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a b s t r a c t 

Background and Objective: Bulbar dysfunction is a term used in amyotrophic lateral sclerosis (ALS). It 

refers to motor neuron disability in the corticobulbar area of the brainstem which leads to a dysfunction 

of speech and swallowing. One of the earliest symptoms of bulbar dysfunction is voice deterioration char- 

acterized by grossly defective articulation, extremely slow laborious speech, marked hypernasality and 

severe harshness. Recently, research efforts have focused on voice analysis to capture this dysfunction. 

The main aim of this paper is to provide a new methodology to diagnose this dysfunction automatically 

at early stages of the disease, earlier than clinicians can do. 

Methods: The study focused on the creation of a voiceprint consisting of a pattern generated from the 

quasi-periodic components of a steady portion of the five Spanish vowels and the computation of the 

five principal and independent components of this pattern. Then, a set of statistically significant features 

was obtained using multivariate analysis of variance and the outcomes of the most common supervised 

classification models were obtained. 

Results: The best model (random forest) obtained an accuracy, sensitivity and specificity of 88.3%, 85.0% 

and 95.0% respectively when classifying bulbar vs. control participants but the results worsened when 

classifying bulbar vs. no-bulbar patients (accuracy, sensitivity and specificity of 78.7%, 80.0% and 77.5% 

respectively for support vector machines). Due to the great uncertainty found in the annotated corpus of 

the ALS patients without bulbar involvement, we used a safe semi-supervised support vector machine to 

relabel the ALS participants diagnosed without bulbar involvement as bulbar and no-bulbar. The perfor- 

mance of the results obtained increased, especially when classifying bulbar and no-bulbar patients ob- 

taining an accuracy, sensitivity and specificity of 91.0%, 83.3% and 100.0% respectively for support vector 

machines. This demonstrates that our model can improve the diagnosis of bulbar dysfunction compared 

not only with clinicians, but also the methods published to date. 

Conclusions: The results obtained demonstrate the efficiency and applicability of the methodology pre- 

sented in this paper. It may lead to the development of a cheap and easy-to-use tool to identify this 

dysfunction in early stages of the disease and monitor progress. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis- 

ase characterized by a progressive loss of both upper and lower 

otor neurons leading to muscular atrophy, paralysis and death. 

urrently, there is no cure for ALS, although early detection can 

low progress [1] . 

ALS is known as spinal (80%; limb or spinal onset) and bulbar 

20%; bulbar onset). The first bulbar symptoms appear early in the 

isease in bulbar ALS, but can also appear in later stages of spinal 
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LS. Early detection of bulbar dysfunction may be the key to effec- 

ively increasing patients’ survival. However, diagnosing voice dis- 

urbances could be challenging due to the limitations of human 

earing [2] . 

Several studies demonstrated that the voice is one of the 

ost important aspects for detecting bulbar dysfunction. Norel 

t al. [3] developed machine models for recognizing the presence 

nd severity of ALS using a variety of frequency, spectral, and 

oice quality features. An et al. [4] used Convolutional Neural Net- 

orks (CNNs) to classify the intelligible speech produced by pa- 

ients with ALS compared with healthy individuals. Wang et al. 

5] used Support Vector Machines (SVM) and Neuronal Networks 

NN) employing acoustic features and adding articulatory motion 

nformation (from the tongue and lips). Suhas et al. [6] used SVM 

nd Deep Neuronal Networks (DNNs) based on mel frequency cep- 

tral coefficients (MFCCs) to capture this dysfunction. Recent stud- 

es [7–9] demonstrated the feasibility of automatic detection of 

ulbar dysfunction through phonatory obtained from vowel utter- 

nce even before it becomes perceptible to human hearing. Great 

ncertainty in the annotated corpus of the ALS patients without 

ulbar involvement was found. In a more recent study [10] time- 

requency features were added improving the results. Although 

ll methods performed well in general, this performance dropped 

ignificantly when diagnosing bulbar involvement among ALS pa- 

ients. The aforementioned study argued that the main causes of 

his uncertainty was a small and wrongly annotated corpus of the 

LS patients without bulbar involvement. This suggests that sub- 

ective methods employed by clinicians could lead them to misdi- 

gnose this dysfunction. This is coherent with the NEALS bulbar 

ubcommittee, which calls for objective-based approaches. 

We conjecture that the diagnosis of ALS patients with bulbar 

ysfunction would greatly benefit from the creation of a voiceprint 

ble to detect bulbar dysfunction in ALS before the first symp- 

oms can be detected by human hearing. This could be done effec- 

ively by means of analyzing a pattern generated from the quasi- 

eriodic waveform produced by the vocal folds when a vowel is 

licited. Quasi-periodic waveform analysis has been applied to sev- 

ral clinical applications such as heartbeat detection, cardiopul- 

onary modeling and intrinsic brain activity detection [11,12] . Fur- 

hermore, performance could be increased by correcting the bias 

s well as enlarging the corpus upsampling it [13] , and relabeling 

ulbar and non-bulbar ALS patients by using semi-supervised clas- 

ifiers, as pointed out in [14,15] . 

