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Abstract

The target of this paper is to implement an optically-based visual encryp-
tion system able to work with a large set of optical codes. The optical
setup comprises a holographic system designed to generate spirally-polarized
highly focused fields and an imaging module able to perform polarimetric
analysis. In a previous stage, the optical system is numerically simulated in
order to produce synthetic polarimetric distributions that are used to train a
convolutional neural network. Interestingly, the way the network is trained
depends on the selected state of polarization. Then, secret codes are split
in two XOR-connected ones that are optically processed. The corresponding
experimental polarimetric distribution is obtained and transmitted to the
corresponding recipients, that can recover the code by interrogating the neu-
ral network. Finally, combining the two pieces of information, the encrypted
message can be decoded.

Keywords: Optical security, highly focused beams, neural networks

1. Introduction

In 1994 and 1995, Javidi and collaborators published the first papers on
optical encryption [1, 2]. Since then, thousands of papers in this field have
been published. As a matter of fact, according to both World of Science and
Scopus, reference [2] has been cited more than 2000 times. The original dou-
ble random phase encoding approach has been modified uncountable times to
provide flexibility and improve security. These alternative techniques include
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the use of Fresnel diffraction [3, 4], fractional Fourier transforms [5, 6], logis-
tic maps [7], phase-truncated transforms [8], holography [9, 10], interference
[11, 12], wavelength multiplexing [13], ghost imaging [14], diffraction [15],
gyrator transform [16], polarization [17, 18], or photon counting [19], just
to cite some of them. Other papers analyzed flaws and weakness of optical
encryption, mainly related with the properties of Fourier transforms [20–22].
Very recently, the generalized use of deep learning provides a new perspective
for analyzing optical encryption problems (see, for instance, [23–30]). Note
that it is practically impossible to cite all relevant work produced in the last
years. For a more in-depth analysis, the interested reader might consider the
following excellent reviews and references therein [31–36].

Furthermore, the study of electromagnetic beams with arbitrary ampli-
tude and polarization is a very active research field [37]. Also, we have
studied how polarimetric information, in combination with machine learn-
ing techniques, might be used in validation problems [38, 39]. One possible
application of these techniques is in the field of optical security [40–43]. De-
spite these approaches uses of beams in the paraxial domain, the possibility
of manipulating the longitudinal component of highly focused beams [44, 45]
has also been considered [46, 47].

Secret sharing [48] and exclusive-OR visual encryption [49] are related
security techniques that have also been ported to the optical domain. In-
terestingly, several papers considering optical problems using XOR-based
encryption [50–53] or secret sharing related techniques [54–57] have been re-
cently published. In this paper, we describe a system able to transmit text
using the visual encryption paradigm. The characters of a string are sequen-
tially processed, one at a time. The binary representation of every character
of the string is split in two using the usual XOR approach [49]. Then, the
two resulting characters are independently manipulated. Each character is
holographically encoded and used as the input of an optical setup able to
produce focused fields with tunable spiral polarization. Finally, the system
records six polarimetric images that are transmitted to the recipient. The
character can be recovered by interrogating a convolutional neural network
(CNN) [58] that was trained in a previous stage; interestingly, the training
set depends on the input polarization. Our approach was demonstrated us-
ing 10-bit Unicode characters, but the method can be used with an arbitrary
binary-code data-set as well.

The paper is organized as follows: in section 2 we review basic concepts
in focused fields. In section 3 we describe the steps and techniques required
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to implement both the system and training the neural network. This involves
(i) the character encoding procedure, (ii) the experimental setup, (iii) how
the neural network is trained, and (iv) the results obtained. In section 4 we
discuss the advantages and limitations of the proposed method and finally,
we present our conclusion in section 5.

