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Abstract 

Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous 

catalysis, either for its poisoning capability, for the recently attributed promoter role when 

incorporated in subsurface, or for the formation of early transition metal carbides, which 

are increasingly used in catalysis. Herein we present a high-throughput systematic study, 

adjoining thermodynamic plus kinetic evidence obtained by extensive density functional 

calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), 

which provides a navigation map of these interactions in a holistic fashion. Correlation 

between previously proposed electronic descriptors and ad/absorption energies has been 

tested, with d-band centre being found the most suitable one, although machine learning 

protocols underscore also the importance of the surface energy and the site coordination 

number. Descriptors have also been tested for diffusion barriers, with ad/absorption 

energies and the difference in energy between minima being the most appropriate ones. 

Furthermore, multivariable, polynomial, and random forest regressions show that both 

thermodynamic and kinetic data are better described when using a combination of different 

descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, 

while combining different ones may be a better path to follow. 
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1. Introduction 

Nowadays, transition metals (TMs) are ubiquitous in many areas of science and 

technology, from Solid State Physics through Applied Chemistry up to Materials Science, 

with relevance in diverse industrial fields, such as Nanotechnology and Heterogeneous 

Catalysis. In fact, late TMs, including noble coinage (Ni, Cu, Ag, Au) and Pt-group (Pt, 

Pd, Rh, Ir, Re, Os) metals, are in widespread use as heterogeneous catalysts1 for a large 

diversity of reactions of industrial interest, e.g. ammonia synthesis, exhaust gas treatments, 

or the Fischer-Tropsch reaction, to name just a few.2,3 However, early TMs are far too 

active for such purposes according to Le Sabatier principle,4 adsorbing chemical moieties 

too strongly. Their heterogeneous catalysis interest though lies into the TM carbides 

(TMCs) formation, since the carburization of these metals diminishes their chemical 

activity, to the point of making TMCs viable replacements of the above-commented late 

TMs in catalysis,5 featuring improved catalytic performances, selectivities, or poison 

resistances compared to Pt-group TMs.6,7 

The relative simplicity of TM systems and the industrial importance of their 

applications has prompted state-of-the-art research aimed at unveiling their catalytic 

activity improvement, desirably coupled with materials cost reduction, as the one achieved 

when using Earth-abundant TMCs. To this end nanostructuration, alloys usage, even the 

design of nanoalloys have been contemplated as plausible strategies.8,9 The rational design 

of novel metal and alloy catalysts, backed up by precise ab initio quantum chemistry 

calculations on proper catalyst models, has meant a great leap forward in the quest for new, 

improved activity TM catalysts.9,10 

Still, however, one main drawback of such catalysts is that, in the course of the 

catalysed reaction, these get gradually deactivated over time and use, with the concomitant 

loss in efficiency and economic profit. The origin of this loss is the presence of poisoning 

agents, where carbon excels among others.11,12 Thus, the interaction of C with TMs is 

indeed a fundamental field of study in Heterogeneous Catalysis. Historically, from the 

catalytic deactivation processes point of view, it is quite usual that carbon entities, going 

from C atoms to small Cn aggregates, are formed on the TM catalyst surface due to 

secondary reactions of the on-going surface catalysed process, generally involving organic 

molecules. These carbon entities can spread through the surface and eventually 

agglomerate forming diverse types of carbon deposits, from graphene through graphite, up 

to amorphous C aggregates. These surface carbon structures can cover the catalyst, de 
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facto restricting the access of reactants to the TM catalytic surface active sites, and 

effectively poisoning it. 

Despite this, recent experiments and computational simulations have changed the 

paradigm view of the low C content from a poisoner to a promoter role. For instance, 

subsurface C into Pd catalysts appears to favour the selective alkyne hydrogenation to 

olefins,13 and its presence, explained by simulations based on density functional theory 

(DFT), shows how such subsurface C can be easily present at the surfaces of late TM 

surfaces and nanoparticles (NPs).14-17 Moreover, subsurface C plays an important role in 

the synthesis of graphene and carbon nanotubes (CNT), where segregation of C atoms 

diluted in pre-molten or molten TMs appears when cooling down the system, which 

induces the growth of graphene layers, even CNTs.18,19  

Furthermore, subsurface C has been found to bias the appearance of other substitutional 

or interstitial carbon residues in Pd,20 which may display even higher reactivity towards 

surface O and H adatoms than surface C,21 and to act as a gate opener for H absorption.22 

Such subsurface moieties mediated chemistry is non-exclusive to neither C nor Pd. Indeed, 

subsurface C has been proposed to be a key player in the electrochemical conversion of 

CO2 on Cu surfaces,23 and interstitial C in Au NPs has been found to affect the metal 

electronic structure, being the ultimate responsible of the three-times increment of the 

measure turnover frequency in the chemoselective hydrogenation of 3-nitrostyrene.24 Apart 

from subsurface C, it is worth mentioning that, subsurface O can also affect the on-going 

surface activity, see e.g. the recent key role of subsurface O on Cu (111) surface in CO2 

capture and activation applications, with critical implications in environmental chemistry.25 

Subsurface chemistry has often been ignored, but is now growingly attracting attention 

within the scientific community, seen as a change of paradigm in what surface chemical 

activity is concerned.26 

Motivated by these results, the primal aim of this work is to deliver, for the first time, a 

broad, detailed, and holistic atomistic view of the interaction of C with TM surfaces. This 

is achieved by studying, by ab initio DFT calculations on proper surface slab models, the 

stability of C atoms on the Miller surfaces with index order of 1 for all those TMs featuring 

a face-centred cubic (fcc), body-centred cubic (bcc), or hexagonal close-packed (hcp) bulk 

crystallographic structure —see Figures S1 and S2 of Section S1 of the Supporting 

Information (SI). For such surfaces, most stable surface and subsurface sites are identified 

and their bond strengths seized, so as to gain thermodynamic pictures and stability phase 

diagrams, as done earlier for fcc TM (111) surfaces.15 Furthermore, all sorts of C diffusion 
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energy barriers, Eb, are explored, including surface, subsurface, sinking, and emerging 

diffusion energy barriers for each metal surface, denoted Esur, Esub, Esink, and Eemer, 

respectively —see Figure S3 in Section S1 of the SI for a depiction of the different barrier 

types. This systematic study will provide a navigation chart of the C tendency to poison 

surface active sites, to aggregate into Cn moieties, and will also provide insights on the 

possible formation of TMCs. Finally, the acquired amount of data allows for further 

analysis based on artificial intelligence (AI) and machine-learning (ML) regression 

algorithms, addressed at defining subgroup types of similar behaviour concerning C bond 

strength and diffusivity, the main physicochemical descriptors defining these, as well as 

regressions of adsorptive and diffusive properties as a function of physicochemical 

descriptors. 

