass-dependent Einasto parameters are not known for other
cosmologies). Although Gao et al. fitted the density profile of sim-
ulated haloes only down to 0.05 the total radius,12 the agreement
between each couple of curves is similarly good as for the NFW
profiles. In this case, the agreement of the theoretical profiles with
the Einasto profiles at very small radii is not so good (although still
much better than with the NFW profiles). However, this is likely
due to the rather limited radial range covered in Gao et al.’s study.
As the NFW profile gives, down to ∼0.01Rvir, similarly good fits
as the Einasto profile to the density profile of simulated haloes, the
results shown in Fig. 5 strongly suggest that the Einasto profile can
do much better at small radii if the Einasto parameters are adjusted
by covering a wider radial range.

Given a protohalo with inner asymptotic density profile ρ ∝
rα

p , so that M(rp) ∝ r (3+α)
p and Ep(rp) ∝ r (5+α)

p , we have, from
equation (24), that 〈ρ〉(r) ∝ rα . Since the protohalo has a null
logarithmic slope α (see Section 4), it follows that the density
profile for haloes must also have null inner logarithmic slope. In
other words, there is strictly no cusp in the spherically averaged
density profile for CDM haloes according to the present model.

12 Gao et al. (2008) used r200. To transform to the same radius Rvir as in
Fig. 5, their Einasto profiles have been extended to r90 where we have
computed the halo mass.
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Halo density profile 2199

However, the finite central value is approached very slowly, in fact
slightly more slowly than the Einasto profile (see Fig. 5).

The main differences between the density profiles predicted by
the present model and by Del Popolo et al. (2000) and Ascasibar
et al. (2004) models, both of which also use the SI framework,
are that we do not assume spherical seeds with convolved BBKS
profiles and we make use of inside-out growth instead of an adi-
abatic invariant to determine 〈ρ〉(r). The model presented here is
essentially equivalent to the Salvador-Solé et al. (2007) model. The
key difference is that Salvador-Solé et al. (2007) used the typical
cosmological accretion rate on to haloes, whereas here we explic-
itly make use of the typical density profile of halo seeds. However,
the typical halo mass accretion rate arises, as mentioned, from the
typical protohalo density profile, so this difference is just a matter
of presentation, motivated by the distinct theoretical framework of
the two models: the peak and the excursion set formalisms. The
only formal difference between the two models, apart from the fact
that Salvador-Solé et al. also assumed spherical symmetry, is that
the radius encompassing a given mass adopted by these authors
was inferred from equation (24) although not using the spherical
total energy of the real proto-object but of its top-hat approxima-
tion according to Bryan & Norman (1998) prescription. This should
introduce additional numerical differences between the density pro-
files predicted by the two models. It is also important to mention
that the models by Del Popolo et al. (2000) and Ascasibar et al.
(2004) and Salvador-Solé et al. (2007) include free parameters to
be adjusted (the density contrast and filtering radius of the peak in
the two former cases, and the value of �M/M setting the frontier
between minor and major mergers in the latter), while the present
model includes no free parameter at all.

In Fig. 7, the spherically averaged halo density profile predicted
by the present model is compared to those predicted by the Del

Figure 7. Spherically averaged density profile for a halo with current total
mass inside Rvir equal to M∗ predicted by the present model (green line),
Salvador-Solé et al. (2007) model (orange line), the Ascasibar et al. (2004)
model (red line) and the Del Popolo et al. (2000) model (blue line), re-
spectively, ordered from bottom to top at the right end of each panel. The
Ascasibar et al. profile is only shown at radii larger than 0.1Rvir as recovered
by those authors.

Popolo et al. (2000), Ascasibar et al. (2004) and Salvador-Solé
et al. (2007) models, all of them in the concordance model here
considered. As expected, the theoretical profile predicted by the
present model is quite similar to that predicted by Salvador-Solé
et al.’s model, while these two profiles substantially deviate from
those predicted by the remaining models. On the other hand, the
two former profiles are in better agreement with the NFW profile
with Zhao et al. (2009) mass–concentration relation. Moreover, the
theoretical profile derived here is the one in best agreement with
such an NFW profile, which is remarkable because it is also the
only theoretical profile with no free parameter to be adjusted.