2. Review of basic concepts

The Richards-Wolf formula describes the behavior of a focused electro-
magnetic beam in the focal region of a high numerical aperture (NA) lens.
This equation relates the transverse illuminating beam E0 = (E0x, E0y, 0)
and the focused field at the focal plane (z = 0), E(r, ϕ, z = 0) [59]

E(r, ϕ, 0) = A

∫ θ0

0

∫ 2π

0

E∞(θ, φ) exp (ikr sin θ cos(ϕ− φ)) sin θ dθ dφ , (1)

where r = (r, ϕ, z) are the coordinates at the focal area, A is a constant
value, k is the wave-number, θM is the semi-aperture angle, and θ and φ
are the coordinates at the Gaussian sphere of reference; NA is related to the
semi-aperture angle θM by means of NA = sin θM . E∞ is the so-called vector
angular spectrum:

E∞ =
√
cos θ

(
(E0 · e1) e1 +

(
E0 · ei2

)
e2
)
, (2)

where f1 = E0 · e1 and f2 = E0 · ei2 are the azimuthal and radial transverse
components of the incident transverse field E0, respectively. The wave-front
vector s reads

s = (sin θ cosφ, sin θ sinφ,− cos θ) , (3)

whereas vectors e1, e2 and ei2 are described by:

e1(φ) = (− sinφ, cosφ, 0) (4a)

ei2(φ) = (cosφ, sinφ, 0) (4b)

e2(φ, θ) = (cos θ cosφ, cos θ sinφ, sin θ). (4c)

Note that e1, e2 and s form a triad of mutually orthogonal right-handed
system of unit vectors. Figure 1 summarizes the systems of coordinates used
(a) at the entrance pupil, (b) at the Gaussian sphere of reference and (c) at
the focal plane.
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Figure 1: Coordinate system and geometrical magnitudes: (a) Entrance pupil, (b) Gaus-
sian sphere of reference, and (c) focal plane.

Despite the input beam E0 is transverse to the optical axis, the focused
beam E might display a non-negligible value in the longitudinal direction.
Equation (1) can be written in terms of a λf -scaled Fourier transform (see
[60])

E = FTλf

[
E∞

cos θ

]
, (5)

where λ is the wavelength of the illuminating source and f is the focal length
of the optical system. Interestingly, the components of the focused field E
are not independent because the Gauss law ∇E = 0 holds. In particular, the
longitudinal component Ez in terms of the components of field E0 reads

EZ = FTλf

[
E∞z

cos θ

]
= FTλf

[
sin θ√
cos θ

(E0x cosφ+ E0y sinφ)

]
. (6)

If the beam is spirally polarized, components E0x and E0y are related by
means of

E0x = −E0y tan (φ+ ω) , (7)

being ω a parameter to be tuned. For instance, the beam is radially polarized
when ω = π/2.
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In this paper, we decided to encode the information in such a way that
the longitudinal component is explained as the Fourier transform of the in-
formation to be processed. Note that this is an arbitrary decision, and other
alternatives might be considered as well. If the code to be processed is de-
scribed by a circularly symmetric function C(φ) (as explained in section 3.1)
the y−component of the input beam E0 becomes

E0y = C(φ)

√
cos θ

sin θ

1

− cosφ tan(φ+ ω) + sinφ
with ω, θ ̸= 0 , (8)

whereas the x−component E0x is obtained by using Eq. (7). In such con-
ditions, the longitudinal component of the focused beam becomes Ez =
FTλf [C(φ)].

3. Methods

3.1. Encoding procedure

In 1979, Shamir published a short paper analyzing how to split a secret
message S in N pieces of information with the following property: S should
be fully recovered using K shares but not with K − 1 [48]. In particular,
if N = K, the method can be trivially implemented using the XOR logical
operator. Note that for N = K = 2, secret sharing becomes the visual
encryption scheme described in [49].

For demonstration purposes and without loss of generality, in this paper,
we consider 10-bit messages shared by two parties using bit-wise XOR. These
binary words can be graphically represented as Unicode characters ranging
from 0 and 1023. This subset covers almost all characters used in western
European languages, and also Greek and Coptic. For instance, randomly
selected character code ň (U+0148) XOR-encoded with á (U+00E1) pro-
duces Σ (U+01A9); or using binary numbers, 0101001001 ⊕ 0011100001 =
0110101001, where symbol ⊕ stands for the bit-wise XOR operator. Note
that some few codes do not correspond to actual characters (e.g., Null (U+0000),
Bell (U+0007) or Escape (U+001B)), but could be encoded as well.