Our objective (and contribution) is to create a machine-learning 

odel obtained by applying supervised and unsupervised classi- 

ers and upsampling to improve the corpus for diagnosing bulbar 

ysfunction. This will be done through the creation of a voiceprint 

onsisting of a pattern generated from the quasi-periodic compo- 

ents of a steady portion of the five Spanish vowels, and the five 

rincipal and independent components of this pattern. This model 

hould behave properly with small and usually badly annotated 

orpus, the kind associated with rare diseases (i.e. ALS without 

ulbar involvement). 

. Methods 

The methods presented in this section were implemented and a 

ynthetic dataset based on a random sample of the corpus is freely 

vailable online [16] . 

.1. Participants 

Forty-five ALS participants (26 males and 19 females) aged from 

7 to 84 (M = 57.8 years, SD = 11.8 years) and 18 control sub-

ects (9 males and 9 females) aged from 21 to 68 (M = 45.2 years,

D = 12.2 years) took part in this study. All the ALS participants 
2 
ere diagnosed by a neurologist and to participate in the study it 

as required that they were native Spanish speakers. No restric- 

ion was established related to the participants being bilinguals as 

ative speakers of other languages, such as Catalan, which is very 

ommon in the Catalonia region where the study occurred. 

Bulbar dysfunction was diagnosed by following subjective clin- 

cal approaches [17] and the neurologist made the diagnosis of 

hether an ALS patient had bulbar dysfunction. Among all the ALS 

articipants, 5 reported bulbar onset and 40 spinal onset. However, 

t the time of the study, 14 of them presented bulbar symptoms. 

To summarize, 14 of the 63 participants were ALS patients diag- 

osed with bulbar dysfunction (3 males and 11 females) aged from 

8 to 84 (M = 56.8 years, SD = 12.3), 31 were ALS patients that did

ot present this dysfunction (23 males and 8 females) aged from 

7 to 81 (M = 58.3 years, SD = 11.7) and 18 were control sub-

ects (9 males and 9 females) aged from 21 to 68 (M = 45.2 years,

D = 12.2 years). 

.2. Vowel recording 

Sustained samples of the Spanish vowels, a, e, i, o and u, were 

licited under medium vocal loudness conditions for 3-4 seconds. 

he recordings were made in a regular hospital room using an USB 

MITA Streaming GXT 252 microphone connected to a laptop at a 

ampling rate of 44,100 Hz. 32-bit quantization was done using Au- 

icity , an open-source application. Each individual phonation was 

ut out and anonymously labeled. The boundaries of the speech 

egments were determined with an oscillogram and a spectrogram 

sing the Praat manual [18] , and were audibly checked. The start- 

ng point of the boundaries was established at the onset of the 

eriodic energy in the waveform observed in the oscillogram and 

hecked by the appearance of the formants in the spectrogram. 

he endpoint was established at the end of the periodic oscilla- 

ion when a marked decrease in amplitude in the periodic energy 

as observed. It was also identified by the disappearance of the 

aveform in the oscillogram and the formants in the spectrogram. 

.3. Generating the pattern of the quasi-periodic components of the 

ve Spanish vowels 

A sample of 250 ms of each vowel was considered for analy- 

is by taking the middle point at the center of the phonation. This 

ragment of the signal was normalized by centering each sample 

o have a mean of 0 and scaled to have a standard deviation of 1

 x (n ) ). A pattern generator was developed to obtain a pattern se-

uence of the quasi-periodic components of the fundamental fre- 

uency of x (n ) inspired by [19] . This process consisted of 3 steps. 

.3.1. Detrending method 

The baseline wandering of x (n ) , which is a low-frequency arte- 

act present in signal recordings, was removed by implementing a 

etrending method. To obtain the trend, a six-order low-pass But- 

erworth filter with a cutoff frequency of 0.0035 Hz was applied 

wice (forward and backward) to x (n ) . The combined filter had 

ero phase distortion, a filter transfer function equal to the squared 

agnitude of the implemented Butterworth filter transfer function, 

nd a filter order that was double the order of the Butterworth fil- 

er. Then, the detrending signal x d (n ) was obtained by removing 

he trend from x (n ) . Finally, each sample of x d (n ) was centered to

ave a mean of 0. Figure 1 a shows x (n ) and the trend of x (n ) and

ig. 1 b shows x (n ) and x d (n ) . 

.3.2. Marking the quasi-periodic components of x (n ) 

The spectral density | X d ( f ) | 2 of x d (n ) ( Fig. 2 ) was obtained

y means of the discrete Fourier transform (DFT) implementing 
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Fig. 1. Detrending method: Removing the trend from x (n ) . 

