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Simple Summary: Colorectal cancer (CRC) is a global healthcare challenge that involves both genetic
and environmental factors. Several pieces of evidence suggest that alterations of the gut microbiome
can influence CRC development. In the present study we analyzed 16S rRNA sequencing data from
fecal immunochemical test (FIT) samples from a large cohort, observing a predictive potential of
the microbiome, revealing changes along the path from healthy tissue to carcinoma. Our work has
implications in the understanding of the roles of microbes on the adenoma to carcinoma progression
and opens the door to an improvement of the current CRC screening programmes.

Abstract: Colorectal cancer (CRC) is the third most common cancer and the second leading cause of
cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is
generally implemented through a two-step population screening approach based on the use of Fecal
Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step
has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize
cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover
microbial taxa, taxon co-occurrence and metabolic features significantly associated with different
colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path
from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier
which reduces the current false positive rate while maximizing the inclusion of CRC and clinically
relevant samples.

Keywords: colorectal cancer; microbiome; 16S rRNA sequencing; screening; diagnosis

1. Introduction

Colorectal cancer (CRC) is the third most common cancer type and the second leading
cause of cancer-related deaths worldwide [1], accounting for nearly 900,000 deaths each
year. This malignant disease develops from the pathological transformation of normal
colonic epithelium to adenomatous polyps, which ultimately leads to invasive cancer.
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This process is gradual and involves the accumulation of genetic and/or epigenetic alter-
ations [2]. CRC incidence increases with economic development and Westernization of
dietary and lifestyle habits, hinting at a significant effect of environmental and lifestyle
factors, likely in combination with genetic predisposition [3]. In this regard, a growing
body of evidence has linked alterations of the gastrointestinal tract microbiota with CRC
development [4]. Earlier research has shown that alterations in the gut microbiota may
influence colon tumorigenesis [5] through chronic inflammation or the production of car-
cinogenic compounds [6]. Differences in the relative abundances of some microbial species
or genera have been found when comparing paired tumor and normal tissues, or fecal
samples from CRC patients and healthy subjects [7,8].

Diagnosis of CRC is challenging and involves a complex process that usually starts
with the detection of the first symptoms by the patient, and is followed by clinical di-
agnostic procedures, mainly based on colonoscopy. The implementation of preventive
measures and early diagnosis of CRC can save many lives [9,10] and routine screening
of asymptomatic populations following an age-selected criteria has been implemented in
many countries. Current CRC screening in the vast majority of Western countries consists
of a two-step procedure with a non-invasive test (most commonly a fecal immunochemical
test (FIT) for quantification of occult hemoglobin in the stool) followed by colonoscopy if
the test is positive (FIT-positive, or more accurately, above a given threshold of hemoglobin
concentration) [11,12]. This approach is effective but results in a high rate of false positives
(around 65% FIT-positive samples reveal no clinically relevant feature at colonoscopy)
at the first step and many unnecessary colonoscopies, with a FIT sensitivity of around
35% [13]. Colonoscopy is an invasive, expensive and time-consuming procedure, and hence
additional biomarkers that could better stratify individuals with higher risk for CRC or
premalignant lesions to undergo a colonic examination would significantly reduce health-
care costs. Much current research is directed towards finding additional criteria, such as
risk factors and alternative biomarkers to be considered by the decision algorithms used to
personalize positive FIT testing to colonoscopy. To search for potential predictive biomark-
ers present in FIT samples and to shed light on the potential roles of the gut microbiome in
CRC development, we performed microbiome profiling using targeted sequencing of the
16S V3-V4 region from DNA extracted directly from FIT containers collected within the
population-based organized screening program implemented in Catalonia, Spain [14]. We
analyzed a total of 2889 FIT-positive samples and assessed their microbial composition and
metabolic potential, and how they varied across samples with different colonoscopy results
(i.e., different diagnostic outcome after colonoscopy exploration, including, among others,
the absence of any clinical feature, the presence of lesions and their risk, the presence of
colorectal cancer, and the presence of polyps).

2. Materials and Methods

Our study followed the Strengthening the Organization and Reporting of Microbiome
Studies (STORMS) checklist (Data S1).

2.1. Sample Collection and Subjects

A total of 2889 FIT-positive (>20 µg hemoglobin/g feces) samples recruited in two
rounds (2009 and 2017–2019) from asymptomatic participants from the Catalan CRC screen-
ing program were analysed. Individuals were selected within the age criteria implemented
by the screening programme (50 to 69 years old) and the diagnosis and sex selection were
based on an ideal balanced dataset (aimed to obtain equal numbers within each class).
Collected metadata comprised six different clinical variables for each sample, including
the diagnosis after colonoscopy evaluation (Data S2), the number of polyps, the FIT value
(µg of hemoglobin/g of feces), the hospital at which the sample was collected, and the
donor’s sex and age. The considered colonoscopy diagnoses were negative (N), colorectal
cancer (CRC) and different lesions that can be relevant in CRC development: carcinoma in
situ (CIS), high risk lesion (HRL), intermediate risk lesion (IRL), low risk lesion (LRL) and
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lesion not associated to risk (LNAR) [15] (Table S1). Additionally, we classified the samples
into two groups according to the clinical relevance of the colonoscopy-based diagnosis [16]:
CRC, CIS, HRL and IRL were considered clinically relevant (CR) lesions (indeed, they are
the goal of CRC screening programs), and N, LNAR and LRL as non-clinically relevant
(non-CR) lesions (Table S1). Individuals with inflammatory bowel disease or polyposis were
excluded from the study. Our study was approved by the institutional ethical committees
of the involved institutions and informed consent was obtained from the participants.

2.2. DNA Extraction and 16S Sequencing

Aliquots of 500 µL of buffer contained in FIT collection devices (OC-Sensor, Eiken
Chemical Co., Tokyo, Japan) were prepared in a test tube and stored at −80 ◦C until further
processing. DNA was extracted from FIT samples using the DNeasy PowerLyzer PowerSoil
Kit (Qiagen, ref. QIA12855) following manufacturer’s instructions. The extraction tubes
were agitated twice in a 96-well plate using the TissueLyser II (Qiagen) at 30 Hz/s for
5 min.

Four µL of each DNA sample were used to amplify the V3–V4 regions of the bacterial 16S
ribosomal RNA gene, using the following universal primers in a limited cycle PCR: V3-V4-
Forward (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG-
CAG-3′) and V3-V4-Reverse (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGA-
CTACHVGGGTATCTAATCC-3′). To prevent unbalanced base composition in further
MiSeq sequencing, we shifted sequencing phases by adding a variable number of bases
(from 0 to 3) as spacers to both forward and reverse primers (we used a total of 4 forward
and 4 reverse primers). The PCR was performed in 10 µL volume reactions with 0.2 µM
primer concentration and using the Kapa HiFi HotStart Ready Mix (Roche, ref. KK2602).
Cycling conditions were initial denaturation of 3 min at 95 ◦C followed by 25 cycles of
95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, ending with a final elongation step of 5 min
at 72 ◦C.