 

2. Computational Details 

Present DFT calculations have been performed using the Vienna ab initio simulation 

package (VASP) code,27 imposing periodic symmetry. Relaxed geometries and total 

energies were acquired using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation 

functional,28 known to accurately describe TMs bulks and surfaces and also the interaction 

of C with them.16,29 Moreover, previous works show that relative stabilities and diffusion 

energy barriers, Eb, are rather unbiased by the used exchange-correlation functional, with 

small variations between 1-5 kJ mol-1 depending on the used functional.16 The valence 

electrons density was expanded in a plane wave basis set with a 415 eV cutoff for the 

kinetic energy, while the projector augmented wave method was used to describe the 

interactions between core and valence electrons.30 Calculations were carried out non spin-

polarized except for magnetic Ni, Co, and Fe TMs. Geometry optimizations were 

performed until all forces acting on relaxed atoms became lower than 0.03 eV Å-1, and the 

electronic convergence threshold was set to 10-6 eV. 

The TMs most stable surfaces with Miller index with maximum order of 1 have been 

modelled using slabs, generally including most stable surfaces, with no step defects. These 

are the (001), (011), and (111) Miller indices surfaces of fcc and bcc TMs; and the (0001), 

(101!0), and (112!0) of hcp TMs, following Miller-Bravais indices notation for hcp metals, 

being a total number of 81 modelled surfaces.29 The simulation of extended surfaces has 

been performed using supercell slab models constructed from previously PBE optimized 

bulks,31,32 see Figure S2 in Section S1 of the SI for a depiction of the explored 

adsorption/absorption sites. The supercell size depends on the specific surface termination 



5 
 

being modelled; (3×3) supercells composed of 54 atoms were used for fcc (111), hcp 

(101!0), bcc (001), and bcc (111) surfaces, while (2×2) supercells composed of 48 atoms 

were used for fcc (001), fcc (011), hcp (0001), hcp (112!0), and bcc (011) surfaces. All 

surface slab models contain six atomic layers; with nine atoms per layer for (3×3) slabs or 

eight atoms per layer for (2×2) slabs. Consequently, the adsoprtion/absorption of one C 

atom implies a similar coverage of 1/9 or 1/8 monolayers (ML), respectively, defined as the 

number of C atoms with respect the number of surface metal atoms on one side of the slab.  

After optimization of the pristine surfaces one C atom was adsorbed/absorbed with the 

three bottom layers of the slab fixed, while the other three upper layers were allowed to 

relax during the geometry optimization together with the interacting adsorbed/absorbed C 

atom, a procedure known as 3+3 approximation. The reciprocal space was sampled with 

3×3×1 Γ-centred Monkhorst Pack33 k-point grid and calculations were performed using a 

Gaussian smearing of 0.2 eV energy width to speed up convergence, yet final energies 

were extrapolated to 0 K (no smearing). 

The adsorption/absorption energies, Eads/abs have been calculated as 

   𝐸#$%/#'% = −𝐸*/+,-#. + 𝐸* + 𝐸+,-#.   (1), 

where 𝐸*/+,-#.  is the total energy of the metal slab with the C atom either adsorbed or 

absorbed, 𝐸*  is the energy of the isolated carbon atom in vacuum, and 𝐸+,-#.  is the energy 

of the optimized clean TM substrate. Within this definition, stable adsorption/absorption 

correspond to positive Eads/abs values. Zero-point energies imply negligible variations 

between the stability of the different sampled sites, below 0.1 kJ·mol-1 according to test 

calculations, and so have been disregarded in the final analysis. 

The surface, subsurface, sinking, and emerging Eb, these are, the Esur, Esub, Esink, and 

Eemer, were determined by using the climbing image nudged elastic band (CI-NEB) 

procedure using four images in between initial and final states.34 The approximate 

transition state (TS) geometries were posteriorly refined using a Quasi-Newton 

optimization algorithm until forces acting on atoms were under 0.03 eV Å-1. All TS were 

characterized by vibrational frequency analysis performed via construction and 

diagonalization of the corresponding block of the Hessian matrix, with elements estimated 

by analytical gradients from finite displacements of 0.03 Å length, certifying their saddle 

point nature with only one imaginary frequency. The Eb values were calculated subtracting 

the TS energy from the initial diffusive energy state. 
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As far as the AI algorithms used in the analysis are concerned, the group analysis was 

carried out using the k-means (KM) approach, as implemented in the sklearn python 

library.35 The number of clusters for each case was determined using the elbow method,36 

consisting in the evaluation of the cluster inertia (or distortion) curve shape —defined as 

the sum of squared distances of samples to their closest cluster center plotted against the 

number of clusters, and selecting the elbow of the curve, i.e. the minimum number of 

clusters that already yields a sought accuracy. This number of clusters is then used in the 

cluster groups descriptions, see more details in Section S2 of the SI. KM clustering was 

used to define subgroup types of TMs with similar activity with respect C atoms, or similar 

diffusions. KM was also used to correlate these subgroups with the main descriptors 

defining these. 

Concerning the tested ML regression algorithms, those were also implemented using the 

sklearn python library. Aside, Eads/abs and Eb magnitudes were correlated with a list of TM 

features or physicochemical descriptors, commented in the forthcoming sections, using 

three different ML regression models: multivariable linear regression (MLR), decision tree 

regression (DTR), and random forest regression (RFR). Models were refined by removing 

unnecessary features using the leave-one-out procedure, and hyperparameters were tuned 

by conducting a grid search involving different parameter combinations and selecting the 

best preforming ones. 

 

3. Results and Discussion 

3.1. Thermodynamic Analysis 

3.1.1. Energy landscape 

Let us first start with an analysis of the thorough study of C interaction with the explored 

81 transition metal surface models, so as to provide a general view of the C interaction 

with TMs. A full list of adsorption and absorption energies of the gained minima is present 

in Tables S1-S3 of Section S3 in the ESI. For a better readability, the top panel of Figure 1 

shows a summarized overview of the results displaying the most stable position adsorption, 

Eads, or absorption, Eabs, energy values for each surface termination of each metal —thus 

presenting three different values per metal— versus the C height, h, defined as the vertical 

distance between the C atom and the TM surface plane in each particular position, 

compiled in Tables S4-S6 of Section S3 of the SI. So as to have clear defined references, 

an in-plane situation is shown at zero h, along with the graphite cohesive energy, Ecoh, 

obtained from the literature and obtained through equivalent optimizations as the ones here 
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presented in terms of employed DFT exchange-correlation functional, plane-wave cutoff, 

k-points density, etc.37 As can be seen in Figure 1, the display defines four different 

quadrants, which imply four different behaviors of C atoms when interacting with TMs 

surfaces, depending on whether an adsorption or absorption situation is preferred, and 

whether the interaction of C with the TM is stronger or weaker compared to that in 

graphite.  