Fig. 2. The spectral density of x d (n ) . 
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Fig. 3. The signal envelope of x (n ) . 
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he fast Fourier transform (FFT) algorithm. To identify the quasi- 

eriods, the samples of | X d ( f ) | 2 whose frequency was ≥ 300 Hz 

ere considered to identify the peaks of the spectral density. To 

void noise, only the three highest peaks were selected. Finally, 

he quasi-period of x d (n ) was defined as the lower spectral com- 

onent of these three peaks ( f r ). The number of samples of each

uasi-period ( n rep ) was calculated as the nearest integer of ( f s / f r ) ,

f s being the recording sampling rate. 

The signal envelop x e (n ) was obtained by computing the cu- 

ulative sum of x d (n ) and then calculating the envelope of the 

nalytical signal. Figure 3 shows x e (n ) and x (n ) . 

To detect the starting and ending point of each quasi-period, a 

uasi-sinusoidal signal, s (n ) , synchronized with the period of x (n )

as computed. It was obtained by applying a second-order Butter- 

orth pass-band filter forward and backward to x e (n ) with a cut- 

ff frequency f c = f s /n rep Hz. From s (n ) , a quadratic-bipolar sig-

al ( q (n ) ) was generated assigning a constant -A in those samples

here s (n ) < 0 , and A in those where s (n ) > 0 . Thus, by differenti-

ting q (n ) , the zero crossings of the synchronized signal s (n ) were

btained, which represent the beginning and end of each quasi pe- 

iod of x (n ) . Figure 4 illustrates this process. Figure 4 a represents
3 
 (n ) , s (n ) and q (n ) and Fig. 4 b depicts the starting and ending

oints detected of each quasi-period of x (n ) . 

Finally, the pattern function p(T ) was obtained as the average 

f the quasi-periods of x (n ) , T being the average of the number of

amples of the quasi-period of x (n ) . 

.3.3. Pattern refinement 

p(T ) was compared with x d (n ) to improve the boundaries of 

ach quasi-period. First, as an adapted filter, the pattern p(T ) was 

nverted and the resulting signal was convolved with x d (n ) to de- 

ect the positions of p(T ) in x d (n ) . The positive values of the re-

ulting signal were taken and the negative values were set at 0. 

Each quasi-period detected previously was centered in the po- 

ition where the maximums values of the convolution were found. 

he refined pattern, p re f (T ) ( Fig. 5 a) was computed as the aver-

ge of the quasi-periods of x d (n ) with their new boundaries estab- 

ished. 

Finally, p re f (T ) was normalized to 550 samples and then deci- 

ated to 110 samples to obtain patterns, p N (T ) ( Fig. 5 b), with the

ame length. 
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Fig. 4. Detecting the starting and ending point of each quasi-period of x (n ) . 

Fig. 5. Pattern refinement and normalization. 
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.4. Principal and independent component analysis 

Principal Component Analysis (PCA) and Independent Compo- 

ent Analysis (ICA) have great potential in the treatment of medi- 

al signals [20] . PCA is a classical technique in statistical data anal- 

sis, feature extraction and data reduction, aiming at explaining 

bserved signals as a linear combination of orthogonal principal 

omponents. ICA is a technique for array processing and data anal- 

sis, aiming at recovering unobserved signals from observed mix- 

ures, exploiting only the assumption of mutual independence be- 

ween the signals. 
4 
In the PCA of p N (T ) , five Principal Components (PCs) were com- 

uted. The decomposition was obtained as X = USV � where X is 

p N (T ) standardized, U is a unitary matrix and S is the diagonal 

atrix of singular values s i . PCs were given by US and V contained 

he directions in this space that capture the maximal variance of 

he matrix X . 

In the ICA of p N (T ) , five independent components (ICs) were 

xtracted by means of a reconstruction independent component 

nalysis (RICA) algorithm [21] . p N (T ) was standardized to have 

ero mean and identity co-variance. The model x = μ + As is made 

p of the five rows of matrix x representing the patterns of the 
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ve vowels with 110 samples for each pattern. μ is a constant 

epresented by a column vector of five rows and s is a matrix in

hich each row (5) is an independent component with 110 sam- 

les. A(5x5) is the mixing matrix. Once the model has been ob- 

ained, the five independent components computed were used for 

he analysis. 

.5. Features obtained for analysis 

A total of 70 features were obtained as follow: 