After the first PCR step, water was added to a total volume of 50 µL and reactions
were purified using AMPure XP beads (Beckman Coulter) with a 0.9X ratio according to
manufacturer’s instructions. PCR products were eluted from the magnetic beads with
32 µL of Buffer EB (Qiagen) and 30 µL of the eluate were transferred to a fresh 96-well plate.
The primers used in the first PCR contained overhangs allowing the addition of full-length
Nextera adapters with barcodes for multiplex sequencing in a second PCR step, resulting
in sequencing ready libraries. To do so, 5 µL of the first amplification was used as template
for the second PCR with Nextera XT v2 adaptor primers in a final volume of 50 µL using
the same PCR mix and thermal profile as for the first PCR but for only 8 cycles. After the
second PCR, 25 µL of the final product was used for purification and normalization with
the SequalPrep normalization kit (Invitrogen), according to the manufacturer’s protocol.
Libraries were eluted in 20 µL and pooled for sequencing.

Final pools were quantified by qPCR using the Kapa library quantification kit for
Illumina Platforms (Kapa Biosystems) on an ABI 7900HT real-time cycler (Applied Biosys-
tems). Sequencing was performed in the Illumina MiSeq with 2 × 300 bp reads using v3
chemistry with a loading concentration of 18 pM. To increase the diversity of the sequences,
10% of PhIX control libraries were spiked in.

Two bacterial mock communities were obtained from the BEI Resources of the Human
Microbiome Project (HM-276D and HM-277D), each containing genomic DNA of ribosomal
operons from 20 bacterial species [17]. Mock DNAs were amplified and sequenced in
the same manner as all other FIT samples. Negative controls of the DNA extraction and
PCR amplification steps were also included in parallel, using the same conditions and
reagents. These negative controls provided no visible band or quantifiable DNA amounts
by Bioanalyzer, whereas all our samples provided clearly visible bands after 25 cycles.
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2.3. Microbiome Analysis

We used the dada2 (v. 1.10.1) pipeline [18] to obtain an amplicon sequence variants
(ASV) table for each of the sequencing runs separately. The quality profiles of forward and
reverse sequencing reads were examined using the plotQualityProfile function of dada2
and, according to these plots, low-quality sequencing reads were filtered and trimmed
using the filterAndTrim function. We obtained a matrix with learned error rates with the
learnErrors dada2 function. We performed dereplication (combining identical sequencing
reads into unique sequences), sample inference (from the matrix of estimated learning error
rates) and merged paired reads to obtain full denoised sequences. From these, chimeric
sequences were removed. Taxonomy was assigned to ASVs by mapping to the SILVA
16s rRNA database (v. 132) [19]. Negative controls (non-template samples) and positive
controls (mock microbial communities comprising a mixture of 20 strains with known
proportions) were sequenced and analyzed in each of the runs to assess the possible
contamination background and evaluate the accuracy of the pipeline. We obtained ASV
and taxonomy tables for each run separately, and then merged the results. Samples without
metadata information and the controls were discarded in further analyses.

We reconstructed a phylogenetic tree by using the phangorn (v. 2.5.5) [20] and Deci-
pher R packages (v 2.10.2) [21] and integrated it with the merged ASV and Taxonomy tables
and their assigned metadata creating a phyloseq (v. 1.26.1) object [22]. We characterized
alpha diversity metrics including Observed index, Shannon, Simpson, InvSimpson, PD
Chao1, ACE and standard error measures such as se.Chao1 and se.ACE using the esti-
mate_richness function of the phyloseq package. Using the picante package (v. 1.8.1) we
computed Faith’s phylogenetic diversity, an alpha diversity metric that incorporates branch
lengths of the phylogenetic tree. Additionally, we calculated different distance metrics
based on the differences in taxonomic composition between samples using the Phyloseq
and Vegan (v. 2.5–6) [23] packages. These metrics include Jensen-Shannon Divergence
(JSD), Weighted-Unifrac, Unweighted-unifrac, Bray-Curtis dissimilarity, Jaccard and Can-
berra. We also computed Aitchison distances between samples using the cmultRepl and
codaSeq.clr functions from the CodaSeq (v. 0.99.6) [24] and zCompositions (v. 1.3.4) [25]
packages. Normalization was performed by transforming counts to centered log-ratios
(clr) [26]. We performed multiplicative simple zero replacement as implemented in the
cmultRepl function of the zCompositions package (v. 1.3.4) (indicating method = “CZM”).
Samples with fewer than 1000 reads and taxa that appeared in fewer than 10 samples and
at low abundances (fewer than 100 reads) were filtered out. Finally, we agglomerated taxa
at each taxonomic rank to study trends at different taxonomic depths.

We made a comparison of our overall microbiome profiles with samples studied in a
previous study [27]. We treated the samples from their 2 × 300 pb cycle run by applying
the same procedure state in the present section.

2.4. Statistical Analysis

We assessed associations between clinical variables and the overall microbial com-
position of the samples by performing permutational multivariate analysis of variance
(PERMANOVA) using the adonis function from the Vegan R package (v. 2.5–6) with the
seven distance metrics mentioned above. Diagnosis, sex and age variables were consid-
ered as covariates. Additionally, we performed an analysis of similarities (ANOSIM) test
using the anosim function from the Vegan R package to assess differences between and
within groups.

We performed a differential abundance analysis using clr data for the different taxo-
nomic ranks across various clinical variables using linear models implemented in the R
package lme4 (v. 1.1–21) [28]. We built a linear model including diagnosis (Dx), hospital,
sex, age, number of polyps and FIT value as fixed effects, and the sequencing run as a
random effect to account for possible batch effects: tax_element~Dx + hospital + sex + age
+ number_polyps + FIT_value + (1|run). This linear model was evaluated considering all
the diagnoses, but also made a comparison of CRC versus non-CRC samples by changing
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all other diagnoses to “others”. A second linear model was applied that considered as
fixed effect a variable called risk instead of the diagnosis in order to assess the differences
between samples with CR or non-CR colonoscopy, as defined above (Table S1).

We applied analysis of variance (ANOVA) to assess the significance for each of the
fixed effects included in the models using the Car R package (v. 3.0–6) [29]. To assess
differences between groups, we performed multiple comparisons to the results obtained in
the linear models using the Tukey test in the function glht from the multcomp R package
(v. 1.4–12) [30]. We applied Bonferroni as a multiple testing correction as implemented
in the summary.glht function of the multcomp package, and statistical significance was
defined at p values lower than 0.05. In addition, we used the selbal package (v. 0.1.0) [31] to
study groups of taxa (balances) with potential predictive power for CRC status.

2.5. Co-Occurrence and Networks

Co-occurrence networks for microbial species were inferred and represented for each
of the diagnostic groups, considering the top 50 taxa and using the SpiecEasi R package
(v. 1.1.0) [32]. We used neighborhood selection based on penalized regression as the
graphical model inference. The resulting networks, following the path transition from
healthy colon (N) to cancer (CRC), were compared by computing hamming distances with
the netdist function from the R package nettools (v. 1.1.0). We represented the weights of
the correlations of the co-occurrence networks by using the chordDiagram function from
the circlize package (v. 0.4.12).