A first analysis can be carried out with the data color-coded according to the TM 

crystallographic structure; this is, fcc, hcp, or bcc. At first glimpse, one notices that nearly 

all bcc values are found to be above the surface limit, implying a preferential adsorption, 

except for three cases —V, Nb, and Ta (011) surfaces, all being group V of the Periodic 

Table— where carbon prefers to lie subsurface. The Eads/abs above Ecoh implies that C has 

more affinity for bcc TMs than for other C atoms, a feature that happens in many cases, 

and in the above-commented subsurface cases, demonstrating a clear thermodynamic 

tendency for C to penetrate these metal surfaces. These results are indeed in perfect 

agreement with these metals propensity to form TMCs.5 However, since the majority of 

points imply surface positions, the carburization of bcc TMs, implying the interstitial 

placement of C, appears to be a non-trivial process. Notice that bcc crystallographic 

structures are perfect templates to place C in their octahedral interstitials, thus featuring the 

final rocksalt crystallographic structure of TMCs. Therefore, crystal reconstruction appears 

not to be a restricting aspect in many of these cases exhibiting rocksalt TMCs, such as VC, 

NbC, TaC, CrC, d-MoC, and FeC,5 although, for other more stable polymorphs, when 

necessary, the C incorporation is likely to involve a crystallographic phase transition. 

Previous studies on Zn oxidation and other TMs hydrogenation reflect a preferential 

subsurface stabilization of O and H atoms, including superficial crystallographic 

reconstructions,38 featured at higher atomic coverages, and so, such type of mechanisms 

could well explain the eventual subsurface incorporation of C to form TMCs, even when 

implying a crystal transformation. 

Going beyond bcc TMs, fcc TM values are found in their majority in the lower part of 

the panel, i.e. adsorption or absorption energies weaker than in graphite, meaning that C 

has more clustering affinity than for these metals. This is in fair agreement with the known 

fact of fcc TMs being poisoned due to the formation of graphene/graphite layers on them, 

blocking their surface active sites. Nevertheless, this preference to form graphene layers 

may be interesting in the context of nanotechnology, e.g. in graphene synthesis from 

chemical vapor deposition or segregation.18 There are a couple of cases —Ni and Rh 
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(001)— where the C interaction is above the graphite limit, which presents them as a the 

least favorable for graphene synthesis, and more favorable concerning carbide formation, 

although their preference is on the surface, or in-plane. Note, however, that such strongly 

attached C can block still active sites, or perturb the very chemical nature of nearby metal 

surface atoms. Finally, there are six fcc values that are clearly in the subsurface region: The 

two upper-most data points correspond to Ni and Pd (111), in agreement with previous 

calculations and experiments that certify the existence of carbide phases of these TMs.16 

Moreover, the four lowest values correspond to Cu (111), Ag (111), Ag (011), and Au 

(011); indicating, as recently showed in the literature, that C has a tendency to penetrate 

subsurface on such noble metals.15 

Last but not least, and regarding hcp TMs, their values are scattered, as is their position 

in the Periodic Table. Still, grouping is observed in the subsurface, highly attached C 

region, where C appears to present a tendency to penetrate such TMs. In fact, these values 

correspond to Sc, Y, Ti, Zr, Hf, Zn, and Cd. The first five belong to groups III and IV of 

the Periodic Table, known to display a very high chemical activity and a propensity to 

form rocksalt TMCs. Thus, clearly the high absorption energy could well contribute in 

compensating the energy demands for an eventual phase transition towards a rocksalt 

structure. On the other hand, Zn and Cd are d10 elements, with an a priori low chemical 

activity according to d-band center arguments, see below. However, the strong interaction 

calculated here is in line with the existence of such carbides, as reported in previous 

studies.39 

The data in Figure 1 has been used to carry out a KM clustering to better understand 

how this data can be grouped within the Eads/abs and h space. As shown in the bottom panel 

of Figure 1, the existence of three different clusters is best detected once the elbow method 

is applied, see Figure S4 of Section S4 of the SI. Data points in the first cluster, C1, have in 

common a rather weak interaction with the TM surfaces compared to the graphite Ecoh, 

with the group centre or centroid —marked by a fictionalcrossed point in Figure 1— 

located at an Eabs of 424 kJ·mol-1, and with a h of -52 pm below the surface level. For these 

systems, C atoms would thermodynamically tend to merge into graphitic C aggregates on 

the surface, eventually poisoning the catalyst surface by site-blocking. However, at low C 

concentrations, there could be C adatoms or interstitial C atoms, affecting the electronic 

structure of the surrounding metal atoms, particularly, when their mobility and eventual 

aggregation would be hindered, see below.  
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The second cluster, C2, is, on the contrary, characterized by a very strong interaction 

between C and the TM surfaces, and a general clear preference for the subsurface region, 

reflected in the centroid being located at an Eabs of 843 kJ·mol-1, and h of -117 pm. This 

implies that these TMs and surfaces are suitable for their carburization, with the sole 

exception of Ni and Pd (111) surfaces, which feature an Eabs smaller than Ecoh, and so, 

similarly to C1 members, would imply an eventual formation of surface aggregated 

carbonaceous structures, particularly when kinetically allowed, in perfect agreement with 

the reported graphene growth by segregation reported on both surfaces.40,41 

Finally, the third cluster, C3, groups most of the data points, where C atoms display an 

interaction with TM surfaces of similar strength to the cohesive energy of graphite, plus 

and general clear preference for staying at the surface. This is reflected with the group 

center located at Eads of 753 kJ·mol-1, very close to the Ecoh of graphite of 757 kJ·mol-1, 

and a height as well of 53 pm. It is in such situations where the subtle imbalance of 

interaction strengths and kinetic movement inhibition may finally determine whether such 

C isolated moieties exist as such at low C concentrations, or they eventually merge 

forming graphitic layers on the catalyst surface, and such imbalance could be potentially 

affected by the DFT uncertainty of ca. 20 kJ·mol-1. Even if this is a general trend, there are 

situations where C atoms have a significant affinity for TM surfaces, but now generally 

preferring to stay on the surface, thus occupying active sites that would be no longer be 

available for any other reactants, acting as poisons by site-blocking, exemplified by the 

subset of points with an Eads larger than 850 kJ·mol-1. The exposed KM clustering allows 

defining thus certain general behaviors, but is not exempt of singularities; apart from the 

above, a couple of outliers can be caught from a visual inspection, for instance, Cu (001) 

and Cu (011) are points that could belong to Cluster 1, although the inertia calculation 

assigns them to Cluster 3.  