• Three entropy measurements per each vowel were obtained by 

means of the Shannon entropy: 
• From the probability density function of a signal, formed by 

the pattern p N (T ) repeated the number of periods of x (n )

and quantified with N = 2 q levels and q = 8 . This measure-

ment was coded as entPat1...entPat5. 
• The density function of the five PCs was normalized and 

quantified with N = 2 q levels and q = 6 . Then, the Shannon

entropy of the probability density function of the five PCs 

was obtained and coded as entPC1...entPC5. 
• Similarly, to compute the Shannon entropy of the five ICs, 

the density function of the five ICs was normalized and 

quantified with N = 2 q levels and q = 6 and the Shannon 

entropy of each IC was obtained. The results were coded as 

entIC1...entIC5. 
• The variance of a signal formed by the pattern p N (T ) repeated 

the number of periods of x (n ) was computed and coded for 

each vowel as var1...var5. 
• The Kurtosis is defined as a measure of outlier-prone. It is cal- 

culated from the distribution of a signal formed by the pattern 

p N (T ) repeating the number of periods of x (n ) , and coded as

kurt1...kurt5. The bias-corrected equation defined in [21] was 

applied to obtain the Kurtosis. 
• The rhythm variability, RR (n ) , of x (n ) was computed by firstly

calculating the differences (in seconds) between the quasi- 

periodic elements of x (n ) and dividing the result by the sam- 

pling frequency (44.100 Hz). Finally, RR (n ) was obtained by re- 

ducing the sampling to f r = 350 . Thus, RR (n ) is a signal re-

sampled to f r = 350 ( T r = 0 . 0029 s) with a bandwidth of 175

Hz. The mean and the standard deviation of RR ( mean _ RR and 

std _ RR ) were then computed and coded for each vowel as 

medRR1...medRR5 and dsvRR1...dsvRR5 respectively. 
• The spectrum of P _ N( f ) was obtained from the positive and 

normalized part of the FFT of the autocorrelation of p N (T ) . The

mean frequency of P _ N( f ) ( f mEsPat) was computed according 

to Eq. (1) in the frequency band 0 Hz to 2205 Hz and coded for

each vowel as fmEsPat1...fmEsPat5. 

f mEsP at = 

∫ 
f P _ N( f ) df (1) 

• Similarly, the mean frequency of the probability density func- 

tion of the five PCs was computed and coded as fmE- 

sPC1...fmEsPC5. 
• Finally, the average spectral energy was calculated as the inte- 

gral of P _ N( f ) . The average spectral energy was computed and 

normalized to 1 for 5 frequency bands of the total spectrum (0- 

4,410 Hz): 1, 0-250 Hz; 2, 250-750 Hz; 3, 750-1500 Hz; 4, 1500- 

250 0 Hz; 5, 250 0-4,410 Hz. These measurements for the five 

patterns and the five bands of each pattern were coded for each 

vowel as enBnEs_a1...enBnEs_a5 and enBnEs_u1...enBnEs_u1, re- 

spectively. 

.6. Classification models 

Five supervised classification models were implemented in R to 

easure the classification performance. These models are Random 
5 
orest (RF), Logistic Regression (LR), Linear Discriminant Analysis 

LDA), Neural Networks (NN) and Support Vector Machine (SVM). 

he classification models were fitted with the features selected. 

hese were standardized by subtracting the mean and centered at 

. 10-fold cross-validation was implemented in R using the caret 

ackage [22] to draw suitable conclusions. The upsampling tech- 

ique with replacement was applied to the training data by mak- 

ng the group distributions equal to deal with the unbalanced 

ataset that could bias the classification models [13] . Supervised 

odels with classification thresholds of 50 % were built. The classi- 

cation threshold is a value that converts the result of a quantita- 

ive test into a simple binary decision by treating the values above 

r equal to the threshold as positive, and those below as negative. 

In addition, the semi-supervised classification model S4VM was 

mplemented using the RSSL package [23] . S4VM returns predicted 

abels for unlabeled instances. It randomly generates multiple low- 

ensity separators and merges their predictions by solving a lin- 

ar programming problem meant to penalize the cost of decreasing 

he performance of the classifier, compared to the supervised SVM 

24] . As for SVM, a linear kernel was used, and the regularization 

arameter C for labeled and unlabeled data was set at 0.05. 

.7. Feature selection 

To select a subset of relevant features for use in the construc- 

ion of the classification model, the Multivariant Analysis of Vari- 

nce (MANOVA), which uses the covariance between the features 

n testing the statistical significance of the mean differences, was 

mplemented in IBM SPSS Statistics. By using this procedure, it was 

ossible to contrast the null hypothesis in the features obtained. 

To perform this statistical analysis, it was assumed that the fea- 

ures had a multivariable normal distribution and no assumptions 

ere made regarding the homogeneity of the variance or the cor- 

elation between the features. A significance value of p < 0 . 05 was

onsidered sufficient to assume the existence of feature differences 

etween the four groups analyzed. 

.8. Experiments 

The participants in this study belonged to three different 

roups: the control group with 18 participants, labeled as C, the 

roup with 14 ALS participants diagnosed with bulbar dysfunction, 

abeled B, and the group with 31 ALS participants not diagnosed 

ith bulbar dysfunction, labeled NB. In addition, the A label was 

dded to every ALS participant, with or without bulbar dysfunc- 

ion. 

Three experiments were performed with these groups: 

1. Performance evaluation of the supervised models for 4 cases 

(C vs. B, C vs. NB, B vs. NB and C vs. A) by using the original

corpus. 