We also calculated taxa correlation matrices for each diagnosis group by using the
function corr.test from the R psych package (v. 2.0.12) and using the Spearman method,
adjusting for multiple comparisons with the Holm-Bonferroni method. The significance
threshold was set at p.adjust < 0.05.

2.6. Genome Content Inference

Given the ASV and taxonomy tables in the phyloseq object, we applied the t4f function
from the themetagenomics package (v. 1.0.0) [33] to predict the functional content in
terms of functional genes (kegg orthologous groups (OGs), which are families of genes
that descent from a common ancestral gene and that generally perform similar functions).
Then, we applied a linear model (ortholog~Dx + hospital + sex + age + number_polyps
+ FIT_value + (1|run)) to determine OGs that were significantly differentially abundant
according to the diagnosis, and a multiple comparison test (Tukey) correcting by Bonferroni.
From these differentially abundant OGs, we extracted all the functional pathways in
which they were involved and performed a test for pathway enrichment only considering
pathways with 10 or more predicted OGs and having at least 10% of their OGs being
differentially abundant. Using custom scripts and text mining tools implemented in the
easyPubMed R package (v.2.13) [34], we retrieved pubmed articles in which these pathways
appeared related to CRC.

2.7. Machine Learning Classification

We developed a predictive model based on a two-phase classification using a neural
network (NN) algorithm implemented in the caret package (v. 6.0–85) [35]. For each phase
we trained a random 75% of the data with a 10-fold cross validation and tested with the
remaining samples. The process was repeated 100 times to avoid “lucky” splits and to
evaluate the variability in predictive performance. We performed a feature selection based
on the differential abundance results including taxa found as having significantly different
abundances in our study and incorporating FIT-value, age and sex variables. Samples
with missing values for the considered metadata were removed. Taxa abundances were
included as clr. The two-phase classifier proceeds as follows: in the first phase the method
classifies CRC vs. non-CRC samples. Samples that are classified as non-CRC in the first
phase are subjected to a second model that classifies CR vs. non-CR samples. At the end of
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the two-phase classification, the mean percentage of misclassified CRC and CR samples
was calculated, and the performance of the model was evaluated.

To validate our strategy we built a model training with all the CRIPREV samples and
tested it in two independent datasets: a cohort from the USA [36,37] and 100 extra samples
from the same Catalan screening. For the USA cohort, we applied the Catalan hemoglobin
threshold (>20 µg of hemoglobin/g of feces) to select the FIT-positive samples to include
in the validation. We processed their raw data following the same methodology as in our
study (see Microbiome analysis, Materials and Methods). We unfortunately could not
assign Bacteroides fragilis, likely because that study only used the V4 region of the 16S rRNA
gene as compared to V3-V4 in our study.

We assessed possible subsets of taxa with classification potential by using the 100 extra
samples from the same local screening. We identified a total of 27 taxa, found as differen-
tially abundant in both the CRC vs. others and CR vs. non-CR comparisons, intersecting
between the CRIPREV project and these extra samples, that are those included in the results
presented here. We assessed different combinations of the taxa, considering the effect
size observed in our statistical test. We defined top and down taxa from the list, per each
phase, and made an assessment of subsets of taxa as follows: 4 taxa from the top of the list
(50 random combinations), 4 taxa from the bottom of the list (50 random combinations),
4 random taxa (50 random combinations), 2 taxa from the top of the list (all the possible
combinations), 2 taxa from the bottom of the list (all the possible combinations), 1 taxa from
the top of the list (all the possible combinations) and 1 taxa from the bottom of the list (all
the possible combinations).

We tested a total of 948 models using our validation set. We filtered the models based on
some classification metrics: AUC1 >= 0.55, specificity1 > 0.2, AUC2 > 0.5 and specificity2 > 0.

ROC curves were represented using the package pROC (v 1.16.1) [38].

3. Results
3.1. 16S Metabarcoding from FIT Samples Is a Valid Proxy for Gut Microbiome

To assess the diagnostic and research potential of microbiome analyses performed
on FIT samples collected within currently ongoing CRC screening programs, we enrolled
asymptomatic participants of the Catalan CRC screening program that had a FIT-positive
test. We froze their FIT cartridges until the results from the colonoscopy examination were
obtained. These outcomes were categorized into clinically relevant (CR) lesions -including
CRC, carcinoma in situ (CIS), high risk lesion (HRL) and intermediate risk lesion (IRL)-,
and non-CR lesions—including negative (N), lesion not associated to risk (LNAR) and
low risk lesion (LRL). Using the colonoscopy information, we selected a representative
set of samples for microbiome characterization, aiming for a balanced representation
of clinically relevant colonoscopy outcomes. We performed DNA extraction and 16S
metabarcoding analysis of the V3-V4 region on the selected samples (see Materials and
Methods, Section 2.2). A total of 2889 FIT-positive samples passed all quality filters and
were included in the study (see Materials and Methods, Section 2.3). A summary of
the distribution of these samples across several characteristics is shown in Table S2. We
obtained a mean value of 56,219.03 filtered reads per sample, which comprised a total of
376 assigned taxa. Bacteroidetes and Firmicutes were the most represented phyla, and
the ten most abundant genera were, in this order: Bacteroides, Faecalibacterium, Prevotella,
Blautia, F.Lachnospiraceae.UCG, Ruminococcus, Agathobacter, Bifidobacterium, Alistipes and
Akkermansia (Figure S1). These results are consistent with previous studies using stool
samples [39–43], and with earlier analyses showing a high correspondence between stool
and FIT samples from the same individuals [36,37]. We compared our data with that
of a recent Spanish population gut microbiome study [27]. The two cohorts differ in
several features such as the age range, but most notably our cohort was entirely formed
by individuals with blood in stool, a factor shown to impact the gut microbiome [44], and
hence differences are expected. Nevertheless, the two sample sets were largely similar in
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terms of dominating phyla and genera, reinforcing the validity of FIT sampling as a proxy
of the gut microbiome (Figure S2).

3.2. Changes in Microbiome Composition along the Path from Healthy Colon to Colorectal Cancer

We quantified the overall microbiome diversity by computing alpha and beta diversity
metrics. We only observed significant differences (Kruskal-Wallis, p < 0.05) in the observed
index alpha diversity metric (which measures the number of species per sample), and in the
Simpson index (which considers taxa abundances) when considering all diagnoses, but not
when specifically comparing clinically relevant (CR) vs. non-CR samples (Figure S3). For
the Shannon and Simpson indices, which consider differences in taxa abundances, we only
observed significant differences with the Simpson index (which assigns more weight to
dominant species) when considering all diagnoses. We produced multidimensional scaling
(MDS) plots using distances between the microbial profiles of samples (beta diversity) such
as the Aitchison distance (Figure S4). We did not observe a clear clustering of samples with
the same diagnosis or risk (CR vs. non-CR). However, with the adonis test and Aitchison
distance, we detected a significant effect of the diagnosis (p = 0.001) considering sex and
age as covariates, and the sequencing run as a possible source of batch effect. The ANOSIM
test also supported significant differences between the diagnostic groups and a higher
similarity within groups (R: 0.07463, p-value: 0.001). Altogether, these results suggest
the existence of significant but subtle differences in the overall microbiome composition
between FIT-positive samples with different colonoscopy outcomes.