6 IM P L I C AT I O N S FO R M A J O R M E R G E R S

The present model has been built for haloes formed by PA. This
kind of halo formation is crucial not only for the inside-out growth
condition, but also for the possibility to apply the peak formalism
in order to derive the peak trajectory leading to a typical halo with a
given mass at a given time. The peak formalism itself is based on the
existence of a one-to-one correspondence between haloes and peaks
inspired in the SI model that ignores major mergers. This therefore
raises two important questions. How do major mergers affect the
typical spherically averaged density profile for haloes derived under
these conditions? And how do they affect the peak formalism?

As shown in Section 3, given a seed with known spherically av-
eraged density profile, we can find the spherically averaged density
profile of the virialized halo evolving from it by PA, but the con-
verse is also true. Given a halo grown by PA, we can calculate from
its mass profile M(r) the spherical total energy of the protohalo,
Ep(M) (equation 24), and then determine its spherically averaged
density profile, 〈ρp〉(r), from equations (29) and (30). Therefore,
there is in PA a one-to-one correspondence between the initial and
final spherically averaged density profiles. This is a well-known
characteristic of spherical SI (Del Popolo et al. 2000), extended in
the present paper to non-spherical SI.

Interestingly, the reconstruction of the spherically averaged den-
sity profile for the seed of a halo having grown by PA can also
be applied to a halo having suffered major mergers. This yields the
spherically averaged density profile, 〈ρp〉(rp), of a putative peak that
would evolve by PA into a halo with a spherically averaged den-
sity profile identical, by construction, to that of the original halo.
Clearly, if the halo has grown by PA, such a putative peak exists and
it is an ordinary peak. However, if the halo has undergone major
mergers, does it exist? Is it an ordinary peak? In which halo does it
evolve? To answer these questions, we will make use of the rigorous
treatment of the peak formalism given in MSSa and MSSb.

As mentioned, the peak ansatz at the base of the peak formalism
states that there is a one-to-one correspondence between haloes with
M at t and peaks in the filtered density field at some small enough
cosmic time ti, for some monotonous decreasing and increasing
functions δ(t) at Rf (M) of the respective arguments. According to
this ansatz, peaks associated with accreting haloes describe con-
tinuous trajectories in the δpk–Rf diagram. Those peaks need not
necessarily be anchored to points with fixed coordinates; they can
move as the filtering scale varies (as real haloes do in the cluster-
ing process). However, thanks to the mandatory use of the Gaus-
sian window,13 the connection can be made in a simple consistent

13 The decreasing behaviour of δ with increasing Rf implied by the growth
in time of halo masses is only guaranteed for that particular filtering window
(see MSSa).
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way between peaks tracing one given accreting halo at contiguous
scales.14

In a major merger, the continuous trajectories of (connected)
peaks tracing the merging haloes are interrupted, while one new
continuous peak trajectory appears tracing the halo resulting from
the merger, leaving a finite gap in Rf due to the skip in halo mass
between the merging and final objects. This is the only process
where peak trajectories are interrupted. Haloes that do not merge
but are accreted by more massive haloes are traced by peaks that do
not disappear but become nested into the collapsing cloud of larger
scale peaks tracing the accreting haloes. This leads to a complex
nesting of peaks with identical δpk but different Rf . Once such a
nesting is corrected, the number density of peaks with δpk at scales
between Rf and Rf + dRf and its filtering evolution recover the mass
function (and growth rates) of virialized haloes (MSSa and MSSb).

Thanks to these results, it can be shown (see MSSa) that the
δpk(t) and Rf (M) relations defining the one-to-one correspondence
between (non-nested) peaks and (non-nested) haloes stated in the
peak ansatz are necessarily of the form (37) and (38). These rela-
tions can be seen as the generalization of those of the same form
found in top-hat spherical collapse, with δc(t) and q, respectively,
equal to 1.686 and 1. This does not mean, of course, that these
parameters must take the same values in the peak formalism. On
the contrary, the freedom in δc(t) and q makes it possible to account
for the change in the filtering window (Gaussian instead of top-hat)
and possibly also in the departure from spherical collapse in the
real clustering process.15 For δc[t(z)] = 1.93 + (5.92 − 0.472z +
0.0546z2)/(1 + 0.000 568z3) and q = 2.75, the halo mass function
predicted in the �CDM concordance cosmology (after correction
for nesting according to MSSa) recovers the mass function derived
from the excursion set formalism from z = 0 up to any arbitrarily
large z.16 As the halo mass function at t predicted in the peak for-
malism is nothing but the filtering radius distribution for peaks with
δpk(t) (equation 37) transformed into the former by means of the
relation (38), this result implies that there is indeed a one-to-one
correspondence between peaks and haloes as stated by the peak
ansatz.