2. Re-labeling of the NB participants as B’ and C’ by applying the 

semi-supervised S4VM algorithm. Thus, the NB group was re- 

moved. 

3. Re-evaluation of the model performance with four new groups 

of participants: C vs. B+ (B + B’), C vs. NB- (NB - B’), B+ vs. NB-

and C+ (C + C’) vs. B+. 

The first experiment obtained the outcomes of the models us- 

ng the original corpus. Next, due to the great uncertainty found in 

he ALS participants diagnosed without bulbar involvement [2,9] , 

t was intended to re-label the participants of the NB group as B 

nd C using the semi-supervised S4VM model. We tried to obtain a 

ew corpus that contains elements classified as bulbar (B’) or con- 

rol (C’) by S4VM among those who were previously diagnosed as 

on-bulbar by a clinician (NB). In the third experiment, the models 

utcomes were again obtained by changing the composition of the 
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Table 1 

Model performance for the first experiment. 

C vs B C vs NB B vs NB C vs A 

RF Accuracy 88.3 48.7 66.7 68.6 

Sensitivity 85.0 46.7 40.0 84.0 

Specificity 95.0 50.0 75.8 30.0 

LR Accuracy 56.7 62.0 60.2 65.0 

Sensitivity 45.0 68.3 60.0 66.0 

Specificity 65.0 50.0 59.2 65.0 

LDA Accuracy 54.2 62.0 54.0 65.2 

Sensitivity 45.0 68.3 60.0 68.5 

Specificity 60.0 50.0 51.7 60.0 

NN Accuracy 66.7 59.2 66.3 60.5 

Sensitivity 70.0 63.3 60.0 64.0 

Specificity 65.0 50.0 68.3 55.0 

SVM Accuracy 86.5 68.0 78.7 73.1 

Sensitivity 88.3 71.7 80.0 79.0 

Specificity 85.0 60.0 77.5 60.0 

Table 2 

Model performance for the third experiment. 

C vs B + C vs NB- B + vs NB- C + vs B+ 

RF Accuracy 93.5 69.3 89.7 92.4 

Sensitivity 96.6 66.7 83.3 83.3 

Specificity 90.0 70.0 96.7 97.5 

LR Accuracy 56.0 69.2 71.7 71.4 

Sensitivity 53.3 73.3 76.7 66.7 

Specificity 60.0 60.0 65.0 75.0 

LDA Accuracy 62.9 69.2 82.3 80.9 

Sensitivity 60.0 73.3 76.7 78.3 

Specificity 65.0 60.0 88.3 82.5 

NN Accuracy 75.9 68.7 86.9 82.6 

Sensitivity 80.0 80.0 83.3 83.3 

Specificity 70.0 50.0 91.6 82.5 

SVM Accuracy 89.2 69.6 91.0 92.1 

Sensitivity 90.1 73.3 83.3 86.7 

Specificity 90.0 60.0 100 95.0 
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 and NB groups by adding B’ to B (B+) and removing C’ from NB

NB-). 

.9. Performance metrics 

There are several metrics for evaluating classification algorithms 

25] . The Accuracy, Sensitivity and Specificity metrics, the most 

opular ones, were used to evaluate the performance of the classi- 

cation models. 

. Results 

Firstly, the voiceprint representations and the features selected 

n relation to the four cases (C vs B, C vs NB, B vs NB and C vs A)

re presented. Then, the performance of the classification models 

s evaluated. 

.1. Voiceprint representations to detect bulbar dysfunction in ALS 

The voiceprint for detecting bulbar dysfunction in ALS consisted 

f the computation of p N (T ) , the 5 PCs of p N (T ) and the 5 ICs of

p N (T ) for the 5 Spanish vowels. 

Figure 6 shows the voiceprint computed of a ALS patient. 

igure 6 (a) shows the p N (T ) of the five Spanish Vowels (a, e, i, o,

). Figure 6 (b) shows the 5 PCs of p N (T ) of the five Spanish Vow-

ls. Figure 6 (c) shows the 5 ICs of p N (T ) of the five Spanish Vow-

ls. Figure 6 (d) shows the spectrum of p N (T ) of the five Spanish

owels. Figure 6 (e) shows the spectrum of the 5 PCs of p N (T ) of

he five Spanish Vowels. Figure 6 (f) shows the probability density 

unction of the 5 ICs of p N (T ) of the five Spanish Vowels. 

.2. Features selected 

A total of 70 features were obtained. The MANOVA analysis was 

pplied to select the statistically significant features ( p-value < 0.05) 

or the four comparisons analyzed: C vs. B, C vs. NB, B vs. NB 

nd C vs. A. The features not showing statistical significance ( p- 

alue ≥0.05) were discarded. The box plots of the statistically sig- 

ificant features are depicted in Fig. 7 . 