Aside from the previous analysis, we inspected suitable reaction conditions at which 

such C moieties can be present on the inspected TM surfaces. To this end, thermodynamic 

phase diagrams have been built for the different studied TM surfaces, considering pressure 

and temperature working conditions that would turn pristine TM surfaces into early C-

containing surfaces, either having C on surface or subsurface. To this end, acetylene 

(C2H2) is considered as a carbon source, and the TM surface and molecular chemical 

potentials are equaled, see completed details on the phase diagram construction procedure 

found in the literature.15,42,43 Figure 2 shows the exemplary phase diagrams corresponding 

to all fcc TMs (111) surfaces, since such TM surfaces are most relevant to Heterogeneous 



10 
 

Catalysis, but all the other phase diagrams for fcc, hcp, and bcc surfaces can be found in 

Figures S5-S7 of Section S5 of the SI. Focusing on the cases revealed on Figure 2, the 

shown lines define, for each metal, temperatures, T, and C2H2 partial pressures, 𝑝*121 , 

where C atoms adsorbed or absorbed would be thermodynamically equally stable to a 

pristine TM surface case, see other details in the literature.15 Any T and 𝑝*121  conditions 

above the shown curves imply a preference of having C adsorbed, Csur, or absorbed, Csub, 

while conditions below the curve imply a preferential TM pristine surface situation. In this 

particular case, Csur moieties are expected for Pd, Ir, Rh, and Pt (111) surfaces, and Csub for 

Ni (111) at, e.g., a standard working 𝑝*121  of 105 Pa, and a regular catalytic working 

temperature of 600 K. Only Cu, Ag, and Au display their nobility in this aspect, Ag being 

the most C-resisting one, known and explained by the Ag deeper d-band center,44 joined to 

a weaker C–Ag coupling, which prevents antibonding states being above the Fermi level, 

eventually destabilizing the C interaction towards Ag.45 In any case, Cu and Ag (111) 

surface would prefer to incorporate such C moieties, while surface C would be observed on 

Au (111) surfaces. 

The Group XI —Cu, Ag, and Au— nobility is also shown in (001) and (011) TM 

surfaces, see Figure S5 of Section S5 of the SI, revealing an enhancement of the surface 

chemical activity for (011) and (001) surfaces, being the latter the most chemically active, 

to the point of Cu (001) surfaces being C-poisoned at standard conditions of pressure and 

working temperatures above ca. 750 K. The rest of fcc TMs behave similarly among them, 

featuring systematically Csur situations on (001) surfaces and most of (011) surfaces, with 

the exception of Ag, Au, and Pd (011) surfaces, where Csub would be preferred.  

When addressing hcp TMs, see Figure S6 of Section S5 of the SI, three different 

behaviors are found: Late TMs with d10 electronic configuration, these are, Group XII Zn 

and Cd, behave like noble Group XI elements, thus not being C-poisoned at standard 

working conditions. Other late TMs, like Group VII (Re, Tc), Group VIII (Ru, Os), and 

Group IX Co display a chemical affinity more similar to fcc Pt-group TMs, while early 

TMs such as Group III (Sc, Y) and Group IV (Ti, Zr, and Hf) show a high affinity towards 

C. As can be seen in Figure S6, regardless of the exposed surface, Csub situations are 

preferred for the very early Groups III and IV TMs (Sc, Y, Ti, Zr, and Hf), and very late 

XII TMs (Zn, Cd), whereas Csur situations are preferred on middle and late TMs of Groups 

VII (Re, Tc), VIII (Ru, Os), and IX (Co). The sole exceptions are Ti and Hf (101!0) 

surfaces, where Csur moieties are more stable. Finally, bcc TMs, belonging to early Groups 
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V (V, Nb, Ta), VI (Cr, Mo, W), and VIII (Fe) reveal a high affinity towards C, see Figure 

S7 of Section S5 of the SI, going for a C-moiety presence in any working conditions, and 

only avoiding them at ultrahigh vacuum conditions and high temperatures. Such C 

moieties are systematically Csur for (001) and (111) surfaces, and as well for (011) 

surfaces, with the exception of Group V TMs (V, Nb, Ta), where Csub are more stable, 

going for the C incorporation within the TM.  

3.1.2. Descriptors of C behaviour at TMs surfaces 

The above trends seem to point out that the chemical activity is somewhat influenced by 

the position along the d series of the Periodic Table. Thus, an important aspect resides in 

the search for descriptors of the ad/absorption energies accounting for the observed trends. 

Here, different descriptors proposed in the literature, either energetic or electronic, are 

evaluated so as to linearly correlate ad/absorption energies with them. In particular, surface 

energy, g,46 work function, f,47 d-band center, ed,48 corrected d-band center, εdW,49 and the 

highest Hilbert transform d-band peak, eu,50 are considered —details on their correct 

calculation can be found in the literature.29,44 Briefly, the description of their independent 

evaluations —see Figures S8-S12 in Section S6 of the SI for all the analyses details— 

reveals that the linear adjustment adequacy decreases in the order ed > εdW > eu > g > f. In 

the case of d-band center based descriptors, it is clear that any attempt of improvement on 

ed is detrimental; still, the expected trend is captured, in the sense that the higher in energy 

is ed, εdW, or eu, the stronger the C attachment is. Likewise, the larger the surface energy, g, 

the stronger the attachment energy of C; although the correlation on this energy-based 

descriptor is poorer when compared to those based on the electronic structure. Finally, the 

work function, f, is a very bad descriptor; not only because of the very small regression 

coefficient, R, of 0.17, but also because one would expect that the larger the work function, 

the stronger the bonding, as a result of a TM→C charge transfer, observed in late TMs, and 

expected for earlier and more reducing TMs. However, the observed trend in Figure S12 of 

Section S6 of the SI is just the opposite. 

Given the above analysis, ed could be regarded as the most successful descriptor, at 

least, when describing the exhibited thermodynamic data. The most stable Eads/abs vs. ed 

results are shown in Figure 3 grouping results as per the different featured crystallographic 

structures. Notice that an evaluation with one regression line for each type of surface 

termination, shown in Figure S13 of Section S6 of the SI, reveals that the trends for the 

three surfaces of each crystallographic have similar slopes, and such slopes are very 
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different for the different examined crystal structures. These results reinforce the 

consideration of crystal packing as a determining aspect concerning the C interaction with 

TM surfaces. Focusing on Figure 3, however, one readily notices that linear trends can 

only be valid for hcp and fcc structures, which present regression coefficients, R, of 0.94 

and 0.90 respectively. On the other hand, the bcc TMs trend line is not representative, 

presenting a poor regression coefficient of solely 0.09; showing that there is no correlation 

in these cases. This puts the accent in that the ed descriptor, typically tested on coinage and 

Pt-group TMs,48 all featuring to fcc and hcp close packed situations, does not account for a 

possible packing effect that can translate in changes on the TM surface chemical activity. 

Still, the trends based on energetic and electronic structure descriptors, e.g. on ed and g, 

pave the way to inspect whether there exists combined effects of them, tackled here by 

evaluating them through multivariable regressions. As shown in Figure 4, combining ed 

with g leads to a better correlation than using them alone. Furthermore, one could make 

combinations of a larger degree, e.g. having g·ed terms or even squared values for each 

descriptor, which would be second degree combinations, or even third degree 

combinations; including, e.g., g2·ed or ed3 terms. By considering these, one observes a 

gradual improvement of the multivariable adjustment, as observed by an increase of the R 

value up to 0.90, and the approach of the adjustment to the ideal one. These observations 

strongly suggest that, when looking for adsorption and/or absorption energy descriptors, 

one should not restrain to finding the perfect one, as it may well not exist, as the interaction 

is simultaneously influenced by different surface properties. Thus, one should look for 

combinations of descriptors, each of them bringing a different piece of information of the 

metal surface one works with. 