We next used comparative analysis to detect significant differences in the relative
abundance of taxa according to the variables considered (Table S3). These analyses identi-
fied 34 species whose abundance varied significantly across colonoscopy diagnosis (Data
S3 and Figure 1).

Based on the observation that CRC was the diagnosis with the most distinct micro-
biome (Figure 1), we specifically compared CRC to non-CRC samples, which revealed
41 differentially abundant species (Figure 2a and Data S4). These included overrepresen-
tation of Akkermansia muciniphila and Akkermansia spp., as well as underrepresentation
of Bacteroides plebeius and Bacteroides fragilis in CRC compared to non-CRC samples. In
addition, we found that the ratio between species abundance (balance) most associated with
CRC-status was given by a decrease (as compared to non-CRC samples) in a group of taxa
comprising B. fragilis (G1: Bifidobacterium spp., Bacteroides fragilis, Sutterella wadsworthensis,
and Eggerthella spp.), with respect to a second group of taxa including Akkermansia spp. (G2:
Akkermansia spp., Gemella spp., Peptostreptococcus stomatis, Adlercreutzia spp. and Butyrivibrio
spp.). We explored the progression of the levels of Akkermansia genus along the path from
normal colon to CRC, observing an increase from HRL to carcinoma in situ and from
carcinoma in situ to CRC. (Figure S5).

Finally, we applied the same linear model to the comparison of CR vs. non-CR
samples, which identified 34 differentially abundant species, of which six were shared with
the comparison above (Figure 2b and Data S5).

We next explored whether changes in the microbiome correlated with other variables
collected in the study such as the number of polyps observed in the colonoscopy exami-
nation and lifestyle parameters collected by a questionnaire. Colorectal polyps, which are
benign tumors that project onto the colon mucus and protrude into intestinal lumen [45],
have long been identified as potential precursors of CRC. Polyp size, localization and histol-
ogy, among other factors, may influence their role in CRC development. Our study includes
the information of the presence or absence of polyps, wherein colonoscopy detected the
presence of polyps in 66.82% of samples, with the numbers of polyps ranging from one to
22. We observed that some CRC (32/134, 23.88%) samples had no polyps, whereas some
negative samples had from 1 to 3 polyps (21/925, 2.27%), and some lesions that were not
associated with a clinically relevant colonoscopy had a considerable amount of polyps
(from 1 to 11 polyps, e.g., two individuals diagnosed by LNAR and LRL had 11 polyps).
We searched for species whose abundance correlated significantly with the number of
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polyps and found 33 such cases (Data S6), including B. vulgatus, which was associated
with systemic inflammation and CRC progression [46]. Finally, we found no significant
effect of the CRC tumor stage on the microbiome composition, although this may relate
to limited sample size (n = 101, Adonis test, R2: 0.03104 p value: 0.386). A subset of the
included individuals (n = 2016) responded to a lifestyle questionnaire. We assessed the
impact of different variables on microbiome composition, and found a significant impact of
weight, height, regular exercise, smoking, alcohol, vegetables and processed meat intake
and anti-inflammatory drug use, as observed in previous studies. When this impact was
considered in conjunction with the diagnosis, we observed only a significant effect of the
vegetable’s intake (Figure S6).
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Figure 1. Representation of the 34 bacterial species found as significantly differentially abundant
in pairwise comparisons of diagnoses following the path from healthy colon to colorectal cancer
(Tukey test, p.adjusted < 0.05, n = 2565). Different colonoscopy diagnoses are depicted from left to
right following this path, with healthier states at the left and in the following order: N, negative;
LNAR, lesion not associated to risk; LRL, low risk lesion; IRL, intermediate risk lesion; HRL, high
risk lesion; CIS, carcinoma in situ; CRC, colorectal cancer. Lines connecting different diagnoses
indicate comparisons, with differentially abundant species names indicated. Colors in the species
names indicate the direction of the change with red indicating decrease and green increased relative
abundance with respect to the healthier state.

3.3. Diagnosis-Specific Co-Occurrence and Functional Profiles

To gain further insights into the changes of microbial composition along the path
from healthy tissue to CRC, we used proxies for community interactions (co-occurrence
networks), and functional potential (functional inference from taxonomic assignment). We
first built species networks showing patterns of correlated abundances for samples with
each specific diagnosis and compared them (see Materials and Methods, Section 2.5). By
constructing and representing co-occurrence networks based on the 50 most abundant
taxa, we qualitatively observed differences across the diagnoses along the path from
healthy colon to CRC (Figure 3). These differences were confirmed by computing hamming
distances between co-occurrence networks of successive pairs of diagnoses along this path:
0.024 (N vs. LNAR), 0.023 (LNAR vs. LRL), 0.014 (LRL vs. IRL), 0.016 (IRL vs. HRL),
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0.030 (HRL vs. CIS) and 0.028 (CIS vs. CRC). According to this, the last two steps in the
progression from healthy tissue towards CRC (HRL to CIS and CIS to CRC) display the
largest dissimilarities. Similar results were obtained using an alternative approach based
on Spearman correlations: 66% (N vs. LNAR), 65% (LNAR vs. LRL), 53% (LRL vs. IRL),
53% (IRL vs. HRL), 79% (HRL vs. CIS) and 73% (CIS vs. CRC).

Cancers 2023, 15, x FOR PEER REVIEW  9 of 24 
 

 

 

Figure 2. The effect size of species found as significantly differentially abundant when comparing 

CRC  vs.  non‐CRC  samples  (n  =  2565)  (a)  and CR  vs.  non‐CR  samples  (b).  Bars  are  green  for 

overrepresentation and red for underrepresentation. The bars are sorted according to the effect size. 

In bold are the highlighted taxa that appeared as differentially abundant in both comparisons. 

We next explored whether changes in the microbiome correlated with other variables 

collected  in  the  study  such  as  the  number  of  polyps  observed  in  the  colonoscopy 

examination  and  lifestyle  parameters  collected  by  a  questionnaire. Colorectal  polyps, 

which are benign tumors that project onto the colon mucus and protrude into intestinal 

lumen  [45],  have  long  been  identified  as  potential  precursors  of  CRC.  Polyp  size, 

Figure 2. The effect size of species found as significantly differentially abundant when comparing
CRC vs. non-CRC samples (n = 2565) (a) and CR vs. non-CR samples (b). Bars are green for
overrepresentation and red for underrepresentation. The bars are sorted according to the effect size.
In bold are the highlighted taxa that appeared as differentially abundant in both comparisons.
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Figure 3. Circos plots representing the correlation weight matrices obtained from the computed
networks of co-occurrence according to the diagnosis (negative (N) n = 925, lesion not associated to
risk (LNAR) n = 90, low risk lesion (LRL) n = 681, intermediate risk lesion (IRL) n = 638, high risk
lesion (HRL) n = 397, carcinoma in situ (CIS) n = 24, and colorectal cancer (CRC) n = 134) considering
the top 50 taxa. The green connections are for positively correlated and the red connections are for
negatively correlated taxa. The thickness of the arrows represents the strength of the correlations.