In the case C vs B, a set of 19 statistically significant fea- 

ures ( p-value < 0.05) were obtained. These were medRR2, medRR3, 

edRR5, fmEsPat1, enBnEs_a3, enBnEs_e4, enBnEs_e5, enBnEs_i5, 

nBnEs_o5, entPat2, entPat3, entPat4, entPC1, entPC2, entPC4, 

ntPC5, entIC2, entIC3 and entIC4. 

In the case C vs NB, a set of 2 statistically significant features 

ere obtained. These were enBnEs_o4 and enBnEs_o5. 

In the case B vs NB, a set of 20 statistically significant fea- 

ures were obtained. These were medRR1, medRR2, medRR3, 

edRR4, enBnEs_e4, enBnEs_e5, enBnEs_i3, entPat1, entPat2, ent- 

at4, entPC1, entPC2, entPC3, entPC4, entPC5, entIC1, entIC2, en- 

IC3, entIC4 and entIC5. 

In the case C vs A, a set of 3 statistically significant features 

ere obtained. These were fmEsPat1, enBnEs_o4 and enBnEs_o5. 

.3. Classification model performance and experiments 

In the first experiment, the classification models were fitted 

ith the features selected per each case. Table 1 shows the clas- 

ification performance ( Accuracy, Sensitivity and Specificity metrics) 

f the classification models tested for the four cases defined with 

he original labels (B, NB and C). 

In the case C vs. B, the results indicate that RF and SVM have

 good classification performance. RF obtained the best Accuracy , 

8 . 3% , with a Sensitivity of 85 . 0% and a Specificity of 95 . 0% . SVM

btained an Accuracy of 86 . 5% with a Sensitivity of 88 . 3% and a

pecificity of 85 . 0% . NN, LR and LDA showed a poorer performance,
6 
btaining respective Accuracies of 66 . 7% , 56 . 7% and 54 . 2% respec-

ively. 

In the cases C vs. NB, B vs. NB and C vs. A, poorer results were

btained. In all these cases SVM obtained the best Accuracy , these 

eing 68 . 0% , 78 . 7% and 73 . 1% respectively. 

In the second experiment, S4VM was applied from the data la- 

eled C and B to estimate the class of NBs which were split into C’

nd B’. From the total of 31 NBs, 9 were split as B’ and 22 as C’. 

In the third experiment, the classification models were fitted 

ith the features selected and tested for the four new cases (C vs. 

+, C vs. NB-, B+ vs. NB- and C+ vs. B+). Table 2 shows the clas-

ification performance ( Accuracy, Sensitivity and Specificity metrics) 

or this experiment. 

In the case of C vs. B+, the results indicate that RF and SVM 

ave good classification performance. RF obtained the best Accu- 

acy , 93 . 5% , with a Sensitivity of 96 . 6% and a Specificity of 90 . 0% .

VM obtained an Accuracy of 89 . 2% with a Sensitivity of 90 . 1% and

 Specificity of 90 . 0% . NN obtained an Accuracy of 75 . 9% with a

ensitivity of 80 . 0% and a Specificity of 70 . 0% . LR and LDA showed

oorer performance, obtaining Accuracies of 56 . 0% and 62 . 9% re- 

pectively. 

In the B+ vs. NB- and C+ vs. B+ cases, good model classification 

erformance was also observed. 

In B+ vs. NB-, SVM obtained the best Accuracy , 91 . 0% , with a

ensitivity of 83 . 3% and a Specificity of 100 . 0% . RF obtained an Ac-

uracy of 89 . 7% with a Sensitivity of 83 . 3% and a Specificity of 96 . 7% .

N obtained an Accuracy of 86 . 9% with a Sensitivity of 83 . 3% and a

pecificity of 91 . 6% . LDA obtained an Accuracy of 82 . 3% with a Sensi-

ivity of 76 . 7% and a Specificity of 88 . 3% . Finally, LR performed the



A. Tena, F. Clarià, F. Solsona et al. Computer Methods and Programs in Biomedicine 229 (2023) 107309 

Fig. 6. Voiceprint for a patient. 
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Fig. 7. Box plots of the statistically significant features per each case. 
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orst performance with an Accuracy , 71 . 7% , a Sensitivity of 76 . 7%

nd a Specificity of 65 . 0% . 

In C+ vs. B+, RF obtained the best Accuracy , 92 . 4% , with a Sen-

itivity of 83 . 3% and a Specificity of 97 . 5% . SVM obtained an Accu-

acy of 92 . 1% with a Sensitivity of 86 . 7% and a Specificity of 95 . 0% .

N obtained an Accuracy of 82 . 6% with a Sensitivity of 83 . 3% and a

pecificity of 82 . 5% . LDA obtained an Accuracy of 80 . 9% with a Sen-

itivity of 78 . 3% and a Specificity of 82 . 5% . Finally, LR had the worst

erformance with an Accuracy of 71 . 4% , a Sensitivity of 66 . 7% and

 Specificity of 75 . 0% . 