The above analysis indeed laid the foundations for a proper and deeper multi-variable 

analysis, feasible by applying different AI machine learning (ML) regression 

methodologies. To this end, the Eads or Eabs values of most stable positions are expressed as 

a function of the above-introduced descriptors (ed, εdW, eu, g, and f), but regarding as well 

the crystallographic structure (CS) of the TM case, given the different behaviors of fcc, 

hcp, and bcc TMs, and including as well the surface coordination number (CN), retrieved 

from the literature,51 so as to differentiate the different studied surfaces for the same metal, 

plus the bulk shortest interatomic distance, d,31,32 as a geometry measure distinct for every 

TM, even when having the same CS and CN. Aside, the number of TM d electrons, nd, are 

accounted, as they represent a natural trend across the d series. Finally, to represent the 
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different adsorption or absorption sites, the number of TM atoms neighboring the C atom 

are defined, CNsite, allowing for site specificity. This accounts for a total of ten descriptors 

related to the TM surface. Note that, since the same adsorbing or absorbing moiety is 

regarded always, this is, C atoms, no descriptors from the ad/absorbed species are 

necessary.52 

Within this set of descriptors and features, we evaluated three different ML algorithms, 

including MLR, DTR, and RFR, see details of them in Section S7 of the SI, and 

explicative images of the DTR procedure in Figures S14 and S15 in Section S7 of the SI. 

A first analysis, using all the aforementioned features and default parameters of the 

algorithms —e.g. 100 trees in RTR, and a maximal number of allowed features to be used 

in each tree to be equal to the total number of considered features— provided by the 

sklearn python library was performed using a shuffle split cross validation (CV) 

employing 20 splits for the set of the 81 surfaces with C in its most stable position. For the 

CV, for each size of the training set, a number of random data points are taken which 

represent 80% of the data set. The remaining 20% are random points also taken, but to be 

used for the test set.  

The analysis results, in terms of mean absolute error (MAE) ± standard deviation, 

yielded test set values of 66.7 ± 12.5, 49.1 ± 8.4, and 43.5 ± 8.4 kJ·mol-1 for MLR, DTR, 

and RFR, respectively, for the largest training set size. Thus, focusing on RFR, the 

regression algorithm that delivered the smaller error, one can successively remove those 

features that were less relevant in terms of minimizing the test set MAE. To this end, we 

used the leave-one-out procedure, which consists in removing one feature at a time and 

assessing the impact on the test set MAE to decide whether it is worth including or not. In 

this case, three parameters emerge as most relevant from the analysis; not surprisingly, ed 

and g, as outlined above, but also the number of metal atoms neighboring the adsorbed or 

absorbed C, i.e. the site coordination, CNsite, which brings site-specificity to the analysis.  

Once the candidate descriptors are shortlisted according to the leave-one-out approach, 

the RFR algorithm hyperparameters were tuned by performing CV evaluations on different 

combinations of parameters and selecting those that minimized the MAE, exemplified in 

Figure 5 by the learning curve of RFR, displaying the training and test errors when 

increasing the number of samples in the training set. Results showed that, by using ed, g, 

and CNsite only as input features, a RFR with 50 decision trees considering two features for 

each split already provided a very good training set MAE of 13.7 ± 0.9 kJ·mol-1, although 
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the test set MAE accuracy is of 39.1 ± 8.9 kJ·mol-1. Notice, still that curves are not 

converged, and lower MAEs could expected by widening and diversifying the number of 

cases, usign, e.g. vicinal surfaces or sites at nanoparticle models, or even when 

differentiating adsorption from absorption situations. 

Notice that the obtained final accuracy for the test set is still far from using such a ML 

model to carry out forecasts in a quantitative fashion, where, desirably, one would require 

MAEs below the DFT accuracy, estimated to be ca. 20 kJ·mol-1. However, still, it can be 

useful for a rapid evaluation and qualitative assessment. Further than that, the most 

interesting factor is that, from the RFR algorithm, one can seize the importance of each key 

feature. In this case, the importance factors are 0.6, 0.3, and 0.1 for ed, g, and CNsite, 

respectively, quite in line to the above discussion referring to ed as the main descriptor, but 

weighting the importance as well of g, as already above detected in the descriptor analysis, 

where combinations of them were found to improve the regression quality, see Figure 4. 

Still, their definition is somewhat modulated by the site coordination, a feature not 

identified in the previous analysis. 

After having isolated the main physicochemical descriptors through the RFR method, 

one could well carry out a KM analysis as done in Figure 1, but now identifying 

similarities in the descriptor space instead of on the target Eads/abs and h properties. This 

three-dimensional grouping is shown in Figure 6 (top panel). The components of these 

three clusters have been projected into the Eads/abs/h space in Figure 6 (bottom panel). 

Surprisingly, one observes that clusters in Eads/abs/h space shown in Figure 1 mostly 

coincide with gained clusters in descriptors space, with only few exeptions. Pd (111) 

surface of Cluster 1, appearing in Cluster 2; the Pd (011) surface of Cluster 2, appearing in 

Cluster 3, and the Au (111) surface of Cluster 3, appearing in Cluster 1. In any case, the 

resulting grouping underscores that groups of systems with similar Eads/abs and h also 

exhibit similar descriptor values. From the values in Table 1, one notes that, even when 

accounting for the standard deviation, the feature average values mostly do not overlap 

with each other for the different clusters, indicating that their representation is mostly 

unique, which reinforces that such descriptor values are key in defining the features groups 

shown in Figure 1.  

 

3.2. Influence of Kinetics 

3.2.1. The energy barriers landscape 
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The above analysis dealt only with the energetic stability and, therefore, to reach a holistic 

overview would require analyzing the C moieties diffusion kinetics on all the studied TMs, 

as, e.g., the subsurface presence may be kinetically hindered when the sinking energy 

barrier, Esink, would be too large, and the same applies to the possible C emergence for 