Binary information is arranged using an annulus of radii R1 and R0 (R1 >
R0). The transmittance in the outer and inner parts of the annulus are
zero, and values ’1’ or ’0’ are represented as transparent or opaque sectors
respectively. In this way, R0 ̸= 0 (i.e., θ ̸= 0) and thus, no singularities are
present in Eq. (8); R1 is set equal to the radius of the illuminating beam at
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Figure 2: (a) Design of the encoding method. (b) Function C(φ) encoding character
(0011100001). (c) Corresponding computer generated hologram.

the entrance pupil of the microscope objective (Fig 1). In the present work,
R1=3.75 mm and R0=1.8 mm. For a n-bit word, the annulus is split in 2n
sectors to provide radial symmetry to the code. We name this procedure as
circular encoder (CE) and is mathematically represented by C(φ).

Figure 2(a) sketches the codification procedure of the circular encoder,
and 2(b) displays C(φ) corresponding to the character á (0011100001). In
our design, instead of using just the binary pattern defined by C(φ), the
illumination beam E0 is modulated according to Eqs. (7 - 8). This real-
valued distribution is introduced in the optical system using a computer
generated hologram displayed on a liquid crystal device [61, 62], as described
in the next section (see Fig. 2c).

Other authors have proposed similar approaches for encoding information
to be used in an optical setup [63]. Moreover, a related, more complex ar-
rangement was used by NASA to encode a message in the Mars Perseverance
rover’s parachute (see for instance [64]).

3.2. Experimental setup

The sketch of the optical system is shown in Fig. 3. The setup com-
prises two parts: a holographic system designed to generate spirally polar-
ized focused fields and an imaging arrangement able to perform polarimetric
analysis.

A pig-tailed laser with wavelength λ = 520 nm (Thorlabs LP520-SF15)
illuminates a twisted nematic liquid crystal display (Holoeye HEO 0017,
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1024×768 pixels and pixel pitch of 32 µm). Linear polarizer LP1 and quar-
ter wave plate QWP1 set the modulation response of the display in phase-
mostly configuration. The information to be processed is encoded using the
Arrizon’s double-pixel computer generated hologram technique [61]. Since
Arrizon’s holograms produce off-axis diffracted terms that should be filtered,
lens L2 and L3 are set in a 4f configuration with a spatial filter (SF) placed in
the back focal plane of L2. A more detailed explanation on how to produce
custom focused beams with the help of computer generated holograms using
liquid crystal displays can be found in [65–67].

In our approach, the beam is spirally polarized. The combined use of
polarizer LP2 and vortex retarder VR (ThorLabs, WPV10L-532) enables us
to produce this kind of beams. The particular polarization state, defined
by w in Eq. (7), is obtained by modifying the relative angle of LP2 and
VR respective axes. Finally, the beam is subsequently focused by means of
microscope objective MO1 (Nikon Plan Fluorite N40X-PF with NA = 0.75).
The microscope objective MO2 (Nikon, NA = 0.8) is placed on a movable
stage driven by a motorized device (Newport LTA-HL) with repeatably of
±100 nm. This second objective is used to image the focused beam on the
sensor plane of the CCD camera (Stingray with a 14-bit depth and a pixel
pitch of 3.75 µm). Polarizer LP3 and quarter wave plate QWP2 are used to
record six polarimetric images: I0,0, I0,45, I0,90, I0,135, I90,45, and I90,135. Iα,β
stands for the recorded intensity when the linear polarizer is set at an angle
β with respect to the x direction, and α is the phase delay introduced by
QWP2.