The putative peak of a halo and its associated peak according
to the peak ansatz have the same δpk(t) and Rf (M). Their filtering
evolution may be different: the trajectory in the δpk–Rf diagram of
the putative seed can always be traced down to any arbitrarily small
filtering radius, whereas the trajectory of the associated peak can
only be traced until reaching the filtering radius corresponding to
the last major merger. However, the values δpk and Rf of a peak
do not allow one to tell its ‘past’ filtering evolution because there
is, in the filtering process, a kind of ‘memory loss’. The Gaussian
window, mandatory as mentioned for the peak formalism, yields
a strong correlation between very close scales, which is welcome
to carry out the connection between peaks at contiguous scales.

14 A peak at scale Rf is connected with another peak at scale Rf + dRf

provided only these two peaks are at a distance smaller than Rf from each
other (see MSSa).
15 For this latter aspect to be true, we should adjust the mass function
obtained from simulations or from the excursion set formalism, with values
of δc and q better adjusting the former mass function. In the present paper,
we fit, however, the mass function predicted in the excursion set formalism
with δc(t) = 1.686 and q = 1, so the departure from non-spherical collapse
cannot be accounted for.
16 The mass function predicted by the excursion set formalism is not fully
accurate, particularly at large z, so one should rather fit the mass function
drawn from numerical simulations. However, this is not important here.

However, at the same time, it yields a loss of correlation between
scales different enough to encompass the gap produced in major
mergers. Thus, owing to this particular window, peaks at a given
scale do not know whether or not they have appeared in some major
merger (at a smaller scale). Therefore, the putative seed of a halo
coincides with its associated peak according to the peak ansatz and,
as such, it is an ordinary peak. (It contributes to the filtering scale
distribution of peaks with a given δpk, regardless of the past history
of the halo.)

Thus, according to the present model supported by the results
shown in Section 5, the spherically averaged density profile of a
halo having undergone major mergers must be indistinguishable
from that arising from the evolution by PA of an ordinary peak (the
putative peak) or, equivalently, there must be in the halo aggregation
process a memory loss similar to that mentioned above, affecting
the filtering process of peaks. Such an implication has to do with
the fundamental debate on whether or not virialization is a real
relaxation (e.g. Henriksen 2009).

As noted by Del Popolo et al. (2000), the one-to-one mapping
between the initial and final density profiles in PA seems to indicate
that there is no memory loss, at least in PA, during virialization.
This is at odds, however, with the fact that virialization, even in
PA, sets a time arrow. Even though the equations of motion of
individual particles are time reversible, owing to the highly non-
linear dynamics of shell-crossing, any infinitesimal inaccuracies in
the positions and velocities of particles in a simulation are rapidly
amplified, causing simulated orbits to deviate from the true ones.
When the simulation is run forwards, this goes unnoted because
the system always reaches the same (statistically indistinguishable)
final equilibrium configuration. However, when the simulation is
run backwards, it is readily detected: before shells can reach the
maximum size (at turnaround), they begin to contract again towards
the final equilibrium state. As the existence of a time arrow (or
the impossibility of reversing by numerical means the evolution
of a system) is an unambiguous signature of relaxation, we must
conclude that virialization is a real relaxation.

In the case of PA, the memory loss on the initial conditions is not
complete: the order of shell apocentres is conserved. Consequently,
despite the fact that information regarding individual orbits is lost,
we can recover the initial configuration in a statistical sense (in that
we can recover the density profile). Thus, even in this case, the
initial configuration cannot be exactly recovered because of the loss
of information on the phase of particle orbits (individual orbits are
mixed up). And, in the general case including major mergers, the
relaxation nature of virialization is even more evident. The initial
configuration of a given virialized object can never be recovered, not
even in a statistical sense, because the density profile for virialized
haloes does not harbour information on their past history, so we can
never be sure that the unconvolved density profile of their putative
seeds, derived assuming PA, describes the density profile of their
real seeds.