S1: Bacteroides vulgatus, S2: Akkermansia muciniphila, S3: Akkermansia spp., S4: Collinsella
aerofaciens, S5: Bacteroides spp., S6: Agathobacter spp., S7: Bacteroides uniformis, S8: Faecalibac-
terium prausnitzii, S9: Holdemanella spp., S10: Collinsella spp., S11: Faecalibacterium_CM04-06
spp., S12: Ruminococcus bromii, S13: Erysipelotrichaceae_UCG-003 spp., S14: Escherichia spp.,
S15: Faecalibacterium spp., S16: Dorea longicatena, S17: Alistipes putredinis, S18: Phascolarc-
tobacterium spp., S19: Ruminococcus spp., S20: Blautia spp., S21: Subdoligranulum spp.,
S22: Alistipes spp., S23: Dorea spp., S24: Bifidobacterium spp., S25: Bacteroides massiliensis,
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S26: Streptococcus spp., S27: Ruminococcaceae_UCG-002 spp., S28: F.Lachnospiraceae.UCG,
S29: Prevotella spp., S30: Parabacteroides spp., S31: Ruminococcaceae_UCG-014 spp., S32:
Prevotellaceae_NK3B31_group spp., S33: F.Ruminococcaceae.UCG, S34: Coprococcus spp., S35:
Anaerostipes spp., S36: Dialister spp., S37: Roseburia spp., S38: Lachnospira spp., S39: Bar-
nesiella spp., S40: Bacteroides coprocola, S41: F.Muribaculaceae.UCG, S42: Paraprevotella spp.,
S43: Catenibacterium spp., S44: O.Rhodospirillales.UCF, S45: Erysipelatoclostridium spp., S46:
Lachnospiraceae_NK4A136_group spp., S47: Christensenellaceae_R-7_group spp., S48: Lachno-
clostridium spp., S49: Ruminiclostridium spp. and S50: Alloprevotella spp.

Of note, some of the specific differences that we detected were that Akkermansia
muciniphila and Akkermansia spp. were found as positively correlated in all the diagnoses,
but only in CRC we observed a negative correlation of the Akkermansia spp. and Dorea
longicatena species. In contrast, in LNAR and LRL we found a negative correlation of these
species with Agathobacter spp. and Alloprevotella spp., respectively. Also, we observed a
positive correlation between Collinsella aerofaciens and Collinsella spp. in all the diagnoses
except in the CIS group, and only in CRC we observed a negative correlation with another
taxon, Lachnospira spp.

Co-occurrence networks may reflect underlying microbial communities that may
interact metabolically. To obtain functional insights we inferred the functional potential of
the microbiota in each sample by exploring metabolic pathways and processes associated
with 2927 orthologous groups (OG, i.e., functionally-annotated gene families) in 376 taxa
present in our samples (see Materials and Methods, Section 2.6). By studying the variation
of abundance of OGs across samples, we identified 184 that were significantly differentially
abundant according to the diagnosis (Data S7). The differentially abundant OGs were
linked to 23 enriched pathways (containing more than 10 predicted OGs and 10% or more
differentially abundant OGs involved), many of which have been linked to CRC in the
literature, according to a text-mining approach (Figure 4a).

When performing pairwise comparisons between diagnoses along the path from
healthy colon to CRC, we only observed significant differences of OGs in the transition
from IRL to HRL (Figure 4b and Data S8). For instance, some of the OGs that we found as
significantly differentially abundant between these two diagnoses were: K00850, K00963,
K02231, which are involved, respectively, in galactose metabolism, RNA degradation,
pentose and glucuronate interconversions, porphyrin and chlorophyll metabolism, pepti-
doglycan biosynthesis and cell cycle—Caulobacter.

3.4. Development of a Two-Phase Machine Learning Classifier

The observed differences in bacterial composition across samples with varying diag-
noses suggest a diagnostic potential for the microbial compositions of FIT-positive samples
that could be harnessed to improve the efficiency of current screening programs. With
the aim of reducing unnecessary colonoscopies while maintaining a high sensitivity, we
explored machine learning approaches to develop a sample classifier able to discriminate
samples with clinically-relevant diagnoses (CR, CRC samples and lesions of higher risk).
Contrary to most automated classifiers that aim at maximizing accuracy, we intentionally
put our focus on achieving high sensitivity at the cost of reduced accuracy. This is justified
because, in a clinical context, false negatives (i.e., persons with clinically relevant lesions
that do not proceed to colonoscopy) are of higher medical concern as compared to false
positives (persons with no lesions that undergo colonoscopy), and because the main aim
was to reduce the already high level of false positives in current FIT-based screenings
without increasing the amount of false negatives. To derive this predictor, we explored
the effect of using different machine learning algorithms, and the use of feature selection
to restrict the parameter set to all bacterial taxa showing significant differences, or to a
subset of them (see Materials and Methods, Section 2.7). When including more taxa, we
observed a better area under the curve (AUC) and specificity (Table S4) This fact can be
translated to better reduction of false-positive rates. On the other hand, when restricting
to only a panel of taxa, we obtained better recall and sensitivity for CRC and CR samples
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but poor AUC and specificity (Table 1). However, in the context of the current screening,
there is still a satisfactory reduction of the false-positive rate with a good prioritization
of relevant cases. We achieved optimal results, in terms of inclusion of clinically relevant
samples, with a two-phase classifier trained to classify CRC samples in a first phase and
CR samples in a second phase. This final classifier considered information on sex, age and
fecal hemoglobin concentration, and abundances from two different subsets of four taxa
(first phase: Akkermansia spp., Akkermansia muciniphila, Bacteroides fragilis and Bacteroides
plebeius and second phase: Negativibacillus spp., Bacteroides coprocola, Bacteroides caccae and
Dorea formicigenerans) (Figure 5). This classifier obtained an average 98.98% sensitivity for
CRC samples and 97.98% for clinically relevant samples (Table 1B).

We validated our strategy on two independent datasets. We first constructed a model
with all the samples (without including Bacteroides fragilis, see Materials and Methods,
Section 2.7) and tested it on an independent cohort of 135 FIT-positive samples from the
USA [37]. The results of this adjusted model in the USA cohort yielded 100% sensitivity for
CRC and 98.46% for CR lesions, reducing 20 % of the unnecessary colonoscopies (Table
S5A). We also performed an additional validation, in this case including both 4-4 taxa
panels, with an independent dataset composed of 100 additional samples from the same
Catalan screening detecting all CRC samples, 96% of the CR samples and having a reduction
of 12% of the false positives (Table S5B). This last test set was balanced, and it was used for
further optimization of the classifier. The corresponding ROC curves are represented at
(Figure S7).