3.3. Production of the training set

We produced two synthetic data-sets using a numerical procedure that
simulates optical propagation across the system described in the previous
section. Every data-set (namely A and B) uses a particular polarization
state of the incident field ES: we selected ω = π/8 and ω = π/2 for data-sets
A and B, respectively (see Eq. (7)). Note that training sets depend on the
value of ω.

The complete collection of 1024 characters is used for training the system
using a neural network. The proposed method will work with an arbitrary
number of Unicode characters, but we decided to use a relatively small num-
ber of elements to be able to train the network quickly. For each character, we
calculated the corresponding six polarimetric images that would be recorded
at the sensor plane of the CCD. These six images are packaged in a single
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Figure 3: Optical setup: L1, L2, L3: lenses; LP1, LP2, LP3: linear polarizers; QWP1,
QWP2: quarter wave plates; VR: Vortex retarder; SF: spatial filter; MO1, MO2: micro-
scope objectives; CCD: camera. When VR is rotated, the polarization state of the beam
is changed (see section 4). Figure adapted from [66] under a Creative Commons BY 4.0
license.

6-channel array; we refer to this multidimensional array as the Polarimetric
Mapping Image (PMI). Figure 4 compares the calculated polarimetric im-
ages I0,0, I0,45, I0,90, I0,135, I90,45, and I90,135 with those obtained optically
for character á using polarization cases A and B. Numerical results and op-
tically recorded images display an excellent agreement. Since we are using
non-uniform linear (spiral) polarization, images I90,45, and I90,135 should be
identical. However, the two experimental distributions might be slightly dif-
ferent because I90,45, and I90,135 are recorded in different moments.

Data-sets A and B are generated according to the following steps:

1. The binary number that corresponds to the considered character was
encoded using the procedure explained in section 3.1.

2. Then, the field E0 was generated taking into account the polarization
state determined by ω (Eqs. (7-8)).

3. The transverse components of the focused field E (Eq. (1)) were cal-
culated and used to generate the corresponding PMI.

4. To make the system resistant to noise and small changes in scale, related
to possible experimental issues, we produced 8 different PMI for each
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Figure 4: Results corresponding to character á (U+00E1): the first and second rows display
numerically and optically obtained polarimetric images, respectively (case A). The third
and fourth rows provide the same information, but for polarization case B.

character. These modified PMIs were generated from the original PMI
(PMIo), obtained in ideal conditions, as follows: (i) PMIo was zoomed
two times with scale factors 0.95 and 1.05, and (ii), PMIo was corrupted
with additive Gaussian noise with standard deviation σ equal to 0.05,
0.1, 0.15, 0.2 and 0.25 (we assume the arrays are normalized to 1).
Accordingly, the data-set comprised 8192 PMIs (1024 characters x 8
PMIs per character). Figure 5 shows the first channels of the eight
PMIs (I0,0) corresponding to code ň (U+0148).

5. Finally, 6554 randomly selected PMIs were used for training whereas

Figure 5: First channel (I0,0) of the 8 PMIs for code ň (U+0148) calculated for polarization
case A. (a) original PMIo, (b) I0,0 zoomed with scale factor = 0.95, (c) I0,0 zoomed with
scale factor = 1.05; I0,0 corrupted with additive Gaussian noise: (d) σ = 0.05, (e) σ =
0.1, (f) σ = 0.15, (g) σ = 0.2, and (h) σ = 0.25.
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the remaining 1638 PMIs were utilized for testing. We used the 80/20
training-test sets rule according to [68].

3.4. Training the system

We implemented a sequential model convolution neural network sum-
marized in Fig. 6 using TensorFlow 2.1 [69]. The model consists of three
convolutional layers with 32, 64, and 128 filter sizes and a kernel size of
3 accompanied by the hyperbolic tangent activation function. After each
layer, batch normalization and average pooling layers are applied. The fea-
ture map obtained is flattened into 2048 one-dimension arrays as an imaging
outcome which is connected to 1843 neurons using a dense layer accompa-
nied by the sigmoid activation function. Then, 25% of the connected neurons
are removed by a drop-out layer. Finally, the last dense layer provides 1024
probability distributions ranging from 0 to 1 applying the softmax activa-
tion function which is used to label the character codes. The model uses the
root-mean-square error, the cross-entropy loss, and the accuracy as the op-
timizer, loss function, and performance metrics respectively. The CNN was
trained on an i7-1165G7 @ 2.8 GHz laptop computer with 16 GB RAM and
an NVIDIA GeForce MX450 GPU. Training time: 4’ 18”, after 30 epochs
(case A) and 6’ 23” after 40 epochs (case B). The obtained accuracy and loss
values are shown in Table 1.