Finally, in C vs NB- poorer results were obtained. All models 

howed similar performance. SVM, RF, LR, LDA and NN obtained 

ccuracies of 69 . 6% , 69 . 3% , 69 . 2% , 69 . 2% and 68 . 7% . 
8 
. Discussion 

.1. Principal findings 

We have carried out a preliminary assessment of the potential 

or obtaining a voiceprint for an early detection of bulbar dysfunc- 

ion in ALS patients. This was motivated by the need for a stan- 

ardized diagnostic procedure for assessing bulbar dysfunction and 

ew methodologies based on objective measurements [2] . 

The study demonstrated the feasibility of the methodology pro- 

osed. Its major benefit is to provide a methodology based on ob- 

ective measures to identify bulbar dysfunction in early stages of 

he ALS disease. We suggest two new labels, C’ and B’, to improve 
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he diagnosis of those patients in whom bulbar dysfunction has 

ot yet been detected by the current subjective procedures. 

From the voiceprint, a total of 70 features were obtained. 

hese were: entPat1...entPat5, entPC1...entPC5, entIC...entIC5, 

ar1...var5, kurt1...kurt5, medRR1...medRR5, dsvRR1...dsvRR5, 

mEsPat1...fmEsPat5, fmEsPC1...fmEsPC5, enBnEs_a1...enBnEs_a5, 

nBnEs_e1...enBnEs_e5, enBnEs_i1...enBnEs_i5, enBnEs_o1... 

nBnEs_o5 and enBnEs_u1...enBnEs_u5. 

The first experiment showed the performance of the machine 

earning models used for the four cases. From the good results 

chieved by C vs. B, it can be inferred that the methodology pro- 

osed is good at detecting bulbar dysfunction, RF and SVM being 

he best models for performing this task. The poor performance 

btained in C vs. NB revealed a similar voice performance of Cs 

nd NBs, as expected. Instead, the performance obtained in B vs. 

B may indicate that some NBs voices could be affected in some 

Bs but this may yet not be perceptible to human hearing. 

The second experiment revealed that 9 of the total of 31 NBs 

ay have bulbar dysfunction. This result is consistent with the 

revious statement that indicated that the voices of some NBs 

ould be affected. We suggest labelling these patients as B’ if their 

oices show a similar performance to Bs and C’ if they are similar 

o C. 

The third experiment performed better than the first one when 

’ and C’ labels were considered. In C vs B+, RF outperformed the 

esults obtained in the first experiment. Similarly, in B+ vs. NB-, 

he classification performance was greatly improved. 

In general, the third experiment achieved better performance 

han the first one. This indicates that our method can diagnose 

ulbar dysfunction better than clinicians with the current subjec- 

ive approaches. 

.2. Comparison with prior work 

This study is consistent with Tena et al. [9] , which found a great

ncertainty in ALS patients in whom bulbar dysfunction was not 

etected yet suggesting that some of them were misdiagnosed. It 

s also consistent with Plowman et al. [2] , which indicated the dif- 

culties in diagnosing bulbar dysfunction by subjective approaches. 

n many cases, the perturbance in those subjects’ voices could not 

e appreciated by the human ear until advanced stages of the dis- 

ase. We went a step further by providing two new labels, B’ and 

’, to achieve an earlier and more accurate diagnosis. 

This study is also in line with Suhas et al., Vashkevich et al., 

orel et al., An et al. and Wang et al. [3–6,8] , who demonstrated

hat voice is one of the most important aspects for detecting bul- 

ar dysfunction. Suhas et al. obtained accuracies of 92 . 2% using 

VM and DNNs based on MFCCs. Vashkevich et al. achieved 90 . 7% 

ccuracy (sensitivity 86 . 7% , specificity 92 . 2% ) with LDA using per-

urbation measurements. Norel et al. identified acoustic features 

n naturalistic contexts, achieving 83% accuracy (sensitivity 86% , 

pecificity 78% ) using SVM. An et al. implemented CNNs to clas- 

ify the intelligible speech produced by patients with ALS and 

ealthy individuals. The experimental results indicated a sensitiv- 

ty of 76 . 9% and a specificity of 92 . 3% . Wang et al. [5] implemented

VM and NN using acoustic features and adding articulatory mo- 

ion information (from tongue and lips). Accuracies of 91 . 7% were 

btained using only acoustic features, increasing to 96 . 5% with the 

ddition of both lip and tongue data. Adding motion measures in- 

reased the classifier accuracy significantly at the expense of in- 

luding more invasive measurements to obtain the data. 

These studies only focused on B vs. C cases. We investigated the 

eans of optimizing accuracy in detecting ALS bulbar dysfunction 

y only analyzing the voices of patients. 

To date, only Tena et al. [9,10] have conducted studies consider- 

ng additional cases. In [9] , they used phonatory subsystem fea- 
9 
ures, such as jitter, shimmer, harmonic-to-noise ratio and pitch 

nd PCA. In [10] a set of time-frequency features were added to 

he analysis and better results were achieved. The performance of 

everal machine learning models were evaluated considering four 

cenarios (C vs. B, C vs. NB, B vs. NB and C vs. A). In C vs. B,

hey obtained an Accuracy of 98 . 1% with a Sensit i v it y of 96 . 6% and

peci f icity of 100 . 0% using SVM. The results worsened in B vs. 