Eemer, hindering an eventual surface coke formation from subsurface C atoms. Aside, coke 

formation could be as well hindered by surface diffusion, governed by the Esur kinetic 

energy barrier, Eb. Finally, we evaluate here the possible diffusion at the subsurface level, 

defined by Esub, and questioning whether lateral diffusion preferentially happens on the 

surface. Notice that such barrier information has been found valuable in a catalytic context, 

e.g., serve to obtain the mean lifetimes of such species, and so, in which time frame they 

can affect the surface on-going catalyzed process, as recently demonstrated on fcc (111) 

surfaces by kinetic Monte Carlo simulations.17  

The four different types of diffusion barriers, illustrated in Figure S3 of Section S1 of 

the SI, have been obtained by CI-NEB algorithm and properly characterized by vibrational 

analysis. For each TM type of surface, different diffusive paths have been investigated, 

including non-trivial ones for certain complicated diffusions. The explored paths are listed 

in Tables S7-S9 of Section S8 of the SI. For each case, the lowest Eb values have been 

collected, accounting for a total of 324 diffusion energy barriers, summarized along their 

diffusion path in Table S10 of Section S8 of the SI. Notice that mean values, including 

standard deviation, reveal, as expected, Esur diffusion energy barriers of 86.7 ± 55.8 

kJ·mol-1, being slightly lower than Esub, of 94.5 ± 63.1 kJ·mol-1. Still, the difference is not 

excessively large, and already at this stage one could envisage that surface and subsurface 

diffusions are similarly possible. This striking finding can be easily explained, as, on one 

hand, surface diffusion TSs get stabilized thanks to a more freedom of flexibility of surface 

metal atoms; however, subsurface diffusion TSs get stabilized thanks to a higher metal 

coordination, see Figures S16-S18 of Section S8 of the SI. Other than that, sinking energy 

barriers, Esink, have a sensibly larger value of 117.1 ± 79.0 kJ·mol-1, while emerging energy 

barriers, Eemer, are noticeably smaller, of the order of 57.9 ± 56.3 kJ·mol-1, succinctly 

implying that is more difficult for C adatoms to dissolve in the metal matrix than to 

segregate towards the surface. 

Still, the large standard deviation of the points expresses a great variety of situations. 

For instance, the largest Esur of 263.2 kJ·mol-1 corresponds to Ta (001) surface, where such 

C atoms would be rather immobile, at variance with Cu (111), where, with an Esur of 8.4 

kJ·mol-1, C atoms would be rather mobile; a point that favors the observed graphene 



16 
 

synthesis by deposition on such surfaces.18,53 Even if subsurface diffusion is less favored, 

quite inhibited, e.g. on W (111), with an Esub of 303.7 kJ·mol-1, it is rather easy on Zn 

(101!0) surface, with an Esub of 2.4 kJ·mol-1 only. Similarly, one can think that C sinking 

into the subsurface region is quite difficult, and it is indeed on W (001), with an Esink of 

326.6 kJ·mol-1, while C sinking through the Zn (112!0) surface is essentially barrierless, 

with an Esink of 0.8 kJ·mol-1. Finally, C emergence to the surface is rather easy on Co 

(101!0) surface, with an Eemer of 0.8 kJ·mol-1, while it can be quite difficult on Ta (011), 

where C segregation would be rather impeded with an Eemer of 229.0 kJ·mol-1. 

This large set of data, which can be quite different, can also be gathered and analysed in 

a four-quadrant plot, in a similar fashion as done for the thermodynamics in Figure 1. To 

do so, Figure 7 shows the log10(𝐸%3'/𝐸%34) vs. log10(𝐸%567/𝐸,+,4), having thus 81 points 

corresponding to the same amount of explored TM surfaces. Thus, zero value for 

log10(𝐸%3'/𝐸%34) implies that Esub = Esur, and so, surface and subsurface diffusion are 

kinetically equally feasible. Likewise, zero value for log10(𝐸%567 /𝐸,+,4) implies that 

surface C sinking diffusion is kinetically as likely as the subsurface C emerging. These two 

zero values delimit the four quadrants in Figure 7. Values larger than zero for 

log10(𝐸%3'/𝐸%34) implies that 𝐸%3'  values are higher than 𝐸%34 , and hence, for these cases, 

C atoms would diffuse more easily along the surface than through the slab subsurface 

region, points located on the right side of the zero limit. The opposite behavior is expected 

for log10(𝐸%3'/𝐸%34) smaller than zero, located on the left side. When it concerns 

log10(𝐸%567 /𝐸,+,4) values, data above the zero limit imply that emerging is preferred over 

sinking, i.e. a preferential location on the surface. On the contrary, values below zero 

imply a preference towards C penetrating the subsurface region.  

The top panel of Figure 7 features data colored depending on the crystallographic 

structure of the TM, revealing that fcc and bcc TMs data points behave similarly, being 

dispersed on the top half of the plot, implying that for such metals Esink is often larger than 

Eemer, and going for a kinetically allowed surface presence of C adatoms. Still, few cases 

are the early bottom part of the plot. These belong to fcc (111) Ni, Pd, Pt, Cu, Ag, and Au 

(111) surface models, where the above situation reverses, implying a more difficult 

segregation towards the surface of dissolved C atoms in the bulk metal matrix. Notice that 

the (111) surface termination is the most stable and abundant one on such TM metals,29,51 

and so such subsurface C effect should not be discarded on any on-going surface catalyzed 

process. Aside, neither fcc nor bcc TMs show a clear preference between Esur and Esub, 
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with every metal being somehow unique in this regard. Finally, hcp TMs show sizable 

dispersion, but are mainly found in the bottom right part of the quadrants plot. This 

quadrant gathers situations with an Esink barrier lower than Eemer, and Esub being larger than 

Esur. Hence, one observes that most of hcp TMs feature kinetically favorable penetration of 

isolated C atoms towards the subsurface region, but with restricted diffusion along the 

subsurface, as the diffusion across the surface is preferred. 

Furthermore, the bottom panel shows the KM analysis again using three clusters as 

derived from Figure 1. There, it is clear that Cluster 1 fits values of the right-upper 

quadrant, implying 𝐸,+,4  barriers smaller than 𝐸%567 , and 𝐸%34  smaller than 𝐸%3' . 

Altogether, these features imply a certain preference for C atoms to be located on the 

surface, and diffusing over it, as shown by the cluster centre, where Esub is two times larger 

than Esur, and Esink 39.8 times larger than Eemer. Beyond that, Cluster 3 also nicely fits one 

quadrant, but now implying an easier C emergence compared to the sinking, but, more 

importantly, featuring 𝐸%3'  values sensibly smaller than 𝐸%34  ones, as shown by the cluster 

centre, located at a point where Esur values are five times larger than Esub, and Esink 12.8 

times larger than Eemer. This quadrant points out certain TM surfaces where C diffuses 

more easily going through the subsurface region, probably due to the aforementioned 

stabilization of the diffusion TS states by a higher coordination. In this sense, C moieties 

would move around in the subsurface region, and only emerge from time to time, as if they 

were the targets of a whack-a-mole game. Finally, Cluster 2 contains the most numerous 

group, displaying, in general, well balanced 𝐸%3'/𝐸%34  and 𝐸%567 /𝐸,+,4  ratios near unity, as 

shown by the center, being the ratios 1.4 and 0.9, respectively. Only a certain preference is 

found for a surface diffusion over the subsurface one, but, aside from that, the general 

behavior would be that all diffusion processes should be regarded feasible, implying a 

somewhat free mobility on the surface, through the subsurface region, and with exchange 

of C atoms in between surface and subsurface sites.  