We explored how changing some parameters of the classifier affected sensitivity and
the number of saved colonoscopies. For instance, by penalizing less the minority class
(CR) at the second phase, we obtained better reduction of unnecessary colonoscopies (26%)
but at the cost of including less CR samples (90%). Similarly, the number of samples to
be tested for the microbial signature can be reduced by applying a FIT-value threshold
above which a benefit of colonoscopy is assumed. For instance, applying a value of 954 µg
hemoglobin/g feces (3rd quartile in our CR samples) for such a threshold, which is passed
by 18% of our samples, would save 14% of unnecessary colonoscopies at the end of the
process and reduce the need for microbiome testing. When we combined both approaches,
we could reach 30% of saved colonoscopies, at the cost of a reduction of CR detection (87%).
However, in all the mentioned cases we detected 100% of the CRC samples. This shows that
our algorithm can be fine-tuned to optimize cost-effectiveness (Figure S8). A comparison of
our algorithm with the current FIT strategy and other available solutions (GoodGut [47]
and ColoGuard [48]) revealed higher sensitivity for both CRC and CR while maintaining a
significant reduction of the current false positive rate and, importantly, without the need of
collecting a separate sample from the screening (Table S6).

We next assessed possible alternative subsets of species included in the lists of differen-
tially abundant taxa according to the diagnosis (Data S4 and S5) as potential features for the
classification (See Materials and Methods, Section 2.7). We tested a total of 948 models and
selected 13.5% of them (128/948). The strategy that led to more selected models was the
one including subsets of 4 taxa with highest effect size, selecting half of the trained models
(Figure S9A). The two Akkermansia species were the taxa that were most often included in
selected models (Figure S9B) and 96.88% of the selected models included at least one of the
8 taxa used as features in the 4-4 taxa panel classifier (Akkermansia muciniphila, Akkermansia
spp., Bacteroides fragilis, Bacteroides plebeius, Bacteroides coprocola, Negativibacillus spp., Dorea
formicigenerans or Bacteroides caccae). These results suggest that different combinations of
biomarkers drawn from the identified differentially abundant taxa can effectively be used
to classify samples according to their clinical relevance.
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Figure 4. Enriched pathways according to the diagnosis. (a) The length of the bar indicates the
number of differentially abundant OGs involved. The bars are sorted and colored according to the
number of articles for which a given pathway has been linked to CRC. (b) Dotplot representing the
pairs of diagnoses in which we found differentially abundant OGs involved in the enriched pathways.
Of note, monobactam biosynthesis, protein export, selenocompound metabolism and aminoacyl-trna
biosynthesis are not represented because multiple comparison tests did not detect involved OG as
differentially abundant in any pairwise comparison.
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Table 1. Performance of the two-phase machine learning predictor. The reported values are mean
values obtained from the 100 random splits and include a panel of four taxa for each of the phases plus
sex, age and FIT-value. Samples with missing metadata were discarded from this analysis (n = 2817).
(A) Average of area under the curve (AUC), recall and specificity for each of the phases. (B) Average
sensitivity for clinically relevant samples and for each of the diagnoses included in this group.

(A)
AUC Recall Specificity

FIRST PHASE 0.565368 0.8709974 0.2597385

SECOND PHASE 0.5358411 0.8052662 0.2664159

(B)
Average sensitivity (%)

CR * 97.98

IRL 97.71

HRL 98.06

CIS 98.54

CRC 98.98
* The average CR sensitivity re-proportionated according to the population (data from the Barcelona colorectal
cancer screening, presented at Data S9) is 98.05%.
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Figure 5. Flow chart of the proposed methodology (4-4 taxa classifier). FIT positive samples are
subjected to microbiome profiling by 16S rRNA gene sequencing. Then a two phase classifier is
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non-CRC in the first phase are subjected to a second model that classifies CR vs. non-CR samples.
FIT: fecal immunochemical test; CRC: colorectal cancer, CR: clinically relevant.
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4. Discussion

CRC is a healthcare challenge and one of the leading causes of cancer-related deaths
worldwide [49]. Early diagnosis of CRC is key for efficient treatment and for the survival
of the patients and, hence, there is a strong interest in implementing diagnostic screenings
for populations at risk. Colonoscopy, which is the gold standard for CRC diagnosis,
is an expensive, time-consuming, invasive technique with potential complications. To
minimize the use of colonoscopy only to cases that are more likely to benefit, population
screening programs use less specific, non-invasive tests to pre-screen for risk of CRC.
Immunochemical methods, such as FIT, have commonly been used as pre-colonoscopy
tests in a two-step approach [50], but they have high false-positive rates, which results
in unnecessary colonoscopies. This, in turn, increases healthcare costs and saturates
endoscopy units, limiting the efficiency of population screenings. Considering this, there
is a need to reduce the false-positive rate of the initial screening step by identifying new
biomarkers and developing new risk scores. In this context, the gut microbiome has been
suggested as a promising source for biomarkers with diagnostic potential in CRC [51]. In
this project, we set out to investigate the potential of FIT samples to identify diagnostic
markers and changes in the microbiota along the path from healthy colonic tissue to CRC.

Recent studies have shown the potential of the gut microbiome for CRC screening
but these are mainly based on other types of samples [8,41,52,53] (e.g.,: gFOBT or stool
samples) and are often focused on the comparison of CRC and healthy controls. In contrast,
the focus of this project was on improving current screening programs based on FIT testing,
using material from the same samples, and focusing on distinguishing clinically relevant
cases (not only CRC) from FIT-positive samples (not the usual healthy baseline but the
baseline of the population currently sent for colonoscopy).

Our results support the use of sampled material directly from FIT containers for
microbiome analysis, avoiding the complex and costly collection and processing of separate
stool samples that are widely and traditionally used to represent the gut microbiome [36].
More importantly, we show that the collected fecal material was enough to perform both
the hemoglobin analysis and DNA extraction, and that the DNA was of sufficient quantity
and quality to efficiently perform 16S metabarcoding. Earlier studies have also shown good
conservation of DNA from frozen samples and close correspondence between microbiome
profiles obtained from FIT samples and matching fecal material [54,55]. This is consistent
with our results, which showed that the identified taxa and abundances are typically found
in studies that use stool samples although observing differences that can be attributed
to cohort or methodological particularities. Hence, our study shows that we can use the
same fecal sample for both FIT and microbiome analyses, facilitating the implementation
of microbiome-based biomarkers in currently ongoing population screening programs.
It is well known that a high percentage of CRCs emerge from premalignant polypoid
lesions (i.e., adenomas and serrated lesions), which progress to CRC following a multi-
stage development driven by both genetic and environmental risk factors [56]. Diet and
lifestyle are key environmental factors associated with the presence of adenomas and
their progression to CRC, likely through alterations of the gut microbiome. In our study,
we captured differences between the fecal microbiome profiles along the various stages
in the path from normal colonic epithelium to CRC. To the best of our knowledge, this
is the first large microbiome study considering such a detailed and rigorous diagnostic
classification associated with the included samples, which comprises different lesions in
addition to healthy and CRC samples (Table S1). We did not observe disparate overall
microbiome compositions between different clinical diagnoses but did find significant
changes in particular taxa. Thus, different combinations of small but relevant changes
may drive microbiome influence on CRC progression. In addition, it must be considered
that microbiota alterations might more profoundly affect lesions and surrounding tissues,
which may result in only subtle differences in the overall composition of the fecal material
contained within FIT tubes.
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Expectedly, we observed that CRC was the diagnostic group that had the most distinct
microbiome profile. Taxa with the highest deviations in CRC-associated samples were
Akkermansia muciniphila and an unclassified species from the same genus (Akkermansia
spp.), which were overrepresented in CRC compared to the other samples, and Bacteroides
fragilis and Bacteroides plebeius, which were underrepresented. Of note, A. muciniphila is
a mucin-degrading bacterium and mucins such as MUC1 and MUC5AC are known to
be overexpressed in CRC patients [57]. Hence, an increase of substrate availability could
influence the observed higher abundance of this species. Interestingly, it is known that if
microorganisms or their products cross the host epithelial barrier, both the immune and
mesenchymal defenses respond with a signaling cascade (e.g., activation of NF-kB and
STAT3) in order to maintain epithelial integrity. This fact has a selective impact on the gut
microbiome and triggers mucin and antimicrobial peptide secretion [58]. A. muciniphila was
found as overrepresented in other populations, and it was recently claimed as a potential
biomarker for CRC in tissue [59].