The prediction made by the present model that the spherically
averaged density profile of haloes does not harbour information on
their past aggregation history is thus consistent with the general
behaviour of virialization. Moreover, it is consistent with several
specific results regarding the density profile of simulated virialized
haloes: (i) virialized haloes with very different aggregation histories
have similar spherically averaged density profiles (e.g. Nusser &
Sheth 1999); (ii) their density profile is independent of the time
they suffered their last major merger (Wechsler et al. 2002) and (iii)
their density profile does not allow one to tell how many, when and
how intense the major mergers they have suffered are (Romano-Dı́az
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et al. 2006). Certainly, there are also some claims in the literature
that the density profile for haloes depends on their formation time.
However, this is due to the particular definition of halo formation
time adopted in those works, related to the form of the profile. Thus,
the prediction of the model regarding the lack of information in the
density profile of a halo on its past history is not contradicted by
the results of numerical simulations.

Thus, the present model strongly suggests that haloes having
suffered major mergers have density profiles which are indistin-
guishable from those that have not. This prediction is important not
only for the validity of the model (i.e. the validity of the inside-out
growth assumption and the peak ansatz), already supported by the
good behaviour of the density profiles it predicts (Section 5), but
also because it allows one to understand why major mergers do not
affect neither the typical halo density profile nor the peak formalism
for halo statistics based on SI. Indeed, the fact that haloes formed in
a major merger, after complete virialization, would have a density
profile indistinguishable from that of a halo formed by PA justifies
that any halo with M at t can be associated with a peak with δpk and
Rf as if it had evolved from it by PA, as assumed in the peak ansatz,
and that the typical halo density profile derived assuming PA is not
affected by major mergers. As a corollary we have that the present
model of spherically averaged density profile should hold for all
haloes, regardless of their aggregation history.

7 SU M M A RY

The present model relies on two assumptions: (i) that the typical
density profile for virialized objects in hierarchical cosmologies
with collisionless dissipationless dark matter can be derived as if all
the objects grew by PA and (ii) that the peak formalism correctly
describes halo statistics. The key points of the derivation are that,
contrarily to the kinematic profiles, the spherically averaged density
profile does not depend on the (triaxial) shape of the object and
that, during accretion, virialized objects grow from the inside out,
keeping the inner structure essentially unchanged.

Triaxial collisionless dissipationless systems undergoing PA viri-
alize by transferring energy from inner to outer shells through shell-
crossing. Due to this energy loss, particles progressively reaching
turnaround describe orbits that contract orderly in the sense that
the ellipsoidal surfaces effectively traced by their apocentres shrink
and change their axial ratios without crossing each other until they
stabilize. This causes the central steady object to develop inside-out.
Such an evolution of accreting objects is in full agreement with the
results of numerical simulations.

One important consequence of the inside-out growth is that the ra-
dius encompassing a given mass in triaxial virialized objects formed
by PA exactly coincides with the usual estimate of such a radius
from the energy of the sphere with identical mass at turnaround. In
this conditions, there is a one-to-one mapping between the density
profile of the virialized object and its seed. This allows one to infer
the typical spherically averaged density profile, 〈ρ〉(r), of virialized
objects from the energy distribution of their spherically averaged
seeds, which can be calculated from the power spectrum of density
perturbations making use of the peak formalism.

The consistency between the peak formalism and the one-to-one
mapping between the initial and final density profiles following
from PA implies that virialization must be a real relaxation. This
conclusion agrees with the general behaviour of virialization (it sets
a time arrow) as well as with specific results regarding the den-
sity profile of simulated haloes. As such, the spherically averaged
density profile for haloes cannot harbour information on their past

aggregation history, which explains why major mergers do not alter
the typical density profile of virialized objects derived under the PA
assumption and do not invalidate the peak ansatz. In other words,
the sole condition that virialization is a real relaxation is enough for
the two assumptions of the model to be not only consistent but also
fully justified.

The model has been applied to CDM haloes. We have derived the
typical unconvolved spherically averaged density profile for peaks
evolving by PA and from it the typical spherically averaged density
profile for haloes with a given mass in a given epoch. Specifically,
we have established the link between the typical halo density profile
and the power spectrum of density perturbations in any given hi-
erarchical cosmology. The typical halo density profile so predicted
in the �CDM concordance cosmology is in very good agreement
with the NFW and the Einasto profiles fitting the spherically av-
eraged density profile of simulated haloes down to one-hundredth
the total radius. However, such a theoretical profile does not have
a central cusp. In the �CDM cosmology, the model predicts that
simulations reaching increasingly higher resolutions will find a typ-
ical halo density profile that tends to a core (null asymptotic slope)
which is slowly approached, even slower than current fits using the
Einasto profile.
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