B ( Accuracy of 84 . 8% with Sensit i v it y of 92 . 3% and Speci f icity of

5 . 0% using RF). In C vs. NB and C vs. A, good results were also

btained, RF being the model which performed best in both cases 

 Accuracies of 94 . 1% and 95 . 8% respectively). In this study, in C vs.

, an Accuracy of 88 . 3% was obtained for RF with a Sensit i v it y of

5 . 0% and a Speci f icity of 95 . 0% . This performance improved when

onsidering B’ patients, C vs. B+, obtaining an Accuracy of 93 . 5% 

utperforming the results of [3–5] . In B vs. NB, we obtained an 

ccuracy of 78 . 7% (SVM). This performance was greatly improved 

hen considering B’ patients, B+ vs. NB-, obtaining an Accuracy of 

1 . 0% with a Sensit i v it y of 83 . 3% and a Speci f icity of 100 . 0% out-

erforming the results obtained by [9,10] . This suggests that having 

ell-annotated patients is essential for properly assessing bulbar 

ysfunction in B vs. NB. We demonstrated that semi-supervised 

lassification models such as S4VM are useful tools for performing 

his task. 

.3. Limitations 

The size and bias of this study is heavily influenced by the fact 

hat ALS is a rare and a very heterogeneous disease where not all 

he patients present the same symptomatology. Although upsam- 

ling and semi-supervised classifier techniques were used to cor- 

ect the bias, it would be necessary to increase the number of par- 

icipants to draw definitive conclusions. 

However, we proved that the method presented can be suc- 

essfully applied to such a corpus. The question is what the out- 

omes should be when applying it to a large enough corpus. The 

utcomes indicate that accuracy could increase much more. A spe- 

ific study should be performed to determine the extent of this 

ncrease. 

Furthermore, detecting bulbar dysfunction inevitably reflects 

he clinician’s own learned approach, which must depend on a 

imilar comparative data set analysis, gained by so-called clinical 

xperience. As such there are hidden variables; for example, den- 

al health or absent teeth, glossal disorders, respiratory dysfunction 

ltering breath holding and rhythm of breathing, nasal obstruc- 

ion, nasal-sinus mucus discharge, etc. When a machine learning 

aradigm is applied to detecting bulbar dysfunction, but it also ap- 

lies to the majority of the clinical problems, these hidden vari- 

bles could lead to detecting bulbar dysfunction when, actually, the 

peech disorder is produced by alternative disorders. This has an 

ffect in specificity because subjects affected by these alternative 

isorders could have been predicted as suffering bulbar dysfunc- 

ion when actually they would not be suffering from the disease. 

lthough this is a limitation, the ALS subjects who participated in 

his study were diagnosed and selected by a neurologist, bounding 

he possible effects of this phenomenon. 

Additionally, concerning the acoustic analysis employed for the 

etection of the voice impairment, neurologists are accustomed 

o using certain difficult phrases when testing speech quality, and 

hese include requirements for rhythmic cadence, constancy of ut- 

erance for long sounds, repetitive consonantly driving utterances, 

s well as simple vowels. In this study, the five Spanish vowels 

ere analysed rather than any consonants or other sounds existing 

n the Spanish language. Therefore, the analysis is not standardized 

o the extent that it is not in line with a classical clinical analysis. 

dditional analysis are envisaged to analyse other Spanish existing 

ounds to obtain the more accurate voiceprint as possible. 
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.4. Conclusions 

Promising outcomes in detecting bulbar dysfunction were ob- 

ained when comparing ALS patients with and without this dys- 

unction in early stages of the disease, or prior to being diagnosed 

y clinicians. 

This could lead to the development of a cheap and simple 

ool that may help to develop standardized diagnostic procedures 

or assessing bulbar dysfunction based on objective measures and 

onitor progress. This directly addresses a recent statement re- 

eased by the NEALS bulbar subcommittee regarding the need for 

bjective-based approaches [2] . 

Due to the great uncertainty of the corpus, we highlight the 

mportance of improving the annotation of ALS patients as regards 

ulbar dysfunction to develop powerful machine learning models 

ble to distinguish this dysfunction. We provide two new labels, 

’ and B’, and demonstrate that Semi-Supervised Machine learning 

odels could help in the early detection of this dysfunction. Yet, 

urther analyses are needed to develop this concept fully. These in- 

lude performing longitudinal studies in which patients’ diagnosis 

re retrieved at several follow-ups. 

The usefulness of this methodology is that it could be ap- 

lied to the automated identification and early diagnosis of many 

ther neurological or respiratory illnesses where obtaining a large 

nough and well-annotated corpus is difficult. 
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