Figure 6: Neural network model: PMI, FM, IO, HL, and OL stand for polarization map-
ping image, feature-map, image-outcome, hidden layer, and output layer, respectively
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Accuracy Loss
Case A, ω = π/8 Training set 0.997 0.011

Test set 0.967
Experimental 0.901

Case B, ω = π/2 Training set 0.992 0.028
Test set 0.925
Experimental 0.921

Table 1: Network accuracy and loss

4. Results and discussion

We optically tested the recognition capability of our approach using 210
randomly selected pairs of characters. One of the characters of the pair is
optically processed with a polarization state equal to ω = π/8 (case A) and
subsequently detected by interrogating the CNN. The other one is processed
the same way, but using polarization state equal to ω = π/2 (case B). Then,
the two detected characters are XOR-recombined to produce the visually-
encrypted message. We found that the accuracy for polarization cases A and
B is 0.901 and 0.921 respectively (see Table 1).

To sum up, we designed a successful optical setup and a coding procedure
able to implement visual encryption. Some design variables can be modified
to deploy alternative systems:

1. The characters are encoded assuming the longitudinal component Ez

is described by the Fourier transform of the function C(φ). Other im-
plementations of ES can be considered, provided the network is trained
accordingly.

2. The system has been demonstrated using high NA microscope objec-
tives and spiral polarization. However, low NA lenses or other polar-
izations could be used as well.

3. The character set used is limited to 1024 codes, but the method can
be easily scaled to be used with binary codes of arbitrary length. In
particular, the system can be able to be used with the complete Unicode
set.

4. Radius R0 and R1 can be considered design variables. Any change in
these values will produce a complete different training set. In section
3.1, we explained how R1 and R0 were selected. If the codes to be
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optically analyzed use other radii values, it is very likely that recog-
nition will not be possible. Figure 7 displays synthetically produced
PMIs for code ň (U+0148) using different values for R1 and R0. In
this example, we use spiral polarization (case A). The code and the
corresponding PMI depicted on row (a) uses the same radii utilized for
training the system. Rows (b), (c) and (d) shows the PMIs for differ-
ent combinations of R1 and R0, as indicated in the caption of Fig. 7.
As expected, these intensity patterns are slightly different and when
these PMIs are used to interrogate the CNN, the network wrongly pre-
dicts codes (b), (c) and (d) as characters (U+01A5), (U+01A4) and
(U+03D4), respectively.

Figure 7: PMIs for code ň (U+0148) generated with different radii and using system A
(spiral polarization): (a) R1=3.75 mm and R0=1.8 mm. (b) R1=3.75 mm and R0=0.36
mm (c) R1=3.75 mm and R0=0.9 mm (d) R1=2.5 mm and R0.

5. It is worth considering that the neural network will provide a correct
answer only if the six polarimetric channels of the PMI are available.
In general, if an attacker is not able to access the complete group
of polarimetric images, they will not be able to recover the expected
character. This means that the number of recipients involved might be
increased up to twelve.
In order to justify this statement, we show the accuracy results when
one of the channels of the PMI contains only random values (see table
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2): Accuracy values are almost zero when one of the channels (I0,0,
I0,45, I0,90, or I0,135) do not provide information.
Since the system is illuminated with non-uniform linear polarized light
(radial or spiral), the contribution of channels I90,45 and I90,135 is less
critical for the recognition process. Interestingly, if we simultane-
ously remove the information of the I90,45 and I90,135 channels, the
accuracy value depends on the polarization of the illuminating beam.
When radial polarization is used, it is enough to utilize the channel set
(I0,0, I0,45, I0,90, I0,135) to get a high accuracy value. However, this is no
longer true for spiral polarization. In general, to avoid false recognition,
it is required not to ignore any channel.