Contrary to other studies with fecal and tissue samples that reported an enrichment
of Bacteroides fragilis in CRC [58], we found this species to be underrepresented in these
samples. Previous studies suggested that B. fragilis plays a key role in the development of
CRC through the action of its toxin (BFT), which can influence colorectal tumorigenesis by
disturbance or activation of signaling pathways that produce chronic intestinal inflamma-
tion and tissue injury [60]. However, we found this underrepresentation comparing CRC vs.
non-CRC (including all the adenomas), as opposed to these other studies which compared
CRC vs. healthy samples. Previous studies have shown that there are different strains of
B. fragilis along the gastrointestinal tract apart from the mentioned BFT-producing strains,
such as a non-toxigenic B. fragilis which has an immunogenic capsular component, and the
Polysaccharide A that promotes mucosal immune development and whose increase has
not been associated to CRC [61,62].

We also observed an influence on the differences of the microbiome driven by variables
like sex and age and, interestingly, by the number of polyps. As mentioned above, the
presence of polyps can be a sign of risk to development or progression of CRC, so the study
of the microbiome associated with polyps can serve as a source of predictive biomarkers
for CRC. Some of the genera whose abundance correlated with the number of polyps
were also reported in previous studies in relation to risk for CRC polyps (e.g., Bacteroides,
Blautia and Bifidobacterium). However, the presence of polyps does not necessarily lead to
the development of CRC and some patients with particular genetic profiles may present
numerous polyps [63].

It is known that the presence of certain metabolites, DNA damage, and inflammation
are all factors driving CRC progression [64]. Changes in the microbial composition or
functionalities can promote a more optimal microenvironment for the development of
CRC. Conversely, CRC progression can alter the surrounding environment and therefore
affect microbial communities. In our study, we inferred the potential functionalities of the
microbiome profiles associated with each colonoscopy outcome and observed OGs that
were significantly differentially abundant across diagnoses. Interestingly, we observed that
the transition from intermediate risk lesion to high risk lesion was the stage with the greatest
alteration of functional and metabolic capacities. Some examples of enriched pathways
were galactose metabolism, RNA degradation, pentose and glucuronate interconversions
and quorum sensing. In this regard, it has been reported that microbes can interact with
cancer cells through their quorum sensing peptides and influence metastasis [65]. Also
of note, many of the pathways found are related to DNA repair. This may reflect a toxic
environment for the microbial DNA, perhaps caused by the bacterial metabolism. This
same environment could be damaging to the host DNA, supporting a genotoxic pathway
connecting the microbiome and CRC development [66]. Our results are based on 16S rRNA
sequencing, which is a cost-effective approach that can be applied to many samples. In
particular, the presented results related to functional inference should be confirmed using
shotgun metagenomics or meta-transcriptomics approaches, which will provide better
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resolution. However, previous studies demonstrated high correlation of functional profiles
predicted from 16S rRNA sequencing data and from metagenomes [67], and we believe the
data presented here are a good proxy for generating testable hypotheses.

Metabolic capacities of some microorganisms, such as the mentioned mucin utilization
of A.muciniphila, can result in sources of nutrients or energy for other microbes in the gut.
The study of correlated abundances between different microbes is interesting in this context.
We detected distinct taxon co-occurrence patterns in the studied diagnoses that likely
reflect changes in microbial ecosystems and their metabolic interactions that accompany
the transitions towards CRC development. It is interesting to account for these patterns
because of the dominant functional redundancy of the gut microbiome: some bacteria can
share functions and exert similar influences on the development and progression of CRC.
In addition, it is still unclear how microbes modulate each other, or how they shape the
immune environment of the tumor, and these co-occurrence patterns can shed light in this
direction [58]. For instance, we observed an exclusive negative association between Dorea
longicatena and Akkermansia spp. only in the CRC group.

The presented machine learning prediction results show a potential role of the mi-
crobial composition of FIT samples in CRC screening. We derived a two-phase classifier
with high sensitivity for CRC and other CR samples with a small but significant reduc-
tion of the false positive rate. In the context of the Barcelona screening program [13], in
which there is an average participation of 50%, approximately 5% of participants have a
positive FIT result. Of them, around 3–5% have CRC detected during colonoscopy and
an additional 30% have a CR lesion associated with CRC risk requiring a more intensive
surveillance, whereas around 65% have a normal colonoscopy or only non-CR lesions are
detected. Therefore, translating our results to this clinical context and considering the
mean participation and diagnosis obtained during the last four available rounds, we would
save a range between 423 (12%) to 1057 (30%) unnecessary colonoscopies each year, while
maximizing the inclusion of CR individuals (Data S9).

By reducing the number of unnecessary colonoscopies and increasing cost-effectiveness
of current population screenings, microbiome-based tests such as the one explored here,
could not only save money and time but also increase participation and adherence rates.
The present study has some limitations, such as the imbalance in some of the diagnoses, and
the lack of more detailed information on polyps or lesion characteristics (e.g., localization,
size, histology), genetic profiles, or past treatments, which can be factors influencing the
microbiome. However, this lack of information, which is difficult to access beforehand, is
also a strength of our study, showing that with just the FIT sample and information on the
sex and age of individuals we can draw some conclusions and obtain a classification of
the samples with high sensitivity for CRC and CR samples. Further studies are necessary
to validate these findings in different cohorts and to properly assess cost-effectiveness in
the framework of a health economics analysis that considers direct and indirect costs of
colonoscopy and microbiome analysis from FIT samples. Finally, further developments
such as a targeted quantification of a species panel by multiplex PCR, or implementations
in the FIT tube to accommodate this additional test, will likely further reduce costs and
facilitate the adoption of microbiome-based tests.