3.2.2. Descriptors controlling the energy barriers 

Similar to the analysis carried out for the adsorption and absorption energies, the attention 

is now placed into finding descriptors of the diffusion energy barriers. The ones used for 

the thermodynamic minima, these are ed, εdW, eu, g, and f, are listed in Figures S19-S23 of 

Section S9 of the SI. There, even when using different regressions for each barrier type, 

the obtained results were unsatisfactory, reaching, at most, a regression coefficient R of 

0.69 for Esink vs. g. Still, the limited applicability of such descriptors can be though as 
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natural as such descriptors were developed and applied to seize the interaction strength, not 

the heights of energy barriers. Still, trends are regularly observed, i.e. the larger the ed, εdW, 

or eu the larger the Eb, and so it applies for g, and f, although for these inverse trends are 

observed for Eemer and Esub, respectively.  

In any case, the previous discussion underscores the point of similar trends achieved for 

adsorption or absorption energies, and diffusion energy barriers. Within this context, one 

has to remark the work of Nilekar and colleagues54, who showed in their seminal work that 

the diffusion energy barrier depends on the adsorption strength of the adsorbed moiety, 

being indeed basically a twelve per cent of the latter, with an R of 0.85. Figure 8 shows this 

trend for the four different diffusion processes here studied, revealing that, indeed, the 

stronger the adsorption or absorption energy, the larger the diffusion energy barrier, and in 

all the cases with similar slopes of ca. 0.16. However, the regression coefficients, R, are 

still quite modest, being at most 0.45 for Esur energy barriers.   

Another extended linear correlation used for energy barriers are Brønsted–Evans–

Polanyi (BEP) relations, linearly expressing a reaction step energy barrier with the step 

energy variation, DE.55-57 In this work we do not deal with reaction steps, as we are 

focusing on diffusion processes, but the same principle applies. To this end, the BEP 

relations were analyzed, yet only for C sinking and emerging processes, as surface and 

subsurface diffusions feature a DE of zero. Figure 9 shows their BEP analysis with a fairly 

good correlation for Esink, with a regression coefficient R of 0.83; however, the regression 

for Eemer shows more dispersion, with a lower R of 0.63. Notice that for sinking process, 

the linear regression is close to the limit of a very late TS, where Eb = DE, signaled in 

Figure 9 with a dashed black line. Another regression constrain is an earliest TS situation, 

where Eb equals zero regardless of the value of DE. Still, there is also a number of cases 

located in between, so no evident trend can be claimed. At variance with the description of 

Eads/abs with respect to ed, the BEP correlation coefficients when splitting the data into 

different crystallographic groups does not substantially improve the outcome, indicating 

this time that the crystal structure is not a determining factor in the BEP correlations for 

neither Esink nor Eemer; see Figures S24 and S25 in Section S9 of the SI. 

Mimicking the above analysis of Eads or Eabs dependence on ed and g, and given the best 

correlations observed for Esink as described by g and DE, we carried out a multivariable 

regression involving combinations of DE and g descriptors up to a second order degree —

since third degree yielded no improvement— shown in Figure 10. There, as happened in 
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the thermodynamic evaluation in Figure 4, one observes that i) the combination of both 

factors is beneficial, with an improved R of 0.86, while ii) the incorporation of descriptors 

higher orders translates into a mild improvement. As happened with the thermodynamic 

analysis, this underscores that the description of kinetic processes should be tackled 

considering a combination of different descriptors, instead of looking for a single, 

determining one, as appears that different aspects influence the kinetic energy barriers. 

Thus, following the same procedure as for the thermodynamic analysis, we applied here 

different machine learning (ML) regression algorithms to have tools to forecast diffusion 

energy barriers and locate key descriptors governing such processes. Note that now the 

data set is four times larger —324 Eb values— than the 81 cases of Eads or Eabs. The 

features and descriptors used are the same of the thermodynamic analysis, but now adding 

most stable position Eads/abs and DE. Moreover, the barrier type, BT —Esur, Esub, Esink, or 

Eemer—, and the CN of the initial and final sites, named CNIS and CNFS, respectively, are 

also included. The target goal here is to predict Eb, and to this end MLR, DTR, and RFR 

have been used. A first analysis was carried out following the procedure and 

hyperparameters used for the thermodynamic data, yielding MAEs of 34.3 ± 2.4, 42.5 ± 

4.7, and 33.1 ± 2.8 kJ·mol-1 for MLR, DTR, and RFR, respectively. Again, RFR is posed 

as the best performing ML algorithm.  

By refining the number of descriptors by means of the leave-one-out procedure, the less 

relevant features were removed, and left only those that had a significant enough impact in 

terms of error minimization, which are DE, Eads/abs, f, CNFS, and CNIS, with weights of 

0.43, 0.27, 0.15, 0.09, and 0.06, respectively. Notice how DE is the most important feature, 

as expected from the BEP analysis, and particularly true for Esink and Eemer barriers, 

although is not as predominant as ed was for Eads/abs. The next in the list is indeed the most 

stable position Eads/abs, in line with the above discussion where it was found to affect the 

barrier heights. Notice that the two most important descriptors are thermodynamic 

parameters, which can be used to estimate kinetic energy barriers. Other factors affecting 

the energy barriers are, unexpectedly, f, even if by scratch does not show good linear 

correlations with the kinetic data, and CNIS and CNFS, which shows that the coordination 

number of the sites involved in the diffusion play minor, yet still relevant role in the height 

of the barriers.  

As a last step, we selected the best performing hyperparameters of the RFR algorithm 

by performing CV evaluations on different combinations of parameters and choosing those 
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that lead to minimal MAE, see the learning curve in Figure 11. Results showed that, by 

using only DE, Eads/abs, f, CNFS, and CNIS as the input features, a RFR with 30 decision 

trees which considers three features for each split, see Figure 11, provided the best 

accuracy, with a MAE of 32.6 ± 2.3 kJ·mol-1 for the test set, while the training set offers a 

MAE of solely 13.1 ± 0.4 kJ·mol-1. The dimensionality reduction in Figure 7 avoids using 

a KM clustering in the feature space, also because different features are simultaneously 

affecting the different Eb values. Other than that, the analysis done in Figure 11 can 

actually be carried out differentiating the four different diffusive processes. This has been 

done and discussed in Figures S26-S29 and Table S11 of Section S10 of the SI. Briefly, 

RFR persisted as the best performing algorithm, with MAEs very similar to that obtained 

when considering all Eb altogether, with best performance found for Esur barriers, with a 

test set MAE of 25.2 ± 6.6 kJ·mol-1, and the less accurate case being Esub, with a test set 

MAE of 38.2 ± 7.1 kJ·mol-1. Compared to the thermodynamic data, the RFR offers more 

accuracy for diffusion energy barriers, which get closer to the typical DFT accuracy of 10-

20 kJ·mol-1, although one is still far from achieving an accuracy that would support 

quantitative estimations. However, the main descriptors affecting the C diffusions have 

been unfolded, and estimates can be argued upon them, allowing for a rapid qualitative 

assessment and sieving process.  