Channel missing Case A (spiral) Case B (radial)
I0,0 0.012 0.014
I0,90 0.012 0.014
I0,45 0.026 0.038
I0,135 0.008 0.056
I90,45 and I90,135 0.436 0.960

Table 2: Test accuracy for channels containing random information. Test data-set: 500
codes.

6. We have also considered the effect of using the channels of the inter-
rogating PMI in the wrong order. PMIs of the training set were built
considering the following order: I0,0, I0,90, I0,45, I0,135, I90,45, I90,135. Ta-
ble 3 displays some accuracy results when the channels of the PMIs of
the test set are not provided in the appropriate order. Results clearly
demonstrate that the system becomes unreliable if testing PMIs are
not arranged according to the design.

Case A (spiral) Case B (radial)
I0,90, I0,0, I0,45, I0,135, I90,45, I90,135 0.004 0.006
I0,0, I0,90, I0,135, I0,45, I90,45, I90,135 0.010 0.020
I0,45, I0,90, I0,0, I0,135, I90,45, I90,135 0.304 0.120
I0,135, I0,45, I0,90, I0,0, I90,45, I90,135 0.010 0.006

Table 3: Test accuracy for PMI channels provided in the wrong order.
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7. Occlusion attack is a common test in optical encryption. To produce a
suitable visual encryption system, we designed our CNN to be efficient
for pattern recognition and classification purposes. When the present
CNN is tested against PMIs with blocked information, accuracy results
worsen fast. To test the behavior of the network, we produced three
500-character PMI test-sets. Every set contains no information in con-
tinuous areas equivalent to 6% (set O1), 10% (set O2) and 16% (set
O3) of the total pixels. The corresponding accuracy results are shown
in Table 4: when the area occluded is below 10%, the CNN performs
well, but above this point, accuracy decreases fast. For illustrative pur-
poses, examples of partially occluded I0,0 elements that belong to set
O3 are shown in Fig. 8.
To successfully circumvent this attack, our network could be trained
using a large set of occluded PMIs. This methodology is equivalent to
the proposed design of PMIs to avoid noise.

Test set Case A (spiral) Case B (radial)
Set O1: Area occluded: 6% 0.974 0.976
Set O2: Area occluded: 10% 0.980 0.974
Set O3: Area occluded: 16% 0.820 0.810

Table 4: Test accuracy for PMIs containing occluded information. Test data-set: 500
codes.

Figure 8: Partially occluded (16%) channel I0,0 for codes d (U+0064), È (U+00C8), Ĭ
(U+012C) and U+0190, generated using radial polarization

5. Concluding remarks

We have introduced an optical approach for implementing visual encryp-
tion for a set of optical codes. The system is based on a holographic optical
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setup able to record polarimetric images of the irradiance at the focal plane
of an objective lens. The character to be analyzed is encoded and opti-
cally processed, producing the aforementioned polarimetric images. These
distributions are used to interrogate a CNN that is able to determine the
corresponding code. Interestingly, the network will only provide correct re-
sults if it has been trained with the proper polarization state and the precise
knowledge of radius R1 and R2 for designing the CE.

We found that visual encryption of 10 bit Unicode characters was possible
with a very high success rate. Despite the group of characters used is small,
our technique can be easily scaled to consider, for instance, the full 16-bit
Unicode set. Also, we demonstrated the use of visual encryption using two
shares. Note that the six polarimetric images should be provided to the
recipients. Since the CNN requires the complete group to provide accurate
results, the number of recipients involved might be increased up to twelve.
Despite the network was not designed to be used with occluded information,
accuracy performance is good enough when the percentage of blocked pixels
is not higher than 10%.
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