5. Conclusions

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide with a sub-
stantial challenge in its diagnosis, which if done early could improve overall survival. Our
study suggests a potential role of the microbiome in the path from normal epithelia to CRC,
revealing taxa, metabolic features and co-occurrence changes along this progression. The
proposed classifier and its possible cost-effectivity optimization as well as the addition of
other layers of information or current in-use clinical biomarkers such as microRNAs, gene
mutations and DNA methylation, that are already stated as potential biomarkers, can be a
potential tool for clinical proposes and improvement of current CRC screening.
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Patents

A patent covering the use of microbial biomarkers for CRC and CR detection published
in this manuscript has been filed.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15010120/s1, Supplementary Data (large tables):
Data S1. Strengthening The Organization and Reporting of Microbiome Studies (STORMS) checklist;
Data S2. Metadata will be available prior to publication; Data S3. Table of the taxa at the species
level that we found as differentially abundant according to each of the fixed effects included in
the linear model. Only significant p-values are reported. Samples with missing metadata were
not considered in this analysis, (n = 2565); Data S4. Table of the taxa at the species level that we
found as differentially abundant according to each of the fixed effects included in the linear model
when comparing CRC vs. non-CRC. Only significant p-values are reported. Samples with missing
metadata were not considered in this analysis, (n = 2565); Data S5. Table of the taxa at the species
level that we found as differentially abundant according to each of the fixed effects included in the
linear model when comparing clinically relevant (CR) vs. non-Clinically relevant (non-CR) samples.
Only significant p-values are reported. Samples with missing metadata were not considered in
this analysis, (n = 2565); Data S6. Table of species found as differentially abundant according to the
number of polyps, and the significance values (p-value < 0.05). Samples with missing metadata were
not considered in this analysis; (n = 2565); Data S7. List of differentially abundant OG according to
the diagnosis and the significance values (p-value < 0.05); Data S8. Summary of the significant results
obtained when applying multiple comparisons between diagnoses. Significant p values are reported
(Tukey test, p.adjusted < 0.05). The p-value has the sign of the corresponding effect size, indicating
the direction of the difference; Data S9. Statistics of the last four available rounds of results from the
Catalan CRC screening in Barcelona; Supplementary Material (Figures and small tables): Figure S1.
Pie chart representing the 10 most abundant genera of studied CRIPREV samples. The other genera
were grouped and named as “others”; Figure S2. Comparison of FIT positive 16S samples from
the present study and stool 16S samples from an independent study. (A) Multidimensional scaling
plot (MDS) representing the Aitchison distance and Shannon index according to the source project.
(B) Barplot representing the present phyla. Each column represents a sample; Figure S3. Alpha
diversity characterization, (n = 2889). The lines inside the boxplots represent the medians for each of
the groups. Statistical test: Kruskall-Wallis or Wilcoxon test, with a significant result when p < 0.05.
(A) Observed index according to the diagnosis (carcinoma in situ (CIS), colorectal cancer (CRC),
lesion that is not associated to risk (LNAR), high risk lesion (HRL), low risk lesion (LRL), intermediate
risk lesion (IRL) or negative (N) samples) and risk (clinically relevant (CR) vs. non-clinically relevant
(non-CR) samples) variables. (B) Shannon and Simpson indices according to the diagnosis; Figure S4.
MDS plots using Aitchison distance, (n = 2889). The samples are colored according to the diagnosis.
95% confidence ellipses are represented for each of the diagnosed groups; Figure S5. Box plot of
the Akkermansia clr according to the different explored diagnosis, (n = 2889). Negative (N), lesion
not associated to risk (LNAR), low risk lesion (LRL), intermediate risk lesion (IRL), high risk lesion
(HRL), carcinoma in situ (CIS) and colorectal cancer (CRC); Figure S6. Summary of the results of the
adonis test, evaluating the effect of lifestyle variables on the overall composition. Only significant
(p-value < 0.05) results are colored, including the p-value in each of the cells. The assessment of the
individual effect of each variable is in the orange column, while is the impact using as covariate
the diagnosis is in the pink column. The explained variability (R2) was used for the color intensity
of the cells; Figure S7. ROC curves for each of the phases in the different validations performed.
First phase: CRC vs. others, Second phase: clinically relevant vs. non-clinically relevant (a) USA
cohort, (b) 100 extra samples from the CRC screening; Figure S8. Percentage of saved colonoscopies
and clinically relevant sensitivity according to the different specifications of the proposed classifier;
All_taxa: All the intersecting taxa between the CRIPREV and the validation datasets were used as
features. DA_taxa: All the intersecting differentially abundant taxa between the CRIPREV and the
validation datasets were used as features. 4-4 taxa panel: 4 taxa panel for each of the phases. 4-4 taxa
panel, adjW: 4 taxa panel for each of the phases, with less penalization of the CR samples in the second
phase. FIT_filter_4-4 taxa panel: samples above 954 of the FIT value (µg hemoglobin/g feces) were
directed to colonoscopy and the remaining samples were subjected to the classifier. FIT_filter_4-4
taxa panel_adjW: samples above 954 of the FIT value (µg hemoglobin/g feces) were directed to
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colonoscopy and the remaining samples were subjected to the classifier. Less penalization of the CR
samples in the second phase. Figure S9. (A) Potential selection (number of models selected/number
of evaluated models, in %) of the different feature selection methods. (B) Average potential selection
of each of the 27 studied taxa (number of selected models in which the taxa were included/number
of models in which the taxa were included as a feature); Table S1. Criteria and distribution of the
colonoscopy-based diagnosis types considered in this project. Columns indicate, in this order: the
diagnosis group, the criteria for classification in the group, the number of samples of this study in
the given group, and the clinical relevance; Table S2. Characteristics of the included individuals:
sex, median and range age and samples deemed of clinical relevance after colonoscopy. * Samples
with ‘NA’ value for this parameter are excluded from the calculation; Table S3. Table summarizing
differential abundance analysis results considering all the diagnoses following the path from healthy
colon to colorectal cancer. We used the linear model: tax_element~diagnosis + hospital + sex + age +
n_polyps + FIT_value + (1|run). Samples with missing metadata were not considered in this analysis,
(n = 2565); Table S4. Performance of the two-phase machine learning predictor. The reported values
are mean values obtained from the 100 random splits. Including 41 and 34 taxa for both phase 1
and phase 2, respectively, plus sex, age and fecal hemoglobin concentration. Samples with missing
metadata were discarded from this analysis, (n = 2817). (A) Average of area under the curve (AUC),
recall and specificity for each of the phases (B) Average of sensitivity for clinically relevant samples
and for each of the diagnosis included in this particular group; Table S5.Performance of the two-phase
machine learning predictor on independent datasets. The reported values are obtained by training
on all the CriPrev samples (samples with missing metadata were discarded for training the model,
n = 2817) and testing on the independent sets. Area under the curve (AUC), recall and specificity for
each of the phases and sensitivity for CRC and CR lesions at the end of the two-phase classification
were reported. (A) USA cohort. Including a panel of 3 and 4 taxa for phase 1 and 2, respectively,
plus sex, age and fecal hemoglobin concentration. (B) 100 extra samples from the Catalan screening;
Table S6. Comparison of our algorithm (considering different optimizations, and shadowed cells)
with two alternative solutions and the current FIT strategy.
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