 

4. Conclusions 

In this work, by performing high-throughput periodic DFT calculations on proper slab 

models of 81 TM surfaces using the PBE xc functional, we provide compelling 

thermodynamic plus kinetic information on the interplay of C atom on and in TM surfaces, 

providing detailed information of adsorption and absorption minima sites and energies, and 

diffusive energy barriers along surface and subsurface regions, as well as in between both 

regions, summarized in Table S12 of Section S11 of the SI. The provided thermodynamic 

and kinetic results are in line with experimental observations regarding carbide formation 

in bcc and early hcp TMs, also revealing the possibility of a surface reconstruction, being 

the key step of such process in some of the cases. Moreover, results are also in line with 

the well-known tendency of C to form graphene layers on top of fcc TMs surfaces, 

effectively poisoning them for heterogeneous catalysis purposes. Thermodynamic phase 

diagrams have been built for all the explored surfaces, delimiting temperature and ethylene 

partial pressure working conditions at which the presence of C atoms would be favorable.    
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Further than that, electronic and energetic descriptors have been analyzed on ad- and 

absorptive minima and energy barriers, where the d-band center has been found to be the 

most successful one when correlating ad/absorption energies, in a particular reliable 

fashion for hcp and fcc TMs, whereas presenting significant deviations bcc TMs. For 

diffusion energy barriers, the adsorption or absorption strength of the departing minimum, 

and the difference in energy between minima, DE, in the cases of sinking and emerging 

diffusions. Finally, k-means clustering has been used to delimit three types of TM 

thermodynamic and kinetic behavior towards C atoms, while machine learning random 

forest regression revealed that, both for the gained thermodynamic and kinetic data, a 

combination of descriptors yields to a better description of minima and energy barriers, 

although the accuracy is so far only valid for a rapid qualitative assessment. In any case, 

the analysis underscores the need of looking for a few number of descriptors biasing the 

interaction strength and diffusion possibilities, rather than trying to get a single perfect 

descriptor, which may not be the wisest option as different physicochemical aspects do 

indeed affect such processes. 

 

Associated Content 

Supporting Information 

The following Supporting Information is available free of charge on the ACS Publications 

website at DOI:  

Models and definitions, K-means clustering details, ad/absorption energies and heights, K-

means inertia evaluation, built phase diagrams, evaluation based on isolated descriptors, 

details on the employed machine learning regression algorithms, diffusion energy barriers 

and their evaluation based on single descriptors, their evaluation based on machine 

learning regressions, and a table delivering a summary of C adsorption/absorption 

preferences.  

 

Acknowledgments 

The authors are thankful to the Ministerio de Economía y Competitividad (MEC) for the 

RTI2018-095460-B-I00 and María de Maeztu MDM-2017-0767 grants, to the Generalitat 

de Catalunya for the 2017SGR13 grant, and to the COST Action CA18234. Authors are 

thankful to Red Española de Supercomputación (RES) for the supercomputing time 



22 
 

(QCM-2018-1-0005, QCM-2018-2-0008, QCM-2019-1-0017, QS-2019-3-0017, QS-2020-

1-0013). The study was also supported by the project EXTREME, funded by the Bulgarian 

Ministry of Education and Science, D01-76/30.03.2021 through the programme “European 

Scientific Networks”. I. Z. K. is grateful to L’Oréal-UNESCO For Women in Science 

National Fellowship Program, 2020. H. A. A. is grateful to European Regional 

Development Fund and the Operational Program "Science and Education for Smart 

Growth" under contract UNITe No. BG05M2OP001-1.001-0004-С01. O. P. thanks the 

Spanish MICIUN for a PhD grant (PRE2018-083811). A. B. thanks Generalitat de 

Catalunya for his Beatriu de Pinós grant (2018BP00190). Authors are also thankful for 

insightful scientific discussions with MSc. Raúl Santiago. 

 

Notes 

The authors declare no competing financial interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Table 1. Average values for ed, γ, and CN, for each of the clusters shown in Figure 6, 

plus their standard deviation.  

 

 ed / eV g / J·m-2 CNsite 

C1 -0.1 ± 1.7 2.6 ± 0.7 3.0 ± 0.9 

C2 -5.4 ± 2.5 0.7 ± 0.3 5.5 ± 0.8 

C3 2.5 ± 1.7 1.6 ± 0.5 5.8 ± 0.4 
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Figure 1. Most stable Eads/abs situations on every TM surface with respect to h. In the 

top panel, values in blue correspond to fcc TMs, green to bcc TMs, and purple to hcp 

TMs. In the bottom panel, three different colors are used to mark off the three different 

clusters determined through a KM analysis, with centers marked crossed. 

 

 



25 
 

Figure 2. Phase diagrams for fcc TMs (111) surfaces as a function of the acetylene 

partial pressure, 𝑝*121 , and temperature, T. Diagrams are obtained for a constant partial 

pressure of H2, 𝑝21 = 10:; Pa. Regions above or below each curve indicate conditions 

at which the C-containing or pristine surfaces, respectively, are thermodynamically 

preferred. 
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Figure 3. Most stable Eads/abs situations with respect to ed, and the corresponding linear 

correlations. Values in blue correspond to fcc TMs, green to bcc TMs, and purple to hcp 

TMs. 
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Figure 4. Most stable Eads/abs situations vs. the predicted Eads/abs from different linear, 

multivariable, and polynomial regressions involving g, ed, or a combination of them. 

The black dashed line represents a perfect correlation. 
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Figure 5. MAE evolution for training (blue) and the test (green) sets as a function of the 

number of samples contained in the training set for the prediction of Eads/abs using a RFR 

algorithm. Colored areas around the lines account for the error dispersion resulting from 

the cross validation using 20 runs.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Figure 6. Top panel: the three-dimensional KM clustering of the most important 

features extracted from the RFR, namely ed, g, and CNsite. Bottom panel: a quadrant plot 

as in Figure 1, but showing the clusters from the top panel projected in the Eads/abs/h 

space.  
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Figure 7. The base 10 logarithm of 𝐸%3'/𝐸%34 with respect to the base 10 logarithm of 

𝐸%567/𝐸,+,4. In the top panel, values in blue correspond to fcc TMs, green to bcc TMs, 

and purple to hcp TMs. In the bottom panel, three different colors are used to mark off 

the three different clusters determined through a KM analysis. 
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Figure 8. Linear evolutions of the different Eb diffusion energy barriers —Esur, Esub, 

Esink, and Eemer— with respect to most stable initial position Eads or Eabs.   
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Figure 9. BEP linear evolutions of Eb with respect to DE, and the corresponding linear 

correlations for each explored barrier type. Dashed lines define latest TS limit, where Eb 

= DE, or earliest TS limit, where Eb = 0 regardless of DE.  
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Figure 10. Calculated Esink vs. the predicted Esink from different linear, multivariable, 

and polynomial regressions involving g, DE, or different degrees of combinations of 

them. The black dotted line represents the ideal correlation. 
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Figrue 11. MAE evolution for training (blue) and the test (green) sets as a function of 

the number of samples contained in the training set for the prediction of Eb using a RFR 

algorithm. Colored areas around the lines account for the error dispersion resulting from 

the cross validation using 20 runs. 
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